| # | 0x0 | 0x1 | 1x0 | 1x1 | Logic | Simple | Gate | Alt | Venn | Symbols |
|---|---|---|---|---|---|---|---|---|---|---|
| [L] | 0 | 0 | 1 | 1 | ||||||
| [R] | 0 | 1 | 0 | 1 | ||||||
| 0 | 0 | 0 | 0 | 0 | Contradiction | 0 | FALSE | ⊥ | ||
| 1 | 0 | 0 | 0 | 1 | Conjunction | L and R | AND | MIN | ∧ | |
| 2 | 0 | 0 | 1 | 0 | Non-Implication | L and !R | NIMPLY | GT | ↛ > | |
| 3 | 0 | 0 | 1 | 1 | Projection / Proposition of R | L | BUF | |||
| 4 | 0 | 1 | 0 | 0 | Converse Non-Implication | !L and R | LT | ↚ < | ||
| 5 | 0 | 1 | 0 | 1 | Projection / Proposition of L | R | BUF | |||
| 6 | 0 | 1 | 1 | 0 | Exclusive Disjonction | L xor R | XOR | NEQ | ↮ ⊻ ≠ ⊕ | |
| 7 | 0 | 1 | 1 | 1 | Disjonction | L or R | OR | MAX | ∨ | |
| 8 | 1 | 0 | 0 | 0 | Joint Denial | !L or !R | NOR | ⊽ ↓ | ||
| 9 | 1 | 0 | 0 | 1 | Biconditional | !( L xor R ) | XNOR | EQ | ↔ = ≡ | |
| A | 1 | 0 | 1 | 0 | Negation of L | !R | NOT | ¬ | ||
| B | 1 | 0 | 1 | 1 | Converse Implication | L or !R | GTE | ← ≥ | ||
| C | 1 | 1 | 0 | 0 | Negation of R | !R | NOT | ¬ | ||
| D | 1 | 1 | 0 | 1 | Implication | !L or R | IMPLY | LTE | → ≤ ⊃ | |
| E | 1 | 1 | 1 | 0 | Alternative Denial | !L and !R | NAND | ⊼ ↑ | ||
| F | 1 | 1 | 1 | 1 | Tautology | 1 | TRUE | ⊤ | ||
| [L] | 0 | 0 | 1 | 1 | ||||||
| [R] | 0 | 1 | 0 | 1 |
Legend:
- Italic for Non-Binary Operatiors
- Bold for Commutative Operators