Created
March 13, 2017 12:34
-
-
Save decisionstats/8ac83dbe4dd08808af3d9c0869259cf6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import statsmodels.formula.api as sm" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris=pd.read_csv(\"http://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris =iris.drop('Unnamed: 0', 1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Sepal.Length</th>\n", | |
| " <th>Sepal.Width</th>\n", | |
| " <th>Petal.Length</th>\n", | |
| " <th>Petal.Width</th>\n", | |
| " <th>Species</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5.1</td>\n", | |
| " <td>3.5</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>4.9</td>\n", | |
| " <td>3.0</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>4.7</td>\n", | |
| " <td>3.2</td>\n", | |
| " <td>1.3</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>4.6</td>\n", | |
| " <td>3.1</td>\n", | |
| " <td>1.5</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5.0</td>\n", | |
| " <td>3.6</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " Sepal.Length Sepal.Width Petal.Length Petal.Width Species\n", | |
| "0 5.1 3.5 1.4 0.2 setosa\n", | |
| "1 4.9 3.0 1.4 0.2 setosa\n", | |
| "2 4.7 3.2 1.3 0.2 setosa\n", | |
| "3 4.6 3.1 1.5 0.2 setosa\n", | |
| "4 5.0 3.6 1.4 0.2 setosa" | |
| ] | |
| }, | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "iris.head()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "iris.columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width',\n", | |
| " 'Species']" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Index(['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width',\n", | |
| " 'Species'],\n", | |
| " dtype='object')" | |
| ] | |
| }, | |
| "execution_count": 16, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "iris.columns" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "result = sm.ols(formula=\"Sepal_Length ~ Petal_Length + Sepal_Width + Petal_Width + Species\", data=iris)\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x9bafe10>" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "result.fit()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<table class=\"simpletable\">\n", | |
| "<caption>OLS Regression Results</caption>\n", | |
| "<tr>\n", | |
| " <th>Dep. Variable:</th> <td>Sepal_Length</td> <th> R-squared: </th> <td> 0.867</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Model:</th> <td>OLS</td> <th> Adj. R-squared: </th> <td> 0.863</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Method:</th> <td>Least Squares</td> <th> F-statistic: </th> <td> 188.3</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Date:</th> <td>Mon, 13 Mar 2017</td> <th> Prob (F-statistic):</th> <td>2.67e-61</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Time:</th> <td>17:56:48</td> <th> Log-Likelihood: </th> <td> -32.558</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>No. Observations:</th> <td> 150</td> <th> AIC: </th> <td> 77.12</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Df Residuals:</th> <td> 144</td> <th> BIC: </th> <td> 95.18</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Df Model:</th> <td> 5</td> <th> </th> <td> </td> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Covariance Type:</th> <td>nonrobust</td> <th> </th> <td> </td> \n", | |
| "</tr>\n", | |
| "</table>\n", | |
| "<table class=\"simpletable\">\n", | |
| "<tr>\n", | |
| " <td></td> <th>coef</th> <th>std err</th> <th>t</th> <th>P>|t|</th> <th>[95.0% Conf. Int.]</th> \n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Intercept</th> <td> 2.1713</td> <td> 0.280</td> <td> 7.760</td> <td> 0.000</td> <td> 1.618 2.724</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Species[T.versicolor]</th> <td> -0.7236</td> <td> 0.240</td> <td> -3.013</td> <td> 0.003</td> <td> -1.198 -0.249</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Species[T.virginica]</th> <td> -1.0235</td> <td> 0.334</td> <td> -3.067</td> <td> 0.003</td> <td> -1.683 -0.364</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Petal_Length</th> <td> 0.8292</td> <td> 0.069</td> <td> 12.101</td> <td> 0.000</td> <td> 0.694 0.965</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Sepal_Width</th> <td> 0.4959</td> <td> 0.086</td> <td> 5.761</td> <td> 0.000</td> <td> 0.326 0.666</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Petal_Width</th> <td> -0.3152</td> <td> 0.151</td> <td> -2.084</td> <td> 0.039</td> <td> -0.614 -0.016</td>\n", | |
| "</tr>\n", | |
| "</table>\n", | |
| "<table class=\"simpletable\">\n", | |
| "<tr>\n", | |
| " <th>Omnibus:</th> <td> 0.418</td> <th> Durbin-Watson: </th> <td> 1.966</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Prob(Omnibus):</th> <td> 0.811</td> <th> Jarque-Bera (JB): </th> <td> 0.572</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Skew:</th> <td>-0.060</td> <th> Prob(JB): </th> <td> 0.751</td>\n", | |
| "</tr>\n", | |
| "<tr>\n", | |
| " <th>Kurtosis:</th> <td> 2.722</td> <th> Cond. No. </th> <td> 94.0</td>\n", | |
| "</tr>\n", | |
| "</table>" | |
| ], | |
| "text/plain": [ | |
| "<class 'statsmodels.iolib.summary.Summary'>\n", | |
| "\"\"\"\n", | |
| " OLS Regression Results \n", | |
| "==============================================================================\n", | |
| "Dep. Variable: Sepal_Length R-squared: 0.867\n", | |
| "Model: OLS Adj. R-squared: 0.863\n", | |
| "Method: Least Squares F-statistic: 188.3\n", | |
| "Date: Mon, 13 Mar 2017 Prob (F-statistic): 2.67e-61\n", | |
| "Time: 17:56:48 Log-Likelihood: -32.558\n", | |
| "No. Observations: 150 AIC: 77.12\n", | |
| "Df Residuals: 144 BIC: 95.18\n", | |
| "Df Model: 5 \n", | |
| "Covariance Type: nonrobust \n", | |
| "=========================================================================================\n", | |
| " coef std err t P>|t| [95.0% Conf. Int.]\n", | |
| "-----------------------------------------------------------------------------------------\n", | |
| "Intercept 2.1713 0.280 7.760 0.000 1.618 2.724\n", | |
| "Species[T.versicolor] -0.7236 0.240 -3.013 0.003 -1.198 -0.249\n", | |
| "Species[T.virginica] -1.0235 0.334 -3.067 0.003 -1.683 -0.364\n", | |
| "Petal_Length 0.8292 0.069 12.101 0.000 0.694 0.965\n", | |
| "Sepal_Width 0.4959 0.086 5.761 0.000 0.326 0.666\n", | |
| "Petal_Width -0.3152 0.151 -2.084 0.039 -0.614 -0.016\n", | |
| "==============================================================================\n", | |
| "Omnibus: 0.418 Durbin-Watson: 1.966\n", | |
| "Prob(Omnibus): 0.811 Jarque-Bera (JB): 0.572\n", | |
| "Skew: -0.060 Prob(JB): 0.751\n", | |
| "Kurtosis: 2.722 Cond. No. 94.0\n", | |
| "==============================================================================\n", | |
| "\n", | |
| "Warnings:\n", | |
| "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", | |
| "\"\"\"" | |
| ] | |
| }, | |
| "execution_count": 19, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "result.fit().summary()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "Intercept 2.171266\n", | |
| "Species[T.versicolor] -0.723562\n", | |
| "Species[T.virginica] -1.023498\n", | |
| "Petal_Length 0.829244\n", | |
| "Sepal_Width 0.495889\n", | |
| "Petal_Width -0.315155\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "result.fit().params" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>student_resid</th>\n", | |
| " <th>unadj_p</th>\n", | |
| " <th>bonf(p)</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>0.312689</td>\n", | |
| " <td>0.754973</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>0.473016</td>\n", | |
| " <td>0.636923</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>-0.240279</td>\n", | |
| " <td>0.810458</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>-0.956277</td>\n", | |
| " <td>0.340546</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>-0.178770</td>\n", | |
| " <td>0.858371</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>0.036712</td>\n", | |
| " <td>0.970765</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>-1.066895</td>\n", | |
| " <td>0.287817</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>-0.125127</td>\n", | |
| " <td>0.900599</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>-1.021792</td>\n", | |
| " <td>0.308605</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>-0.068824</td>\n", | |
| " <td>0.945226</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>10</th>\n", | |
| " <td>0.703086</td>\n", | |
| " <td>0.483145</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>11</th>\n", | |
| " <td>-1.058507</td>\n", | |
| " <td>0.291609</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>12</th>\n", | |
| " <td>0.038433</td>\n", | |
| " <td>0.969396</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13</th>\n", | |
| " <td>-0.792571</td>\n", | |
| " <td>0.429341</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14</th>\n", | |
| " <td>2.431167</td>\n", | |
| " <td>0.016288</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15</th>\n", | |
| " <td>0.778864</td>\n", | |
| " <td>0.437347</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>16</th>\n", | |
| " <td>1.142357</td>\n", | |
| " <td>0.255215</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17</th>\n", | |
| " <td>0.416300</td>\n", | |
| " <td>0.677815</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>18</th>\n", | |
| " <td>1.089623</td>\n", | |
| " <td>0.277712</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>19</th>\n", | |
| " <td>-0.346136</td>\n", | |
| " <td>0.729749</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>20</th>\n", | |
| " <td>0.645498</td>\n", | |
| " <td>0.519639</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>21</th>\n", | |
| " <td>-0.078552</td>\n", | |
| " <td>0.937498</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>22</th>\n", | |
| " <td>-0.405720</td>\n", | |
| " <td>0.685554</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23</th>\n", | |
| " <td>0.133053</td>\n", | |
| " <td>0.894339</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>24</th>\n", | |
| " <td>-1.904722</td>\n", | |
| " <td>0.058824</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25</th>\n", | |
| " <td>0.255775</td>\n", | |
| " <td>0.798492</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>26</th>\n", | |
| " <td>-0.190906</td>\n", | |
| " <td>0.848870</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>27</th>\n", | |
| " <td>0.368833</td>\n", | |
| " <td>0.712798</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>28</th>\n", | |
| " <td>0.805113</td>\n", | |
| " <td>0.422091</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>29</th>\n", | |
| " <td>-1.063322</td>\n", | |
| " <td>0.289428</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>120</th>\n", | |
| " <td>0.540764</td>\n", | |
| " <td>0.589512</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>121</th>\n", | |
| " <td>-1.229878</td>\n", | |
| " <td>0.220762</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>122</th>\n", | |
| " <td>0.814912</td>\n", | |
| " <td>0.416478</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>123</th>\n", | |
| " <td>1.054229</td>\n", | |
| " <td>0.293556</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>124</th>\n", | |
| " <td>-0.491062</td>\n", | |
| " <td>0.624135</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>125</th>\n", | |
| " <td>0.191377</td>\n", | |
| " <td>0.848501</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>126</th>\n", | |
| " <td>0.833707</td>\n", | |
| " <td>0.405837</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>127</th>\n", | |
| " <td>-0.104393</td>\n", | |
| " <td>0.917003</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>128</th>\n", | |
| " <td>-0.388983</td>\n", | |
| " <td>0.697868</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>129</th>\n", | |
| " <td>0.878534</td>\n", | |
| " <td>0.381128</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>130</th>\n", | |
| " <td>1.353238</td>\n", | |
| " <td>0.178115</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>131</th>\n", | |
| " <td>0.653646</td>\n", | |
| " <td>0.514390</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>132</th>\n", | |
| " <td>-0.286276</td>\n", | |
| " <td>0.775081</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>133</th>\n", | |
| " <td>0.024680</td>\n", | |
| " <td>0.980344</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>134</th>\n", | |
| " <td>-1.876542</td>\n", | |
| " <td>0.062619</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>135</th>\n", | |
| " <td>2.474327</td>\n", | |
| " <td>0.014518</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>136</th>\n", | |
| " <td>-1.413807</td>\n", | |
| " <td>0.159592</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>137</th>\n", | |
| " <td>-0.924181</td>\n", | |
| " <td>0.356949</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>138</th>\n", | |
| " <td>-0.161519</td>\n", | |
| " <td>0.871913</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>139</th>\n", | |
| " <td>1.319446</td>\n", | |
| " <td>0.189129</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>140</th>\n", | |
| " <td>0.425193</td>\n", | |
| " <td>0.671335</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>141</th>\n", | |
| " <td>2.426542</td>\n", | |
| " <td>0.016488</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>142</th>\n", | |
| " <td>-1.048813</td>\n", | |
| " <td>0.296034</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>143</th>\n", | |
| " <td>-0.337894</td>\n", | |
| " <td>0.735939</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>144</th>\n", | |
| " <td>-0.077141</td>\n", | |
| " <td>0.938619</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>145</th>\n", | |
| " <td>1.606589</td>\n", | |
| " <td>0.110351</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>146</th>\n", | |
| " <td>1.215637</td>\n", | |
| " <td>0.226126</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>147</th>\n", | |
| " <td>0.602340</td>\n", | |
| " <td>0.547902</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>148</th>\n", | |
| " <td>-1.294716</td>\n", | |
| " <td>0.197505</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>149</th>\n", | |
| " <td>-1.321604</td>\n", | |
| " <td>0.188411</td>\n", | |
| " <td>1.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>150 rows × 3 columns</p>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " student_resid unadj_p bonf(p)\n", | |
| "0 0.312689 0.754973 1.0\n", | |
| "1 0.473016 0.636923 1.0\n", | |
| "2 -0.240279 0.810458 1.0\n", | |
| "3 -0.956277 0.340546 1.0\n", | |
| "4 -0.178770 0.858371 1.0\n", | |
| "5 0.036712 0.970765 1.0\n", | |
| "6 -1.066895 0.287817 1.0\n", | |
| "7 -0.125127 0.900599 1.0\n", | |
| "8 -1.021792 0.308605 1.0\n", | |
| "9 -0.068824 0.945226 1.0\n", | |
| "10 0.703086 0.483145 1.0\n", | |
| "11 -1.058507 0.291609 1.0\n", | |
| "12 0.038433 0.969396 1.0\n", | |
| "13 -0.792571 0.429341 1.0\n", | |
| "14 2.431167 0.016288 1.0\n", | |
| "15 0.778864 0.437347 1.0\n", | |
| "16 1.142357 0.255215 1.0\n", | |
| "17 0.416300 0.677815 1.0\n", | |
| "18 1.089623 0.277712 1.0\n", | |
| "19 -0.346136 0.729749 1.0\n", | |
| "20 0.645498 0.519639 1.0\n", | |
| "21 -0.078552 0.937498 1.0\n", | |
| "22 -0.405720 0.685554 1.0\n", | |
| "23 0.133053 0.894339 1.0\n", | |
| "24 -1.904722 0.058824 1.0\n", | |
| "25 0.255775 0.798492 1.0\n", | |
| "26 -0.190906 0.848870 1.0\n", | |
| "27 0.368833 0.712798 1.0\n", | |
| "28 0.805113 0.422091 1.0\n", | |
| "29 -1.063322 0.289428 1.0\n", | |
| ".. ... ... ...\n", | |
| "120 0.540764 0.589512 1.0\n", | |
| "121 -1.229878 0.220762 1.0\n", | |
| "122 0.814912 0.416478 1.0\n", | |
| "123 1.054229 0.293556 1.0\n", | |
| "124 -0.491062 0.624135 1.0\n", | |
| "125 0.191377 0.848501 1.0\n", | |
| "126 0.833707 0.405837 1.0\n", | |
| "127 -0.104393 0.917003 1.0\n", | |
| "128 -0.388983 0.697868 1.0\n", | |
| "129 0.878534 0.381128 1.0\n", | |
| "130 1.353238 0.178115 1.0\n", | |
| "131 0.653646 0.514390 1.0\n", | |
| "132 -0.286276 0.775081 1.0\n", | |
| "133 0.024680 0.980344 1.0\n", | |
| "134 -1.876542 0.062619 1.0\n", | |
| "135 2.474327 0.014518 1.0\n", | |
| "136 -1.413807 0.159592 1.0\n", | |
| "137 -0.924181 0.356949 1.0\n", | |
| "138 -0.161519 0.871913 1.0\n", | |
| "139 1.319446 0.189129 1.0\n", | |
| "140 0.425193 0.671335 1.0\n", | |
| "141 2.426542 0.016488 1.0\n", | |
| "142 -1.048813 0.296034 1.0\n", | |
| "143 -0.337894 0.735939 1.0\n", | |
| "144 -0.077141 0.938619 1.0\n", | |
| "145 1.606589 0.110351 1.0\n", | |
| "146 1.215637 0.226126 1.0\n", | |
| "147 0.602340 0.547902 1.0\n", | |
| "148 -1.294716 0.197505 1.0\n", | |
| "149 -1.321604 0.188411 1.0\n", | |
| "\n", | |
| "[150 rows x 3 columns]" | |
| ] | |
| }, | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "result.fit().outlier_test(method='bonf', alpha=0.05)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "['HC0_se',\n", | |
| " 'HC1_se',\n", | |
| " 'HC2_se',\n", | |
| " 'HC3_se',\n", | |
| " '_HCCM',\n", | |
| " '__class__',\n", | |
| " '__delattr__',\n", | |
| " '__dict__',\n", | |
| " '__dir__',\n", | |
| " '__doc__',\n", | |
| " '__eq__',\n", | |
| " '__format__',\n", | |
| " '__ge__',\n", | |
| " '__getattribute__',\n", | |
| " '__gt__',\n", | |
| " '__hash__',\n", | |
| " '__init__',\n", | |
| " '__le__',\n", | |
| " '__lt__',\n", | |
| " '__module__',\n", | |
| " '__ne__',\n", | |
| " '__new__',\n", | |
| " '__reduce__',\n", | |
| " '__reduce_ex__',\n", | |
| " '__repr__',\n", | |
| " '__setattr__',\n", | |
| " '__sizeof__',\n", | |
| " '__str__',\n", | |
| " '__subclasshook__',\n", | |
| " '__weakref__',\n", | |
| " '_cache',\n", | |
| " '_data_attr',\n", | |
| " '_get_robustcov_results',\n", | |
| " '_is_nested',\n", | |
| " '_wexog_singular_values',\n", | |
| " 'aic',\n", | |
| " 'bic',\n", | |
| " 'bse',\n", | |
| " 'centered_tss',\n", | |
| " 'compare_f_test',\n", | |
| " 'compare_lm_test',\n", | |
| " 'compare_lr_test',\n", | |
| " 'condition_number',\n", | |
| " 'conf_int',\n", | |
| " 'conf_int_el',\n", | |
| " 'cov_HC0',\n", | |
| " 'cov_HC1',\n", | |
| " 'cov_HC2',\n", | |
| " 'cov_HC3',\n", | |
| " 'cov_kwds',\n", | |
| " 'cov_params',\n", | |
| " 'cov_type',\n", | |
| " 'df_model',\n", | |
| " 'df_resid',\n", | |
| " 'eigenvals',\n", | |
| " 'el_test',\n", | |
| " 'ess',\n", | |
| " 'f_pvalue',\n", | |
| " 'f_test',\n", | |
| " 'fittedvalues',\n", | |
| " 'fvalue',\n", | |
| " 'get_influence',\n", | |
| " 'get_robustcov_results',\n", | |
| " 'initialize',\n", | |
| " 'k_constant',\n", | |
| " 'llf',\n", | |
| " 'load',\n", | |
| " 'model',\n", | |
| " 'mse_model',\n", | |
| " 'mse_resid',\n", | |
| " 'mse_total',\n", | |
| " 'nobs',\n", | |
| " 'normalized_cov_params',\n", | |
| " 'outlier_test',\n", | |
| " 'params',\n", | |
| " 'predict',\n", | |
| " 'pvalues',\n", | |
| " 'remove_data',\n", | |
| " 'resid',\n", | |
| " 'resid_pearson',\n", | |
| " 'rsquared',\n", | |
| " 'rsquared_adj',\n", | |
| " 'save',\n", | |
| " 'scale',\n", | |
| " 'ssr',\n", | |
| " 'summary',\n", | |
| " 'summary2',\n", | |
| " 't_test',\n", | |
| " 'tvalues',\n", | |
| " 'uncentered_tss',\n", | |
| " 'use_t',\n", | |
| " 'wald_test',\n", | |
| " 'wresid']" | |
| ] | |
| }, | |
| "execution_count": 21, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "dir(result.fit())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 26, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Bad data points (bonf(p) < 0.05):\n", | |
| "Empty DataFrame\n", | |
| "Columns: [student_resid, unadj_p, bonf(p)]\n", | |
| "Index: []\n" | |
| ] | |
| }, | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "C:\\Users\\Dell\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:3: FutureWarning: icol(i) is deprecated. Please use .iloc[:,i]\n", | |
| " app.launch_new_instance()\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "test=result.fit().outlier_test()\n", | |
| "print ('Bad data points (bonf(p) < 0.05):')\n", | |
| "print (test[test.icol(2) < 0.05])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "anaconda-cloud": {}, | |
| "kernelspec": { | |
| "display_name": "Python [conda root]", | |
| "language": "python", | |
| "name": "conda-root-py" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.5.2" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 1 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment