Created
November 6, 2017 07:28
-
-
Save dudu159632/c294b7aa98a9529e4f433cf9c2ca26b1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "ZF" | |
| layer { | |
| name: 'input-data' | |
| type: 'Python' | |
| top: 'data' | |
| top: 'im_info' | |
| top: 'gt_boxes' | |
| python_param { | |
| module: 'roi_data_layer.layer' | |
| layer: 'RoIDataLayer' | |
| param_str: "'num_classes': 21" | |
| } | |
| } | |
| #========= conv1-conv5 ============ | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 96 | |
| kernel_size: 7 | |
| pad: 3 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "relu1" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| layer { | |
| name: "norm1" | |
| type: "LRN" | |
| bottom: "conv1" | |
| top: "norm1" | |
| lrn_param { | |
| local_size: 3 | |
| alpha: 0.00005 | |
| beta: 0.75 | |
| norm_region: WITHIN_CHANNEL | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "pool1" | |
| type: "Pooling" | |
| bottom: "norm1" | |
| top: "pool1" | |
| pooling_param { | |
| kernel_size: 3 | |
| stride: 2 | |
| pad: 1 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "pool1" | |
| top: "conv2" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 5 | |
| pad: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "relu2" | |
| type: "ReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| layer { | |
| name: "norm2" | |
| type: "LRN" | |
| bottom: "conv2" | |
| top: "norm2" | |
| lrn_param { | |
| local_size: 3 | |
| alpha: 0.00005 | |
| beta: 0.75 | |
| norm_region: WITHIN_CHANNEL | |
| engine: CAFFE | |
| } | |
| } | |
| layer { | |
| name: "pool2" | |
| type: "Pooling" | |
| bottom: "norm2" | |
| top: "pool2" | |
| pooling_param { | |
| kernel_size: 3 | |
| stride: 2 | |
| pad: 1 | |
| pool: MAX | |
| } | |
| } | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "pool2" | |
| top: "conv3" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 384 | |
| kernel_size: 3 | |
| pad: 1 | |
| stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "relu3" | |
| type: "ReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| layer { | |
| name: "conv4" | |
| type: "Convolution" | |
| bottom: "conv3" | |
| top: "conv4" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 384 | |
| kernel_size: 3 | |
| pad: 1 | |
| stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "relu4" | |
| type: "ReLU" | |
| bottom: "conv4" | |
| top: "conv4" | |
| } | |
| layer { | |
| name: "conv5" | |
| type: "Convolution" | |
| bottom: "conv4" | |
| top: "conv5" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| pad: 1 | |
| stride: 1 | |
| } | |
| } | |
| layer { | |
| name: "relu5" | |
| type: "ReLU" | |
| bottom: "conv5" | |
| top: "conv5" | |
| } | |
| #========= RPN ============ | |
| layer { | |
| name: "rpn_conv1" | |
| type: "Convolution" | |
| bottom: "conv5" | |
| top: "rpn_conv1" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 pad: 1 stride: 1 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| name: "rpn_relu1" | |
| type: "ReLU" | |
| bottom: "rpn_conv1" | |
| top: "rpn_conv1" | |
| } | |
| layer { | |
| name: "rpn_cls_score" | |
| type: "Convolution" | |
| bottom: "rpn_conv1" | |
| top: "rpn_cls_score" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 18 # 2(bg/fg) * 9(anchors) | |
| kernel_size: 1 pad: 0 stride: 1 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| name: "rpn_bbox_pred" | |
| type: "Convolution" | |
| bottom: "rpn_conv1" | |
| top: "rpn_bbox_pred" | |
| param { lr_mult: 1.0 } | |
| param { lr_mult: 2.0 } | |
| convolution_param { | |
| num_output: 36 # 4 * 9(anchors) | |
| kernel_size: 1 pad: 0 stride: 1 | |
| weight_filler { type: "gaussian" std: 0.01 } | |
| bias_filler { type: "constant" value: 0 } | |
| } | |
| } | |
| layer { | |
| bottom: "rpn_cls_score" | |
| top: "rpn_cls_score_reshape" | |
| name: "rpn_cls_score_reshape" | |
| type: "Reshape" | |
| reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } } | |
| } | |
| layer { | |
| name: 'rpn-data' | |
| type: 'Python' | |
| bottom: 'rpn_cls_score' | |
| bottom: 'gt_boxes' | |
| bottom: 'im_info' | |
| bottom: 'data' | |
| top: 'rpn_labels' | |
| top: 'rpn_bbox_targets' | |
| top: 'rpn_bbox_inside_weights' | |
| top: 'rpn_bbox_outside_weights' | |
| python_param { | |
| module: 'rpn.anchor_target_layer' | |
| layer: 'AnchorTargetLayer' | |
| param_str: "'feat_stride': 16" | |
| } | |
| } | |
| layer { | |
| name: "rpn_loss_cls" | |
| type: "SoftmaxWithLoss" | |
| bottom: "rpn_cls_score_reshape" | |
| bottom: "rpn_labels" | |
| propagate_down: 1 | |
| propagate_down: 0 | |
| top: "rpn_cls_loss" | |
| loss_weight: 1 | |
| loss_param { | |
| ignore_label: -1 | |
| normalize: true | |
| } | |
| } | |
| layer { | |
| name: "rpn_loss_bbox" | |
| type: "SmoothL1Loss" | |
| bottom: "rpn_bbox_pred" | |
| bottom: "rpn_bbox_targets" | |
| bottom: "rpn_bbox_inside_weights" | |
| bottom: "rpn_bbox_outside_weights" | |
| top: "rpn_loss_bbox" | |
| loss_weight: 1 | |
| smooth_l1_loss_param { sigma: 3.0 } | |
| } | |
| #========= RCNN ============ | |
| # Dummy layers so that initial parameters are saved into the output net | |
| layer { | |
| name: "dummy_roi_pool_conv5" | |
| type: "DummyData" | |
| top: "dummy_roi_pool_conv5" | |
| dummy_data_param { | |
| shape { dim: 1 dim: 9216 } | |
| data_filler { type: "gaussian" std: 0.01 } | |
| } | |
| } | |
| layer { | |
| name: "fc6" | |
| type: "InnerProduct" | |
| bottom: "dummy_roi_pool_conv5" | |
| top: "fc6" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| name: "relu6" | |
| type: "ReLU" | |
| bottom: "fc6" | |
| top: "fc6" | |
| } | |
| layer { | |
| name: "fc7" | |
| type: "InnerProduct" | |
| bottom: "fc6" | |
| top: "fc7" | |
| param { lr_mult: 0 decay_mult: 0 } | |
| param { lr_mult: 0 decay_mult: 0 } | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| name: "silence_fc7" | |
| type: "Silence" | |
| bottom: "fc7" | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment