Created
March 9, 2017 15:48
-
-
Save decisionstats/eda779bf1122384b1f2d0eba268cd81f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import psycopg2\n", | |
| "import pandas as pd\n", | |
| "import sqlalchemy as sa\n", | |
| "import time\n", | |
| "import seaborn as sns\n", | |
| "import re" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Requirement already satisfied: psycopg2 in c:\\users\\dell\\anaconda3\\lib\\site-packages\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "! pip install psycopg2" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "parameters = { \n", | |
| " 'username': 'postgres', \n", | |
| " 'password': 'root',\n", | |
| " 'server': 'localhost',\n", | |
| " 'database': 'ajay'\n", | |
| " }\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "connection= 'postgresql://{username}:{password}@{server}:5432/{database}'.format(**parameters)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "postgresql://postgres:root@localhost:5432/ajay\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print (connection)\n", | |
| "\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "engine = sa.create_engine(connection, encoding=\"utf-8\")\n", | |
| "\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "insp = sa.inspect(engine)\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "['information_schema', 'public']\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "db_list = insp.get_schema_names()\n", | |
| "print(db_list)\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "['sales', 'iris']" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "engine.table_names()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "data3= pd.read_sql_query('select * from \"sales\" limit 10',con=engine)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "RangeIndex: 10 entries, 0 to 9\n", | |
| "Data columns (total 4 columns):\n", | |
| "customer_id 10 non-null int64\n", | |
| "sales 10 non-null int64\n", | |
| "date 10 non-null object\n", | |
| "product_id 10 non-null int64\n", | |
| "dtypes: int64(3), object(1)\n", | |
| "memory usage: 400.0+ bytes\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "data3.info()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>customer_id</th>\n", | |
| " <th>sales</th>\n", | |
| " <th>date</th>\n", | |
| " <th>product_id</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>10001</td>\n", | |
| " <td>5230</td>\n", | |
| " <td>2017-02-07</td>\n", | |
| " <td>524</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>10002</td>\n", | |
| " <td>2781</td>\n", | |
| " <td>2017-05-12</td>\n", | |
| " <td>469</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>10003</td>\n", | |
| " <td>2083</td>\n", | |
| " <td>2016-12-18</td>\n", | |
| " <td>917</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>10004</td>\n", | |
| " <td>214</td>\n", | |
| " <td>2015-01-19</td>\n", | |
| " <td>354</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>10005</td>\n", | |
| " <td>9407</td>\n", | |
| " <td>2016-09-26</td>\n", | |
| " <td>292</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>10006</td>\n", | |
| " <td>4705</td>\n", | |
| " <td>2015-10-17</td>\n", | |
| " <td>380</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>10007</td>\n", | |
| " <td>4729</td>\n", | |
| " <td>2016-01-02</td>\n", | |
| " <td>469</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>10008</td>\n", | |
| " <td>7715</td>\n", | |
| " <td>2015-09-12</td>\n", | |
| " <td>480</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>10009</td>\n", | |
| " <td>9898</td>\n", | |
| " <td>2015-04-05</td>\n", | |
| " <td>611</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>10010</td>\n", | |
| " <td>5797</td>\n", | |
| " <td>2015-08-13</td>\n", | |
| " <td>959</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " customer_id sales date product_id\n", | |
| "0 10001 5230 2017-02-07 524\n", | |
| "1 10002 2781 2017-05-12 469\n", | |
| "2 10003 2083 2016-12-18 917\n", | |
| "3 10004 214 2015-01-19 354\n", | |
| "4 10005 9407 2016-09-26 292\n", | |
| "5 10006 4705 2015-10-17 380\n", | |
| "6 10007 4729 2016-01-02 469\n", | |
| "7 10008 7715 2015-09-12 480\n", | |
| "8 10009 9898 2015-04-05 611\n", | |
| "9 10010 5797 2015-08-13 959" | |
| ] | |
| }, | |
| "execution_count": 15, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "data3" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "data5= pd.read_sql_query('select * from \"iris\" limit 10',con=engine)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>sepal_length</th>\n", | |
| " <th>sepal_width</th>\n", | |
| " <th>petal_length</th>\n", | |
| " <th>petal_width</th>\n", | |
| " <th>species</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5.1</td>\n", | |
| " <td>3.5</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>4.9</td>\n", | |
| " <td>3.0</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>4.7</td>\n", | |
| " <td>3.2</td>\n", | |
| " <td>1.3</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>4.6</td>\n", | |
| " <td>3.1</td>\n", | |
| " <td>1.5</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5.0</td>\n", | |
| " <td>3.6</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>5.4</td>\n", | |
| " <td>3.9</td>\n", | |
| " <td>1.7</td>\n", | |
| " <td>0.4</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>4.6</td>\n", | |
| " <td>3.4</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.3</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>5.0</td>\n", | |
| " <td>3.4</td>\n", | |
| " <td>1.5</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>4.4</td>\n", | |
| " <td>2.9</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>4.9</td>\n", | |
| " <td>3.1</td>\n", | |
| " <td>1.5</td>\n", | |
| " <td>0.1</td>\n", | |
| " <td>setosa</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " sepal_length sepal_width petal_length petal_width species\n", | |
| "0 5.1 3.5 1.4 0.2 setosa\n", | |
| "1 4.9 3.0 1.4 0.2 setosa\n", | |
| "2 4.7 3.2 1.3 0.2 setosa\n", | |
| "3 4.6 3.1 1.5 0.2 setosa\n", | |
| "4 5.0 3.6 1.4 0.2 setosa\n", | |
| "5 5.4 3.9 1.7 0.4 setosa\n", | |
| "6 4.6 3.4 1.4 0.3 setosa\n", | |
| "7 5.0 3.4 1.5 0.2 setosa\n", | |
| "8 4.4 2.9 1.4 0.2 setosa\n", | |
| "9 4.9 3.1 1.5 0.1 setosa" | |
| ] | |
| }, | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "data5" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python [conda root]", | |
| "language": "python", | |
| "name": "conda-root-py" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.5.2" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 1 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment