Skip to content

Instantly share code, notes, and snippets.

@fdstevex
Created November 16, 2025 12:15
Show Gist options
  • Select an option

  • Save fdstevex/6d685cee535b34c56aadc5711333507c to your computer and use it in GitHub Desktop.

Select an option

Save fdstevex/6d685cee535b34c56aadc5711333507c to your computer and use it in GitHub Desktop.
maya1 tts with macOS changes
#!/usr/bin/env python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
import soundfile as sf
import numpy as np
CODE_START_TOKEN_ID = 128257
CODE_END_TOKEN_ID = 128258
CODE_TOKEN_OFFSET = 128266
SNAC_MIN_ID = 128266
SNAC_MAX_ID = 156937
SNAC_TOKENS_PER_FRAME = 7
SOH_ID = 128259
EOH_ID = 128260
SOA_ID = 128261
BOS_ID = 128000
TEXT_EOT_ID = 128009
def build_prompt(tokenizer, description: str, text: str) -> str:
"""Build formatted prompt for Maya1."""
soh_token = tokenizer.decode([SOH_ID])
eoh_token = tokenizer.decode([EOH_ID])
soa_token = tokenizer.decode([SOA_ID])
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
eot_token = tokenizer.decode([TEXT_EOT_ID])
bos_token = tokenizer.bos_token
formatted_text = f'<description="{description}"> {text}'
prompt = (
soh_token + bos_token + formatted_text + eot_token +
eoh_token + soa_token + sos_token
)
return prompt
def extract_snac_codes(token_ids: list) -> list:
"""Extract SNAC codes from generated tokens."""
try:
eos_idx = token_ids.index(CODE_END_TOKEN_ID)
except ValueError:
eos_idx = len(token_ids)
snac_codes = [
token_id for token_id in token_ids[:eos_idx]
if SNAC_MIN_ID <= token_id <= SNAC_MAX_ID
]
return snac_codes
def unpack_snac_from_7(snac_tokens: list) -> list:
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
snac_tokens = snac_tokens[:-1]
frames = len(snac_tokens) // SNAC_TOKENS_PER_FRAME
snac_tokens = snac_tokens[:frames * SNAC_TOKENS_PER_FRAME]
if frames == 0:
return [[], [], []]
l1, l2, l3 = [], [], []
for i in range(frames):
slots = snac_tokens[i*7:(i+1)*7]
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
l2.extend([
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
])
l3.extend([
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
])
return [l1, l2, l3]
def main():
# Load the best open source voice AI model
print("\n[1/3] Loading Maya1 model...")
model = AutoModelForCausalLM.from_pretrained(
"maya-research/maya1",
dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"maya-research/maya1",
trust_remote_code=True
)
print(f"Model loaded: {len(tokenizer)} tokens in vocabulary")
# Load SNAC audio decoder (24kHz)
print("\n[2/3] Loading SNAC audio decoder...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
if torch.cuda.is_available():
snac_model = snac_model.to("cuda")
print("SNAC decoder loaded")
# Design your voice with natural language
description = "Realistic male voice with american accent. Normal pitch, warm timbre, conversational pacing."
text = "Hello! This is Maya1 <laugh_harder> the best open source voice AI model with emotions."
print("\n[3/3] Generating speech...")
print(f"Description: {description}")
print(f"Text: {text}")
# Create prompt with proper formatting
prompt = build_prompt(tokenizer, description, text)
# Debug: Show prompt details
print(f"\nPrompt preview (first 200 chars):")
print(f" {repr(prompt[:200])}")
print(f" Prompt length: {len(prompt)} chars")
# Generate emotional speech
inputs = tokenizer(prompt, return_tensors="pt")
print(f" Input token count: {inputs['input_ids'].shape[1]} tokens")
# macOS - move inputs to the same device as the model
model_device = next(model.parameters()).device
inputs = {k: v.to(model_device) for k, v in inputs.items()}
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=2048, # Increase to let model finish naturally
min_new_tokens=28, # At least 4 SNAC frames
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1, # Prevent loops
do_sample=True,
eos_token_id=CODE_END_TOKEN_ID, # Stop at end of speech token
pad_token_id=tokenizer.pad_token_id,
)
# Extract generated tokens (everything after the input prompt)
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
print(f"Generated {len(generated_ids)} tokens")
# Debug: Check what tokens we got
print(f" First 20 tokens: {generated_ids[:20]}")
print(f" Last 20 tokens: {generated_ids[-20:]}")
# Check if EOS was generated
if CODE_END_TOKEN_ID in generated_ids:
eos_position = generated_ids.index(CODE_END_TOKEN_ID)
print(f" EOS token found at position {eos_position}/{len(generated_ids)}")
# Extract SNAC audio tokens
snac_tokens = extract_snac_codes(generated_ids)
print(f"Extracted {len(snac_tokens)} SNAC tokens")
# Debug: Analyze token types
snac_count = sum(1 for t in generated_ids if SNAC_MIN_ID <= t <= SNAC_MAX_ID)
other_count = sum(1 for t in generated_ids if t < SNAC_MIN_ID or t > SNAC_MAX_ID)
print(f" SNAC tokens in output: {snac_count}")
print(f" Other tokens in output: {other_count}")
# Check for SOS token
if CODE_START_TOKEN_ID in generated_ids:
sos_pos = generated_ids.index(CODE_START_TOKEN_ID)
print(f" SOS token at position: {sos_pos}")
else:
print(f" No SOS token found in generated output!")
if len(snac_tokens) < 7:
print("Error: Not enough SNAC tokens generated")
return
# Unpack SNAC tokens to 3 hierarchical levels
levels = unpack_snac_from_7(snac_tokens)
frames = len(levels[0])
print(f"Unpacked to {frames} frames")
print(f" L1: {len(levels[0])} codes")
print(f" L2: {len(levels[1])} codes")
print(f" L3: {len(levels[2])} codes")
# Convert to tensors
device = "cuda" if torch.cuda.is_available() else "cpu"
codes_tensor = [
torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0)
for level in levels
]
# Generate final audio with SNAC decoder
print("\n[4/4] Decoding to audio...")
with torch.inference_mode():
z_q = snac_model.quantizer.from_codes(codes_tensor)
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
# Trim warmup samples (first 2048 samples)
if len(audio) > 2048:
audio = audio[2048:]
duration_sec = len(audio) / 24000
print(f"Audio generated: {len(audio)} samples ({duration_sec:.2f}s)")
# Save your emotional voice output
output_file = "output.wav"
sf.write(output_file, audio, 24000)
print(f"\nVoice generated successfully!")
if __name__ == "__main__":
main()
@fdstevex
Copy link
Author

See https://huggingface.co/maya-research/maya1 for details and the setup to run it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment