Created
April 10, 2018 03:44
-
-
Save chihuahua/66155c88e4ae74778f857562b25d8295 to your computer and use it in GitHub Desktop.
Use this training script to repro a bug in which the debugger data channel sends corrupt tensor values to the interactive debugger plugin. Specifically, run this script with `tensorboard_debug_address` set:
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Copyright 2015 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the 'License'); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an 'AS IS' BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """A simple MNIST classifier which displays summaries in TensorBoard. | |
| This is an unimpressive MNIST model, but it is a good example of using | |
| tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of | |
| naming summary tags so that they are grouped meaningfully in TensorBoard. | |
| It demonstrates the functionality of every TensorBoard dashboard. | |
| """ | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import argparse | |
| import os | |
| import sys | |
| import tensorflow as tf | |
| from tensorflow.python import debug as tf_debug | |
| from tensorflow.examples.tutorials.mnist import input_data | |
| FLAGS = None | |
| # We can't initialize these variables to 0 - the network will get stuck. | |
| def weight_variable(shape): | |
| """Create a weight variable with appropriate initialization.""" | |
| initial = tf.truncated_normal(shape, stddev=0.1) | |
| return tf.Variable(initial) | |
| def bias_variable(shape): | |
| """Create a bias variable with appropriate initialization.""" | |
| initial = tf.constant(0.1, shape=shape) | |
| return tf.Variable(initial) | |
| def variable_summaries(var): | |
| """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" | |
| with tf.name_scope('summaries'): | |
| mean = tf.reduce_mean(var) | |
| tf.summary.scalar('mean', mean) | |
| with tf.name_scope('stddev'): | |
| stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) | |
| tf.summary.scalar('stddev', stddev) | |
| tf.summary.scalar('max', tf.reduce_max(var)) | |
| tf.summary.scalar('min', tf.reduce_min(var)) | |
| tf.summary.histogram('histogram', var) | |
| def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu): | |
| """Reusable code for making a simple neural net layer. | |
| It does a matrix multiply, bias add, and then uses ReLU to nonlinearize. | |
| It also sets up name scoping so that the resultant graph is easy to read, | |
| and adds a number of summary ops. | |
| """ | |
| # Adding a name scope ensures logical grouping of the layers in the graph. | |
| with tf.name_scope(layer_name): | |
| # This Variable will hold the state of the weights for the layer | |
| with tf.name_scope('weights'): | |
| weights = weight_variable([input_dim, output_dim]) | |
| variable_summaries(weights) | |
| with tf.name_scope('biases'): | |
| biases = bias_variable([output_dim]) | |
| variable_summaries(biases) | |
| with tf.name_scope('Wx_plus_b'): | |
| preactivate = tf.matmul(input_tensor, weights) + biases | |
| tf.summary.histogram('pre_activations', preactivate) | |
| activations = act(preactivate, name='activation') | |
| tf.summary.histogram('activations', activations) | |
| return activations | |
| def train(): | |
| # Import data | |
| mnist = input_data.read_data_sets(FLAGS.data_dir, | |
| fake_data=FLAGS.fake_data) | |
| sess = tf.InteractiveSession() | |
| if FLAGS.tensorboard_debug_address: | |
| sess = tf_debug.TensorBoardDebugWrapperSession( | |
| sess, FLAGS.tensorboard_debug_address) | |
| # Create a multilayer model. | |
| # Input placeholders | |
| with tf.name_scope('input'): | |
| x = tf.placeholder(tf.float32, [None, 784], name='x-input') | |
| y_ = tf.placeholder(tf.int64, [None], name='y-input') | |
| with tf.name_scope('input_reshape'): | |
| image_shaped_input = tf.reshape(x, [-1, 28, 28, 1]) | |
| tf.summary.image('input', image_shaped_input, 10) | |
| with tf.name_scope('conv_layer'): | |
| # Convolutional Layer | |
| W_conv = weight_variable([5, 5, 1, 12]) | |
| b_conv = bias_variable([12]) | |
| conv = tf.nn.conv2d( | |
| image_shaped_input, | |
| W_conv, | |
| strides=[1, 1, 1, 1], | |
| padding='SAME') | |
| h = tf.nn.relu(conv + b_conv) | |
| pool = tf.nn.max_pool(h, | |
| ksize=[1, 2, 2, 1], | |
| strides=[1, 2, 2, 1], | |
| padding='SAME') | |
| pool_flattened = tf.layers.flatten(pool) | |
| hidden1 = nn_layer(pool_flattened, 2352, 42, 'layer1') | |
| with tf.name_scope('dropout'): | |
| keep_prob = tf.placeholder(tf.float32) | |
| tf.summary.scalar('dropout_keep_probability', keep_prob) | |
| dropped = tf.nn.dropout(hidden1, keep_prob) | |
| # Do not apply softmax activation yet, see below. | |
| y = nn_layer(dropped, 42, 10, 'layer2', act=tf.identity) | |
| with tf.name_scope('cross_entropy'): | |
| # The raw formulation of cross-entropy, | |
| # | |
| # tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.softmax(y)), | |
| # reduction_indices=[1])) | |
| # | |
| # can be numerically unstable. | |
| # | |
| # So here we use tf.losses.sparse_softmax_cross_entropy on the | |
| # raw logit outputs of the nn_layer above, and then average across | |
| # the batch. | |
| with tf.name_scope('total'): | |
| one_hot_labels = tf.cast(tf.one_hot(y_, depth=10), tf.float32) | |
| cross_entropy = tf.reduce_mean( | |
| -tf.reduce_sum(one_hot_labels * tf.log(y))) | |
| tf.summary.scalar('cross_entropy', cross_entropy) | |
| with tf.name_scope('train'): | |
| train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize( | |
| cross_entropy) | |
| with tf.name_scope('accuracy'): | |
| with tf.name_scope('correct_prediction'): | |
| correct_prediction = tf.equal(tf.argmax(y, 1), y_) | |
| with tf.name_scope('accuracy'): | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
| tf.summary.scalar('accuracy', accuracy) | |
| # Merge all the summaries and write them out to | |
| # /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default) | |
| merged = tf.summary.merge_all() | |
| train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph) | |
| test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test') | |
| tf.global_variables_initializer().run() | |
| # Train the model, and also write summaries. | |
| # Every 10th step, measure test-set accuracy, and write test summaries | |
| # All other steps, run train_step on training data, & add training summaries | |
| def feed_dict(train): | |
| """Make a TensorFlow feed_dict: maps data onto Tensor placeholders.""" | |
| if train or FLAGS.fake_data: | |
| xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data) | |
| k = FLAGS.dropout | |
| else: | |
| xs, ys = mnist.test.images, mnist.test.labels | |
| k = 1.0 | |
| return {x: xs, y_: ys, keep_prob: k} | |
| for i in range(FLAGS.max_steps): | |
| if i % 10 == 0: # Record summaries and test-set accuracy | |
| summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False)) | |
| test_writer.add_summary(summary, i) | |
| print('Accuracy at step %s: %s' % (i, acc)) | |
| else: # Record train set summaries, and train | |
| if i % 100 == 99: # Record execution stats | |
| run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) | |
| run_metadata = tf.RunMetadata() | |
| summary, _ = sess.run([merged, train_step], | |
| feed_dict=feed_dict(True), | |
| options=run_options, | |
| run_metadata=run_metadata) | |
| train_writer.add_run_metadata(run_metadata, 'step%03d' % i) | |
| train_writer.add_summary(summary, i) | |
| print('Adding run metadata for', i) | |
| else: # Record a summary | |
| summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True)) | |
| train_writer.add_summary(summary, i) | |
| train_writer.close() | |
| test_writer.close() | |
| def main(_): | |
| if tf.gfile.Exists(FLAGS.log_dir): | |
| tf.gfile.DeleteRecursively(FLAGS.log_dir) | |
| tf.gfile.MakeDirs(FLAGS.log_dir) | |
| train() | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--fake_data', nargs='?', const=True, type=bool, | |
| default=False, | |
| help='If true, uses fake data for unit testing.') | |
| parser.add_argument('--max_steps', type=int, default=1000, | |
| help='Number of steps to run trainer.') | |
| parser.add_argument('--learning_rate', type=float, default=0.001, | |
| help='Initial learning rate') | |
| parser.add_argument('--dropout', type=float, default=0.9, | |
| help='Keep probability for training dropout.') | |
| parser.add_argument( | |
| '--data_dir', | |
| type=str, | |
| default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), | |
| 'tensorflow/mnist/input_data'), | |
| help='Directory for storing input data') | |
| parser.add_argument( | |
| '--log_dir', | |
| type=str, | |
| default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'), | |
| 'tensorflow/mnist/logs/mnist_with_summaries'), | |
| help='Summaries log directory') | |
| parser.add_argument( | |
| "--tensorboard_debug_address", | |
| type=str, | |
| default=None, | |
| help="Connect to the TensorBoard Debugger Plugin backend specified by " | |
| "the gRPC address (e.g., localhost:1234). Mutually exclusive with the " | |
| "--debug flag.") | |
| FLAGS, unparsed = parser.parse_known_args() | |
| tf.app.run(main=main, argv=[sys.argv[0]] + unparsed) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment