I hereby claim:
- I am daira on github.
- I am zedaira (https://keybase.io/zedaira) on keybase.
- I have a public key ASDhxWkEakEA-bzyc2LulixNHnPD83MdWX4Q4cGxlezvRwo
To claim this, I am signing this object:
| #!/usr/bin/env python3 | |
| # ***INCORRECT VERSION, FOR ILLUSTRATION ONLY*** | |
| def exact_div(x, y): | |
| assert x % y == 0 | |
| return x // y | |
| # floor(u/x + v/y) | |
| def div2(u, x, v, y): |
| #!/usr/bin/env python3 | |
| # ***INCORRECT VERSION, FOR ILLUSTRATION ONLY*** | |
| def exact_div(x, y): | |
| assert x % y == 0 | |
| return x // y | |
| # floor(u/x + v/y) | |
| def div2(u, x, v, y): |
| #!/usr/bin/env python3 | |
| # ***INCORRECT VERSION, FOR ILLUSTRATION ONLY*** | |
| def exact_div(x, y): | |
| assert x % y == 0 | |
| return x // y | |
| # floor(u/x + v/y) | |
| def div2(u, x, v, y): |
| #!/usr/bin/env python3 | |
| def exact_div(x, y): | |
| assert x % y == 0 | |
| return x // y | |
| # floor(u/x + v/y) | |
| def div2(u, x, v, y): | |
| return (u*y + v*x) // (x*y) |
| #!/usr/bin/env python3 | |
| def exact_div(x, y): | |
| assert x % y == 0 | |
| return x // y | |
| # floor(u/x + v/y) | |
| def div2(u, x, v, y): | |
| return (u*y + v*x) // (x*y) |
| #!/usr/bin/env python3 | |
| from collections import deque | |
| from math import inf | |
| from random import randrange | |
| import json | |
| # A proposed "set of simple selectors" s_{1..k} for a configuration is consistent iff | |
| # for each selector s_i, | |
| # * s_i is a boolean fixed column; and |
| #!/usr/bin/env python3 | |
| from collections import deque | |
| from math import inf | |
| import json | |
| # For simplicity use the same disjoint-set data structure as for the | |
| # permutation argument. | |
| class DisjointSets(object): | |
| def __init__(self, n): |
| # ---> up to here is a multiple of 0b110011 = 51 :-) | |
| x_p = 0b11001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001101001110100111101110000011001001101000010000101001100000111000101110000011110000111100111111000011001100110011001100110011001101 | |
| pchain = Chain() | |
| pi = pa = 1 | |
| for i in range(1, 128): | |
| pi = pchain.sqr(pi) | |
| if '01001110100111101110000011001001101000010000101001100000111000101110000011110000111100111111000011001100110011001100110011001101'[127-i] == '1': | |
| pa = pchain.mul(pa, pi) |
| # ---> up to here is a multiple of 3 :-) | |
| x_p = 0b11001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001100110011001101001110100111101110000011001001101000010000101001100000111000101110000011110000111100111111000011001100110011001100110011001101 | |
| pchain = Chain() | |
| pi = pa = 1 | |
| for i in range(1, 114): | |
| pi = pchain.sqr(pi) | |
| if '101110000011001001101000010000101001100000111000101110000011110000111100111111000011001100110011001100110011001101'[113-i] == '1': | |
| pa = pchain.mul(pa, pi) |
I hereby claim:
To claim this, I am signing this object: