Skip to content

Instantly share code, notes, and snippets.

@baishibona
Created August 10, 2016 22:05
Show Gist options
  • Select an option

  • Save baishibona/6fda2e21220a7b485bd1b4c3b0c7d8ee to your computer and use it in GitHub Desktop.

Select an option

Save baishibona/6fda2e21220a7b485bd1b4c3b0c7d8ee to your computer and use it in GitHub Desktop.
name: "Bona_Explo_local"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "examples/explo_imagenet/explo_mean.binaryproto"
}
data_param {
source: "examples/explo_imagenet/explo_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_file: "examples/explo_imagenet/explo_mean.binaryproto"
}
data_param {
source: "examples/explo_imagenet/explo_val_lmdb"
batch_size: 512
backend: LMDB
}
}
layer {
name: "conv1"
type: "Local"
bottom: "data"
top: "conv1"
local_param {
num_output: 32
pad: 2
stride: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Local"
bottom: "pool1"
top: "conv2"
local_param {
num_output: 32
kernel_size: 5
stride: 2
pad: 2
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Local"
bottom: "pool2"
top: "conv3"
local_param {
num_output: 32
kernel_size: 5
stride: 2
pad: 2
weight_filler {
type: "gaussian"
std: 0.01
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "norm3"
type: "LRN"
bottom: "conv3"
top: "norm3"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool3"
type: "Pooling"
bottom: "norm3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool3"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 512
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 512
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 36
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment