Created
August 11, 2016 14:54
-
-
Save baishibona/80be595176a9ddb69eba9414e18bd7ba to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "ZF" | |
| layer { | |
| name: 'data' | |
| type: 'Python' | |
| top: 'data' | |
| top: 'rois' | |
| top: 'labels' | |
| top: 'bbox_targets' | |
| top: 'bbox_inside_weights' | |
| top: 'bbox_outside_weights' | |
| python_param { | |
| module: 'roi_data_layer.layer' | |
| layer: 'RoIDataLayer' | |
| param_str: "'num_classes': 21" | |
| } | |
| } | |
| #========= conv1-conv5 ============ | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 96 | |
| kernel_size: 7 | |
| pad: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "relu1" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| layer { | |
| name: "norm1" | |
| type: "LRN" | |
| bottom: "conv1" | |
| top: "norm1" | |
| lrn_param { | |
| local_size: 3 | |
| alpha: 0.00005 | |
| beta: 0.75 | |
| norm_region: WITHIN_CHANNEL | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "pool1" | |
| type: "Pooling" | |
| bottom: "norm1" | |
| top: "pool1" | |
| pooling_param { | |
| kernel_size: 3 | |
| stride: 2 | |
| pad: 1 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "pool1" | |
| top: "conv2" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 5 | |
| pad: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "relu2" | |
| type: "ReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| layer { | |
| name: "norm2" | |
| type: "LRN" | |
| bottom: "conv2" | |
| top: "norm2" | |
| lrn_param { | |
| local_size: 3 | |
| alpha: 0.00005 | |
| beta: 0.75 | |
| norm_region: WITHIN_CHANNEL | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "pool2" | |
| type: "Pooling" | |
| bottom: "norm2" | |
| top: "pool2" | |
| pooling_param { | |
| kernel_size: 3 | |
| stride: 2 | |
| pad: 1 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "pool2" | |
| top: "conv3" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 384 | |
| kernel_size: 3 | |
| pad: 1 | |
| stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "relu3" | |
| type: "ReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| layer { | |
| name: "conv4" | |
| type: "Convolution" | |
| bottom: "conv3" | |
| top: "conv4" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 384 | |
| kernel_size: 3 | |
| pad: 1 | |
| stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "relu4" | |
| type: "ReLU" | |
| bottom: "conv4" | |
| top: "conv4" | |
| } | |
| layer { | |
| name: "conv5" | |
| type: "Convolution" | |
| bottom: "conv4" | |
| top: "conv5" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| pad: 1 | |
| stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "relu5" | |
| type: "ReLU" | |
| bottom: "conv5" | |
| top: "conv5" | |
| } | |
| #========= RCNN ============ | |
| layer { | |
| name: "roi_pool_conv5" | |
| type: "ROIPooling" | |
| bottom: "conv5" | |
| bottom: "rois" | |
| top: "roi_pool_conv5" | |
| roi_pooling_param { | |
| pooled_w: 6 | |
| pooled_h: 6 | |
| spatial_scale: 0.0625 # 1/16 | |
| } | |
| } | |
| layer { | |
| name: "fc6" | |
| type: "InnerProduct" | |
| bottom: "roi_pool_conv5" | |
| top: "fc6" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| name: "relu6" | |
| type: "ReLU" | |
| bottom: "fc6" | |
| top: "fc6" | |
| } | |
| layer { | |
| name: "drop6" | |
| type: "Dropout" | |
| bottom: "fc6" | |
| top: "fc6" | |
| dropout_param { | |
| dropout_ratio: 0.5 | |
| scale_train: false | |
| } | |
| } | |
| layer { | |
| name: "fc7" | |
| type: "InnerProduct" | |
| bottom: "fc6" | |
| top: "fc7" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| name: "relu7" | |
| type: "ReLU" | |
| bottom: "fc7" | |
| top: "fc7" | |
| } | |
| layer { | |
| name: "drop7" | |
| type: "Dropout" | |
| bottom: "fc7" | |
| top: "fc7" | |
| dropout_param { | |
| dropout_ratio: 0.5 | |
| scale_train: false | |
| } | |
| } | |
| layer { | |
| name: "cls_score" | |
| type: "InnerProduct" | |
| bottom: "fc7" | |
| top: "cls_score" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| inner_product_param { | |
| num_output: 21 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "bbox_pred" | |
| type: "InnerProduct" | |
| bottom: "fc7" | |
| top: "bbox_pred" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| inner_product_param { | |
| num_output: 84 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.001 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "loss_cls" | |
| type: "SoftmaxWithLoss" | |
| bottom: "cls_score" | |
| bottom: "labels" | |
| propagate_down: 1 | |
| propagate_down: 0 | |
| top: "cls_loss" | |
| loss_weight: 1 | |
| loss_param { | |
| ignore_label: -1 | |
| normalize: true | |
| } | |
| } | |
| layer { | |
| name: "loss_bbox" | |
| type: "SmoothL1Loss" | |
| bottom: "bbox_pred" | |
| bottom: "bbox_targets" | |
| bottom: "bbox_inside_weights" | |
| bottom: "bbox_outside_weights" | |
| top: "bbox_loss" | |
| loss_weight: 1 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment