Skip to content

Instantly share code, notes, and snippets.

@andrewliao11
Created May 24, 2018 17:09
Show Gist options
  • Select an option

  • Save andrewliao11/3514dfaa4c2c3e9a1cd808ad1ed4bbeb to your computer and use it in GitHub Desktop.

Select an option

Save andrewliao11/3514dfaa4c2c3e9a1cd808ad1ed4bbeb to your computer and use it in GitHub Desktop.
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple, deque
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Normal
import ipdb
parser = argparse.ArgumentParser(description='PyTorch actor-critic example')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor (default: 0.99)')
parser.add_argument('--seed', type=int, default=543, metavar='N',
help='random seed (default: 1)')
parser.add_argument('--render', action='store_true',
help='render the environment')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='interval between training status logs (default: 10)')
args = parser.parse_args()
env = gym.make('InvertedPendulum-v1')
env.seed(args.seed)
torch.manual_seed(args.seed)
SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
class Policy(nn.Module):
def __init__(self, ob_space, ac_space):
super(Policy, self).__init__()
self.affine1 = nn.Linear(ob_space.shape[0], 128)
self.mean_head = nn.Linear(128, ac_space.shape[0])
self.logstd_head = nn.Linear(128, ac_space.shape[0])
self.value_head = nn.Linear(128, 1)
self.saved_actions = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
mean = self.mean_head(x)
logstd = self.logstd_head(x)
std = logstd.exp()
pdparam = (mean, std)
state_values = self.value_head(x)
return pdparam, state_values
model = Policy(env.observation_space, env.action_space)
optimizer = optim.Adam(model.parameters(), lr=3e-4)
eps = np.finfo(np.float32).eps.item()
def select_action(state):
state = torch.from_numpy(state).float()
pdparam, state_value = model(state)
m = Normal(*pdparam)
action = m.sample()
model.saved_actions.append(SavedAction(m.log_prob(action), state_value))
return action.item()
def finish_episode():
R = 0
saved_actions = model.saved_actions
policy_losses = []
value_losses = []
rewards = []
for r in model.rewards[::-1]:
R = r + args.gamma * R
rewards.insert(0, R)
rewards = torch.tensor(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
for (log_prob, value), r in zip(saved_actions, rewards):
reward = r - value.item()
policy_losses.append(-log_prob * reward)
value_losses.append(F.smooth_l1_loss(value, torch.tensor([r])))
optimizer.zero_grad()
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
loss.backward()
optimizer.step()
del model.rewards[:]
del model.saved_actions[:]
def main():
reward_list = deque([], maxlen=100)
for i_episode in count(1):
state = env.reset()
ep_reward = 0
for t in range(10000): # Don't infinite loop while learning
action = select_action(state)
state, reward, done, _ = env.step([action])
ep_reward += reward
if args.render:
env.render()
model.rewards.append(reward)
if done:
reward_list.append(ep_reward)
break
average_reward = sum(reward_list)/len(reward_list)
finish_episode()
if i_episode % args.log_interval == 0:
print('Episode {}\tLast length: {:5d}\tAverage reward: {:.2f}'.format(
i_episode, t, average_reward))
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment