Created
June 13, 2016 18:01
-
-
Save bamos/a5102f890f16a391084a0950618ef477 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| nan | |
| 1 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> (19) -> (20) -> (21) -> (22) -> (23) -> (24) -> output] | |
| (1): nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
| (5): nn.SpatialCrossMapLRN | |
| (6): nn.SpatialConvolution(64 -> 64, 1x1) | |
| (7): nn.SpatialBatchNormalization | |
| (8): nn.ReLU | |
| (9): nn.SpatialConvolution(64 -> 192, 3x3, 1,1, 1,1) | |
| (10): nn.SpatialBatchNormalization | |
| (11): nn.ReLU | |
| (12): nn.SpatialCrossMapLRN | |
| (13): nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
| (14): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| | (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(192 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| (15): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| (16): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| ... -> output | |
| } | |
| (17): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(640 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| (18): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| ... -> output | |
| } | |
| (19): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| (20): nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| | (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(736 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| (21): nn.SpatialAveragePooling(3x3, 1,1) | |
| (22): nn.View(736) | |
| (23): nn.Linear(736 -> 128) | |
| (24): nn.Normalize(2) | |
| } | |
| nan | |
| 2 nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3) | |
| 28428.669774754 | |
| 3 nn.SpatialBatchNormalization | |
| 47485.344581918 | |
| 4 nn.ReLU | |
| 47485.344581918 | |
| 5 nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
| 29610.480826637 | |
| 6 nn.SpatialCrossMapLRN | |
| 29607.20285791 | |
| 7 nn.SpatialConvolution(64 -> 64, 1x1) | |
| -46215.649390483 | |
| 8 nn.SpatialBatchNormalization | |
| 5586.9869854718 | |
| 9 nn.ReLU | |
| 5586.9869854718 | |
| 10 nn.SpatialConvolution(64 -> 192, 3x3, 1,1, 1,1) | |
| -243945.2438823 | |
| 11 nn.SpatialBatchNormalization | |
| 14310.947079424 | |
| 12 nn.ReLU | |
| 14310.947079424 | |
| 13 nn.SpatialCrossMapLRN | |
| 14310.764782931 | |
| 14 nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
| 9299.4612118299 | |
| 15 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| | (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(192 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| 7372.8237418521 | |
| 16 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| | (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(192 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| 7372.8237418521 | |
| 17 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 3041.5289890589 | |
| 18 nn.SpatialConvolution(192 -> 96, 1x1) | |
| -4221.4973005245 | |
| 19 nn.SpatialBatchNormalization | |
| 3381.8238505099 | |
| 20 nn.ReLU | |
| 3381.8238505099 | |
| 21 nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| 7723.8720341735 | |
| 22 nn.SpatialBatchNormalization | |
| 3041.5289890589 | |
| 23 nn.ReLU | |
| 3041.5289890589 | |
| 24 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 1097.3607423482 | |
| 25 nn.SpatialConvolution(192 -> 16, 1x1) | |
| -1095.6663571014 | |
| 26 nn.SpatialBatchNormalization | |
| 533.20889493544 | |
| 27 nn.ReLU | |
| 533.20889493544 | |
| 28 nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| 560.78297215328 | |
| 29 nn.SpatialBatchNormalization | |
| 1097.3607423482 | |
| 30 nn.ReLU | |
| 1097.3607423482 | |
| 31 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
| 255.2191820778 | |
| 32 nn.SpatialMaxPooling(3x3, 2,2) | |
| 2537.3004810991 | |
| 33 nn.SpatialConvolution(192 -> 32, 1x1) | |
| 260.92130632512 | |
| 34 nn.SpatialBatchNormalization | |
| 255.2191820778 | |
| 35 nn.ReLU | |
| 255.2191820778 | |
| 36 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(192 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| 2978.7148283671 | |
| 37 nn.SpatialConvolution(192 -> 64, 1x1) | |
| -1925.0513102314 | |
| 38 nn.SpatialBatchNormalization | |
| 2978.7148283671 | |
| 39 nn.ReLU | |
| 2978.7148283671 | |
| 40 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| 4192.5248958138 | |
| 41 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| 4192.5248958138 | |
| 42 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 1740.6393912397 | |
| 43 nn.SpatialConvolution(256 -> 96, 1x1) | |
| -5744.7828996833 | |
| 44 nn.SpatialBatchNormalization | |
| 2135.0005637809 | |
| 45 nn.ReLU | |
| 2135.0005637809 | |
| 46 nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| -31627.677911759 | |
| 47 nn.SpatialBatchNormalization | |
| 1740.6393912397 | |
| 48 nn.ReLU | |
| 1740.6393912397 | |
| 49 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 1100.3323725164 | |
| 50 nn.SpatialConvolution(256 -> 32, 1x1) | |
| -2077.8073705663 | |
| 51 nn.SpatialBatchNormalization | |
| 816.2209900188 | |
| 52 nn.ReLU | |
| 816.2209900188 | |
| 53 nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| -9842.4670063686 | |
| 54 nn.SpatialBatchNormalization | |
| 1100.3323725164 | |
| 55 nn.ReLU | |
| 1100.3323725164 | |
| 56 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
| 123.4834844321 | |
| 57 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| 2995.9608779663 | |
| 58 nn.Square | |
| 5307.9655835477 | |
| 59 nn.SpatialAveragePooling(3x3, 3,3) | |
| 5307.9655962903 | |
| 60 nn.MulConstant | |
| 5307.9655962903 | |
| 61 nn.Sqrt | |
| 2995.9608779663 | |
| 62 nn.SpatialConvolution(256 -> 64, 1x1) | |
| -1013.5408580252 | |
| 63 nn.SpatialBatchNormalization | |
| 123.4834844321 | |
| 64 nn.ReLU | |
| 123.4834844321 | |
| 65 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| 1228.0696476256 | |
| 66 nn.SpatialConvolution(256 -> 64, 1x1) | |
| -4882.411236471 | |
| 67 nn.SpatialBatchNormalization | |
| 1228.0696476256 | |
| 68 nn.ReLU | |
| 1228.0696476256 | |
| 69 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| ... -> output | |
| } | |
| 4118.1789596067 | |
| 70 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| ... -> output | |
| } | |
| 4118.1789596067 | |
| 71 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 1590.7774455175 | |
| 72 nn.SpatialConvolution(320 -> 128, 1x1) | |
| -6934.5462531344 | |
| 73 nn.SpatialBatchNormalization | |
| 2216.6457054392 | |
| 74 nn.ReLU | |
| 2216.6457054392 | |
| 75 nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| -5044.9248673413 | |
| 76 nn.SpatialBatchNormalization | |
| 1590.7774455175 | |
| 77 nn.ReLU | |
| 1590.7774455175 | |
| 78 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 590.11505900137 | |
| 79 nn.SpatialConvolution(320 -> 32, 1x1) | |
| -2195.1067498252 | |
| 80 nn.SpatialBatchNormalization | |
| 591.04037207016 | |
| 81 nn.ReLU | |
| 591.04037207016 | |
| 82 nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| -423.32057787105 | |
| 83 nn.SpatialBatchNormalization | |
| 590.11505900137 | |
| 84 nn.ReLU | |
| 590.11505900137 | |
| 85 nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| 1937.2864550878 | |
| 86 nn.SpatialMaxPooling(3x3, 2,2) | |
| 1937.2864550878 | |
| 87 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(640 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| 1419.2592620309 | |
| 88 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (4): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(640 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| 1419.2592620309 | |
| 89 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 450.65505624563 | |
| 90 nn.SpatialConvolution(640 -> 96, 1x1) | |
| -1807.8697174145 | |
| 91 nn.SpatialBatchNormalization | |
| 494.42065476626 | |
| 92 nn.ReLU | |
| 494.42065476626 | |
| 93 nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| -6616.060830225 | |
| 94 nn.SpatialBatchNormalization | |
| 450.65505624563 | |
| 95 nn.ReLU | |
| 450.65505624563 | |
| 96 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 249.36065697856 | |
| 97 nn.SpatialConvolution(640 -> 32, 1x1) | |
| -971.76546653546 | |
| 98 nn.SpatialBatchNormalization | |
| 116.89276184887 | |
| 99 nn.ReLU | |
| 116.89276184887 | |
| 100 nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| -1564.9647967899 | |
| 101 nn.SpatialBatchNormalization | |
| 249.36065697856 | |
| 102 nn.ReLU | |
| 249.36065697856 | |
| 103 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
| 48.05579098314 | |
| 104 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| 1936.6284440761 | |
| 105 nn.Square | |
| 2488.1982231718 | |
| 106 nn.SpatialAveragePooling(3x3, 3,3) | |
| 2488.1982171444 | |
| 107 nn.MulConstant | |
| 2488.1982171444 | |
| 108 nn.Sqrt | |
| 1936.6284440761 | |
| 109 nn.SpatialConvolution(640 -> 128, 1x1) | |
| -271.71464906633 | |
| 110 nn.SpatialBatchNormalization | |
| 48.05579098314 | |
| 111 nn.ReLU | |
| 48.05579098314 | |
| 112 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(640 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| 671.18775782362 | |
| 113 nn.SpatialConvolution(640 -> 256, 1x1) | |
| -12056.546502997 | |
| 114 nn.SpatialBatchNormalization | |
| 671.18775782362 | |
| 115 nn.ReLU | |
| 671.18775782362 | |
| 116 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| ... -> output | |
| } | |
| 977.68043720257 | |
| 117 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| ... -> output | |
| } | |
| 977.68043720257 | |
| 118 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 223.0856897803 | |
| 119 nn.SpatialConvolution(640 -> 160, 1x1) | |
| -2699.4321808368 | |
| 120 nn.SpatialBatchNormalization | |
| 659.31336273719 | |
| 121 nn.ReLU | |
| 659.31336273719 | |
| 122 nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| -2866.4377360148 | |
| 123 nn.SpatialBatchNormalization | |
| 223.0856897803 | |
| 124 nn.ReLU | |
| 223.0856897803 | |
| 125 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 188.83432870358 | |
| 126 nn.SpatialConvolution(640 -> 64, 1x1) | |
| -1479.4027583133 | |
| 127 nn.SpatialBatchNormalization | |
| 252.81468722224 | |
| 128 nn.ReLU | |
| 252.81468722224 | |
| 129 nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| -576.61599449255 | |
| 130 nn.SpatialBatchNormalization | |
| 188.83432870358 | |
| 131 nn.ReLU | |
| 188.83432870358 | |
| 132 nn.Sequential { | |
| [input -> (1) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| } | |
| 565.76041871868 | |
| 133 nn.SpatialMaxPooling(3x3, 2,2) | |
| 565.76041871868 | |
| 134 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| nan | |
| 135 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.Square | |
| | (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| | (3): nn.MulConstant | |
| | (4): nn.Sqrt | |
| | } | |
| | (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| nan | |
| 136 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| 274.44969951734 | |
| 137 nn.SpatialConvolution(1024 -> 96, 1x1) | |
| 287.26738857804 | |
| 138 nn.SpatialBatchNormalization | |
| 40.567358113825 | |
| 139 nn.ReLU | |
| 40.567358113825 | |
| 140 nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| -2398.1525074965 | |
| 141 nn.SpatialBatchNormalization | |
| 274.44969951734 | |
| 142 nn.ReLU | |
| 274.44969951734 | |
| 143 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
| nan | |
| 144 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| 521.42340321187 | |
| 145 nn.Square | |
| 618.61728306977 | |
| 146 nn.SpatialAveragePooling(3x3, 3,3) | |
| 618.61728176965 | |
| 147 nn.MulConstant | |
| 618.61728176965 | |
| 148 nn.Sqrt | |
| 521.42340321187 | |
| 149 nn.SpatialConvolution(1024 -> 96, 1x1) | |
| -5.9299795031548 | |
| 150 nn.SpatialBatchNormalization | |
| nan | |
| 151 nn.ReLU | |
| nan | |
| 152 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| 127.47477568407 | |
| 153 nn.SpatialConvolution(1024 -> 256, 1x1) | |
| -2194.8630077215 | |
| 154 nn.SpatialBatchNormalization | |
| 127.47477568407 | |
| 155 nn.ReLU | |
| 127.47477568407 | |
| 156 nn.Inception @ nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| | (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(736 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| nan | |
| 157 nn.DepthConcat { | |
| input | |
| |`-> (1): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| | (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| | (2): nn.SpatialBatchNormalization | |
| | (3): nn.ReLU | |
| | (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| | (5): nn.SpatialBatchNormalization | |
| | (6): nn.ReLU | |
| | } | |
| |`-> (2): nn.Sequential { | |
| | [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| | (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| | (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| | (3): nn.SpatialBatchNormalization | |
| | (4): nn.ReLU | |
| | } | |
| |`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(736 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| ... -> output | |
| } | |
| nan | |
| 158 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
| nan | |
| 159 nn.SpatialConvolution(736 -> 96, 1x1) | |
| nan | |
| 160 nn.SpatialBatchNormalization | |
| nan | |
| 161 nn.ReLU | |
| nan | |
| 162 nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| nan | |
| 163 nn.SpatialBatchNormalization | |
| nan | |
| 164 nn.ReLU | |
| nan | |
| 165 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
| nan | |
| 166 nn.SpatialMaxPooling(3x3, 2,2) | |
| 112.96316097956 | |
| 167 nn.SpatialConvolution(736 -> 96, 1x1) | |
| 126.45520535111 | |
| 168 nn.SpatialBatchNormalization | |
| nan | |
| 169 nn.ReLU | |
| nan | |
| 170 nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> output] | |
| (1): nn.SpatialConvolution(736 -> 256, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| } | |
| nan | |
| 171 nn.SpatialConvolution(736 -> 256, 1x1) | |
| nan | |
| 172 nn.SpatialBatchNormalization | |
| nan | |
| 173 nn.ReLU | |
| nan | |
| 174 nn.SpatialAveragePooling(3x3, 1,1) | |
| nan | |
| 175 nn.View(736) | |
| nan | |
| 176 nn.Linear(736 -> 128) | |
| nan | |
| 177 nn.Normalize(2) | |
| nan |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment