I hereby claim:
- I am briverse17 on github.
- I am briverse17 (https://keybase.io/briverse17) on keybase.
- I have a public key ASClqICkmZWZzzb0EGXAf22qkhszbwGm45mQ6FchnmLmJgo
To claim this, I am signing this object:
| DOWNLOAD_DIR="/tmp" | |
| DOWNLOAD_URL="https://code.visualstudio.com/sha/download?build=stable&os=linux-deb-x64" | |
| echo "Getting stable VSCode .deb distribution" | |
| wget -q --show-progress -nc -O "$DOWNLOAD_DIR/code_stable.deb" "$DOWNLOAD_URL" | |
| if [ -f "$DOWNLOAD_DIR/code_stable.deb" ]; then | |
| echo "Installing stable VSCode" | |
| apt install "$DOWNLOAD_DIR/code_stable.deb/" | |
| echo "Cleaning up..." |
I hereby claim:
To claim this, I am signing this object:
| def isConverged(self, new_medoids): | |
| return set([tuple(x) for x in self.medoids]) == set([tuple(x) for x in new_medoids]) |
| new_medoids = [] | |
| for i in range(0, self.k): | |
| new_medoid = self.medoids[i] | |
| old_medoids_cost = self.medoids_cost[i] | |
| for j in range(len(clusters[i])): | |
| #Cost of the current data points to be compared with the current optimal cost | |
| cur_medoids_cost = 0 | |
| for dpoint_index in range(len(clusters[i])): | |
| cur_medoids_cost += euclideanDistance(clusters[i][j], clusters[i][dpoint_index]) |
| for i in range(self.max_iter): | |
| #Labels for this iteration | |
| cur_labels = [] | |
| for medoid in range(0,self.k): | |
| #Dissimilarity cost of the current cluster | |
| self.medoids_cost[medoid] = 0 | |
| for k in range(len(X)): | |
| #Distances from a data point to each of the medoids | |
| d_list = [] | |
| for j in range(0,self.k): |
| def initMedoids(self, X): | |
| ''' | |
| Parameters | |
| ---------- | |
| X: input data. | |
| ''' | |
| self.medoids = [] | |
| #Starting medoids will be random members from data set X | |
| indexes = np.random.randint(0, len(X)-1,self.k) |
| class k_medoids: | |
| def __init__(self, k = 2, max_iter = 300, has_converged = False): | |
| ''' | |
| Class constructor | |
| Parameters | |
| ---------- | |
| - k: number of clusters. | |
| - max_iter: number of times centroids will move | |
| - has_converged: to check if the algorithm stop or not | |
| ''' |
| class k_medoids: | |
| def __init__(self, k = 2, max_iter = 300, has_converged = False): | |
| ''' | |
| Class constructor | |
| Parameters | |
| ---------- | |
| - k: number of clusters. | |
| - max_iter: number of times centroids will move | |
| - has_converged: to check if the algorithm stop or not | |
| ''' |