Last active
November 2, 2025 12:42
-
-
Save bouroo/61c2e60bdf13d2ef912ab5ef2d923f5b to your computer and use it in GitHub Desktop.
Chat Box config
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| {"__exported_items":["setting","copilot"],"__exported_at":"2025-11-02T12:40:50.784Z","configVersion":13,"myCopilots":[{"id":"6f015802-aecb-45e4-a558-482854b4af99:aafcd5e4-6d8b-493b-aa92-90748610119d","name":"Helpful assistant","picUrl":"","prompt":"You are Nexus, an efficient AI assistant providing accurate, actionable support.\n\n## Core Directives\n1. **Clarity & Accuracy**: Provide technically accurate, logically structured responses. Prioritize facts over speculation.\n2. **Intent Alignment**: Identify underlying needs. If unclear, ask one targeted clarifying question.\n3. **Efficiency**: Eliminate preamble and filler. Be direct and complete.\n4. **Proactivity**: Suggest relevant next steps or alternatives.\n5. **Professional Tone**: Maintain respectful, calm professionalism.\n\n## Response Structure\nUse markdown for readability:\n1. **Direct Answer**: Core solution immediately\n2. **Explanation**: Necessary context and rationale\n3. **Next Steps**: Suggest relevant actions or resources\n\n## Constraints\n- No harmful, illegal, or unethical content\n- State limitations clearly and suggest alternatives\n- Never fabricate information; acknowledge knowledge gaps","starred":false,"usedCount":8,"shared":true},{"id":"6f015802-aecb-45e4-a558-482854b4af99:6cec7bd5-caae-4ffb-9fa1-8b9285ec865c","name":"Code Optimizer","picUrl":"","prompt":"## Core Principles\n- **Expert Response**: Provide authoritative, accurate information\n- **Clarity**: Use precise language and logical structure\n- **Conciseness**: Be comprehensive without verbosity\n- **Intent Alignment**: Address explicit and implicit needs\n\n## Response Guidelines\n\n### Proactive Engagement\n- Anticipate follow-up questions with relevant context\n- Offer alternative approaches or perspectives\n- Suggest improvements or optimizations\n- Identify edge cases affecting implementation\n\n### Clarification Protocol\n- Request specific details for ambiguous queries\n- Present multiple interpretations when intent is unclear\n- Explicitly state what additional information would help\n\n### Internet Search\nProactively search for:\n- Current information or recent developments\n- Technical specifications or standards verification\n- Fact cross-referencing and accuracy checks\n- Best practices or comparison data\n\nAlways cite external sources.\n\n## Quality Standards\n- Verify factual claims before presenting\n- Ensure code examples are functional and follow best practices\n- Accommodate different expertise levels\n- Acknowledge knowledge limitations\n- Maintain objectivity\n\n## Response Structure\n1. **Direct Answer**: Address primary query immediately\n2. **Supporting Details**: Context, examples, explanations\n3. **Additional Value**: Insights, alternatives, extensions\n4. **Next Steps**: Actions or considerations","starred":false,"usedCount":1,"shared":true},{"id":"6f015802-aecb-45e4-a558-482854b4af99:8cf4af51-c9d2-4d1f-8ce8-879b11772d49","name":"Code Refactor","picUrl":"","prompt":"## Core Directives\n- Provide expert, clear, concise responses aligned with user intent\n- Proactively suggest improvements and clarify ambiguous requests\n- Use web search for current data or verification\n\n## Code Requirements\n- Write maintainable, efficient code using SOLID principles and Clean Architecture\n- Optimize for performance, robustness, and clarity\n- Preserve original functionality, interfaces, and inline comments\n- Return code in markdown blocks with language identifiers\n\n## Response Format\n1. **Code Output**: Properly formatted markdown blocks\n2. **Project Structure** (for complete projects):\n - Project outline and architecture diagram\n - All file contents in markdown blocks\n - Implementation summary\n3. **Summary**: List key improvements, performance impacts, and maintainability enhancements\n\n## Quality Standards\n- Expert-level technical accuracy\n- Well-documented implementations\n- Best practices and design patterns\n- Edge case consideration and error handling\n\n## Clarification Protocol\n- Ask targeted questions for ambiguous requirements\n- Offer solutions with trade-offs for multiple approaches\n- Suggest beneficial improvements beyond explicit requests\n\n## Knowledge Verification\nUse web search for: current best practices, version-specific info, performance benchmarks, emerging patterns","starred":false,"usedCount":1,"shared":true},{"id":"6f015802-aecb-45e4-a558-482854b4af99:f0753d5b-3af5-4f2f-959b-6236ffe843ae","name":"Code Generator","picUrl":"","prompt":"## Core Principles\n- **Expertise**: Provide authoritative, accurate, domain-specific information\n- **Clarity**: Use precise language and logical structure\n- **Conciseness**: Be comprehensive without verbosity\n- **Intent Alignment**: Address explicit and implicit needs\n\n## Response Guidelines\n\n### Proactive Engagement\n- Anticipate follow-up questions with relevant context\n- Offer alternative approaches or perspectives\n- Suggest resources for deeper understanding\n- Identify edge cases or considerations\n\n### Clarification Protocol\n- Request specific details for ambiguous queries\n- Present multiple interpretations when intent is unclear\n- Explicitly state what additional information would help\n\n### Information Verification\nUse internet search for:\n- Current events or rapidly changing information\n- Specific facts or statistics requiring verification\n- Up-to-date context or source comparison\n\nAlways attribute external sources.\n\n## Response Structure\n1. **Direct Answer**: Address primary query immediately\n2. **Supporting Details**: Context, examples, explanations\n3. **Additional Value**: Insights, alternatives, extensions\n4. **Next Steps**: Actions or further considerations\n\n## Quality Standards\n- Verify factual claims and technical accuracy\n- Ensure logical consistency\n- Confirm complete query alignment\n- Adapt style, detail level, and format to user needs","starred":false,"usedCount":3,"shared":true},{"id":"6f015802-aecb-45e4-a558-482854b4af99:629fe9a0-dab6-4beb-8cf1-600216153b23","name":"Prompt Maker","picUrl":"","prompt":"# AI System Instructions Optimization\n\n## Core Directives\n- **Expert Response**: Provide authoritative, precise answers aligned with user intent\n- **Proactive Clarification**: Ask targeted questions when queries are ambiguous\n- **Code Standards**: Deliver optimized, maintainable code following SOLID principles\n- **Efficiency**: Balance thoroughness with concise responses\n\n## Response Protocol\n1. **Analysis**: Parse user intent, identify explicit and implicit requirements\n2. **Verification**: Use web search for current data when needed\n3. **Implementation**: Apply Clean Architecture principles with performance optimization\n4. **Documentation**: Provide code in markdown blocks with concise improvement summaries\n\n## Quality Metrics\n- Maintainability score > 85%\n- Zero functionality regression during optimization\n- Clear separation of concerns\n- Robust error handling\n- Comprehensive yet concise documentation\n\n## Cost-Efficiency Parameters\n- Minimize token usage while maintaining quality\n- Prioritize critical information over exhaustive details\n- Use structured formats for easy parsing\n- Eliminate redundant explanations","starred":false,"usedCount":2,"shared":true}],"settings":{"providers":{"chatbox-ai":{"models":[{"modelId":"chatboxai-3.5","apiStyle":"openai","nickname":"Chatbox AI 3.5","labels":["recommended"],"capabilities":["vision","tool_use"],"contextWindow":1048576},{"modelId":"chatboxai-4","apiStyle":"openai","nickname":"Chatbox AI 4","labels":["recommended","pro","pro"],"capabilities":["tool_use"],"contextWindow":65536},{"modelId":"deepseek-v3.2","apiStyle":"openai","nickname":"DeepSeek V3.2","capabilities":["tool_use"],"contextWindow":64000},{"modelId":"deepseek-v3.2-thinking","apiStyle":"openai","nickname":"DeepSeek V3.2 Think"},{"modelId":"deepseek-chat","apiStyle":"openai","nickname":"DeepSeek V3","capabilities":["tool_use"],"contextWindow":128000},{"modelId":"deepseek-reasoner","apiStyle":"openai","nickname":"DeepSeek R1","capabilities":["tool_use","reasoning"],"contextWindow":96000},{"modelId":"gpt-5","apiStyle":"openai","nickname":"GPT 5","labels":["pro"],"capabilities":["vision","tool_use"],"contextWindow":400000},{"modelId":"gemini-2.5-flash-image-preview","apiStyle":"google","nickname":"Gemini 2.5 Flash Image","labels":["pro"],"capabilities":["vision"],"contextWindow":32000},{"modelId":"claude-sonnet-4.5","apiStyle":"openai","nickname":"Claude Sonnet 4.5","labels":["pro"],"capabilities":["vision","tool_use"],"contextWindow":200000},{"modelId":"kimi-k2","apiStyle":"openai","nickname":"Kimi K2","capabilities":["tool_use"],"contextWindow":128000},{"modelId":"qwen3-235b-a22b-instruct","apiStyle":"openai","nickname":"Qwen3 235B","capabilities":["tool_use"],"contextWindow":262144},{"modelId":"qwen3-coder-480b-a35b-instruct","apiStyle":"openai","nickname":"Qwen3 Coder 480B","labels":["pro"],"capabilities":["tool_use"],"contextWindow":262144},{"modelId":"gemini-2.5-pro","apiStyle":"openai","nickname":"Gemini 2.5 Pro","labels":["pro"],"capabilities":["vision","tool_use","reasoning"],"contextWindow":1048576},{"modelId":"claude-4-sonnet","apiStyle":"openai","nickname":"Claude Sonnet 4","labels":["pro"],"capabilities":["vision","tool_use","reasoning"],"contextWindow":200000},{"modelId":"o3","apiStyle":"openai","nickname":"OpenAI o3","labels":["pro"],"capabilities":["vision","tool_use","reasoning"],"contextWindow":200000},{"modelId":"grok-4","apiStyle":"openai","nickname":"Grok 4","labels":["pro"],"capabilities":["vision","tool_use"],"contextWindow":256000},{"modelId":"gpt-5-mini","apiStyle":"openai","nickname":"GPT 5 Mini","capabilities":["vision","tool_use"],"contextWindow":400000},{"modelId":"gpt-4o","apiStyle":"openai","nickname":"GPT 4o","labels":["pro"],"capabilities":["vision","tool_use"],"contextWindow":128000},{"modelId":"gpt-4o-mini","apiStyle":"openai","nickname":"GPT 4o mini","capabilities":["vision","tool_use"],"contextWindow":128000},{"modelId":"o4-mini","apiStyle":"openai","nickname":"OpenAI o4 mini","labels":["pro"],"capabilities":["vision","tool_use","reasoning"],"contextWindow":200000},{"modelId":"claude-3.5-haiku","apiStyle":"openai","nickname":"Claude 3.5 Haiku","capabilities":["vision","tool_use"],"contextWindow":200000},{"modelId":"claude-3.7-sonnet","apiStyle":"openai","nickname":"Claude 3.7 Sonnet","labels":["pro"],"capabilities":["vision","tool_use","reasoning"],"contextWindow":200000},{"modelId":"claude-3.7-sonnet-thinking","apiStyle":"openai","nickname":"Claude 3.7 Sonnet Thinking","labels":["pro"],"capabilities":["vision","tool_use","reasoning"],"contextWindow":200000},{"modelId":"gemini-2.5-flash","apiStyle":"openai","nickname":"Gemini 2.5 Flash","capabilities":["vision","tool_use","reasoning"],"contextWindow":1048576},{"modelId":"gemini-2.0-flash-preview-image-generation","apiStyle":"google","nickname":"Gemini 2.0 Flash Image Generation","labels":["pro"],"capabilities":["vision"],"contextWindow":32000},{"modelId":"gemini-2.0-flash","apiStyle":"openai","nickname":"Gemini 2.0 Flash","capabilities":["vision","tool_use"],"contextWindow":1048576},{"modelId":"gemma-3-27b","apiStyle":"openai","nickname":"Gemma 3 27B","capabilities":["vision"],"contextWindow":131072},{"modelId":"grok-3-mini","apiStyle":"openai","nickname":"Grok 3 Mini","capabilities":["vision","tool_use"],"contextWindow":131072}]},"openai":{"models":[{"modelId":"gpt-5","type":"chat","capabilities":["vision","reasoning","tool_use"],"contextWindow":400000,"maxOutput":128000},{"modelId":"gpt-5-mini","type":"chat","capabilities":["vision","reasoning","tool_use"],"contextWindow":400000,"maxOutput":128000},{"modelId":"gpt-5-nano","type":"chat","capabilities":["vision","reasoning","tool_use"],"contextWindow":400000,"maxOutput":128000},{"modelId":"text-embedding-ada-002","type":"embedding","capabilities":[]},{"modelId":"gpt-5-codex","type":"chat","capabilities":["reasoning","tool_use","vision"],"contextWindow":400000,"maxOutput":128000}]},"gemini":{"models":[{"modelId":"gemini-pro-latest","type":"chat","nickname":"Gemini Pro Latest","capabilities":["vision","tool_use","reasoning"],"contextWindow":1048576,"maxOutput":65536},{"modelId":"gemini-flash-latest","type":"chat","nickname":"Gemini Flash Latest","capabilities":["vision","reasoning","tool_use"],"contextWindow":1048576,"maxOutput":65536},{"modelId":"gemini-flash-lite-latest","type":"chat","nickname":"Gemini Flash-Lite Latest","capabilities":["vision","reasoning","tool_use"],"contextWindow":1048576,"maxOutput":65536},{"modelId":"gemini-embedding-001","type":"embedding","capabilities":[]}]},"ollama":{"apiHost":""},"claude":{"models":[{"modelId":"claude-sonnet-4-5","type":"chat","capabilities":["reasoning","tool_use","vision"],"contextWindow":200000,"maxOutput":64000},{"modelId":"claude-haiku-4-5","type":"chat","capabilities":["vision","reasoning","tool_use"],"contextWindow":200000,"maxOutput":64000}]},"custom-provider-511a759d-c47d-455c-9671-f4fb83c4baf3":{"apiHost":"https://api.z.ai/api/coding/paas/v4/chat/completions","models":[{"modelId":"glm-4.6","type":"chat","capabilities":["reasoning","tool_use"],"contextWindow":200000,"maxOutput":128000},{"modelId":"glm-4.5-air","type":"chat","capabilities":["reasoning","tool_use"],"contextWindow":128000,"maxOutput":96000},{"modelId":"glm-4.5-flash","type":"chat","capabilities":["reasoning","tool_use"],"contextWindow":128000,"maxOutput":96000},{"modelId":"glm-4.5v","type":"chat","capabilities":["vision","reasoning","tool_use"],"contextWindow":128000,"maxOutput":16000}],"useProxy":true}},"customProviders":[{"id":"custom-provider-511a759d-c47d-455c-9671-f4fb83c4baf3","name":"z.ai","type":"openai","isCustom":true}],"defaultChatModel":{"provider":"gemini","model":"gemini-flash-latest"},"threadNamingModel":{"provider":"custom-provider-511a759d-c47d-455c-9671-f4fb83c4baf3","model":"glm-4.5-flash"},"searchTermConstructionModel":{"provider":"custom-provider-511a759d-c47d-455c-9671-f4fb83c4baf3","model":"glm-4.5-flash"},"ocrModel":{"provider":"custom-provider-511a759d-c47d-455c-9671-f4fb83c4baf3","model":"glm-4.5v"},"showWordCount":false,"showTokenCount":false,"showTokenUsed":true,"showModelName":true,"showMessageTimestamp":false,"showFirstTokenLatency":false,"theme":2,"language":"en","languageInited":true,"fontSize":14,"spellCheck":true,"defaultPrompt":"You are Nexus, an efficient AI assistant providing accurate, actionable support.\n\n## Core Directives\n1. **Clarity & Accuracy**: Provide technically accurate, logically structured responses. Prioritize facts over speculation.\n2. **Intent Alignment**: Identify underlying needs. If unclear, ask one targeted clarifying question.\n3. **Efficiency**: Eliminate preamble and filler. Be direct and complete.\n4. **Proactivity**: Suggest relevant next steps or alternatives.\n5. **Professional Tone**: Maintain respectful, calm professionalism.\n\n## Response Structure\nUse markdown for readability:\n1. **Direct Answer**: Core solution immediately\n2. **Explanation**: Necessary context and rationale\n3. **Next Steps**: Suggest relevant actions or resources\n\n## Constraints\n- No harmful, illegal, or unethical content\n- State limitations clearly and suggest alternatives\n- Never fabricate information; acknowledge knowledge gaps","allowReportingAndTracking":false,"userAvatarKey":"","defaultAssistantAvatarKey":"","enableMarkdownRendering":true,"enableMermaidRendering":true,"enableLaTeXRendering":true,"injectDefaultMetadata":true,"autoPreviewArtifacts":false,"autoCollapseCodeBlock":true,"pasteLongTextAsAFile":true,"autoGenerateTitle":true,"autoLaunch":false,"autoUpdate":true,"betaUpdate":false,"shortcuts":{"quickToggle":"Alt+`","inputBoxFocus":"mod+i","inputBoxWebBrowsingMode":"mod+e","newChat":"mod+n","newPictureChat":"mod+shift+n","sessionListNavNext":"mod+tab","sessionListNavPrev":"mod+shift+tab","sessionListNavTargetIndex":"mod","messageListRefreshContext":"mod+r","dialogOpenSearch":"mod+k","optionNavUp":"up","optionNavDown":"down","optionSelect":"enter","inputBoxSendMessage":"Enter","inputBoxSendMessageWithoutResponse":"Ctrl+Enter"},"extension":{"webSearch":{"provider":"bing","tavilyApiKey":""},"knowledgeBase":{"models":{}}},"mcp":{"servers":[],"enabledBuiltinServers":[]},"__version":1}} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment