Created
January 24, 2023 12:36
-
-
Save fpvandoorn/dd555d683524b99fab447d619cc461ee to your computer and use it in GitHub Desktop.
to additive dictionary of mathlib3
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| antitone.const_mul' β antitone.const_add, | |
| finset.prod_powerset_insert β finset.sum_powerset_insert, | |
| dist_eq_norm_div' β dist_eq_norm_sub', | |
| units.is_unit_mul_units β add_units.is_add_unit_add_add_units, | |
| Group.filtered_colimits.colimit_has_inv β AddGroup.filtered_colimits.colimit_has_neg, | |
| unique_mul.exists_iff_exists_exists_unique β unique_add.exists_iff_exists_exists_unique, | |
| subsemigroup.mem_map β add_subsemigroup.mem_map, | |
| free_group.norm β free_add_group.norm, | |
| finset.prod_ite_index β finset.sum_ite_index, | |
| monoid_hom.to_localization_map β add_monoid_hom.to_localization_map, | |
| lattice_ordered_comm_group.inf_eq_div_pos_div β lattice_ordered_comm_group.inf_eq_sub_pos_sub, | |
| group_filter_basis.nhds_one_has_basis β add_group_filter_basis.nhds_zero_has_basis, | |
| filter.inv_eq_bot_iff β filter.neg_eq_bot_iff, | |
| finprod_mem_finset_product' β finsum_mem_finset_product', | |
| subgroup.has_inf.inf.finite_index β add_subgroup.has_inf.inf.finite_index, | |
| subsemigroup.mem_map_iff_mem β add_subsemigroup.mem_map_iff_mem, | |
| monoid_hom.map_oneβ β add_monoid_hom.map_oneβ, | |
| subgroup.top_prod β add_subgroup.top_prod, | |
| canonically_linear_ordered_monoid.npow_succ' β canonically_linear_ordered_add_monoid.nsmul_succ', | |
| pi.mul_action' β pi.add_action', | |
| canonically_linear_ordered_monoid.one_mul β canonically_linear_ordered_add_monoid.zero_add, | |
| function.injective.ordered_comm_group β function.injective.ordered_add_comm_group, | |
| group.rank_le_of_surjective β add_group.rank_le_of_surjective, | |
| subsemigroup.map_id β add_subsemigroup.map_id, | |
| subgroup.map_comap_eq_self_of_surjective β add_subgroup.map_comap_eq_self_of_surjective, | |
| filter.covariant_smul β filter.covariant_vadd, | |
| set.image_mul β set.image_add, | |
| smooth_on_finset_prod' β smooth_on_finset_sum', | |
| function.mul_support_inf β function.support_inf, | |
| mul_le_iff_le_one_left' β add_le_iff_nonpos_left, | |
| measure_theory.is_fundamental_domain.measure_eq_tsum_of_ac β measure_theory.is_add_fundamental_domain.measure_eq_tsum_of_ac, | |
| measure_theory.measure_preimage_mul β measure_theory.measure_preimage_add, | |
| exists_order_of_eq_prime_pow_iff β exists_add_order_of_eq_prime_pow_iff, | |
| one_div_pow β nsmul_zero_sub, | |
| pi.semigroup β pi.add_semigroup, | |
| freiman_hom.cancel_right β add_freiman_hom.cancel_right, | |
| monoid_hom.ker_to_hom_units β add_monoid_hom.ker_to_hom_add_units, | |
| adjoin_one_adj β adjoin_zero_adj, | |
| Group.of_hom β AddGroup.of_hom, | |
| pi.has_faithful_smul β pi.has_faithful_vadd, | |
| submonoid.localization_map.map β add_submonoid.localization_map.map, | |
| map_mul_left_nhds β map_add_left_nhds, | |
| filter.germ.coe_pow β filter.germ.coe_smul, | |
| monoid_hom.has_coe_to_mul_hom β add_monoid_hom.has_coe_to_add_hom, | |
| con.lift_apply_mk' β add_con.lift_apply_mk', | |
| Group.group_obj β AddGroup.add_group_obj, | |
| filter.smul_mem_smul β filter.vadd_mem_vadd, | |
| submonoid.from_left_inv_eq_inv β add_submonoid.from_left_neg_eq_neg, | |
| monoid_hom.map_zpow' β add_monoid_hom.map_zsmul', | |
| order_dual.has_one β order_dual.has_zero, | |
| norm_nonneg' β norm_nonneg, | |
| group_seminorm.has_inf β add_group_seminorm.has_inf, | |
| filter.div_eq_bot_iff β filter.sub_eq_bot_iff, | |
| zpow_coe_nat β coe_nat_zsmul, | |
| one_mem_class.one_mem β zero_mem_class.zero_mem, | |
| monoid.one β add_monoid.zero, | |
| mul_equiv.to_Semigroup_iso_inv β add_equiv.to_AddSemigroup_iso_neg, | |
| uniform_group.ext β uniform_add_group.ext, | |
| finset.prod_dite_eq β finset.sum_dite_eq, | |
| submonoid.mem_closure_inv β add_submonoid.mem_closure_neg, | |
| continuous.bdd_above_range_of_has_compact_mul_support β continuous.bdd_above_range_of_has_compact_support, | |
| mul_equiv.Pi_congr_right β add_equiv.Pi_congr_right, | |
| submonoid.inv_top β add_submonoid.neg_top, | |
| con.trans β add_con.trans, | |
| subgroup.prod_mem β add_subgroup.sum_mem, | |
| cmp_div_one' β cmp_sub_zero, | |
| measure_theory.measure.measure_preserving_div_left β measure_theory.measure.measure_preserving_sub_left, | |
| finprod_mem_finset_product β finsum_mem_finset_product, | |
| function.extend_mul β function.extend_add, | |
| is_unit.mul_mul_div β is_add_unit.add_add_sub, | |
| sigma.smul_mk β sigma.vadd_mk, | |
| submonoid_class.coe_subtype β add_submonoid_class.coe_subtype, | |
| is_unit.mul_left_injective β is_add_unit.add_left_injective, | |
| is_cyclic.card_pow_eq_one_le β is_add_cyclic.card_pow_eq_one_le, | |
| finset.prod_range β finset.sum_range, | |
| freiman_hom.comp_id β add_freiman_hom.comp_id, | |
| commute.mul_pow β add_commute.add_nsmul, | |
| submonoid.comap_injective_of_surjective β add_submonoid.comap_injective_of_surjective, | |
| submonoid.mem_Inf β add_submonoid.mem_Inf, | |
| quotient_group.eq' β quotient_add_group.eq', | |
| finprod_subtype_eq_finprod_cond β finsum_subtype_eq_finsum_cond, | |
| inv_mul_cancel_right β neg_add_cancel_right, | |
| Group.mono_iff_ker_eq_bot β AddGroup.mono_iff_ker_eq_bot, | |
| CommGroup.of_hom_apply β AddCommGroup.of_hom_apply, | |
| finset.has_smul_finset β finset.has_vadd_finset, | |
| submonoid.top_prod_top β add_submonoid.top_prod_top, | |
| is_unit.of_left_inverse β is_add_unit.of_left_inverse, | |
| order_of_dvd_iff_pow_eq_one β add_order_of_dvd_iff_nsmul_eq_zero, | |
| subgroup.left_transversals.inhabited β add_subgroup.left_transversals.inhabited, | |
| subsemigroup.closure_induction β add_subsemigroup.closure_induction, | |
| has_measurable_mulβ.measurable_mul β has_measurable_addβ.measurable_add, | |
| pow_mul_pow_eq_one β nsmul_add_nsmul_eq_zero, | |
| finset.inter_mul_singleton β finset.inter_add_singleton, | |
| mul_one_class.one_mul β add_zero_class.zero_add, | |
| order_monoid_hom_class.to_order_hom_class β order_add_monoid_hom_class.to_order_hom_class, | |
| is_submonoid.preimage β is_add_submonoid.preimage, | |
| subgroup.smul_opposite_mul β add_subgroup.vadd_opposite_add, | |
| subgroup.mem_supr_of_directed β add_subgroup.mem_supr_of_directed, | |
| finset.smul_finset_eq_empty β finset.vadd_finset_eq_empty, | |
| group.ext β add_group.ext, | |
| subsemigroup.coe_bot β add_subsemigroup.coe_bot, | |
| with_one.coe_unone β with_zero.coe_unzero, | |
| continuous_map.zpow_comp β continuous_map.zsmul_comp, | |
| submonoid.coe_Sup_of_directed_on β add_submonoid.coe_Sup_of_directed_on, | |
| mul_inv_le_mul_inv_iff' β add_neg_le_add_neg_iff, | |
| subgroup.range_mem_right_transversals β add_subgroup.range_mem_right_transversals, | |
| left_inverse_inv_mul_mul_right β left_inverse_neg_add_add_right, | |
| smul_one_mul β vadd_zero_add, | |
| filter.le_smul_iff β filter.le_vadd_iff, | |
| lattice_ordered_comm_group.inv_le_abs β lattice_ordered_comm_group.neg_le_abs, | |
| fin.partial_prod_right_inv β fin.partial_sum_right_neg, | |
| div_inv_one_monoid.mul β sub_neg_zero_monoid.add, | |
| map_prod_eq_map_prod_of_le β map_sum_eq_map_sum_of_le, | |
| lt_mul_of_inv_mul_lt β lt_add_of_neg_add_lt, | |
| is_group_hom.inv_iff_ker β is_add_group_hom.neg_iff_ker, | |
| submonoid.localization_map.of_mul_equiv_of_localizations_eq β add_submonoid.localization_map.of_add_equiv_of_localizations_eq, | |
| exists_inv_mem_iff_exists_mem β exists_neg_mem_iff_exists_mem, | |
| uniform_fun.has_basis_nhds_one β uniform_fun.has_basis_nhds_zero, | |
| order_iso.inv_symm_apply β order_iso.neg_symm_apply, | |
| is_group_hom.injective_of_trivial_ker β is_add_group_hom.injective_of_trivial_ker, | |
| linear_ordered_cancel_comm_monoid.npow_succ' β linear_ordered_cancel_add_comm_monoid.nsmul_succ', | |
| subgroup_class β add_subgroup_class, | |
| measure_theory.is_fundamental_domain.measure_eq_tsum β measure_theory.is_add_fundamental_domain.measure_eq_tsum, | |
| filter.tendsto.const_mul β filter.tendsto.const_add, | |
| submonoid.le_topological_closure β add_submonoid.le_topological_closure, | |
| ae_measurable.div_const β ae_measurable.sub_const, | |
| CommMon.coe_of β AddCommMon.coe_of, | |
| subgroup.is_complement_top_singleton β add_subgroup.is_complement_top_singleton, | |
| localization.mul_equiv_of_quotient β add_localization.add_equiv_of_quotient, | |
| to_dual_smul' β to_dual_vadd', | |
| filter.eventually_le.mul_le_mul' β eventually_le.add_le_add, | |
| localization.ind β add_localization.ind, | |
| ordered_cancel_comm_monoid.one_mul β ordered_cancel_add_comm_monoid.zero_add, | |
| finset.card_mul_singleton β finset.card_add_singleton, | |
| continuous_map.to_ae_eq_fun_mul_hom β continuous_map.to_ae_eq_fun_add_hom, | |
| le_mul_iff_one_le_left' β le_add_iff_nonneg_left, | |
| nnnorm_le_pi_nnnorm' β nnnorm_le_pi_nnnorm, | |
| monoid_hom.map_mul' β add_monoid_hom.map_add', | |
| measure_theory.measure_inv_null β measure_theory.measure_neg_null, | |
| ordered_cancel_comm_monoid.to_ordered_comm_monoid β ordered_cancel_add_comm_monoid.to_ordered_add_comm_monoid, | |
| has_involutive_inv.inv β has_involutive_neg.neg, | |
| monoid_hom.single_apply β add_monoid_hom.single_apply, | |
| mul_mem_class β add_mem_class, | |
| continuous_map.smul_apply β continuous_map.vadd_apply, | |
| finprod_mem_inter_mul_diff β finsum_mem_inter_add_diff, | |
| covariant_swap_mul_le_of_covariant_mul_le β covariant_swap_add_le_of_covariant_add_le, | |
| mul_smul_comm β add_vadd_comm, | |
| mul_salem_spencer.decidable β add_salem_spencer.decidable, | |
| set.smul_Unionβ β set.vadd_Unionβ, | |
| tactic.group.zpow_trick β tactic.group.zsmul_trick, | |
| submonoid.from_left_inv_one β add_submonoid.from_left_neg_zero, | |
| measurable_set_mul_support β measurable_set_support, | |
| div_inv_eq_mul β sub_neg_eq_add, | |
| edist_mul_mul_le β edist_add_add_le, | |
| monoid_hom.ker_range_restrict β add_monoid_hom.ker_range_restrict, | |
| left_cancel_monoid.to_monoid β add_left_cancel_monoid.to_add_monoid, | |
| set.smul_comm_class_set β set.vadd_comm_class_set, | |
| lattice_ordered_comm_group.has_one_lattice_has_neg_part β lattice_ordered_comm_group.has_zero_lattice_has_neg_part, | |
| submonoid.coe_set_mk β add_submonoid.coe_set_mk, | |
| measure_theory.map_div_right_eq_self β measure_theory.map_sub_right_eq_self, | |
| free_monoid.prod_aux_eq β free_add_monoid.sum_aux_eq, | |
| mul_equiv.simps.symm_apply β add_equiv.simps.symm_apply, | |
| submonoid.to_subsemigroup β add_submonoid.to_add_subsemigroup, | |
| equiv.mul_left β equiv.add_left, | |
| submonoid.unique β add_submonoid.unique, | |
| units.inv_mul_cancel_right β add_units.neg_add_cancel_right, | |
| prod.pow_fst β prod.smul_fst, | |
| pow_of_dual β of_dual_smul', | |
| mul_le_cancellable.injective_left β add_le_cancellable.injective_left, | |
| submultiplicative_hom_class.map_mul_le_mul β subadditive_hom_class.map_add_le_add, | |
| one_le_finprod' β finsum_nonneg, | |
| seminormed_comm_group.to_has_lipschitz_mul β seminormed_add_comm_group.to_has_lipschitz_add, | |
| subsemigroup.closure_inductionβ β add_subsemigroup.closure_inductionβ, | |
| set.image_op_inv β set.image_op_neg, | |
| eckmann_hilton.comm_monoid β eckmann_hilton.add_comm_monoid, | |
| canonically_linear_ordered_monoid β canonically_linear_ordered_add_monoid, | |
| discrete_topology_of_open_singleton_one β discrete_topology_of_open_singleton_zero, | |
| pi.has_smul' β pi.has_vadd', | |
| smooth_on_finset_prod β smooth_on_finset_sum, | |
| is_unit.inv_mul_eq_one β is_add_unit.neg_add_eq_zero, | |
| submonoid.from_comm_left_inv_apply β add_submonoid.from_comm_left_neg_apply, | |
| mul_opposite.op_one β add_opposite.op_zero, | |
| free_group.to_word β free_add_group.to_word, | |
| subgroup.card_subgroup_dvd_card β add_subgroup.card_add_subgroup_dvd_card, | |
| monoid.closure β add_monoid.closure, | |
| div_le_div_right' β sub_le_sub_right, | |
| has_measurable_smul_opposite_of_mul β has_measurable_vadd_opposite_of_add, | |
| normal_iff_eq_cosets β normal_iff_eq_add_cosets, | |
| Group β AddGroup, | |
| lt_of_lt_mul_of_le_one_left β lt_of_lt_add_of_nonpos_left, | |
| units.ordered_comm_group β add_units.ordered_add_comm_group, | |
| one_le_of_le_mul_left β nonneg_of_le_add_left, | |
| filter.eventually_eq.inv β filter.eventually_eq.neg, | |
| equiv.has_div β equiv.has_sub, | |
| isometry.norm_map_of_map_one β isometry.norm_map_of_map_zero, | |
| ulift.comm_monoid β ulift.add_comm_monoid, | |
| one_div_zpow β zsmul_zero_sub, | |
| pi.has_continuous_smul β pi.has_continuous_vadd, | |
| con.con_gen_idem β add_con.add_con_gen_idem, | |
| smul_comm_class β vadd_comm_class, | |
| mul_opposite.comap_unop_nhds β add_opposite.comap_unop_nhds, | |
| group.fintype_of_dom_of_coker β add_group.fintype_of_dom_of_coker, | |
| quotient_group β quotient_add_group, | |
| free_group.red.antisymm β free_add_group.red.antisymm, | |
| subgroup.mem_prod β add_subgroup.mem_prod, | |
| submonoid.localization_map.to_map_injective β add_submonoid.localization_map.to_map_injective, | |
| cancel_monoid.to_left_cancel_monoid β add_cancel_monoid.to_add_left_cancel_monoid, | |
| compact_open_separated_mul_right β compact_open_separated_add_right, | |
| set.comm_semigroup β set.add_comm_semigroup, | |
| mul_opposite.semiconj_by_op β add_opposite.semiconj_by_op, | |
| continuous_map.monoid β continuous_map.add_monoid, | |
| equiv.mul_def β equiv.add_def, | |
| measure_theory.is_fundamental_domain.mk_of_measure_univ_le β measure_theory.is_add_fundamental_domain.mk_of_measure_univ_le, | |
| filter.coe_pure_mul_hom β filter.coe_pure_add_hom, | |
| submonoid.localization_map.lift_of_comp β add_submonoid.localization_map.lift_of_comp, | |
| measure_theory.smul_ae_eq_self_of_mem_zpowers β measure_theory.vadd_ae_eq_self_of_mem_zmultiples, | |
| normed_comm_group.of_separation β normed_add_comm_group.of_separation, | |
| subgroup.coe_pi β add_subgroup.coe_pi, | |
| subgroup.mem_normalizer_iff β add_subgroup.mem_normalizer_iff, | |
| quotient_group.coe_inv β quotient_add_group.coe_neg, | |
| set.mul_singleton β set.add_singleton, | |
| function.injective.mul_one_class β function.injective.add_zero_class, | |
| _private.2758160445.inv_eq_of_mul β _private.2758160445.neg_eq_of_add, | |
| interval.has_inv β interval.has_neg, | |
| mul_opposite.has_mul β add_opposite.has_add, | |
| part.left_dom_of_mul_dom β part.left_dom_of_add_dom, | |
| free_group.lift_eq_prod_map β free_add_group.lift_eq_sum_map, | |
| monoid_hom.map_one β add_monoid_hom.map_zero, | |
| inv_zpow' β zsmul_neg', | |
| filter.tendsto.coe_units β filter.tendsto.coe_add_units, | |
| smul_comm_class.of_mclosure_eq_top β vadd_comm_class.of_mclosure_eq_top, | |
| subgroup_class.subtype_comp_inclusion β add_subgroup_class.subtype_comp_inclusion, | |
| subgroup.quotient_equiv_prod_of_le_apply β add_subgroup.quotient_equiv_sum_of_le_apply, | |
| nonempty_interval.snd_inv β nonempty_interval.snd_neg, | |
| dist_mul_mul_le β dist_add_add_le, | |
| div_right_injective β sub_right_injective, | |
| set.smul_subset_smul_right β set.vadd_subset_vadd_right, | |
| monoid_hom.of_mclosure_eq_top_left β add_monoid_hom.of_mclosure_eq_top_left, | |
| right.mul_lt_one' β right.add_neg', | |
| part.inv_mem_inv β part.neg_mem_neg, | |
| le_inv_iff_mul_le_one_right β le_neg_iff_add_nonpos_right, | |
| subgroup_class.to_linear_ordered_comm_group β add_subgroup_class.to_linear_ordered_add_comm_group, | |
| is_subgroup.mem_trivial β is_add_subgroup.mem_trivial, | |
| subgroup.quotient_equiv_prod_of_le'_apply β add_subgroup.quotient_equiv_sum_of_le'_apply, | |
| lipschitz_with_one_nnnorm' β lipschitz_with_one_nnnorm, | |
| subgroup.comap_comap β add_subgroup.comap_comap, | |
| nonempty_interval.pure_mul_pure β nonempty_interval.pure_add_pure, | |
| nonarchimedean_group.nonarchimedean_of_emb β nonarchimedean_add_group.nonarchimedean_of_emb, | |
| free_magma.to_free_semigroup β free_add_magma.to_free_add_semigroup, | |
| nonempty_interval.has_mul β nonempty_interval.has_add, | |
| Magma.has_coe_to_sort β AddMagma.has_coe_to_sort, | |
| subgroup.index_bot_eq_card β add_subgroup.index_bot_eq_card, | |
| is_normal_subgroup β is_normal_add_subgroup, | |
| finset.image_mul_right' β finset.image_add_right', | |
| CommMon.has_forget_to_Mon β AddCommMon.has_forget_to_AddMon, | |
| submonoid.prod_top β add_submonoid.prod_top, | |
| is_square.pow β even.nsmul, | |
| submonoid.coe_prod β add_submonoid.coe_prod, | |
| filter.smul_set_mem_smul_filter β filter.vadd_set_mem_vadd_filter, | |
| function.injective.div_inv_monoid β function.injective.sub_neg_monoid, | |
| prod.mk_mul_mk β prod.mk_add_mk, | |
| singleton_mul_ball_one β singleton_add_ball_zero, | |
| measure_theory.measure_mul_right_ne_zero β measure_theory.measure_add_right_ne_zero, | |
| pow_bit1 β bit1_nsmul, | |
| measure_theory.is_open_pos_measure_of_mul_left_invariant_of_compact β measure_theory.is_open_pos_measure_of_add_left_invariant_of_compact, | |
| is_add_cyclic_of_card_pow_eq_one_le β is_cyclic_of_card_pow_eq_one_le, | |
| right_cancel_semigroup.to_semigroup β add_right_cancel_semigroup.to_add_semigroup, | |
| is_subgroup.trivial_eq_closure β is_add_subgroup.trivial_eq_closure, | |
| is_compact.inv β is_compact.neg, | |
| is_scalar_tower.of_smul_one_mul β vadd_assoc_class.of_vadd_zero_add, | |
| cancel_monoid.one β add_cancel_monoid.zero, | |
| filter.germ.has_pow β filter.germ.has_smul, | |
| zpowers_equiv_zpowers β zmultiples_equiv_zmultiples, | |
| zpowers_equiv_zpowers_apply β zmultiples_equiv_zmultiples_apply, | |
| is_of_fin_order_iff_coe β is_of_fin_add_order_iff_coe, | |
| localization.has_one β add_localization.has_zero, | |
| subgroup.relindex_ne_zero_trans β add_subgroup.relindex_ne_zero_trans, | |
| localization.mul_equiv_of_quotient_mk' β add_localization.add_equiv_of_quotient_mk', | |
| prod.left_cancel_semigroup β prod.left_cancel_add_semigroup, | |
| finset.map_one β finset.map_zero, | |
| finset.prod_bij' β finset.sum_bij', | |
| pow_monoid_hom_apply β nsmul_add_monoid_hom_apply, | |
| fin_equiv_powers_symm_apply β fin_equiv_multiples_symm_apply, | |
| set.union_inv β set.union_neg, | |
| with_one.coe_mul_hom β with_zero.coe_add_hom, | |
| submonoid.left_inv_equiv_symm_from_left_inv β add_submonoid.left_neg_equiv_symm_from_left_neg, | |
| continuous_map.has_one β continuous_map.has_zero, | |
| subgroup.card_dvd_of_injective β add_subgroup.card_dvd_of_injective, | |
| group_norm.has_sup β add_group_norm.has_sup, | |
| finsupp.prod_div_prod_filter β finsupp.sum_sub_sum_filter, | |
| inv_mul_eq_div β neg_add_eq_sub, | |
| pi.mul_single_eq_of_ne β pi.single_eq_of_ne, | |
| group.div β add_group.sub, | |
| subgroup.center_eq_infi β add_subgroup.center_eq_infi, | |
| prod.mul_action β prod.add_action, | |
| mul_hom.inhabited β add_hom.inhabited, | |
| measure_theory.ae_eq_fun.monoid β measure_theory.ae_eq_fun.add_monoid, | |
| filter.map_inv' β filter.map_neg', | |
| is_unit_pow_succ_iff β is_add_unit_nsmul_succ_iff, | |
| subgroup.closure_induction_left β add_subgroup.closure_induction_left, | |
| lex.left_cancel_monoid β lex.left_cancel_add_monoid, | |
| monoid_hom.eq_of_eq_on_mdense β add_monoid_hom.eq_of_eq_on_mdense, | |
| set.pow_mem_pow β set.nsmul_mem_nsmul, | |
| subgroup.pi_empty β add_subgroup.pi_empty, | |
| zpow_strict_mono_right β zsmul_strict_mono_left, | |
| CommGroup.mono_iff_injective β AddCommGroup.mono_iff_injective, | |
| finset.multiplicative_energy_mono_left β finset.additive_energy_mono_left, | |
| is_square_inv β even_neg, | |
| free_semigroup.mk_mul_mk β free_add_semigroup.mk_add_mk, | |
| finset.noncomm_prod_congr β finset.noncomm_sum_congr, | |
| equiv.inv_mul_right β equiv.inv_add_right, | |
| mul_action.right_quotient_action β add_action.right_quotient_action, | |
| continuous_map.prod_apply β continuous_map.sum_apply, | |
| free_group.prod.of β free_add_group.sum.of, | |
| mul_opposite.has_lipschitz_mul β add_opposite.has_lipschitz_add, | |
| Magma.has_mul β AddMagma.has_add, | |
| monoid_hom.eq_mlocus_same β add_monoid_hom.eq_mlocus_same, | |
| dist_div_div_le_of_le β dist_sub_sub_le_of_le, | |
| equiv.pow_mul_left β equiv.pow_add_left, | |
| subgroup.is_complement_singleton_right β add_subgroup.is_complement_singleton_right, | |
| group_norm.partial_order β add_group_norm.partial_order, | |
| subsemigroup.comap_supr_map_of_injective β add_subsemigroup.comap_supr_map_of_injective, | |
| submonoid.localization_map.mul_inv_left β add_submonoid.localization_map.add_neg_left, | |
| subgroup.mem_left_transversals.inv_mul_to_fun_mem β add_subgroup.mem_left_transversals.neg_add_to_fun_mem, | |
| homeomorph.shear_mul_right_symm_coe β homeomorph.shear_add_right_symm_coe, | |
| semiconj_by.one_right β add_semiconj_by.zero_right, | |
| div_div_div_eq β sub_sub_sub_eq, | |
| units.coe_mul β add_units.coe_add, | |
| continuous_monoid_hom.swap_to_monoid_hom β continuous_add_monoid_hom.swap_to_add_monoid_hom, | |
| locally_constant.comm_group β locally_constant.add_comm_group, | |
| cauchy_seq.const_mul β cauchy_seq.const_add, | |
| CommGroup.forget_preserves_limits_of_size β AddCommGroup.forget_preserves_limits, | |
| le_mul_iff_one_le_right' β le_add_iff_nonneg_right, | |
| list.prod_is_unit β list.sum_is_add_unit, | |
| is_regular.and_of_mul_of_mul β is_add_regular.and_of_add_of_add, | |
| fintype.prod_strict_mono' β fintype.sum_strict_mono, | |
| div_mul_cancel' β sub_add_cancel, | |
| monoid_hom.map_mulβ β add_monoid_hom.map_mulβ, | |
| group_topology.continuous_mul' β add_group_topology.continuous_add', | |
| nnnorm_multiset_prod_le β nnnorm_multiset_sum_le, | |
| finset.prod_erase_eq_div β finset.sum_erase_eq_sub, | |
| is_subgroup.mem_center β is_add_subgroup.mem_add_center, | |
| smooth_monoid_morphism.has_coe_to_fun β smooth_add_monoid_morphism.has_coe_to_fun, | |
| order_monoid_hom.order_monoid_hom_class β order_add_monoid_hom.order_add_monoid_hom_class, | |
| set.mul_inter_subset β set.add_inter_subset, | |
| div_lt_iff_lt_mul' β sub_lt_iff_lt_add', | |
| quotient_group.left_rel β quotient_add_group.left_rel, | |
| Mon.filtered_colimits.colimit_mul_mk_eq β AddMon.filtered_colimits.colimit_add_mk_eq, | |
| div_le_comm β sub_le_comm, | |
| finset.preimage_inv β finset.preimage_neg, | |
| finset.smul_finset_card_le β finset.vadd_finset_card_le, | |
| left.pow_lt_one_of_lt β left.pow_neg, | |
| commute.pow_right β add_commute.nsmul_right, | |
| finset.has_zpow β finset.has_zsmul, | |
| cont_mdiff_within_at_finset_prod β cont_mdiff_within_at_finset_sum, | |
| subgroup.comap_le_comap_of_surjective β add_subgroup.comap_le_comap_of_surjective, | |
| filter.tendsto.op_one_is_bounded_under_le' β filter.tendsto.op_zero_is_bounded_under_le', | |
| free_magma.has_mul β free_add_magma.has_add, | |
| mul_equiv.submonoid_map β add_equiv.add_submonoid_map, | |
| strict_mono_on.mul_const' β strict_mono_on.add_const, | |
| submonoid.left_inv β add_submonoid.left_neg, | |
| subsemigroup.apply_coe_mem_map β add_subsemigroup.apply_coe_mem_map, | |
| order_embedding.mul_left_apply β order_embedding.add_left_apply, | |
| mul_hom.eq_mlocus β add_hom.eq_mlocus, | |
| map_mul_right_nhds β map_add_right_nhds, | |
| mul_equiv.congr_arg β add_equiv.congr_arg, | |
| semiconj_by.function_semiconj_mul_right_swap β add_semiconj_by.function_semiconj_add_right_swap, | |
| measure_theory.lintegral_div_right_eq_self β measure_theory.lintegral_sub_right_eq_self, | |
| units.has_coe β add_units.has_coe, | |
| monoid.fg_of_surjective β add_monoid.fg_of_surjective, | |
| Group.forget_preserves_limits_of_size β AddGroup.forget_preserves_limits_of_size, | |
| free_group.quot_mk_eq_mk β free_add_group.quot_mk_eq_mk, | |
| group_norm.to_normed_group β add_group_norm.to_normed_add_group, | |
| finset.prod_mul_prod_compl β finset.sum_add_sum_compl, | |
| function.injective.ordered_cancel_comm_monoid β function.injective.ordered_cancel_add_comm_monoid, | |
| measurable_const_smul_iff β measurable_const_vadd_iff, | |
| submonoid_class.coe_finset_prod β add_submonoid_class.coe_finset_sum, | |
| free_group.red.cons_cons β free_add_group.red.cons_cons, | |
| multiset.le_prod_of_mem β multiset.le_sum_of_mem, | |
| free_group.map_inv β free_add_group.map_neg, | |
| is_subgroup.center β is_add_subgroup.add_center, | |
| group.npow β add_group.nsmul, | |
| subgroup.topological_group β add_subgroup.topological_add_group, | |
| norm_lt_of_mem_ball' β norm_lt_of_mem_ball, | |
| units.mul_inv_cancel_right β add_units.add_neg_cancel_right, | |
| finset.pow_subset_pow β finset.nsmul_subset_nsmul, | |
| le_iff_forall_one_lt_le_mul β le_iff_forall_pos_le_add, | |
| set.inv_empty β set.neg_empty, | |
| locally_constant.to_continuous_map_monoid_hom_apply β locally_constant.to_continuous_map_add_monoid_hom_apply, | |
| zpow_eq_pow β zsmul_eq_smul, | |
| set.inv_univ β set.neg_univ, | |
| subgroup.finite_quotient_of_finite_index β add_subgroup.finite_quotient_of_finite_index, | |
| measure_theory.measure.haar.is_left_invariant_index β measure_theory.measure.haar.is_left_invariant_add_index, | |
| con.group β add_con.add_group, | |
| dist_self_div_left β dist_self_sub_left, | |
| free_magma.pure_seq β free_add_magma.pure_seq, | |
| subgroup.map_subtype_le_map_subtype β add_subgroup.map_subtype_le_map_subtype, | |
| nnnorm_le_nnnorm_add_nnnorm_div' β nnnorm_le_nnnorm_add_nnnorm_sub', | |
| commute.symm_iff β add_commute.symm_iff, | |
| contravariant_swap_mul_le_of_contravariant_mul_le β contravariant_swap_add_le_of_contravariant_add_le, | |
| subgroup.closure_to_submonoid β add_subgroup.closure_to_add_submonoid, | |
| quotient_group.subgroup.has_quotient β quotient_add_group.subgroup.has_quotient, | |
| cauchy_seq.mul β cauchy_seq.add, | |
| lex.left_cancel_semigroup β lex.left_cancel_add_semigroup, | |
| sigma.has_faithful_smul' β sigma.has_faithful_vadd', | |
| pow_mul_pow_sub β nsmul_add_sub_nsmul, | |
| Group.has_limits_of_size β AddGroup.has_limits_of_size, | |
| monoid_hom.to_opposite β add_monoid_hom.to_opposite, | |
| con.hrec_onβ β add_con.hrec_onβ, | |
| inv_pow_sub β sub_nsmul_neg, | |
| strict_anti_on.mul_const' β strict_anti_on.add_const, | |
| to_lex_div β to_lex_sub, | |
| pi.monoid β pi.add_monoid, | |
| quotient_group.quotient_mul_equiv_of_eq β quotient_add_group.quotient_add_equiv_of_eq, | |
| pi.group β pi.add_group, | |
| monoid_hom.fst_comp_prod β add_monoid_hom.fst_comp_prod, | |
| free_group.red.sublist β free_add_group.red.sublist, | |
| measure_theory.ae_strongly_measurable.mul_const β measure_theory.ae_strongly_measurable.add_const, | |
| submonoid.mem_powers_iff β add_submonoid.mem_multiples_iff, | |
| con.div β add_con.sub, | |
| monoid_hom.noncomm_pi_coprod_mrange β add_monoid_hom.noncomm_pi_coprod_mrange, | |
| finset.eventually_constant_prod β finset.eventually_constant_sum, | |
| of_dual_div β of_dual_sub, | |
| has_measurable_div.measurable_const_div β has_measurable_sub.measurable_const_sub, | |
| set.mul_Union β set.add_Union, | |
| submonoid.equiv_map_of_injective_coe_mul_equiv β add_submonoid.equiv_map_of_injective_coe_add_equiv, | |
| ordered_comm_group.to_contravariant_class_left_le β ordered_add_comm_group.to_contravariant_class_left_le, | |
| order_of_dvd_of_mem_zpowers β add_order_of_dvd_of_mem_zmultiples, | |
| free_group.red.append_append_left_iff β free_add_group.red.append_append_left_iff, | |
| has_continuous_smul_infi β has_continuous_vadd_infi, | |
| con.con_gen_mono β add_con.add_con_gen_mono, | |
| submonoid.mem_center_iff β add_submonoid.mem_center_iff, | |
| continuous_at.const_smul β continuous_at.const_vadd, | |
| CommMon.filtered_colimits.colimit_cocone_is_colimit β AddCommMon.filtered_colimits.colimit_cocone_is_colimit, | |
| prod_mem β sum_mem, | |
| inv_mul_lt_iff_lt_mul' β neg_add_lt_iff_lt_add', | |
| subsemigroup.coe_supr_of_directed β add_subsemigroup.coe_supr_of_directed, | |
| order_monoid_hom.coe_one β order_add_monoid_hom.coe_zero, | |
| function.injective.cancel_comm_monoid β function.injective.add_cancel_comm_monoid, | |
| monoid_hom.flip_hom β add_monoid_hom.flip_hom, | |
| order_dual.has_continuous_mul β order_dual.has_continuous_add, | |
| measure_theory.quasi_measure_preserving_div β measure_theory.quasi_measure_preserving_sub, | |
| measure_theory.smul_invariant_measure.smul β measure_theory.vadd_invariant_measure.vadd, | |
| monoid_hom.inverse_apply β add_monoid_hom.inverse_apply, | |
| finset.prod_disj_union β finset.sum_disj_union, | |
| submonoid.has_bot β add_submonoid.has_bot, | |
| quotient_group.mk_out'_eq_mul β quotient_add_group.mk_out'_eq_mul, | |
| pi_nnnorm_lt_iff' β pi_nnnorm_lt_iff, | |
| group_filter_basis β add_group_filter_basis, | |
| con.ker_lift β add_con.ker_lift, | |
| filter.covariant_swap_mul β filter.covariant_swap_add, | |
| filter.germ.coe_coe_mul_hom β filter.germ.coe_coe_add_hom, | |
| map_mul_left_nhds_one β map_add_left_nhds_zero, | |
| exists_nhds_one_split β exists_nhds_zero_half, | |
| filter.smul_bot β filter.vadd_bot, | |
| continuous_div_left' β continuous_sub_left, | |
| measure_theory.null_measurable_set.fundamental_frontier β measure_theory.null_measurable_set.add_fundamental_frontier, | |
| left.inv_le_one_iff β left.neg_nonpos_iff, | |
| linear_ordered_comm_monoid.mul_assoc β linear_ordered_add_comm_monoid.add_assoc, | |
| finset.support_mul_antidiagonal_subset_mul β finset.support_add_antidiagonal_subset_add, | |
| monotone_on.mul_strict_mono' β monotone_on.add_strict_mono, | |
| mul_opposite.has_measurable_mulβ β add_opposite.has_measurable_mulβ, | |
| Group.filtered_colimits.G.mk_eq β AddGroup.filtered_colimits.G.mk_eq, | |
| submonoid_class.to_ordered_cancel_comm_monoid β add_submonoid_class.to_ordered_cancel_add_comm_monoid, | |
| set.smul_singleton β set.vadd_singleton, | |
| mul_equiv.ulift β add_equiv.ulift, | |
| group.fg_iff β add_group.fg_iff, | |
| submonoid.smul_comm_class_left β add_submonoid.vadd_comm_class_left, | |
| canonically_ordered_monoid.mul_comm β canonically_ordered_add_monoid.add_comm, | |
| function.range_subset_insert_image_mul_support β function.range_subset_insert_image_support, | |
| subgroup.index_map β add_subgroup.index_map, | |
| measure_theory.measure.is_mul_left_invariant.map_mul_left_eq_self β measure_theory.measure.is_add_left_invariant.map_add_left_eq_self, | |
| locally_constant.const_monoid_hom β locally_constant.const_add_monoid_hom, | |
| smooth_map.coe_one β smooth_map.coe_zero, | |
| of_lex_one β of_lex_zero, | |
| filter.mul_eq_bot_iff β filter.add_eq_bot_iff, | |
| canonically_linear_ordered_monoid.mul_assoc β canonically_linear_ordered_add_monoid.add_assoc, | |
| mul_le_cancellable.le_mul_iff_one_le_right β add_le_cancellable.le_add_iff_nonneg_right, | |
| is_closed_map_mul_left β is_closed_map_add_left, | |
| set.centralizer_eq_univ β set.add_centralizer_eq_univ, | |
| right.inv_lt_self β right.neg_lt_self, | |
| submonoid.localization_map.map_mk' β add_submonoid.localization_map.map_mk', | |
| subgroup.bot_subgroup_of β add_subgroup.bot_add_subgroup_of, | |
| ordered_comm_group.to_covariant_class_left_le β ordered_add_comm_group.to_covariant_class_left_le, | |
| order_dual.division_comm_monoid β order_dual.subtraction_comm_monoid, | |
| measure_theory.measure.measure_preserving.zpow β measure_theory.measure.measure_preserving.zsmul, | |
| controlled_prod_of_mem_closure_range β controlled_sum_of_mem_closure_range, | |
| finset.prod_list_count β finset.sum_list_count, | |
| div_eq_div_iff_mul_eq_mul β sub_eq_sub_iff_add_eq_add, | |
| has_compact_mul_support_iff_eventually_eq β has_compact_support_iff_eventually_eq, | |
| commute.map β add_commute.map, | |
| inv_mul_eq_iff_eq_mul β neg_add_eq_iff_eq_add, | |
| set.range_smul_range β set.range_vadd_range, | |
| Group.Mon.has_coe β AddGroup.Mon.has_coe, | |
| is_group_hom.inv_iff_ker' β is_add_group_hom.neg_iff_ker', | |
| semiconj_by.units_coe_iff β add_semiconj_by.add_units_coe_iff, | |
| finprod_mem_range' β finsum_mem_range', | |
| linear_ordered_comm_monoid.npow β linear_ordered_add_comm_monoid.nsmul, | |
| canonically_linear_ordered_monoid.le_self_mul β canonically_linear_ordered_add_monoid.le_self_add, | |
| function.injective.monoid β function.injective.add_monoid, | |
| inv_eq_one_div β neg_eq_zero_sub, | |
| uniform_space.completion.has_uniform_continuous_const_smul β uniform_space.completion.has_uniform_continuous_const_vadd, | |
| ordered_comm_monoid.mul_assoc β ordered_add_comm_monoid.add_assoc, | |
| div_div_self' β sub_sub_self, | |
| tactic.norm_num.list.prod_congr β tactic.norm_num.list.sum_congr, | |
| pempty β pempty, | |
| continuous_monoid_hom_class β continuous_add_monoid_hom_class, | |
| with_bot.coe_lt_one β with_bot.coe_lt_zero, | |
| measurable_equiv.to_equiv_mul_right β measurable_equiv.to_equiv_add_right, | |
| mul_hom.eq_on_mclosure β add_hom.eq_on_mclosure, | |
| lattice_ordered_comm_group.m_pos_part_def β lattice_ordered_comm_group.pos_part_def, | |
| division_comm_monoid.mul_comm β subtraction_comm_monoid.add_comm, | |
| group.mul β add_group.add, | |
| category_theory.iso.Group_iso_to_mul_equiv_symm_apply β category_theory.iso.AddGroup_iso_to_add_equiv_symm_apply, | |
| topological_group.exists_antitone_basis_nhds_one β topological_add_group.exists_antitone_basis_nhds_zero, | |
| le_one_of_mul_le_left β nonpos_of_add_le_left, | |
| adjoin_one_obj β adjoin_zero_obj, | |
| smul_mem_class β vadd_mem_class, | |
| mul_equiv.map_mul β add_equiv.map_add, | |
| mul_salem_spencer_mul_left_iff β add_salem_spencer_add_left_iff, | |
| mul_hom.subsemigroup_map_surjective β add_hom.subsemigroup_map_surjective, | |
| min_one β min_zero, | |
| set.mul_indicator_le_mul_indicator_of_subset β set.indicator_le_indicator_of_subset, | |
| monoid_hom.eval β add_monoid_hom.eval, | |
| subsemigroup.monotone_map β add_subsemigroup.monotone_map, | |
| mul_hom.to_fun_eq_coe β add_hom.to_fun_eq_coe, | |
| submonoid.localization_map.of_mul_equiv_of_localizations β add_submonoid.localization_map.of_add_equiv_of_localizations, | |
| finset.mem_prod_list_of_fn β finset.mem_sum_list_of_fn, | |
| mul_opposite.semigroup β add_opposite.add_semigroup, | |
| div_inv_monoid.to_has_inv β sub_neg_monoid.to_has_neg, | |
| measure_theory.measure.haar.cl_prehaar β measure_theory.measure.haar.cl_add_prehaar, | |
| pi.smul_const β pi.vadd_const, | |
| nnnorm_prod_le_of_le β nnnorm_sum_le_of_le, | |
| inv_le_inv' β neg_le_neg, | |
| finset.prod_apply_ite_of_false β finset.sum_apply_ite_of_false, | |
| units.coe_pow β add_units.coe_nsmul, | |
| has_continuous_const_smul.second_countable_topology β has_continuous_const_vadd.second_countable_topology, | |
| subgroup.prod_mono β add_subgroup.prod_mono, | |
| group_seminorm.has_add β add_group_seminorm.has_add, | |
| mul_action.pow_smul_mod_minimal_period β add_action.nsmul_vadd_mod_minimal_period, | |
| free_semigroup.inhabited β free_add_semigroup.inhabited, | |
| set.mul_action_set β set.add_action_set, | |
| dist_self_div_right β dist_self_sub_right, | |
| Mon.filtered_colimits.colimit β AddMon.filtered_colimits.colimit, | |
| subgroup_class.inclusion_mk β add_subgroup_class.inclusion_mk, | |
| with_one.map_id β with_zero.map_id, | |
| units.max_coe β add_units.max_coe, | |
| right_coset_equivalence_rel β right_add_coset_equivalence_rel, | |
| set.has_inv β set.has_neg, | |
| mul_action.to_perm_apply β add_action.to_perm_apply, | |
| subgroup.pi_mem_of_mul_single_mem β add_subgroup.pi_mem_of_single_mem, | |
| is_group_hom.to_is_monoid_hom β is_add_group_hom.to_is_add_monoid_hom, | |
| measure_theory.measure.prod.measure.is_mul_left_invariant β measure_theory.measure.prod.measure.is_add_left_invariant, | |
| uniform_continuous.mul β uniform_continuous.add, | |
| finset.prod_sum_elim β finset.sum_sum_elim, | |
| zpow_one_add β one_add_zsmul, | |
| finset.empty_div β finset.empty_sub, | |
| monoid_hom.mul_apply β add_monoid_hom.add_apply, | |
| pi.is_central_scalar β pi.is_central_vadd, | |
| monoid.is_torsion.torsion_mul_equiv_symm_apply_coe β add_monoid.is_torsion.torsion_add_equiv_symm_apply_coe, | |
| is_group_hom.map_div β is_add_group_hom.map_sub, | |
| monoid_hom.monoid_hom_class β add_monoid_hom.add_monoid_hom_class, | |
| finsupp.prod_map_domain_index β finsupp.sum_map_domain_index, | |
| le_iff_exists_mul' β le_iff_exists_add', | |
| one_hom.copy β zero_hom.copy, | |
| monoid_hom.prod_comp_prod_map β add_monoid_hom.prod_comp_prod_map, | |
| is_open.closure_div β is_open.closure_sub, | |
| mul_hom.snd β add_hom.snd, | |
| units.embed_product_injective β add_units.embed_product_injective, | |
| set.coe_singleton_mul_hom β set.coe_singleton_add_hom, | |
| monoid.exponent_eq_zero_of_order_zero β add_monoid.exponent_eq_zero_of_order_zero, | |
| mul_hom.op_apply_apply β add_hom.op_apply_apply, | |
| subgroup.closure_preimage_eq_top β add_subgroup.closure_preimage_eq_top, | |
| equiv.comm_group β equiv.add_comm_group, | |
| map_list_prod β map_list_sum, | |
| ordered_comm_monoid β ordered_add_comm_monoid, | |
| measure_theory.ae_eq_fun.comm_group β measure_theory.ae_eq_fun.add_comm_group, | |
| finset.smul_subset_smul_right β finset.vadd_subset_vadd_right, | |
| subgroup.coe_mk β add_subgroup.coe_mk, | |
| submonoid.is_closed_topological_closure β add_submonoid.is_closed_topological_closure, | |
| finset.nonempty.one_mem_div β finset.nonempty.zero_mem_sub, | |
| prod.fst_inv β prod.fst_neg, | |
| subgroup.map_mono β add_subgroup.map_mono, | |
| one_mem_class.coe_eq_one β zero_mem_class.coe_eq_zero, | |
| function.mul_support_nonempty_iff β function.support_nonempty_iff, | |
| units.inv_unique β add_units.neg_unique, | |
| mul_opposite.comm_monoid β add_opposite.add_comm_monoid, | |
| subgroup.mem_sup' β add_subgroup.mem_sup', | |
| set.nonempty_inv β set.nonempty_neg, | |
| set.smul_inter_subset β set.vadd_inter_subset, | |
| group_separation_rel β add_group_separation_rel, | |
| has_mul.mul β has_add.add, | |
| continuous_monoid_hom.one β continuous_add_monoid_hom.zero, | |
| linear_ordered_comm_group.to_linear_ordered_cancel_comm_monoid β linear_ordered_add_comm_group.to_linear_ordered_cancel_add_comm_monoid, | |
| units.coe_lt_coe β add_units.coe_lt_coe, | |
| subgroup.coe_to_submonoid β add_subgroup.coe_to_add_submonoid, | |
| group_filter_basis.one β add_group_filter_basis.zero, | |
| function.mul_support_eq_iff β function.support_eq_iff, | |
| submonoid.inv_order_iso β add_submonoid.neg_order_iso, | |
| mul_roth_number_lt_of_forall_not_mul_salem_spencer β add_roth_number_lt_of_forall_not_add_salem_spencer, | |
| group.to_div_inv_monoid β add_group.to_sub_neg_monoid, | |
| set.singleton_div_singleton β set.singleton_sub_singleton, | |
| equiv.zpow_mul_right β equiv.zpow_add_right, | |
| multiset.prod_eq_prod_to_enum_finset β multiset.sum_eq_sum_to_enum_finset, | |
| free_group.red.step.to_red β free_add_group.red.step.to_red, | |
| submonoid.localization_map β add_submonoid.localization_map, | |
| tendsto_mul β tendsto_add, | |
| comm_monoid.npow β add_comm_monoid.nsmul, | |
| CommGroup.forgetβ_CommMon_preserves_limits_aux β AddCommGroup.forgetβ_AddCommMon_preserves_limits_aux, | |
| totally_bounded_iff_subset_finite_Union_nhds_one β totally_bounded_iff_subset_finite_Union_nhds_zero, | |
| singleton_mul_ball β singleton_add_ball, | |
| localization.r β add_localization.r, | |
| one_hom.has_coe_t β zero_hom.has_coe_t, | |
| subgroup.index_map_eq β add_subgroup.index_map_eq, | |
| mul_inf β add_inf, | |
| finset.prod_coe_sort β finset.sum_coe_sort, | |
| cont_mdiff_at_finset_prod β cont_mdiff_at_finset_sum, | |
| finset.prod_image β finset.sum_image, | |
| _private.3971722801.normal_mul_aux β _private.3971722801.normal_add_aux, | |
| subgroup.rank_closure_finite_le_nat_card β add_subgroup.rank_closure_finite_le_nat_card, | |
| pow_le_pow_of_le_one' β nsmul_le_nsmul_of_nonpos, | |
| mul_hom.eq_of_eq_on_mdense β add_hom.eq_of_eq_on_mdense, | |
| subgroup.relindex_sup_right β add_subgroup.relindex_sup_right, | |
| set.smul_set_Inter_subset β set.vadd_set_Inter_subset, | |
| finset.subset_div β finset.subset_sub, | |
| continuous_monoid_hom.id β continuous_add_monoid_hom.id, | |
| map_ne_one_iff β map_ne_zero_iff, | |
| seminormed_comm_group.to_topological_group β seminormed_add_comm_group.to_topological_add_group, | |
| nonempty_interval.one_mem_one β nonempty_interval.zero_mem_zero, | |
| finprod_mem_eq_prod β finsum_mem_eq_sum, | |
| quotient_group.continuous_smulβ β quotient_add_group.continuous_smulβ, | |
| subsemigroup.subset_closure β add_subsemigroup.subset_closure, | |
| submonoid.has_involutive_inv β add_submonoid.has_involutive_neg, | |
| measure_theory.is_mul_left_invariant_map β measure_theory.is_add_left_invariant_map, | |
| set.mul_one_class β set.add_zero_class, | |
| filter.pure_mul_hom β filter.pure_add_hom, | |
| subsemigroup.mk_le_mk β add_subsemigroup.mk_le_mk, | |
| subsemigroup.closure_induction' β add_subsemigroup.closure_induction', | |
| subgroup.prod_top β add_subgroup.prod_top, | |
| subsemigroup.has_inf β add_subsemigroup.has_inf, | |
| CommMon.of β AddCommMon.of, | |
| units.inv_mul_eq_one β add_units.neg_add_eq_zero, | |
| group_filter_basis.is_topological_group β add_group_filter_basis.is_topological_add_group, | |
| free_group.map.id' β free_add_group.map.id', | |
| subgroup.prod_normal β add_subgroup.sum_normal, | |
| subgroup.card_eq_card_quotient_mul_card_subgroup β add_subgroup.card_eq_card_quotient_add_card_add_subgroup, | |
| is_unit.mul_eq_mul_of_div_eq_div β is_add_unit.add_eq_add_of_sub_eq_sub, | |
| dist_mul_left β dist_add_left, | |
| mul_action.is_pretransitive.exists_smul_eq β add_action.is_pretransitive.exists_vadd_eq, | |
| part.some_mul_some β part.some_add_some, | |
| order_monoid_hom.to_order_hom β order_add_monoid_hom.to_order_hom, | |
| div_le_inv_mul_iff β sub_le_neg_add_iff, | |
| zpow_le_zpow_iff β zsmul_le_zsmul_iff, | |
| mem_closure_iff_nhds_one β mem_closure_iff_nhds_zero, | |
| canonically_linear_ordered_monoid.npow β canonically_linear_ordered_add_monoid.nsmul, | |
| Mon.concrete_category β AddMon.concrete_category, | |
| even.is_square_zpow β even.zsmul', | |
| mul_equiv.with_one_congr β add_equiv.with_zero_congr, | |
| quotient_group.quotient_quotient_equiv_quotient_aux β quotient_add_group.quotient_quotient_equiv_quotient_aux, | |
| submonoid.left_inv_equiv_mul β add_submonoid.left_neg_equiv_add, | |
| dfinsupp.prod_eq_prod_fintype β dfinsupp.sum_eq_sum_fintype, | |
| ulift.right_cancel_monoid β ulift.add_right_cancel_monoid, | |
| submonoid.decidable_mem_center β add_submonoid.decidable_mem_center, | |
| infinite_not_is_of_fin_order β infinite_not_is_of_fin_add_order, | |
| set.smul_subset_iff β set.vadd_subset_iff, | |
| is_square_op_iff β even_op_iff, | |
| set.singleton_monoid_hom_apply β set.singleton_add_monoid_hom_apply, | |
| eq_mul_of_mul_inv_eq β eq_add_of_add_neg_eq, | |
| submonoid.powers_subset β add_submonoid.multiples_subset, | |
| submonoid.mrange_inl' β add_submonoid.mrange_inl', | |
| monoid_hom.to_opposite_apply β add_monoid_hom.to_opposite_apply, | |
| finset.smul_comm_class_finset'' β finset.vadd_comm_class_finset'', | |
| subgroup.characteristic_iff_le_map β add_subgroup.characteristic_iff_le_map, | |
| subgroup.index_ker β add_subgroup.index_ker, | |
| one_hom.with_bot_map_apply β zero_hom.with_bot_map_apply, | |
| free_group.eqv_gen_step_iff_join_red β free_add_group.eqv_gen_step_iff_join_red, | |
| set.mul_indicator_eq_self_of_superset β set.indicator_eq_self_of_superset, | |
| set.pow_subset_pow β set.nsmul_subset_nsmul, | |
| ordered_cancel_comm_monoid.lt_of_mul_lt_mul_left β ordered_cancel_add_comm_monoid.lt_of_add_lt_add_left, | |
| locally_constant.coe_fn_monoid_hom_apply β locally_constant.coe_fn_add_monoid_hom_apply, | |
| units.mul_eq_one_iff_eq_inv β add_units.add_eq_zero_iff_eq_neg, | |
| division_comm_monoid.mul_inv_rev β subtraction_comm_monoid.neg_add_rev, | |
| pi.is_scalar_tower'' β pi.vadd_assoc_class'', | |
| one_hom.coe_copy_eq β zero_hom.coe_copy_eq, | |
| list.prod_concat β list.sum_concat, | |
| free_group.reduce.step.eq β free_add_group.reduce.step.eq, | |
| has_measurable_inv β has_measurable_neg, | |
| fintype.prod_eq_single β fintype.sum_eq_single, | |
| subgroup.has_Inf β add_subgroup.has_Inf, | |
| monoid_hom.has_inv β add_monoid_hom.has_neg, | |
| mul_equiv.prod_unique β add_equiv.prod_unique, | |
| right_cancel_semigroup.covariant_swap_mul_lt_of_covariant_swap_mul_le β add_right_cancel_semigroup.covariant_swap_add_lt_of_covariant_swap_add_le, | |
| filter.inv_mem_inv β filter.neg_mem_neg, | |
| prod.mk_one_mul_mk_one β prod.mk_zero_add_mk_zero, | |
| mul_action.disjoint_image_image_iff β add_action.disjoint_image_image_iff, | |
| monoid.fg_iff_submonoid_fg β add_monoid.fg_iff_add_submonoid_fg, | |
| subgroup.subtype_range β add_subgroup.subtype_range, | |
| left.one_le_inv_iff β left.nonneg_neg_iff, | |
| subgroup.exists_zpowers β add_subgroup.exists_zmultiples, | |
| finprod_mem_finset_productβ β finsum_mem_finset_productβ, | |
| mul_csupr β add_csupr, | |
| pow_monoid_hom β nsmul_add_monoid_hom, | |
| one_le_pow_iff β nsmul_nonneg_iff, | |
| function.periodic.div β function.periodic.sub, | |
| set.preimage_mul_left_one' β set.preimage_add_left_zero', | |
| subsemigroup.map_sup β add_subsemigroup.map_sup, | |
| monoid_hom.comp_coprod β add_monoid_hom.comp_coprod, | |
| units β add_units, | |
| subgroup.subgroup_of_bot_eq_bot β add_subgroup.add_subgroup_of_bot_eq_bot, | |
| subgroup.fintype β add_subgroup.fintype, | |
| subsemigroup.monotone_comap β add_subsemigroup.monotone_comap, | |
| submonoid.mem_Sup_of_mem β add_submonoid.mem_Sup_of_mem, | |
| lt_mul_of_one_lt_of_le β lt_add_of_pos_of_le, | |
| finset.smul_finset_subset_smul_finset β finset.vadd_finset_subset_vadd_finset, | |
| well_approximable β add_well_approximable, | |
| right.mul_lt_mul β right.add_lt_add, | |
| finset.prod_subset_one_on_sdiff β finset.sum_subset_zero_on_sdiff, | |
| cancel_comm_monoid.to_left_cancel_monoid β add_cancel_comm_monoid.to_add_left_cancel_monoid, | |
| list.strongly_measurable_prod' β list.strongly_measurable_sum', | |
| group.fg_range β add_group.fg_range, | |
| set.comp_mul_indicator_const β set.comp_indicator_const, | |
| ordered_comm_group.to_ordered_cancel_comm_monoid β ordered_add_comm_group.to_ordered_cancel_add_comm_monoid, | |
| free_semigroup.of_tail β free_add_semigroup.of_tail, | |
| subgroup.is_normal_topological_closure β add_subgroup.is_normal_topological_closure, | |
| subgroup.index_infi_le β add_subgroup.index_infi_le, | |
| le_div_self_iff β le_sub_self_iff, | |
| monoid_hom.iterate_map_pow β add_monoid_hom.iterate_map_nsmul, | |
| submonoid.comap_map_comap β add_submonoid.comap_map_comap, | |
| prod.group β prod.add_group, | |
| mul_mul_mul_comm β add_add_add_comm, | |
| free_group.has_inv β free_add_group.has_neg, | |
| subgroup.to_submonoid_le β add_subgroup.to_add_submonoid_le, | |
| monoid_hom.prod β add_monoid_hom.prod, | |
| with_one.has_repr β with_zero.has_repr, | |
| mul_action.is_minimal β add_action.is_minimal, | |
| group_filter_basis.nhds_eq β add_group_filter_basis.nhds_eq, | |
| list.prod_erase β list.sum_erase, | |
| con.quotient_ker_equiv_of_right_inverse β add_con.quotient_ker_equiv_of_right_inverse, | |
| topological_group.continuous_conj β topological_add_group.continuous_conj, | |
| filter.comap_mul_comap_le β filter.comap_add_comap_le, | |
| mul_le_cancellable.is_left_regular β add_le_cancellable.is_add_left_regular, | |
| CommMon.filtered_colimits.forgetβ_Mon_preserves_filtered_colimits β AddCommMon.filtered_colimits.forgetβ_AddMon_preserves_filtered_colimits, | |
| measure_theory.measure.haar.is_left_invariant_haar_content β measure_theory.measure.haar.is_left_invariant_add_haar_content, | |
| list.prod_reverse β list.sum_reverse, | |
| set.div_empty β set.sub_empty, | |
| group_seminorm.coe_comp β add_group_seminorm.coe_comp, | |
| mul_equiv.congr_fun β add_equiv.congr_fun, | |
| finset.prod β finset.sum, | |
| mul_action.is_pretransitive_quotient β add_action.is_pretransitive_quotient, | |
| set.has_mul β set.has_add, | |
| orbit_subgroup_eq_self_of_mem β orbit_add_subgroup_eq_self_of_mem, | |
| mul_opposite.unop_div β add_opposite.unop_sub, | |
| monoid.exponent_eq_max'_order_of β add_monoid.exponent_eq_max'_order_of, | |
| left_cancel_monoid.mul_one β add_left_cancel_monoid.add_zero, | |
| localization.induction_onβ β add_localization.induction_onβ, | |
| seminormed_group.of_mul_dist β seminormed_add_group.of_add_dist, | |
| prod.rootable_by β prod.divisible_by, | |
| continuous_monoid_hom.one_to_monoid_hom β continuous_add_monoid_hom.zero_to_add_monoid_hom, | |
| right_cancel_monoid.to_right_cancel_semigroup β add_right_cancel_monoid.to_add_right_cancel_semigroup, | |
| tendsto_uniformly_on.mul β tendsto_uniformly_on.add, | |
| free_group.free_group_congr_symm β free_add_group.free_add_group_congr_symm, | |
| finset.prod_coe_sort_eq_attach β finset.sum_coe_sort_eq_attach, | |
| equiv.div_right_eq_mul_right_inv β equiv.sub_right_eq_add_right_neg, | |
| mul_opposite.op_surjective β add_opposite.op_surjective, | |
| mul_equiv β add_equiv, | |
| commute.pow_pow_self β add_commute.nsmul_nsmul_self, | |
| order_of_pow'' β add_order_of_nsmul'', | |
| subgroup.closure_univ β add_subgroup.closure_univ, | |
| mul_action.orbit_equiv_quotient_stabilizer β add_action.orbit_equiv_quotient_stabilizer, | |
| units.coe_unop_op_equiv β add_units.coe_unop_op_equiv, | |
| exists_open_nhds_one_mul_subset β exists_open_nhds_zero_add_subset, | |
| cSup_inv β cSup_neg, | |
| subgroup_class.coe_pow β add_subgroup_class.coe_smul, | |
| function.disjoint_mul_support_iff β function.disjoint_support_iff, | |
| mul_le_cancellable.le_mul_iff_one_le_left β add_le_cancellable.le_add_iff_nonneg_left, | |
| monoid_hom.map_prod β add_monoid_hom.map_sum, | |
| finset.prod_filter_ne_one β finset.sum_filter_ne_zero, | |
| fintype.prod_apply β fintype.sum_apply, | |
| zpow_lt_zpow β zsmul_lt_zsmul, | |
| is_glb_inv' β is_glb_neg', | |
| quotient_group.measurable_space β quotient_add_group.measurable_space, | |
| pow_zero β zero_nsmul, | |
| prod.lie_group β prod.lie_add_group, | |
| of_lex_mul β of_lex_add, | |
| set.mul_indicator_mul β set.indicator_add, | |
| CommGroup.comm_group_obj β AddCommGroup.add_comm_group_obj, | |
| filter.top_pow β filter.nsmul_top, | |
| division_comm_monoid.mul β subtraction_comm_monoid.add, | |
| mul_mem_ball_iff_norm β add_mem_ball_iff_norm, | |
| nhds_one_mul_nhds β nhds_zero_add_nhds, | |
| submonoid.closure_mul_le β add_submonoid.closure_add_le, | |
| measure_theory.map_mul_right_ae β measure_theory.map_add_right_ae, | |
| submonoid_class.to_mul_mem_class β add_submonoid_class.to_add_mem_class, | |
| monoid_hom.mul_comp β add_monoid_hom.add_comp, | |
| is_unit_of_pow_eq_one β is_add_unit_of_nsmul_eq_zero, | |
| subsemigroup.coe_infi β add_subsemigroup.coe_infi, | |
| comap_norm_nhds_one β comap_norm_nhds_zero, | |
| smul_pi_subset β vadd_pi_subset, | |
| topological_group.to_uniform_space β topological_add_group.to_uniform_space, | |
| subsemigroup.comap_inf_map_of_injective β add_subsemigroup.comap_inf_map_of_injective, | |
| CommGroup β AddCommGroup, | |
| filter.germ.mul_action β filter.germ.add_action, | |
| freiman_hom.const_comp β add_freiman_hom.const_comp, | |
| quotient_group.forall_coe β quotient_add_group.forall_coe, | |
| mul_opposite.op_inv β add_opposite.op_neg, | |
| subsemigroup.simps.coe β add_subsemigroup.simps.coe, | |
| is_unit.pow β is_add_unit.nsmul, | |
| right_cancel_monoid.mul_right_cancel β add_right_cancel_monoid.add_right_cancel, | |
| set.smul_univ β set.vadd_univ, | |
| nnnorm_div_le β nnnorm_sub_le, | |
| monoid_hom.submonoid_comap β add_monoid_hom.add_submonoid_comap, | |
| finset.prod_union_inter β finset.sum_union_inter, | |
| strict_mono.mul_const' β strict_mono.add_const, | |
| one_lt_inv' β neg_pos, | |
| con.ker_apply_eq_preimage β add_con.ker_apply_eq_preimage, | |
| finset.prod_piecewise β finset.sum_piecewise, | |
| antilipschitz_with.le_mul_norm_div β antilipschitz_with.le_add_norm_sub, | |
| CommMon β AddCommMon, | |
| norm_div_rev β norm_sub_rev, | |
| open_subgroup.semilattice_inf β open_add_subgroup.semilattice_inf, | |
| sym_alg.has_one β sym_alg.has_zero, | |
| freiman_hom.inhabited β add_freiman_hom.inhabited, | |
| mul_action.zpow_smul_mod_minimal_period β add_action.zsmul_vadd_mod_minimal_period, | |
| finset.prod_compl_mul_prod β finset.sum_compl_add_sum, | |
| open_subgroup.mem_coe_opens β open_add_subgroup.mem_coe_opens, | |
| right.one_lt_mul β right.add_pos, | |
| subgroup.relindex_mul_index β add_subgroup.relindex_mul_index, | |
| submonoid.localization_map.map_id β add_submonoid.localization_map.map_id, | |
| quotient_group.fintype β quotient_add_group.fintype, | |
| monoid_hom.to_freiman_hom_injective β add_monoid_hom.to_freiman_hom_injective, | |
| commute.smul_right β add_commute.vadd_right, | |
| is_torsion.group β is_torsion.add_group, | |
| finset.inter_div_subset β finset.inter_sub_subset, | |
| part.right_dom_of_div_dom β part.right_dom_of_sub_dom, | |
| left_coset_assoc β left_add_coset_assoc, | |
| Group.one_apply β AddGroup.zero_apply, | |
| subgroup.top_equiv_apply β add_subgroup.top_equiv_apply, | |
| monoid_hom.comp_hom'_apply_apply β add_monoid_hom.comp_hom'_apply_apply, | |
| mul_action.sigma_fixed_by_equiv_orbits_prod_group β add_action.sigma_fixed_by_equiv_orbits_sum_add_group, | |
| filter.mem_one β filter.mem_zero, | |
| monoid_hom.range β add_monoid_hom.range, | |
| nhds_mul_hom β nhds_add_hom, | |
| zpow_le_zpow_iff' β zsmul_le_zsmul_iff', | |
| has_measurable_mulβ β has_measurable_addβ, | |
| mul_action.quotient.smul_coe β add_action.quotient.vadd_coe, | |
| is_simple_group.subgroup.is_simple_order β is_simple_add_group.subgroup.is_simple_order, | |
| set.Union_smul β set.Union_vadd, | |
| mul_equiv.map_dfinsupp_prod β add_equiv.map_dfinsupp_sum, | |
| multiset.strongly_measurable_prod β multiset.strongly_measurable_sum, | |
| function.update_div β function.update_sub, | |
| set.mul_indicator_eq_one_or_self β set.indicator_eq_zero_or_self, | |
| nat.prod_div_divisors β nat.sum_div_divisors, | |
| monoid_hom.map_closure β add_monoid_hom.map_closure, | |
| free_group.free_group_congr_refl β free_add_group.free_add_group_congr_refl, | |
| zpow_sub β sub_zsmul, | |
| smul_pi β vadd_pi, | |
| Inf_inv β Inf_neg, | |
| filter.germ.const_div β filter.germ.const_sub, | |
| smooth_finprod_cond β smooth_finsum_cond, | |
| subsemigroup.top_equiv_apply β add_subsemigroup.top_equiv_apply, | |
| one_lt_div' β sub_pos, | |
| filter.germ.right_cancel_semigroup β filter.germ.add_right_cancel_semigroup, | |
| continuous_monoid_hom.continuous_comp_right β continuous_add_monoid_hom.continuous_comp_right, | |
| finset.prod_subset β finset.sum_subset, | |
| mul_hom.copy β add_hom.copy, | |
| uniform_continuous.inv β uniform_continuous.neg, | |
| monoid_hom.map_finprod_Prop β add_monoid_hom.map_finsum_Prop, | |
| inv_of_one_lt_inv β neg_of_neg_pos, | |
| localization.mul_equiv_of_quotient_mk β add_localization.add_equiv_of_quotient_mk, | |
| inv_lt' β neg_lt, | |
| continuous_at.zpow β continuous_at.zsmul, | |
| to_lex_mul β to_lex_add, | |
| smooth_on.div β smooth_on.sub, | |
| le_map_add_map_div β le_map_add_map_sub, | |
| mul_hom.comp_apply β add_hom.comp_apply, | |
| mul_mem_cancel_right β add_mem_cancel_right, | |
| order_dual.has_inv β order_dual.has_neg, | |
| submonoid.mul_mem' β add_submonoid.add_mem', | |
| lipschitz_with_iff_norm_div_le β lipschitz_with_iff_norm_sub_le, | |
| is_open.exists_smul_mem β is_open.exists_vadd_mem, | |
| has_compact_mul_support.comp_left β has_compact_support.comp_left, | |
| punit.one_eq β punit.zero_eq, | |
| mem_zpowers_iff_mem_range_order_of β mem_zmultiples_iff_mem_range_add_order_of, | |
| mul_equiv.map_prod β add_equiv.map_sum, | |
| monoid_hom.prod_map_def β add_monoid_hom.prod_map_def, | |
| filter.has_div β filter.has_sub, | |
| con.refl β add_con.refl, | |
| measure_theory.measure.haar.index_empty β measure_theory.measure.haar.add_index_empty, | |
| mul_hom.comp_coprod β add_hom.comp_coprod, | |
| set.is_scalar_tower'' β set.vadd_assoc_class'', | |
| finset.mul_eq_one_iff β finset.add_eq_zero_iff, | |
| mul_opposite.comap_op_nhds β add_opposite.comap_op_nhds, | |
| finset.prod_finset_product β finset.sum_finset_product, | |
| units.inv_eq_of_mul_eq_one_right β add_units.neg_eq_of_add_eq_zero_right, | |
| of_lex_div β of_lex_sub, | |
| nnnorm_prod_le β nnnorm_sum_le, | |
| abs_sub_map_le_div β abs_sub_map_le_sub, | |
| abs_norm_sub_norm_le' β abs_norm_sub_norm_le, | |
| list.prod_eq_one β list.sum_eq_zero, | |
| mul_action.exists_smul_eq β add_action.exists_vadd_eq, | |
| one_hom_class.map_one β zero_hom_class.map_zero, | |
| subgroup.card_comap_dvd_of_injective β add_subgroup.card_comap_dvd_of_injective, | |
| filter.mapβ_div β filter.mapβ_sub, | |
| measure_theory.map_div_right_ae β measure_theory.map_sub_right_ae, | |
| antitone.mul' β antitone.add, | |
| measure_theory.ae_eq_fun.div_to_germ β measure_theory.ae_eq_fun.sub_to_germ, | |
| locally_constant.comm_semigroup β locally_constant.add_comm_semigroup, | |
| subsemigroup.comap_sup_map_of_injective β add_subsemigroup.comap_sup_map_of_injective, | |
| group_filter_basis.N β add_group_filter_basis.N, | |
| smooth_monoid_morphism.has_one β smooth_add_monoid_morphism.has_zero, | |
| finset.nonempty.of_div_left β finset.nonempty.of_sub_left, | |
| set.image_div_prod β set.add_image_prod, | |
| Mon.assoc_monoid_hom β AddMon.assoc_add_monoid_hom, | |
| continuous_within_at.mul β continuous_within_at.add, | |
| Group.coe_of β AddGroup.coe_of, | |
| mul_opposite.unop_inj β add_opposite.unop_inj, | |
| monoid_hom.uniform_continuous_of_continuous_at_one β add_monoid_hom.uniform_continuous_of_continuous_at_zero, | |
| continuous_on_const_smul_iff β continuous_on_const_vadd_iff, | |
| left_inverse_mul_left_div β left_inverse_add_left_sub, | |
| monoid_hom.mker_inl β add_monoid_hom.mker_inl, | |
| multiset.prod_map_zpow β multiset.sum_map_zsmul, | |
| smooth_map.has_mul β smooth_map.has_add, | |
| mem_well_approximable_iff β mem_add_well_approximable_iff, | |
| group_seminorm.has_coe_to_fun β add_group_seminorm.has_coe_to_fun, | |
| mul_hom.eq_of_eq_on_mtop β add_hom.eq_of_eq_on_mtop, | |
| ae_measurable_const_smul_iff β ae_measurable_const_vadd_iff, | |
| inv_thickening β neg_thickening, | |
| fintype.prod_bijective β fintype.sum_bijective, | |
| mul_action.orbit_rel.quotient.mem_orbit β add_action.orbit_rel.quotient.mem_orbit, | |
| to_lex_one β to_lex_zero, | |
| mul_action.mul_smul β add_action.add_vadd, | |
| has_measurable_smulβ.measurable_smul β has_measurable_vaddβ.measurable_vadd, | |
| div_eq_inv_mul β sub_eq_neg_add, | |
| strict_anti.inv β strict_anti.neg, | |
| finset.div_empty β finset.sub_empty, | |
| option.smul_some β option.vadd_some, | |
| is_compact.mul β is_compact.add, | |
| subgroup.supr_comap_le β add_subgroup.supr_comap_le, | |
| zpow_mul' β mul_zsmul, | |
| continuous_monoid_hom.to_monoid_hom β continuous_add_monoid_hom.to_add_monoid_hom, | |
| equiv.prod_comp' β equiv.sum_comp', | |
| finset.prod_of_empty β finset.sum_of_empty, | |
| lower_set.coe_div β lower_set.coe_sub, | |
| free_monoid.of_list_nil β free_add_monoid.of_list_nil, | |
| finset.prod_eq_one β finset.sum_eq_zero, | |
| prod.comm_semigroup β prod.add_comm_semigroup, | |
| free_semigroup.traverse β free_add_semigroup.traverse, | |
| mul_left_inj β add_left_inj, | |
| group.closure β add_group.closure, | |
| subsemigroup.closure_singleton_le_iff_mem β add_subsemigroup.closure_singleton_le_iff_mem, | |
| pi.smul_apply' β pi.vadd_apply', | |
| measure_theory.map_mul_right_eq_self β measure_theory.map_add_right_eq_self, | |
| set.mul_eq_empty β set.add_eq_empty, | |
| submonoid.from_comm_left_inv β add_submonoid.from_comm_left_neg, | |
| group.one_mul β add_group.zero_add, | |
| linear_ordered_comm_monoid.one β linear_ordered_add_comm_monoid.zero, | |
| subgroup.quotient_infi_subgroup_of_embedding_apply_mk β add_subgroup.quotient_infi_add_subgroup_of_embedding_apply_mk, | |
| canonically_ordered_monoid.mul_one β canonically_ordered_add_monoid.add_zero, | |
| CommMon.limit_comm_monoid β AddCommMon.limit_add_comm_monoid, | |
| div_inv_one_monoid.inv_one β sub_neg_zero_monoid.neg_zero, | |
| submonoid.localization_map.of_mul_equiv_of_localizations_apply β add_submonoid.localization_map.of_add_equiv_of_localizations_apply, | |
| magma.assoc_quotient.lift β add_magma.free_add_semigroup.lift, | |
| comm_group.to_group_injective β add_comm_group.to_add_group_injective, | |
| pi.mul_support_mul_single_subset β pi.support_single_subset, | |
| free_semigroup.map_of β free_add_semigroup.map_of, | |
| inv_mul_eq_of_eq_mul β neg_add_eq_of_eq_add, | |
| mul_lt_mul_left' β add_lt_add_left, | |
| eq_one_iff_eq_one_of_mul_eq_one β eq_zero_iff_eq_zero_of_add_eq_zero, | |
| monoid_hom.pi_ext β add_monoid_hom.pi_ext, | |
| CommGroup.of_unique β AddCommGroup.of_unique, | |
| Semigroup.inhabited β AddSemigroup.inhabited, | |
| continuous_within_at.const_smul β continuous_within_at.const_vadd, | |
| inv_eq_iff_mul_eq_one β neg_eq_iff_add_eq_zero, | |
| free_monoid.of_list_append β free_add_monoid.of_list_append, | |
| uniform_space.completion.mul_action β uniform_space.completion.add_action, | |
| finset.prod_le_univ_prod_of_one_le' β finset.sum_le_univ_sum_of_nonneg, | |
| finset.preimage_mul_left_one' β finset.preimage_add_left_zero', | |
| continuous_div_right' β continuous_sub_right, | |
| measure_theory.is_mul_left_invariant.is_mul_right_invariant β is_add_left_invariant.is_add_right_invariant, | |
| mul_lt_of_lt_one_right' β add_lt_of_neg_right, | |
| subgroup.is_complement_iff_exists_unique β add_subgroup.is_complement_iff_exists_unique, | |
| subgroup.subgroup_of_inj β add_subgroup.add_subgroup_of_inj, | |
| subgroup.subgroup_of_sup β add_subgroup.add_subgroup_of_sup, | |
| submonoid.localization_map.mul_equiv_of_mul_equiv_eq_map_apply β add_submonoid.localization_map.add_equiv_of_add_equiv_eq_map_apply, | |
| free_semigroup.lift_of_mul β free_add_semigroup.lift_of_add, | |
| submonoid.left_inv_le_is_unit β add_submonoid.left_neg_le_is_add_unit, | |
| submonoid.fg.map_injective β add_submonoid.fg.map_injective, | |
| free_group.red.not_step_singleton β free_add_group.red.not_step_singleton, | |
| uniform_group_comap β uniform_add_group_comap, | |
| measure_theory.is_fundamental_domain.map_restrict_quotient β measure_theory.is_add_fundamental_domain.map_restrict_quotient, | |
| set.nonempty.of_mul_left β set.nonempty.of_add_left, | |
| finprod_pow β finsum_nsmul, | |
| linear_ordered_comm_group.mul_one β linear_ordered_add_comm_group.add_zero, | |
| div_left_injective β sub_left_injective, | |
| monoid_hom.mker_one β add_monoid_hom.mker_zero, | |
| eq_inv_of_mul_eq_one_left β eq_neg_of_add_eq_zero_left, | |
| filter.has_basis.nhds_of_one β filter.has_basis.nhds_of_zero, | |
| measure_theory.ae_eq_fun.has_div β measure_theory.ae_eq_fun.has_sub, | |
| subgroup.mem_closure_singleton β add_subgroup.mem_closure_singleton, | |
| monoid_hom.snd_comp_prod β add_monoid_hom.snd_comp_prod, | |
| monoid_hom.inv_comp β add_monoid_hom.neg_comp, | |
| quotient_group.induction_on β quotient_add_group.induction_on, | |
| measure_theory.measure.is_inv_invariant β measure_theory.measure.is_neg_invariant, | |
| finset.card_mul_le β finset.card_add_le, | |
| one_hom.id β zero_hom.id, | |
| monoid_hom.is_closed_range_coe β add_monoid_hom.is_closed_range_coe, | |
| is_group_hom.map_one β is_add_group_hom.map_zero, | |
| equiv.semigroup β equiv.add_semigroup, | |
| measure_theory.is_open_pos_measure_of_mul_left_invariant_of_regular β measure_theory.is_open_pos_measure_of_add_left_invariant_of_regular, | |
| is_submonoid.list_prod_mem β is_add_submonoid.list_sum_mem, | |
| is_normal_subgroup_of_comm_group β is_normal_add_subgroup_of_add_comm_group, | |
| pi_norm_le_iff_of_nonneg' β pi_norm_le_iff_of_nonneg, | |
| continuous_within_at.pow β continuous_within_at.nsmul, | |
| order_monoid_hom.ext β order_add_monoid_hom.ext, | |
| mul_equiv.inv_apply β add_equiv.neg_apply, | |
| finprod_eventually_eq_prod β finsum_eventually_eq_sum, | |
| is_unit.unit' β is_add_unit.add_unit', | |
| set.subset_mul_right β set.subset_add_right, | |
| subgroup.is_complement_top_right β add_subgroup.is_complement_top_right, | |
| mul_equiv.unique β add_equiv.unique, | |
| finset.measurable_prod' β finset.measurable_sum', | |
| measure_theory.measure.haar.prehaar_sup_le β measure_theory.measure.haar.add_prehaar_sup_le, | |
| submonoid.mem_supr_of_directed β add_submonoid.mem_supr_of_directed, | |
| set.mem_smul_set β set.mem_vadd_set, | |
| measure_theory.prog_measurable.finset_prod β measure_theory.prog_measurable.finset_sum, | |
| freiman_hom.comm_monoid β add_freiman_hom.add_comm_monoid, | |
| measure_theory.ae_strongly_measurable.smul_const β measure_theory.ae_strongly_measurable.vadd_const, | |
| filter.le_one_iff β filter.nonpos_iff, | |
| quotient_group.measurable_from_quotient β quotient_add_group.measurable_from_quotient, | |
| submonoid.comap_comap β add_submonoid.comap_comap, | |
| mul_salem_spencer β add_salem_spencer, | |
| filter.ne_bot.of_mul_left β filter.ne_bot.of_add_left, | |
| commute.function_commute_mul_right β add_commute.function_commute_add_right, | |
| finprod_eq_dif β finsum_eq_dif, | |
| subgroup.mem_inf β add_subgroup.mem_inf, | |
| with_one.comm_monoid β with_zero.add_comm_monoid, | |
| measure_theory.integral_eq_zero_of_mul_left_eq_neg β measure_theory.integral_eq_zero_of_add_left_eq_neg, | |
| order_monoid_hom.comp β order_add_monoid_hom.comp, | |
| filter.tendsto.const_div' β filter.tendsto.const_sub, | |
| Group.filtered_colimits.colimit_inv_aux_eq_of_rel β AddGroup.filtered_colimits.colimit_neg_aux_eq_of_rel, | |
| submonoid_class.coe_list_prod β add_submonoid_class.coe_list_sum, | |
| continuous_map.smul_comm_class β continuous_map.vadd_comm_class, | |
| set.one_le_mul_indicator_apply β set.indicator_apply_nonneg, | |
| subgroup.gc_map_comap β add_subgroup.gc_map_comap, | |
| group_seminorm.coe_add β add_group_seminorm.coe_add, | |
| finset.image_mul_left' β finset.image_add_left', | |
| free_magma.traverse β free_add_magma.traverse, | |
| subsemigroup.coe_inf β add_subsemigroup.coe_inf, | |
| set.mul_indicator_univ β set.indicator_univ, | |
| finset.prod_range_sub_prod_range β finset.sum_range_sub_sum_range, | |
| inv_closed_ball β neg_closed_ball, | |
| multiset.prod_hom' β multiset.sum_hom', | |
| free_group.inv_rev_involutive β free_add_group.neg_rev_involutive, | |
| set.singleton_mul_hom_apply β set.singleton_add_hom_apply, | |
| mul_opposite.unique β add_opposite.unique, | |
| con.comm_semigroup β add_con.add_comm_semigroup, | |
| mul_hom.to_opposite β add_hom.to_opposite, | |
| inv_le_of_inv_le' β neg_le_of_neg_le, | |
| antitone_on.mul_const' β antitone_on.add_const, | |
| right.one_le_mul β right.add_nonneg, | |
| mul_div_right_comm β add_sub_right_comm, | |
| CommMon.filtered_colimits.colimit β AddCommMon.filtered_colimits.colimit, | |
| subgroup.map_id β add_subgroup.map_id, | |
| measurable_mul_op β measurable_add_op, | |
| units.topological_group β add_units.topological_add_group, | |
| division_comm_monoid.to_division_monoid β subtraction_comm_monoid.to_subtraction_monoid, | |
| topological_group_of_lie_group β topological_add_group_of_lie_add_group, | |
| con.lift_range β add_con.lift_range, | |
| comm_monoid.primary_component_coe β add_comm_monoid.primary_component_coe, | |
| set.preimage_mul_right_one' β set.preimage_add_right_zero', | |
| monoid_hom.ker_cod_restrict β add_monoid_hom.ker_cod_restrict, | |
| set.is_pwo.submonoid_closure β set.is_pwo.add_submonoid_closure, | |
| finset.smul_mem_smul_finset_iff β finset.vadd_mem_vadd_finset_iff, | |
| cancel_monoid.mul_assoc β add_cancel_monoid.add_assoc, | |
| isometry_equiv.inv_symm β isometry_equiv.neg_symm, | |
| dfinsupp.prod_add_index β dfinsupp.sum_add_index, | |
| mul_equiv.apply_eq_iff_eq β add_equiv.apply_eq_iff_eq, | |
| mul_one_class.one β add_zero_class.zero, | |
| measure_theory.measure.haar.prehaar_mono β measure_theory.measure.haar.add_prehaar_mono, | |
| finset.nonempty.of_mul_right β finset.nonempty.of_add_right, | |
| subgroup.disjoint_def β add_subgroup.disjoint_def, | |
| free_group.red.reduce_left β free_add_group.red.reduce_left, | |
| closure_smul β closure_vadd, | |
| equiv.has_inv β equiv.has_neg, | |
| finprod_congr_Prop β finsum_congr_Prop, | |
| submonoid.closure_inv β add_submonoid.closure_neg, | |
| list.prod_eq_foldr β list.sum_eq_foldr, | |
| submonoid.fg β add_submonoid.fg, | |
| finset.one_le_prod' β finset.sum_nonneg, | |
| set.mul_indicator_one β set.indicator_zero, | |
| continuous_at_pow β continuous_at_nsmul, | |
| interval.division_comm_monoid β interval.subtraction_comm_monoid, | |
| ordered_cancel_comm_monoid.mul β ordered_cancel_add_comm_monoid.add, | |
| subgroup.has_mul β add_subgroup.has_add, | |
| continuous.nnnorm' β continuous.nnnorm, | |
| nonempty_interval.to_prod_mul β nonempty_interval.to_prod_add, | |
| subgroup.relindex_dvd_of_le_left β add_subgroup.relindex_dvd_of_le_left, | |
| prod.has_continuous_inv β prod.has_continuous_neg, | |
| list.prod_lt_prod_of_ne_nil β list.sum_lt_sum_of_ne_nil, | |
| decidable_zpowers β decidable_zmultiples, | |
| filter.map_monoid_hom β filter.map_add_monoid_hom, | |
| is_upper_set.smul_subset β is_upper_set.vadd_subset, | |
| monoid.mul β add_monoid.add, | |
| mul_inv_cancel_right β add_neg_cancel_right, | |
| order_monoid_hom.id β order_add_monoid_hom.id, | |
| has_continuous_smul_inf β has_continuous_vadd_inf, | |
| uniform_space.completion.coe_smul β uniform_space.completion.coe_vadd, | |
| has_measurable_inv.measurable_inv β has_measurable_neg.measurable_neg, | |
| filter.bot_pow β filter.nsmul_bot, | |
| measure_theory.measure.haar.chaar_nonneg β measure_theory.measure.haar.add_chaar_nonneg, | |
| mul_action.stabilizer_quotient β add_action.stabilizer_quotient, | |
| continuous_monoid_hom.prod_to_monoid_hom β continuous_add_monoid_hom.sum_to_add_monoid_hom, | |
| filter.monoid β filter.add_monoid, | |
| bounded_continuous_function.coe_one β bounded_continuous_function.coe_zero, | |
| subgroup.t3_quotient_of_is_closed β add_subgroup.t3_quotient_of_is_closed, | |
| measure_theory.ae_eq_fun.comm_monoid β measure_theory.ae_eq_fun.add_comm_monoid, | |
| is_group_hom.inv_ker_one' β is_add_group_hom.neg_ker_zero', | |
| units.has_smul β add_units.has_vadd, | |
| mul_hom.snd_comp_prod β add_hom.snd_comp_prod, | |
| quotient_group.quotient.comm_group β quotient_add_group.quotient.add_comm_group, | |
| singleton_div_ball β singleton_sub_ball, | |
| monoid_hom.to_one_hom_injective β add_monoid_hom.to_zero_hom_injective, | |
| list.prod_singleton β list.sum_singleton, | |
| monoid_hom.comp_one β add_monoid_hom.comp_zero, | |
| free_group.of_injective β free_add_group.of_injective, | |
| pow_bit1' β bit1_nsmul', | |
| ulift.mul_down β ulift.add_down, | |
| is_upper_set.mul_left β is_upper_set.add_left, | |
| map_prod_eq_map_prod β map_sum_eq_map_sum, | |
| left_cancel_monoid.mul β add_left_cancel_monoid.add, | |
| set.nonempty.of_mul_right β set.nonempty.of_add_right, | |
| submonoid.localization_map.map_mul_left β add_submonoid.localization_map.map_add_left, | |
| quotient_group.ker_lift β quotient_add_group.ker_lift, | |
| subsemigroup.prod_mono β add_subsemigroup.prod_mono, | |
| with_bot.map_one β with_bot.map_zero, | |
| mul_equiv.symm_apply_eq β add_equiv.symm_apply_eq, | |
| commute.self_zpow β add_commute.self_zsmul, | |
| continuous.mul β continuous.add, | |
| free_magma.map β free_add_magma.map, | |
| homeomorph.inv β homeomorph.neg, | |
| mul_one_class.to_has_mul β add_zero_class.to_has_add, | |
| mul_hom.cancel_right β add_hom.cancel_right, | |
| subsemigroup.subsingleton_of_subsingleton β add_subsemigroup.subsingleton_of_subsingleton, | |
| ae_measurable.const_smul' β ae_measurable.const_vadd', | |
| monoid_hom.to_mul_equiv_symm_apply β add_monoid_hom.to_add_equiv_symm_apply, | |
| filter.covariant_mul β filter.covariant_add, | |
| con.symm β add_con.symm, | |
| normed_linear_ordered_group β normed_linear_ordered_add_group, | |
| group_seminorm.has_zero β add_group_seminorm.has_zero, | |
| subgroup.has_bot.bot.unique β add_subgroup.has_bot.bot.unique, | |
| prod.mul_def β prod.add_def, | |
| multiset.prod_eq_one_iff β multiset.sum_eq_zero_iff, | |
| subsemigroup.map_supr β add_subsemigroup.map_supr, | |
| div_inv_one_monoid.inv β sub_neg_zero_monoid.neg, | |
| order_of_pow_dvd β add_order_of_smul_dvd, | |
| isometry_equiv.mul_left_to_equiv β isometry_equiv.add_left_to_equiv, | |
| is_group_hom.trivial_ker_of_injective β is_add_group_hom.trivial_ker_of_injective, | |
| finset.inv_smul_mem_iff β finset.neg_vadd_mem_iff, | |
| mul_opposite.division_comm_monoid β add_opposite.subtraction_comm_monoid, | |
| free_monoid.cases_on β free_add_monoid.cases_on, | |
| order_monoid_hom.has_coe_to_fun β order_add_monoid_hom.has_coe_to_fun, | |
| nonarchimedean_group.prod_self_subset β nonarchimedean_add_group.prod_self_subset, | |
| monoid_hom.has_div β add_monoid_hom.has_sub, | |
| finset.mul_def β finset.add_def, | |
| subgroup.relindex_subgroup_of β add_subgroup.relindex_add_subgroup_of, | |
| submonoid.mem_comap β add_submonoid.mem_comap, | |
| prod.division_comm_monoid β prod.subtraction_comm_monoid, | |
| tendsto_multiset_prod β tendsto_multiset_sum, | |
| one_hom.one_apply β zero_hom.zero_apply, | |
| units.preorder β add_units.preorder, | |
| measure_theory.measure.regular_of_is_mul_left_invariant β measure_theory.measure.regular_of_is_add_left_invariant, | |
| is_scalar_tower β vadd_assoc_class, | |
| submonoid.closure_induction' β add_submonoid.closure_induction', | |
| tendsto_norm' β tendsto_norm, | |
| localization.mul_equiv_of_quotient_monoid_of β add_localization.add_equiv_of_quotient_add_monoid_of, | |
| mul_hom.prod_apply β add_hom.prod_apply, | |
| submonoid.localization_map.mul_equiv_of_localizations_symm_apply β add_submonoid.localization_map.add_equiv_of_localizations_symm_apply, | |
| subgroup.mem_normalizer_iff'' β add_subgroup.mem_normalizer_iff'', | |
| monoid_hom.to_mul_hom β add_monoid_hom.to_add_hom, | |
| div_inv_one_monoid.to_inv_one_class β sub_neg_zero_monoid.to_neg_zero_class, | |
| set.multiset_prod_mem_multiset_prod β set.multiset_sum_mem_multiset_sum, | |
| monoid_hom.map_finsupp_prod β add_monoid_hom.map_finsupp_sum, | |
| finsupp.prod_filter_index β finsupp.sum_filter_index, | |
| eq_one_of_one_le_mul_left β eq_zero_of_add_nonneg_left, | |
| unique_of_surjective_one β unique_of_surjective_zero, | |
| monoid_hom.prod_map_comap_prod β add_monoid_hom.sum_map_comap_sum, | |
| mul_le_iff_le_one_right' β add_le_iff_nonpos_right, | |
| smul_comm_class_self β vadd_comm_class_self, | |
| norm_to_nnreal' β norm_to_nnreal, | |
| has_measurable_smulβ β has_measurable_vaddβ, | |
| finset.le_prod_nonempty_of_submultiplicative_on_pred β finset.le_sum_nonempty_of_subadditive_on_pred, | |
| is_unit.div_self β is_add_unit.sub_self, | |
| subgroup.eq_one_of_noncomm_prod_eq_one_of_independent β add_subgroup.eq_zero_of_noncomm_sum_eq_zero_of_independent, | |
| div_mem_comm_iff β sub_mem_comm_iff, | |
| CommGroup.forget_CommGroup_preserves_mono β AddCommGroup.forget_CommGroup_preserves_mono, | |
| Semigroup.large_category β AddSemigroup.large_category, | |
| is_unit.mul_coe_inv β is_add_unit.add_coe_neg, | |
| is_closed_map_inv β is_closed_map_neg, | |
| subgroup.coe_eq_univ β add_subgroup.coe_eq_univ, | |
| continuous_of_continuous_at_one β continuous_of_continuous_at_zero, | |
| pow_succ β succ_nsmul, | |
| monoid.fg_range β add_monoid.fg_range, | |
| finset.div_singleton β finset.sub_singleton, | |
| prod.canonically_ordered_monoid β prod.canonically_ordered_add_monoid, | |
| mem_powers_iff_mem_range_order_of β mem_multiples_iff_mem_range_add_order_of, | |
| finset.prod_induction β finset.sum_induction, | |
| submonoid_class.to_mul_one_class β add_submonoid_class.to_add_zero_class, | |
| is_unit.div_mul_right β is_add_unit.sub_add_right, | |
| isometry_equiv.inv β isometry_equiv.neg, | |
| pi.eval_monoid_hom_apply β pi.eval_add_monoid_hom_apply, | |
| has_compact_mul_support.comp_closed_embedding β has_compact_support.comp_closed_embedding, | |
| freiman_hom β add_freiman_hom, | |
| continuous_on.zpow β continuous_on.zsmul, | |
| mul_aut β add_aut, | |
| list.prod_to_finset β list.sum_to_finset, | |
| ulift.div_down β ulift.sub_down, | |
| right.inv_le_self β right.neg_le_self, | |
| finset.noncomm_prod_commute β finset.noncomm_sum_add_commute, | |
| locally_constant.has_mul β locally_constant.has_add, | |
| list.prod_map_erase β list.sum_map_erase, | |
| mul_opposite.div_inv_monoid β add_opposite.sub_neg_monoid, | |
| subgroup.mul_mem' β add_subgroup.add_mem', | |
| mul_right_injective β add_right_injective, | |
| zpow_mono_right β zsmul_mono_left, | |
| units.continuous_embed_product β add_units.continuous_embed_product, | |
| mul_equiv_class.map_mul β add_equiv_class.map_add, | |
| finset.prod_Ico_succ_top β finset.sum_Ico_succ_top, | |
| linear_ordered_cancel_comm_monoid β linear_ordered_cancel_add_comm_monoid, | |
| mul_monoid_hom β add_add_monoid_hom, | |
| mul_opposite.topological_group β add_opposite.topological_add_group, | |
| measure_theory.null_iff_of_is_mul_left_invariant β measure_theory.null_iff_of_is_add_left_invariant, | |
| left_inverse_div_mul_left β left_inverse_sub_add_left, | |
| map_div_rev β map_sub_rev, | |
| mul_salem_spencer.le_mul_roth_number β add_salem_spencer.le_add_roth_number, | |
| set.mul_empty β set.add_empty, | |
| pow_mul_comm' β nsmul_add_comm', | |
| measure_theory.is_fundamental_domain.lintegral_eq_tsum_of_ac β measure_theory.is_add_fundamental_domain.lintegral_eq_tsum_of_ac, | |
| mul_action.mem_stabilizer_iff β add_action.mem_stabilizer_iff, | |
| list.prod_inv β list.sum_neg, | |
| subgroup_class.to_group β add_subgroup_class.to_add_group, | |
| units.mul_inv_eq_one β add_units.add_neg_eq_zero, | |
| canonically_ordered_monoid β canonically_ordered_add_monoid, | |
| finset.prod_eq_one_iff_of_le_one' β finset.sum_eq_zero_iff_of_nonneg, | |
| lattice_ordered_comm_group.pos_of_le_one β lattice_ordered_comm_group.pos_of_nonpos, | |
| submonoid.centralizer_to_subsemigroup β add_submonoid.centralizer_to_add_subsemigroup, | |
| contravariant.mul_le_cancellable β contravariant.add_le_cancellable, | |
| quotient_group.nhds_eq β quotient_add_group.nhds_eq, | |
| has_smul β has_vadd, | |
| div_ball β sub_ball, | |
| monoid_hom.mk' β add_monoid_hom.mk', | |
| finset.smul_finset_union β finset.vadd_finset_union, | |
| finset.mul_empty β finset.add_empty, | |
| empty β empty, | |
| order_dual.semigroup β order_dual.add_semigroup, | |
| zpow_eq_mod_order_of β zsmul_eq_mod_add_order_of, | |
| semiconj_by.pow_right β add_semiconj_by.nsmul_right, | |
| finprod_eq_prod β finsum_eq_sum, | |
| mul_action.card_eq_sum_card_group_div_card_stabilizer β add_action.card_eq_sum_card_add_group_sub_card_stabilizer, | |
| subsemigroup.comap_map_comap β add_subsemigroup.comap_map_comap, | |
| mul_action.surjective β add_action.surjective, | |
| mul_hom.fst_comp_prod β add_hom.fst_comp_prod, | |
| subgroup.quotient_equiv_prod_of_le β add_subgroup.quotient_equiv_sum_of_le, | |
| topological_group.t2_space_of_one_sep β topological_add_group.t2_space_of_zero_sep, | |
| subgroup.quotient_subgroup_of_embedding_of_le β add_subgroup.quotient_add_subgroup_of_embedding_of_le, | |
| isometry_equiv.inv_to_equiv β isometry_equiv.neg_to_equiv, | |
| Group.forgetβ.creates_limit β AddGroup.forgetβ.creates_limit, | |
| measure_theory.is_fundamental_domain.measure_le_of_pairwise_disjoint β measure_theory.is_add_fundamental_domain.measure_le_of_pairwise_disjoint, | |
| monoid_hom.comp_left β add_monoid_hom.comp_left, | |
| subgroup.is_complement_top_left β add_subgroup.is_complement_top_left, | |
| monoid_hom.lift_of_right_inverse_comp β add_monoid_hom.lift_of_right_inverse_comp, | |
| measure_theory.ae_eq_fun.inv_mk β measure_theory.ae_eq_fun.neg_mk, | |
| multiset.prod_le_prod_of_rel_le β multiset.sum_le_sum_of_rel_le, | |
| quotient_group.has_measurable_smul β quotient_add_group.has_measurable_vadd, | |
| finset.prod_ite_eq' β finset.sum_ite_eq', | |
| submonoid.map_infi_comap_of_surjective β add_submonoid.map_infi_comap_of_surjective, | |
| pow_inj_mod β nsmul_inj_mod, | |
| filter.coe_pure_monoid_hom β filter.coe_pure_add_monoid_hom, | |
| one_lt_of_lt_mul_left β pos_of_lt_add_left, | |
| commute.left_comm β add_commute.left_comm, | |
| right_cancel_monoid.npow_succ' β add_right_cancel_monoid.nsmul_succ', | |
| group_seminorm.group_seminorm_class β add_group_seminorm.add_group_seminorm_class, | |
| function.mul_support_mul β function.support_add, | |
| set.one_mem_one β set.zero_mem_zero, | |
| is_compact.div_closed_ball β is_compact.sub_closed_ball, | |
| subgroup.map_bot β add_subgroup.map_bot, | |
| monoid_hom.map_divβ β add_monoid_hom.map_divβ, | |
| submonoid.inhabited β add_submonoid.inhabited, | |
| finset.mul_prod_erase β finset.add_sum_erase, | |
| Magma.bundled_hom β AddMagma.bundled_hom, | |
| ae_measurable.div β ae_measurable.sub, | |
| group_topology.complete_lattice β add_group_topology.complete_lattice, | |
| ite_one_mul β ite_zero_add, | |
| continuous_mul_left β continuous_add_left, | |
| submonoid.center_to_subsemigroup β add_submonoid.center_to_add_subsemigroup, | |
| mul_hom.map_mul' β add_hom.map_add', | |
| finset.prod_map β finset.sum_map, | |
| order_of_dvd_nat_card β add_order_of_dvd_nat_card, | |
| finset.prod_lt_one' β finset.sum_neg', | |
| con.Inf_to_setoid β add_con.Inf_to_setoid, | |
| Semigroup.of_hom β AddSemigroup.of_hom, | |
| order_dual.linear_ordered_comm_monoid β order_dual.linear_ordered_add_comm_monoid, | |
| pi.smul_comm_class'' β pi.vadd_comm_class'', | |
| subgroup.mem_comap β add_subgroup.mem_comap, | |
| mul_roth_number β add_roth_number, | |
| group_seminorm.comp_zero β add_group_seminorm.comp_zero, | |
| filter.mul_one_class β filter.add_zero_class, | |
| prod.has_inv β prod.has_neg, | |
| measurable.div' β measurable.sub', | |
| has_continuous_mul.to_has_continuous_smul_op β has_continuous_add.to_has_continuous_vadd_op, | |
| nonempty_interval.snd_one β nonempty_interval.snd_zero, | |
| submonoid.coe_multiset_prod β add_submonoid.coe_multiset_sum, | |
| map_eq_one_iff β map_eq_zero_iff, | |
| punit.is_central_scalar β punit.is_central_vadd, | |
| function.mul_support_infi β function.support_infi, | |
| subset_interior_mul_right β subset_interior_add_right, | |
| semigroup β add_semigroup, | |
| group_seminorm.smul_sup β add_group_seminorm.smul_sup, | |
| seminormed_group.induced β seminormed_add_group.induced, | |
| canonically_ordered_monoid.npow_zero' β canonically_ordered_add_monoid.nsmul_zero', | |
| pi.right_cancel_monoid β pi.add_right_cancel_monoid, | |
| finset.prod_mem_multiset β finset.sum_mem_multiset, | |
| cont_mdiff_one β cont_mdiff_zero, | |
| finset.prod_mono_set' β finset.sum_mono_set, | |
| cSup_mul β cSup_add, | |
| CommMon.filtered_colimits.colimit_comm_monoid β AddCommMon.filtered_colimits.colimit_add_comm_monoid, | |
| strict_anti_on.const_mul' β strict_anti_on.const_add, | |
| mul_equiv.map_inv β add_equiv.map_neg, | |
| order_dual.has_continuous_const_smul β order_dual.has_continuous_const_vadd, | |
| units.decidable_eq β add_units.decidable_eq, | |
| ulift.has_inv β ulift.has_neg, | |
| finset.nonempty.of_smul_left β finset.nonempty.of_vadd_left, | |
| ae_measurable.mul β ae_measurable.add, | |
| monoid_hom.map_mul_indicator β add_monoid_hom.map_indicator, | |
| subsemigroup.not_mem_bot β add_subsemigroup.not_mem_bot, | |
| subgroup.top_characteristic β add_subgroup.top_characteristic, | |
| left.one_lt_mul' β left.add_pos', | |
| Semigroup.of β AddSemigroup.of, | |
| set.mul_antidiagonal.eq_of_fst_eq_fst β set.add_antidiagonal.eq_of_fst_eq_fst, | |
| antitone_on.const_mul' β antitone_on.const_add, | |
| mul_opposite.op_homeomorph β add_opposite.op_homeomorph, | |
| lattice_ordered_comm_group.neg_le_one_iff β lattice_ordered_comm_group.neg_nonpos_iff, | |
| topological_group.of_comm_of_nhds_one β topological_add_group.of_comm_of_nhds_zero, | |
| seminormed_comm_group.mem_closure_iff β seminormed_add_comm_group.mem_closure_iff, | |
| mul_left_embedding_apply β add_left_embedding_apply, | |
| is_unit.smul_left_cancel β is_add_unit.vadd_left_cancel, | |
| mul_mem_ball_mul_iff β add_mem_ball_add_iff, | |
| list.prod_of_fn β list.sum_of_fn, | |
| continuous_monoid_hom.inv β continuous_add_monoid_hom.neg, | |
| is_subgroup_Union_of_directed β is_add_subgroup_Union_of_directed, | |
| pi.nnnorm_def' β pi.nnnorm_def, | |
| list.monotone_prod_take β list.monotone_sum_take, | |
| subgroup_class.has_zpow β add_subgroup_class.has_zsmul, | |
| semigroup_pempty β add_semigroup_pempty, | |
| subsemigroup.mem_inf β add_subsemigroup.mem_inf, | |
| subgroup β add_subgroup, | |
| left_coset_equivalence_rel β left_add_coset_equivalence_rel, | |
| function.mul_support_disjoint_iff β function.support_disjoint_iff, | |
| uniform_space.completion.smul_def β uniform_space.completion.vadd_def, | |
| function.surjective.comm_monoid β function.surjective.add_comm_monoid, | |
| subsemigroup.srange_fst β add_subsemigroup.srange_fst, | |
| monoid.one_mul β add_monoid.zero_add, | |
| set.mem_smul β set.mem_vadd, | |
| order_of_pos β add_order_of_pos, | |
| commute.inv_inv_iff β add_commute.neg_neg_iff, | |
| submonoid.monotone_map β add_submonoid.monotone_map, | |
| monoid_hom.mrange_top_iff_surjective β add_monoid_hom.mrange_top_iff_surjective, | |
| subsemigroup.coe_copy β add_subsemigroup.coe_copy, | |
| is_subgroup.mem_norm_comm β is_add_subgroup.mem_norm_comm, | |
| submonoid.map_comap_eq_of_surjective β add_submonoid.map_comap_eq_of_surjective, | |
| nat.prod_divisors_prime_pow β nat.sum_divisors_prime_pow, | |
| is_central_scalar β is_central_vadd, | |
| continuous_at.div' β continuous_at.sub, | |
| function.mul_support_one β function.support_zero, | |
| prod.mk_div_mk β prod.mk_sub_mk, | |
| is_right_regular_of_mul_eq_one β is_add_right_regular_of_add_eq_zero, | |
| submonoid.localization_map.lift_comp β add_submonoid.localization_map.lift_comp, | |
| set.bUnion_op_smul_set β set.bUnion_op_vadd_set, | |
| finset.noncomm_prod_to_finset β finset.noncomm_sum_to_finset, | |
| comm_monoid.primary_component.exists_order_of_eq_prime_pow β add_comm_monoid.primary_component.exists_order_of_eq_prime_nsmul, | |
| division_comm_monoid.mul_assoc β subtraction_comm_monoid.add_assoc, | |
| one_le_div' β sub_nonneg, | |
| measure_theory.is_fundamental_domain.measure_zero_of_invariant β measure_theory.is_add_fundamental_domain.measure_zero_of_invariant, | |
| finset.pow_card_le_prod β finset.card_nsmul_le_sum, | |
| with_top.one_lt_coe β with_top.coe_pos, | |
| units.mul_right_inj β add_units.add_right_inj, | |
| orbit_subgroup_one_eq_self β orbit_add_subgroup_zero_eq_self, | |
| group.image_closure β add_group.image_closure, | |
| continuous.const_smul β continuous.const_vadd, | |
| pi.pow_def β pi.smul_def, | |
| function.surjective.comm_semigroup β function.surjective.add_comm_semigroup, | |
| CommGroup.inhabited β AddCommGroup.inhabited, | |
| set.has_npow β set.has_nsmul, | |
| mul_action.mem_fixed_points_iff_card_orbit_eq_one β add_action.mem_fixed_points_iff_card_orbit_eq_zero, | |
| set.is_unit_singleton β set.is_add_unit_singleton, | |
| mul_equiv.op_apply_apply β add_equiv.op_apply_apply, | |
| smooth_at_one β smooth_at_zero, | |
| inv_smul_eq_iff β neg_vadd_eq_iff, | |
| linear_ordered_cancel_comm_monoid.mul β linear_ordered_cancel_add_comm_monoid.add, | |
| subgroup.bot_characteristic β add_subgroup.bot_characteristic, | |
| dfinsupp.prod_mul β dfinsupp.sum_add, | |
| subgroup.mul_mem_cancel_right β add_subgroup.add_mem_cancel_right, | |
| subsemigroup.decidable_mem_center β add_subsemigroup.decidable_mem_center, | |
| pi.const_mul β pi.const_add, | |
| is_simple_group.is_cyclic β is_simple_add_group.is_add_cyclic, | |
| zero_lt_one_add_norm_sq' β zero_lt_one_add_norm_sq, | |
| has_compact_mul_support β has_compact_support, | |
| finset.is_scalar_tower'' β finset.vadd_assoc_class'', | |
| continuous_monoid_hom.continuous_comp β continuous_add_monoid_hom.continuous_comp, | |
| mul_left_cancel'' β add_left_cancel'', | |
| filter.coe_pure_one_hom β filter.coe_pure_zero_hom, | |
| mul_opposite.continuous_op β add_opposite.continuous_op, | |
| is_square.inv β even.neg, | |
| CommMon.filtered_colimits.forget_preserves_filtered_colimits β AddCommMon.filtered_colimits.forget_preserves_filtered_colimits, | |
| mul_opposite.division_monoid β add_opposite.subtraction_monoid, | |
| prod.fst_one β prod.fst_zero, | |
| monoid_hom.closure_preimage_le β add_monoid_hom.closure_preimage_le, | |
| subgroup.map_inf_le β add_subgroup.map_inf_le, | |
| seminormed_group.uniform_cauchy_seq_on_filter_iff_tendsto_uniformly_on_filter_one β seminormed_add_group.uniform_cauchy_seq_on_filter_iff_tendsto_uniformly_on_filter_zero, | |
| continuous_map.coe_prod β continuous_map.coe_sum, | |
| le_mul_inv_iff_le β le_add_neg_iff_le, | |
| mul_equiv.bijective β add_equiv.bijective, | |
| submonoid.map_sup_comap_of_surjective β add_submonoid.map_sup_comap_of_surjective, | |
| commute.order_of_mul_dvd_lcm β add_commute.order_of_add_dvd_lcm, | |
| list.eq_of_prod_take_eq β list.eq_of_sum_take_eq, | |
| submonoid.localization_map.mk'_sec β add_submonoid.localization_map.mk'_sec, | |
| mul_lt_mul_of_lt_of_le β add_lt_add_of_lt_of_le, | |
| free_group.red.step.cons_bnot β free_add_group.red.step.cons_bnot, | |
| set.list_prod_mem_list_prod β set.list_sum_mem_list_sum, | |
| division_comm_monoid.zpow_zero' β subtraction_comm_monoid.zsmul_zero', | |
| strict_mono_on.mul_monotone' β strict_mono_on.add_monotone, | |
| order_monoid_hom.one_comp β order_add_monoid_hom.zero_comp, | |
| ae_measurable.inv β ae_measurable.neg, | |
| equiv.div_right_symm_apply β equiv.sub_right_symm_apply, | |
| Group.filtered_colimits.colimit_inv_mk_eq β AddGroup.filtered_colimits.colimit_neg_mk_eq, | |
| separable_locally_compact_group.sigma_compact_space β separable_locally_compact_add_group.sigma_compact_space, | |
| closed_ball_one_div_singleton β closed_ball_zero_sub_singleton, | |
| free_monoid.prod_aux β free_add_monoid.sum_aux, | |
| set.is_wf.min_mul β set.is_wf.min_add, | |
| submonoid.prod_mem β add_submonoid.sum_mem, | |
| monoid_hom.id_comp β add_monoid_hom.id_comp, | |
| subgroup.index_eq_two_iff β add_subgroup.index_eq_two_iff, | |
| measure_theory.measure.haar.chaar_self β measure_theory.measure.haar.add_chaar_self, | |
| finset.mul_subset_mul_right β finset.add_subset_add_right, | |
| smul_inv_smul β vadd_neg_vadd, | |
| finset.smul_finset_nonempty β finset.vadd_finset_nonempty, | |
| nonempty_interval.fst_div β nonempty_interval.fst_sub, | |
| monoid_hom.map_exists_left_inv β add_monoid_hom.map_exists_left_neg, | |
| finset.exists_lt_of_prod_lt' β finset.exists_lt_of_sum_lt, | |
| equiv.inv_symm β equiv.neg_symm, | |
| commute.order_of_mul_eq_right_of_forall_prime_mul_dvd β add_commute.add_order_of_add_eq_right_of_forall_prime_mul_dvd, | |
| finset.prod_val β finset.sum_val, | |
| subsemigroup.has_Inf β add_subsemigroup.has_Inf, | |
| subsemigroup.map_surjective_of_surjective β add_subsemigroup.map_surjective_of_surjective, | |
| measure_theory.ae_eq_fun.mul_to_germ β measure_theory.ae_eq_fun.add_to_germ, | |
| finset.pow_mem_pow β finset.nsmul_mem_nsmul, | |
| pi.const_div β pi.const_sub, | |
| subgroup.map_comap_le β add_subgroup.map_comap_le, | |
| equiv.mul_left_mul β equiv.add_left_add, | |
| quotient_group.quotient_ker_equiv_of_surjective β quotient_add_group.quotient_ker_equiv_of_surjective, | |
| fin_equiv_zpowers_symm_apply β fin_equiv_zmultiples_symm_apply, | |
| is_lower_set.smul_subset β is_lower_set.vadd_subset, | |
| finprod_def β finsum_def, | |
| bdd_above.inv β bdd_above.neg, | |
| mul_hom.subsemigroup_map_apply_coe β add_hom.subsemigroup_map_apply_coe, | |
| pi.eval_monoid_hom β pi.eval_add_monoid_hom, | |
| list.alternating_prod_eq_finset_prod β list.alternating_sum_eq_finset_sum, | |
| lt_mul_of_le_of_one_lt β lt_add_of_le_of_pos, | |
| filter.is_scalar_tower'' β filter.vadd_assoc_class'', | |
| is_open.smul β is_open.vadd, | |
| nonarchimedean_group β nonarchimedean_add_group, | |
| set.list_prod_subset_list_prod β set.list_sum_subset_list_sum, | |
| submonoid.closure_univ β add_submonoid.closure_univ, | |
| is_unit.mul_eq_one_iff_inv_eq β is_add_unit.add_eq_zero_iff_neg_eq, | |
| free_magma.mul_seq β free_add_magma.add_seq, | |
| order_iso.mul_right β order_iso.add_right, | |
| one_hom.congr_fun β zero_hom.congr_fun, | |
| CommMon.forgetβ_Mon_preserves_limits β AddCommMon.forgetβ_Mon_preserves_limits, | |
| subgroup.map_le_iff_le_comap β add_subgroup.map_le_iff_le_comap, | |
| range_eq_image_mul_tsupport_or β range_eq_image_tsupport_or, | |
| filter.germ.comm_group β filter.germ.add_comm_group, | |
| continuous_at_inv β continuous_at_neg, | |
| finset.coe_singleton_one_hom β finset.coe_singleton_zero_hom, | |
| monoid_hom.map_range β add_monoid_hom.map_range, | |
| submonoid.comap_map_eq_of_injective β add_submonoid.comap_map_eq_of_injective, | |
| lattice_ordered_comm_group.inv_le_neg β lattice_ordered_comm_group.neg_le_neg, | |
| uniform_cauchy_seq_on.mul β uniform_cauchy_seq_on.add, | |
| interval.mul_eq_one_iff β interval.add_eq_zero_iff, | |
| mul_equiv_class.map_eq_one_iff β add_equiv_class.map_eq_zero_iff, | |
| subgroup.mem_Sup_of_directed_on β add_subgroup.mem_Sup_of_directed_on, | |
| unique_mul.iff_exists_unique β unique_add.iff_exists_unique, | |
| group.mul_assoc β add_group.add_assoc, | |
| submonoid.coe_list_prod β add_submonoid.coe_list_sum, | |
| is_open.mul_right β is_open.add_right, | |
| is_torsion_free.subgroup β is_torsion_free.add_subgroup, | |
| is_unit_pow_iff β is_add_unit_nsmul_iff, | |
| open_subgroup.mem_coe_subgroup β open_add_subgroup.mem_coe_add_subgroup, | |
| finset.nonempty_of_prod_ne_one β finset.nonempty_of_sum_ne_zero, | |
| con.lift_mk' β add_con.lift_mk', | |
| comm_group.primary_component_coe β add_comm_group.primary_component_coe, | |
| monoid_hom.coe_prod β add_monoid_hom.coe_prod, | |
| subgroup.subgroup_of_bot_eq_top β add_subgroup.add_subgroup_of_bot_eq_top, | |
| order_monoid_hom.comp_id β order_add_monoid_hom.comp_id, | |
| one_hom.id_comp β zero_hom.id_comp, | |
| filter.mem_mul β filter.mem_add, | |
| finset.prod_Ico_add β finset.sum_Ico_add, | |
| filter.germ.coe_one β filter.germ.coe_zero, | |
| measure_theory.ae_strongly_measurable_one β measure_theory.ae_strongly_measurable_zero, | |
| norm_one' β norm_zero, | |
| filter.pure_smul β filter.pure_vadd, | |
| group_topology.continuous_inv' β add_group_topology.continuous_neg', | |
| mul_equiv.coe_subgroup_map_apply β add_equiv.coe_add_subgroup_map_apply, | |
| smul_ite β vadd_ite, | |
| dfinsupp.prod_sum_index β dfinsupp.sum_sum_index, | |
| div_le_div_iff' β sub_le_sub_iff, | |
| pi.left_cancel_semigroup β pi.add_left_cancel_semigroup, | |
| prod.is_central_scalar β prod.is_central_vadd, | |
| monoid_hom.coe_fn_apply β add_monoid_hom.coe_fn_apply, | |
| left_cancel_semigroup β add_left_cancel_semigroup, | |
| quotient_group.mk'_surjective β quotient_add_group.mk'_surjective, | |
| lt_mul_of_one_lt_left' β lt_add_of_pos_left, | |
| is_of_fin_order.zpow β is_of_fin_add_order.zsmul, | |
| fin_equiv_zpowers β fin_equiv_zmultiples, | |
| category_theory.discrete.monoidal_functor_to_lax_monoidal_functor_to_functor_map β discrete.add_monoidal_functor_to_lax_monoidal_functor_to_functor_map, | |
| subsemigroup.has_bot β add_subsemigroup.has_bot, | |
| is_unit.inv_mul_cancel_left β is_add_unit.neg_add_cancel_left, | |
| is_unit.mul_div_cancel' β is_add_unit.add_sub_cancel', | |
| subgroup.saturated_iff_zpow β add_subgroup.saturated_iff_zsmul, | |
| free_group.norm_inv_eq β free_add_group.norm_neg_eq, | |
| finset.div_card_le β finset.sub_card_le, | |
| option.smul_none β option.vadd_none, | |
| prod.has_continuous_mul β prod.has_continuous_add, | |
| smul_closed_ball'' β vadd_closed_ball'', | |
| measure_theory.ae_measure_preimage_mul_right_lt_top β measure_theory.ae_measure_preimage_add_right_lt_top, | |
| mul_equiv.to_Magma_iso_hom β add_equiv.to_AddMagma_iso_hom, | |
| mul_ball β add_ball, | |
| pi.mul_single_inv β pi.single_neg, | |
| subsemigroup.comap_comap β add_subsemigroup.comap_comap, | |
| mul_hom.cod_restrict_apply_coe β add_hom.cod_restrict_apply_coe, | |
| lt_mul_of_one_lt_of_lt' β lt_add_of_pos_of_lt', | |
| function.injective.comm_monoid β function.injective.add_comm_monoid, | |
| mul_mem_closed_ball_mul_iff β add_mem_closed_ball_add_iff, | |
| cancel_monoid β add_cancel_monoid, | |
| monoid_hom.comp_mul β add_monoid_hom.comp_add, | |
| CommGroup.concrete_category β AddCommGroup.concrete_category, | |
| right.one_le_inv_iff β right.nonneg_neg_iff, | |
| subgroup.card_dvd_of_surjective β add_subgroup.card_dvd_of_surjective, | |
| finset.periodic_prod β finset.periodic_sum, | |
| mul_hom.coe_fn_apply β add_hom.coe_fn_apply, | |
| subgroup.characteristic_iff_comap_eq β add_subgroup.characteristic_iff_comap_eq, | |
| monoid.pow_eq_mod_exponent β add_monoid.nsmul_eq_mod_exponent, | |
| isometry_equiv.mul_left_symm β isometry_equiv.add_left_symm, | |
| mul_left_cancel_iff β add_left_cancel_iff, | |
| free_group.red.step.cons_cons_iff β free_add_group.red.step.cons_cons_iff, | |
| localization.lift_onβ β add_localization.lift_onβ, | |
| measure_theory.measure_preserving_prod_div_swap β measure_theory.measure_preserving_prod_sub_swap, | |
| norm_pow_le_mul_norm β norm_nsmul_le, | |
| finprod_mem_union_inter β finsum_mem_union_inter, | |
| ordered_comm_monoid.mul β ordered_add_comm_monoid.add, | |
| submonoid.localization_map.lift_spec β add_submonoid.localization_map.lift_spec, | |
| CommMon.has_coe_to_sort β AddCommMon.has_coe_to_sort, | |
| normed_group.of_mul_dist' β normed_add_group.of_add_dist', | |
| quotient_group.monoid_hom_ext β quotient_add_group.add_monoid_hom_ext, | |
| mul_hom.map_srange β add_hom.map_srange, | |
| normed_comm_group.uniformity_basis_dist β normed_add_comm_group.uniformity_basis_dist, | |
| free_magma.traverse_mul β free_add_magma.traverse_add, | |
| mul_hom.srange_top_iff_surjective β add_hom.srange_top_iff_surjective, | |
| prod.seminormed_group β prod.seminormed_add_group, | |
| le_mul_of_le_mul_left β le_add_of_le_add_left, | |
| mul_mem_class.mul_def β add_mem_class.add_def, | |
| multiset.noncomm_prod_empty β multiset.noncomm_sum_empty, | |
| equiv.div_left β equiv.sub_left, | |
| finset.smul_singleton β finset.vadd_singleton, | |
| lattice_ordered_comm_group.pos_eq_self_of_one_lt_pos β lattice_ordered_comm_group.pos_eq_self_of_pos_pos, | |
| monoid_hom.comm_monoid β add_monoid_hom.add_comm_monoid, | |
| pi.has_measurable_divβ β pi.has_measurable_subβ, | |
| Mon.filtered_colimits.M.mk_eq β AddMon.filtered_colimits.M.mk_eq, | |
| subgroup.relindex_self β add_subgroup.relindex_self, | |
| subgroup.opposite_equiv_apply_coe β add_subgroup.opposite_equiv_apply_coe, | |
| subgroup.map_is_commutative β add_subgroup.map_is_commutative, | |
| function.update_smul β function.update_vadd, | |
| set.mul_indicator_of_not_mem β set.indicator_of_not_mem, | |
| free_group.lift.aux β free_add_group.lift.aux, | |
| free_monoid.to_list_one β free_add_monoid.to_list_zero, | |
| submonoid.left_inv_left_inv_eq β add_submonoid.left_neg_left_neg_eq, | |
| subset_interior_mul β subset_interior_add, | |
| submonoid.localization_map.exists_of_sec_mk' β add_submonoid.localization_map.exists_of_sec_mk', | |
| monoid_hom.map_mclosure β add_monoid_hom.map_mclosure, | |
| ulift.has_mul β ulift.has_add, | |
| measure_theory.measure.haar.index_elim β measure_theory.measure.haar.add_index_elim, | |
| is_of_fin_order β is_of_fin_add_order, | |
| finprod_mem_insert_of_eq_one_if_not_mem β finsum_mem_insert_of_eq_zero_if_not_mem, | |
| with_one.monad β with_zero.monad, | |
| submonoid.localization_map.ext β add_submonoid.localization_map.ext, | |
| set.mul_indicator_union_mul_inter_apply β set.indicator_union_add_inter_apply, | |
| monoid_hom.unop β add_monoid_hom.unop, | |
| monoid_hom.coe_comp β add_monoid_hom.coe_comp, | |
| con.lift_surjective_of_surjective β add_con.lift_surjective_of_surjective, | |
| units.eq_mul_inv_iff_mul_eq β add_units.eq_add_neg_iff_add_eq, | |
| subgroup.closure_mono β add_subgroup.closure_mono, | |
| measure_theory.simple_func.mul_eq_mapβ β measure_theory.simple_func.add_eq_mapβ, | |
| is_square_iff_exists_sq β even_iff_exists_two_nsmul, | |
| group_seminorm.inv' β add_group_seminorm.neg', | |
| eq_one_div_of_mul_eq_one_left β eq_zero_sub_of_add_eq_zero_left, | |
| group_norm_class.to_group_seminorm_class β add_group_norm_class.to_add_group_seminorm_class, | |
| set.div_subset_div_right β set.sub_subset_sub_right, | |
| has_continuous_div β has_continuous_sub, | |
| finset.prod_subtype_map_embedding β finset.sum_subtype_map_embedding, | |
| mul_action.pow_smul_eq_iff_minimal_period_dvd β add_action.nsmul_vadd_eq_iff_minimal_period_dvd, | |
| pi.list_prod_apply β pi.list_sum_apply, | |
| monoid_hom.lift_of_right_inverse_aux β add_monoid_hom.lift_of_right_inverse_aux, | |
| freiman_hom.has_div β add_freiman_hom.has_sub, | |
| cancel_comm_monoid.mul_assoc β add_cancel_comm_monoid.add_assoc, | |
| set.preimage_mul_right_one β set.preimage_add_right_zero, | |
| tendsto_uniformly_on_filter.div β tendsto_uniformly_on_filter.sub, | |
| list.prod_nil β list.sum_nil, | |
| finset.prod_list_count_of_subset β finset.sum_list_count_of_subset, | |
| finsupp.prod_subtype_domain_index β finsupp.sum_subtype_domain_index, | |
| exists_disjoint_smul_of_is_compact β exists_disjoint_vadd_of_is_compact, | |
| measure_theory.simple_func.map_mul β measure_theory.simple_func.map_add, | |
| units.coe_le_coe β add_units.coe_le_coe, | |
| submonoid.closure_mono β add_submonoid.closure_mono, | |
| finset.div_subset_div β finset.sub_subset_sub, | |
| finprod_cond_ne β finsum_cond_ne, | |
| subgroup.coe_finset_prod β add_subgroup.coe_finset_sum, | |
| submonoid.powers_eq_closure β add_submonoid.multiples_eq_closure, | |
| measure_theory.measure.measure_inv β measure_theory.measure.measure_neg, | |
| free_semigroup.traversable β free_add_semigroup.traversable, | |
| con.ext_iff β add_con.ext_iff, | |
| le_of_forall_one_lt_lt_mul' β le_of_forall_pos_lt_add', | |
| subgroup.inf_subgroup_of_left β add_subgroup.inf_add_subgroup_of_left, | |
| mul_equiv.map_finprod_mem β add_equiv.map_finsum_mem, | |
| ulift.has_one β ulift.has_zero, | |
| mul_hom.coe_srange_restrict β add_hom.coe_srange_restrict, | |
| prod.has_faithful_smul_left β prod.has_faithful_vadd_left, | |
| mul_equiv.refl_apply β add_equiv.refl_apply, | |
| compact_open_separated_mul_left β compact_open_separated_add_left, | |
| filter.ne_bot.smul_filter β filter.ne_bot.vadd_filter, | |
| subgroup.copy_eq β add_subgroup.copy_eq, | |
| pow_sub_mul_pow β sub_nsmul_nsmul_add, | |
| monoid.exponent_eq_zero_iff_range_order_of_infinite β add_monoid.exponent_eq_zero_iff_range_order_of_infinite, | |
| mul_action.orbit_eq_univ β add_action.orbit_eq_univ, | |
| one_hom.with_top_map_apply β zero_hom.with_top_map_apply, | |
| subgroup.coe_norm β add_subgroup.coe_norm, | |
| submonoid.localization_map.mk'_mul_cancel_left β add_submonoid.localization_map.mk'_add_cancel_left, | |
| apply_abs_le_mul_of_one_le β apply_abs_le_add_of_nonneg, | |
| ae_measurable.smul_const β ae_measurable.vadd_const, | |
| submonoid.localization_map.mul_mk'_eq_mk'_of_mul β add_submonoid.localization_map.add_mk'_eq_mk'_of_add, | |
| is_right_regular_of_right_cancel_semigroup β is_add_right_regular_of_right_cancel_add_semigroup, | |
| measure_theory.simple_func.mul_apply β measure_theory.simple_func.add_apply, | |
| has_inv β has_neg, | |
| le_of_mul_le_of_one_le_right β le_of_add_le_of_nonneg_right, | |
| subgroup.coe_one β add_subgroup.coe_zero, | |
| is_group_hom.injective_iff_trivial_ker β is_add_group_hom.injective_iff_trivial_ker, | |
| function.update_one β function.update_zero, | |
| subgroup.index_eq_one β add_subgroup.index_eq_one, | |
| monoid.fg β add_monoid.fg, | |
| mul_le_cancellable_one β add_le_cancellable_zero, | |
| is_left_cancel_mul.mul_left_cancel β is_left_cancel_add.add_left_cancel, | |
| measure_theory.measure.haar_measure_apply β measure_theory.measure.add_haar_measure_apply, | |
| localization.mk_one_eq_monoid_of_mk β add_localization.mk_zero_eq_add_monoid_of_mk, | |
| one_left_coset β zero_left_add_coset, | |
| is_submonoid.pow_mem β is_add_submonoid.smul_mem, | |
| right.one_lt_mul' β right.add_pos', | |
| mul_left_inv β add_left_neg, | |
| subsemigroup.map_bot β add_subsemigroup.map_bot, | |
| finset.inv_nonempty_iff β finset.neg_nonempty_iff, | |
| has_measurable_mul.measurable_mul_const β has_measurable_add.measurable_add_const, | |
| nonempty_interval.snd_div β nonempty_interval.snd_sub, | |
| topological_group.tendsto_uniformly_on_iff β topological_add_group.tendsto_uniformly_on_iff, | |
| monoid_hom.mrange_restrict_surjective β add_monoid_hom.mrange_restrict_surjective, | |
| is_square_one β even_zero, | |
| mul_opposite.metric_space β add_opposite.metric_space, | |
| exists_compact_iff_has_compact_mul_support β exists_compact_iff_has_compact_support, | |
| submonoid_class.has_pow β add_submonoid_class.has_nsmul, | |
| finset.prod_div_distrib β finset.sum_sub_distrib, | |
| pi.smul_apply β pi.vadd_apply, | |
| is_unit.ae_measurable_const_smul_iff β is_add_unit.ae_measurable_const_vadd_iff, | |
| open_subgroup.coe_subgroup_le β open_add_subgroup.coe_add_subgroup_le, | |
| commute.units_of_coe β add_commute.add_units_of_coe, | |
| CommGroup.of β AddCommGroup.of, | |
| subgroup.mul_normal β add_subgroup.add_normal, | |
| le_div_iff_mul_le' β le_sub_iff_add_le', | |
| prod.has_exists_mul_of_le β prod.has_exists_add_of_le, | |
| ordered_cancel_comm_monoid.npow_zero' β ordered_cancel_add_comm_monoid.nsmul_zero', | |
| finset.division_comm_monoid β finset.subtraction_comm_monoid, | |
| finset.noncomm_prod_insert_of_not_mem β finset.noncomm_sum_insert_of_not_mem, | |
| subgroup.map_comap_eq_self β add_subgroup.map_comap_eq_self, | |
| CommGroup.filtered_colimits.forget_preserves_filtered_colimits β AddCommGroup.filtered_colimits.forget_preserves_filtered_colimits, | |
| list.prod_join β list.sum_join, | |
| set.image_smul_prod β set.add_image_prod, | |
| continuous_monoid_hom.inl_to_monoid_hom β continuous_add_monoid_hom.inl_to_add_monoid_hom, | |
| function.extend_by_one.hom β function.extend_by_zero.hom, | |
| monoid_hom.coe_mk β add_monoid_hom.coe_mk, | |
| finset.prod_comm' β finset.sum_comm', | |
| fin.prod_univ_six β fin.sum_univ_six, | |
| one_lt_of_lt_mul_right β pos_of_lt_add_right, | |
| lower_set.has_one β lower_set.has_zero, | |
| cont_mdiff_finset_prod' β cont_mdiff_finset_sum', | |
| subgroup.exists_mem_zpowers β add_subgroup.exists_mem_zmultiples, | |
| con.quotient β add_con.quotient, | |
| continuous_at_zpow β continuous_at_zsmul, | |
| prod.pow_snd β prod.smul_snd, | |
| finset.prod_inv_distrib β finset.sum_neg_distrib, | |
| pi.has_involutive_inv β pi.has_involutive_neg, | |
| multiset.periodic_prod β multiset.periodic_sum, | |
| mul_support_comp_inv_smulβ β support_comp_inv_smulβ, | |
| group_seminorm.sup_apply β add_group_seminorm.sup_apply, | |
| is_unit_mul_self_iff β is_add_unit_add_self_iff, | |
| cInf_inv β cInf_neg, | |
| subgroup.eq_top_iff' β add_subgroup.eq_top_iff', | |
| submonoid.localization_map.map_spec β add_submonoid.localization_map.map_spec, | |
| subgroup.normal.subgroup_of β add_subgroup.normal.add_subgroup_of, | |
| submonoid.has_inv β add_submonoid.has_neg, | |
| filter.germ.coe_mul β filter.germ.coe_add, | |
| subgroup.mem_pi β add_subgroup.mem_pi, | |
| upper_set.coe_one β upper_set.coe_zero, | |
| subgroup.finite_index_of_finite_quotient β add_subgroup.finite_index_of_finite_quotient, | |
| left_inv_eq_right_inv β left_neg_eq_right_neg, | |
| subgroup.relindex_top_left β add_subgroup.relindex_top_left, | |
| monoid_hom.submonoid_map_apply_coe β add_monoid_hom.add_submonoid_map_apply_coe, | |
| is_submonoid.finset_prod_mem β is_add_submonoid.finset_sum_mem, | |
| localization.away.mk_eq_monoid_of_mk' β add_localization.away.mk_eq_add_monoid_of_mk', | |
| monoid_hom.submonoid_map_surjective β add_monoid_hom.add_submonoid_map_surjective, | |
| is_group_hom.inv_ker_one β is_add_group_hom.neg_ker_zero, | |
| div_lt_div_iff_right β sub_lt_sub_iff_right, | |
| magma.assoc_quotient.lift_comp_of' β add_magma.free_add_semigroup.lift_comp_of', | |
| Mon.filtered_colimits.colimit_has_one β AddMon.filtered_colimits.colimit_has_zero, | |
| subgroup.has_top β add_subgroup.has_top, | |
| homeomorph.mul_left_symm β homeomorph.add_left_symm, | |
| order_of_eq_card_of_forall_mem_zpowers β add_order_of_eq_card_of_forall_mem_zmultiples, | |
| equiv.perm.prod_comp β equiv.perm.sum_comp, | |
| continuous_map.smul_comp β continuous_map.vadd_comp, | |
| set.mem_mul_antidiagonal β set.mem_add_antidiagonal, | |
| pi.smul_def β pi.vadd_def, | |
| monoid_hom.map_inv β add_monoid_hom.map_neg, | |
| free_group.pure_bind β free_add_group.pure_bind, | |
| finset.noncomm_prod_empty β finset.noncomm_sum_empty, | |
| mul_mul_hom β add_add_hom, | |
| right_cancel_semigroup.mul_right_cancel β add_right_cancel_semigroup.add_right_cancel, | |
| continuous_map.has_div β continuous_map.has_sub, | |
| with_top.one_eq_coe β with_top.zero_eq_coe, | |
| free_monoid.decidable_eq β free_add_monoid.decidable_eq, | |
| smooth_finset_prod' β smooth_finset_sum', | |
| lt_mul_of_one_lt_right' β lt_add_of_pos_right, | |
| CommGroup.filtered_colimits.colimit β AddCommGroup.filtered_colimits.colimit, | |
| uniform_group.uniformity_countably_generated β uniform_add_group.uniformity_countably_generated, | |
| open_subgroup β open_add_subgroup, | |
| submonoid.comap_sup_map_of_injective β add_submonoid.comap_sup_map_of_injective, | |
| subgroup.subtype_injective β add_subgroup.subtype_injective, | |
| submonoid.localization_map.map_comp β add_submonoid.localization_map.map_comp, | |
| mul_opposite.right_cancel_monoid β add_opposite.right_cancel_add_monoid, | |
| mul_inv_le_iff_le_mul' β add_neg_le_iff_le_add', | |
| discrete_topology_iff_open_singleton_one β discrete_topology_iff_open_singleton_zero, | |
| is_closed_set_of_map_inv β is_closed_set_of_map_neg, | |
| is_open.mul_left β is_open.add_left, | |
| set.union_mul β set.union_add, | |
| is_submonoid.multiset_prod_mem β is_add_submonoid.multiset_sum_mem, | |
| finset.strongly_measurable_prod' β finset.strongly_measurable_sum', | |
| subgroup_class.inclusion_self β add_subgroup_class.inclusion_self, | |
| units.coe_lift_right β add_units.coe_lift_right, | |
| seminormed_comm_group.to_seminormed_group β seminormed_add_comm_group.to_seminormed_add_group, | |
| pi.has_measurable_mulβ β pi.has_measurable_addβ, | |
| finset.prod_fiberwise_le_prod_of_one_le_prod_fiber' β finset.sum_fiberwise_le_sum_of_sum_fiber_nonneg, | |
| is_group_hom.preimage_normal β is_add_group_hom.preimage_normal, | |
| upper_closure_smul β upper_closure_vadd, | |
| prod.right_cancel_monoid β prod.right_cancel_add_monoid, | |
| lt_inv_of_lt_inv β lt_neg_of_lt_neg, | |
| free_group.reduce.eq_of_red β free_add_group.reduce.eq_of_red, | |
| has_continuous_smul_Inf β has_continuous_vadd_Inf, | |
| homeomorph.coe_mul_right β homeomorph.coe_add_right, | |
| group.subset_closure β add_group.subset_closure, | |
| subsemigroup.center.comm_semigroup β add_subsemigroup.center.add_comm_semigroup, | |
| ball_eq' β ball_eq, | |
| finset.measurable_prod β finset.measurable_sum, | |
| ordered_comm_group.one_mul β ordered_add_comm_group.zero_add, | |
| list.exists_lt_of_prod_lt' β list.exists_lt_of_sum_lt, | |
| smooth_mul_left β smooth_add_left, | |
| subgroup_class.coe_zpow β add_subgroup_class.coe_zsmul, | |
| lex.comm_group β lex.add_comm_group, | |
| has_compact_mul_support_comp_left β has_compact_support_comp_left, | |
| measure_theory.measure.haar.prehaar β measure_theory.measure.haar.add_prehaar, | |
| submonoid.coe_finset_prod β add_submonoid.coe_finset_sum, | |
| finset.prod_sigma' β finset.sum_sigma', | |
| submonoid.coe_inf β add_submonoid.coe_inf, | |
| pi.mul_hom_injective β pi.add_hom_injective, | |
| div_le_iff_le_mul β sub_le_iff_le_add, | |
| Sup_inv β Sup_neg, | |
| has_lipschitz_mul.has_continuous_mul β has_lipschitz_add.has_continuous_add, | |
| mul_action.quotient β add_action.quotient, | |
| equiv.mul_equiv_symm_apply β equiv.add_equiv_symm_apply, | |
| is_group_hom.image_subgroup β is_add_group_hom.image_add_subgroup, | |
| lie_group β lie_add_group, | |
| right_cancel_semigroup β add_right_cancel_semigroup, | |
| normed_group β normed_add_group, | |
| submonoid.has_one β add_submonoid.has_zero, | |
| left.one_lt_mul_of_le_of_lt β left.add_pos_of_nonneg_of_pos, | |
| monoid_hom.to_hom_units β add_monoid_hom.to_hom_add_units, | |
| eq_of_one_div_eq_one_div β eq_of_zero_sub_eq_zero_sub, | |
| filter.smul_filter_bot β filter.vadd_filter_bot, | |
| set.has_zpow β set.has_zsmul, | |
| lattice_ordered_comm_group.pos_eq_one_iff β lattice_ordered_comm_group.pos_eq_zero_iff, | |
| multiset.noncomm_prod_add β multiset.noncomm_sum_add, | |
| order_monoid_hom.to_order_hom_eq_coe β order_add_monoid_hom.to_order_hom_eq_coe, | |
| fintype.prod_unique β fintype.sum_unique, | |
| lower_set.has_mul β lower_set.has_add, | |
| inv_mul_lt_iff_lt_mul β neg_add_lt_iff_lt_add, | |
| CommGroup.limit_cone_is_limit β AddCommGroup.limit_cone_is_limit, | |
| mul_opposite.has_continuous_inv β add_opposite.has_continuous_neg, | |
| is_cyclic.exponent_eq_card β is_add_cyclic.exponent_eq_card, | |
| filter.has_involutive_inv β filter.has_involutive_neg, | |
| uniform_on_fun.group β uniform_on_fun.add_group, | |
| set.is_unit_iff_singleton β set.is_add_unit_iff_singleton, | |
| submonoid.coe_mul_self_eq β add_submonoid.coe_add_self_eq, | |
| pi.div_def β pi.sub_def, | |
| equiv.div_right β equiv.sub_right, | |
| mul_opposite.has_continuous_const_smul β add_opposite.has_continuous_const_vadd, | |
| mul_le_mul' β add_le_add, | |
| mul_equiv.to_Group_iso_inv β add_equiv.to_AddGroup_iso_neg, | |
| freiman_hom.comp_assoc β add_freiman_hom.comp_assoc, | |
| quotient_group.subsingleton_quotient_top β quotient_add_group.subsingleton_quotient_top, | |
| topological_group_infi β topological_add_group_infi, | |
| finsupp.prod_antidiagonal_swap β finsupp.sum_antidiagonal_swap, | |
| is_unit.mul_inv_cancel_left β is_add_unit.add_neg_cancel_left, | |
| has_compact_mul_support.mono β has_compact_support.mono, | |
| finset.smul_mem_smul β finset.vadd_mem_vadd, | |
| eq_iff_eq_of_div_eq_div β eq_iff_eq_of_sub_eq_sub, | |
| subgroup.norm_coe β add_subgroup.norm_coe, | |
| free_group.red.to_append_iff β free_add_group.red.to_append_iff, | |
| pow_le_one_iff β nsmul_nonpos_iff, | |
| subgroup.coe_multiset_prod β add_subgroup.coe_multiset_sum, | |
| submonoid.apply_coe_mem_map β add_submonoid.apply_coe_mem_map, | |
| subgroup.comap_normalizer_eq_of_surjective β add_subgroup.comap_normalizer_eq_of_surjective, | |
| monoid_hom.coprod_comp_inl β add_monoid_hom.coprod_comp_inl, | |
| CommMon.has_limits_of_size β AddCommMon.has_limits_of_size, | |
| uniform_continuous.pow_const β uniform_continuous.const_nsmul, | |
| order_of_dvd_card_univ β add_order_of_dvd_card_univ, | |
| multiset.prod_map_mul β multiset.sum_map_add, | |
| mul_equiv.to_equiv_eq_coe β add_equiv.to_equiv_eq_coe, | |
| mul_hom.srange_restrict_surjective β add_hom.srange_restrict_surjective, | |
| mul_equiv.subgroup_map_symm_apply β add_equiv.add_subgroup_map_symm_apply, | |
| comm_group.to_comm_monoid β add_comm_group.to_add_comm_monoid, | |
| prod.has_faithful_smul_right β prod.has_faithful_vadd_right, | |
| finset.multiplicative_energy_empty_right β finset.additive_energy_empty_right, | |
| rootable_by.root_zero β divisible_by.div_zero, | |
| mul_hom.coe_prod β add_hom.coe_prod, | |
| group_seminorm.has_one β add_group_seminorm.has_one, | |
| fintype.decidable_eq_monoid_hom_fintype β fintype.decidable_eq_add_monoid_hom_fintype, | |
| hindman.FP.singleton β hindman.FS.singleton, | |
| is_unit.submonoid β is_add_unit.add_submonoid, | |
| ball_div β ball_sub, | |
| continuous_of_mul_tsupport β continuous_of_tsupport, | |
| subgroup.le_centralizer β add_subgroup.le_centralizer, | |
| map_mul β map_add, | |
| measure_theory.strongly_measurable.smul_const β measure_theory.strongly_measurable.vadd_const, | |
| measure_theory.prog_measurable.finset_prod' β measure_theory.prog_measurable.finset_sum', | |
| zpow_lt_zpow' β zsmul_lt_zsmul', | |
| probability_theory.ident_distrib.div_const β probability_theory.ident_distrib.sub_const, | |
| submonoid.localization_map.mul_equiv_of_mul_equiv_mk' β add_submonoid.localization_map.add_equiv_of_add_equiv_mk', | |
| monoid.exponent_eq_supr_order_of β add_monoid.exponent_eq_supr_order_of, | |
| quotient_group.eq_iff_div_mem β quotient_add_group.eq_iff_sub_mem, | |
| set.Union_mul_right_image β set.Union_add_right_image, | |
| subgroup.mem_left_transversals_iff_exists_unique_inv_mul_mem β add_subgroup.mem_left_transversals_iff_exists_unique_neg_add_mem, | |
| free_group.map.id β free_add_group.map.id, | |
| finset.is_unit_iff β finset.is_add_unit_iff, | |
| Group.concrete_category β AddGroup.concrete_category, | |
| lt_of_mul_lt_mul_left' β lt_of_add_lt_add_left, | |
| set.univ_mul_univ β set.univ_add_univ, | |
| mul_opposite.uniform_space β add_opposite.uniform_space, | |
| ordered_comm_group.one β ordered_add_comm_group.zero, | |
| finset.prod_range_div β finset.sum_range_sub, | |
| inv_le' β neg_le, | |
| nonarchimedean_group.to_topological_group β nonarchimedean_add_group.to_topological_add_group, | |
| mul_hom.fst β add_hom.fst, | |
| is_unit_of_mul_is_unit_right β is_add_unit_of_add_is_add_unit_right, | |
| measure_theory.ae_eq_fun.one_to_germ β measure_theory.ae_eq_fun.zero_to_germ, | |
| monoid.exponent_min' β add_monoid.exponent_min', | |
| function.embedding.smul_def β function.embedding.vadd_def, | |
| units.of_pow_eq_one β add_units.of_nsmul_eq_zero, | |
| set.smul_eq_empty β set.vadd_eq_empty, | |
| mul_action.card_orbit_mul_card_stabilizer_eq_card_group β add_action.card_orbit_add_card_stabilizer_eq_card_add_group, | |
| mul_equiv.to_Group_iso_hom β add_equiv.to_AddGroup_iso_hom, | |
| monoid_hom.eq_on_closure β add_monoid_hom.eq_on_closure, | |
| subgroup.comap_sup_comap_le β add_subgroup.comap_sup_comap_le, | |
| preimage_mul_ball β preimage_add_ball, | |
| order_monoid_hom.mk' β order_add_monoid_hom.mk', | |
| pow_gcd_eq_one β gcd_nsmul_eq_zero, | |
| eckmann_hilton.mul_one_class.is_unital β eckmann_hilton.add_zero_class.is_unital, | |
| mul_hom.coe_comp β add_hom.coe_comp, | |
| with_one.lift β with_zero.lift, | |
| free_group.lift.unique β free_add_group.lift.unique, | |
| submonoid.submonoid_class β add_submonoid.add_submonoid_class, | |
| prod.swap_inv β prod.swap_neg, | |
| div_inv_one_monoid.one_mul β sub_neg_zero_monoid.zero_add, | |
| pi.cancel_monoid β pi.add_cancel_monoid, | |
| mul_equiv.mul_equiv_of_unique β add_equiv.add_equiv_of_unique, | |
| canonically_linear_ordered_monoid.semilattice_sup β canonically_linear_ordered_add_monoid.semilattice_sup, | |
| mul_equiv.arrow_congr_apply β add_equiv.arrow_congr_apply, | |
| monoid_hom.has_coe_to_one_hom β add_monoid_hom.has_coe_to_zero_hom, | |
| submonoid.is_submonoid β add_submonoid.is_add_submonoid, | |
| free_monoid.lift_comp_of β free_add_monoid.lift_comp_of, | |
| is_submonoid_Union_of_directed β is_add_submonoid_Union_of_directed, | |
| subgroup.mul_action β add_subgroup.add_action, | |
| set.inter_mul_subset β set.inter_add_subset, | |
| mul_action.orbit_rel.quotient.orbit β add_action.orbit_rel.quotient.orbit, | |
| finset.prod_congr β finset.sum_congr, | |
| cancel_monoid.to_is_cancel_mul β add_cancel_monoid.to_is_cancel_add, | |
| mul_action.is_minimal_of_pretransitive β add_action.is_minimal_of_pretransitive, | |
| le_mul_cinfi β le_add_cinfi, | |
| measure_theory.measure.haar.index_union_eq β measure_theory.measure.haar.add_index_union_eq, | |
| subgroup.normalizer_eq_top β add_subgroup.normalizer_eq_top, | |
| continuous_monoid_hom.closed_embedding_to_continuous_map β continuous_add_monoid_hom.closed_embedding_to_continuous_map, | |
| con.zpow β add_con.zsmul, | |
| pow_le_pow_of_le_left' β nsmul_le_nsmul_of_le_right, | |
| set.mul_indicator_image β set.indicator_image, | |
| uniform_group.ext_iff β uniform_add_group.ext_iff, | |
| measure_theory.measure.haar.prehaar_sup_eq β measure_theory.measure.haar.add_prehaar_sup_eq, | |
| cancel_monoid.one_mul β add_cancel_monoid.zero_add, | |
| group_topology.to_topological_space_injective β add_group_topology.to_topological_space_injective, | |
| units.is_regular β add_units.is_add_regular, | |
| localization.mk β add_localization.mk, | |
| monoid_hom.to_one_hom_coe β add_monoid_hom.to_zero_hom_coe, | |
| mem_closed_ball_one_iff β mem_closed_ball_zero_iff, | |
| right_cancel_monoid.ext β add_right_cancel_monoid.ext, | |
| finset.prod_apply_ite_of_true β finset.sum_apply_ite_of_true, | |
| Semigroup.concrete_category β AddSemigroup.concrete_category, | |
| mul_opposite.commute.unop β add_opposite.commute.unop, | |
| mul_opposite.pseudo_emetric_space β add_opposite.pseudo_emetric_space, | |
| homeomorph.div_right β homeomorph.sub_right, | |
| finset.prod_dite_of_true β finset.sum_dite_of_true, | |
| submonoid.localization_map.lift_surjective_iff β add_submonoid.localization_map.lift_surjective_iff, | |
| lattice_ordered_comm_group.mul_inf_eq_mul_inf_mul β lattice_ordered_comm_group.add_inf_eq_add_inf_add, | |
| eq_inv_mul_of_mul_eq β eq_neg_add_of_add_eq, | |
| free_monoid.map β free_add_monoid.map, | |
| set.mem_centralizer_iff β set.mem_add_centralizer, | |
| order_dual.has_involutive_inv β order_dual.has_involutive_neg, | |
| submonoid.top_equiv_apply β add_submonoid.top_equiv_apply, | |
| smooth_map.semigroup β smooth_map.add_semigroup, | |
| mul_equiv.to_Magma_iso_inv β add_equiv.to_AddMagma_iso_neg, | |
| free_semigroup.pure_seq β free_add_semigroup.pure_seq, | |
| multiset.noncomm_prod_eq_prod β multiset.noncomm_sum_eq_sum, | |
| subgroup.map_map β add_subgroup.map_map, | |
| units.coe_div β add_units.coe_sub, | |
| order_iso.mul_right_symm β order_iso.add_right_symm, | |
| card_dvd_exponent_pow_rank' β card_dvd_exponent_nsmul_rank', | |
| pi.has_one β pi.has_zero, | |
| commute.order_of_mul_eq_mul_order_of_of_coprime β add_commute.add_order_of_add_eq_mul_add_order_of_of_coprime, | |
| mul_action.fixed_by β add_action.fixed_by, | |
| ordered_comm_group.div_eq_mul_inv β ordered_add_comm_group.sub_eq_add_neg, | |
| topological_group.regular_space β topological_add_group.regular_space, | |
| set.mul_indicator_compl β set.indicator_compl', | |
| normed_group.to_group β normed_add_group.to_add_group, | |
| subgroup.comap_inf β add_subgroup.comap_inf, | |
| freiman_hom.to_fun_eq_coe β add_freiman_hom.to_fun_eq_coe, | |
| free_group.red.step_inv_rev_iff β free_add_group.red.step_neg_rev_iff, | |
| prod.pow_mk β prod.smul_mk, | |
| equiv.perm.prod_comp' β equiv.perm.sum_comp', | |
| function.injective.right_cancel_semigroup β function.injective.add_right_cancel_semigroup, | |
| mul_one_div β add_zero_sub, | |
| dfinsupp.prod_comm β dfinsupp.sum_comm, | |
| mul_action.of_quotient_stabilizer_mk β add_action.of_quotient_stabilizer_mk, | |
| uniform_on_fun.comm_monoid β uniform_on_fun.add_comm_monoid, | |
| con.Sup_def β add_con.Sup_def, | |
| filter.mem_div β filter.mem_sub, | |
| continuous_monoid_hom.prod_map_to_monoid_hom β continuous_add_monoid_hom.sum_map_to_add_monoid_hom, | |
| order_dual.right_cancel_monoid β order_dual.right_cancel_add_monoid, | |
| tendsto_finset_prod β tendsto_finset_sum, | |
| cSup_one β cSup_zero, | |
| lex.semigroup β lex.add_semigroup, | |
| free_group.red.step.append_right β free_add_group.red.step.append_right, | |
| division_monoid.to_has_involutive_inv β subtraction_monoid.to_has_involutive_neg, | |
| norm_le_norm_add_const_of_dist_le' β norm_le_norm_add_const_of_dist_le, | |
| free_magma.pure_bind β free_add_magma.pure_bind, | |
| localization.mk_pow β add_localization.mk_nsmul, | |
| magma.assoc_quotient.lift_symm_apply β add_magma.free_add_semigroup.lift_symm_apply, | |
| cont_mdiff.mul β cont_mdiff.add, | |
| eq_of_div_eq_one β eq_of_sub_eq_zero, | |
| mul_equiv.to_CommMon_iso_hom β add_equiv.to_AddCommMon_iso_hom, | |
| list.prod_le_prod' β list.sum_le_sum, | |
| is_upper_set.smul β is_upper_set.vadd, | |
| set.preimage_mul_left_one β set.preimage_add_left_zero, | |
| le_of_mul_le_mul_right' β le_of_add_le_add_right, | |
| continuous_monoid_hom.comm_group β continuous_add_monoid_hom.add_comm_group, | |
| ae_measurable.const_mul β ae_measurable.const_add, | |
| continuous_map.group β continuous_map.add_group, | |
| linear_ordered_cancel_comm_monoid.to_ordered_cancel_comm_monoid β linear_ordered_cancel_add_comm_monoid.to_ordered_cancel_add_comm_monoid, | |
| subgroup.le_prod_iff β add_subgroup.le_prod_iff, | |
| antitone_on.inv β antitone_on.neg, | |
| smooth_map.group β smooth_map.add_group, | |
| con.of_submonoid β add_con.of_add_submonoid, | |
| freiman_hom.comm_group β add_freiman_hom.add_comm_group, | |
| continuous.is_open_mul_support β continuous.is_open_support, | |
| left_inverse_inv β left_inverse_neg, | |
| Inf_mul β Inf_add, | |
| function.mul_support_subset_iff β function.support_subset_iff, | |
| pi.mul_single_mul_mul_single_eq_mul_single_mul_mul_single β pi.single_add_single_eq_single_add_single, | |
| subgroup.inhabited β add_subgroup.inhabited, | |
| submonoid_class.mk_pow β add_submonoid_class.mk_nsmul, | |
| quotient_group.mk_mul_of_mem β quotient_add_group.mk_add_of_mem, | |
| set.Union_mul β set.Union_add, | |
| free_group.norm_mul_le β free_add_group.norm_add_le, | |
| one_hom.cancel_right β zero_hom.cancel_right, | |
| measure_theory.is_fundamental_domain.ess_sup_measure_restrict β measure_theory.is_add_fundamental_domain.ess_sup_measure_restrict, | |
| Mon.forget_reflects_isos β AddMon.forget_reflects_isos, | |
| subgroup.inf_relindex_right β add_subgroup.inf_relindex_right, | |
| part.has_one β part.has_zero, | |
| measure_theory.integral_inv_eq_self β measure_theory.integral_neg_eq_self, | |
| is_group_hom.comp β is_add_group_hom.comp, | |
| eq_of_norm_div_le_zero β eq_of_norm_sub_le_zero, | |
| finset.prod_dite_eq' β finset.sum_dite_eq', | |
| monoid_hom.subgroup_comap_apply_coe β add_monoid_hom.add_subgroup_comap_apply_coe, | |
| set.mem_pow β set.mem_nsmul, | |
| group_filter_basis.one' β add_group_filter_basis.zero', | |
| commute.is_refl β add_commute.is_refl, | |
| set.Inter_div_subset β set.Inter_sub_subset, | |
| has_smooth_mul.smooth_mul β has_smooth_add.smooth_add, | |
| list.ae_measurable_prod β list.ae_measurable_sum, | |
| is_compact.closed_ball_mul β is_compact.closed_ball_add, | |
| filter.one_le_div_iff β filter.nonneg_sub_iff, | |
| submonoid.bot_prod_bot β add_submonoid.bot_sum_bot, | |
| locally_constant.coe_div β locally_constant.coe_sub, | |
| finset.prod_ite_eq β finset.sum_ite_eq, | |
| subgroup_class.has_inv β add_subgroup_class.has_neg, | |
| linear_ordered_comm_monoid.mul β linear_ordered_add_comm_monoid.add, | |
| free_monoid.to_list_prod β free_add_monoid.to_list_sum, | |
| comm_group.div β add_comm_group.sub, | |
| subgroup.div_mem_comm_iff β add_subgroup.sub_mem_comm_iff, | |
| group_seminorm.comp_mono β add_group_seminorm.comp_mono, | |
| one_hom.id_apply β zero_hom.id_apply, | |
| group.zpow_zero' β add_group.zsmul_zero', | |
| one_hom_class β zero_hom_class, | |
| semiconj_by β add_semiconj_by, | |
| coe_comp_nnnorm' β coe_comp_nnnorm, | |
| lt_iff_exists_mul β lt_iff_exists_add, | |
| free_semigroup.of_head β free_add_semigroup.of_head, | |
| div_inv_monoid.zpow_zero' β sub_neg_monoid.zsmul_zero', | |
| measure_theory.smul_invariant_measure.smul_nnreal β measure_theory.vadd_invariant_measure.vadd_nnreal, | |
| submonoid.mem_inf β add_submonoid.mem_inf, | |
| mul_equiv.symm_comp_eq β add_equiv.symm_comp_eq, | |
| units.mul_inv_of_eq β add_units.add_neg_of_eq, | |
| filter.pure_one β filter.pure_zero, | |
| commute.units_inv_right_iff β add_commute.add_units_neg_right_iff, | |
| finset.prod_disj_sum β finset.sum_disj_sum, | |
| one_le_of_inv_le_one β nonneg_of_neg_nonpos, | |
| finset.prod_le_pow_card β finset.sum_le_card_nsmul, | |
| ordered_cancel_comm_monoid β ordered_cancel_add_comm_monoid, | |
| finset.card_pow_le' β finset.card_nsmul_le', | |
| fixing_submonoid β fixing_add_submonoid, | |
| measure_theory.measure.haar.haar_content_self β measure_theory.measure.haar.add_haar_content_self, | |
| group_norm.coe_add β add_group_norm.coe_add, | |
| con.map_of_surjective_eq_map_gen β add_con.map_of_surjective_eq_map_gen, | |
| has_mul.to_has_smul β has_add.to_has_vadd, | |
| monoid.subset_closure β add_monoid.subset_closure, | |
| submonoid.mem_map β add_submonoid.mem_map, | |
| is_unit.can_lift β is_add_unit.can_lift, | |
| set.div_mem_div β set.sub_mem_sub, | |
| measure_theory.measure_is_open_pos_of_smul_invariant_of_compact_ne_zero β measure_theory.measure_is_open_pos_of_vadd_invariant_of_compact_ne_zero, | |
| units.map_comp β add_units.map_comp, | |
| subgroup.nat_card_dvd_of_surjective β add_subgroup.nat_card_dvd_of_surjective, | |
| subgroup.characteristic β add_subgroup.characteristic, | |
| subsemigroup.comap_le_comap_iff_of_surjective β add_subsemigroup.comap_le_comap_iff_of_surjective, | |
| subgroup.quotient_infi_embedding β add_subgroup.quotient_infi_embedding, | |
| inv_closure β neg_closure, | |
| continuous_map.coe_mul β continuous_map.coe_add, | |
| set.smul_inter_ne_empty_iff β set.vadd_inter_ne_empty_iff, | |
| with_one.unone β with_zero.unzero, | |
| group_filter_basis_of_comm β add_group_filter_basis_of_comm, | |
| commute.inv_left β add_commute.neg_left, | |
| free_monoid.to_list_symm β free_add_monoid.to_list_symm, | |
| filter.smul_comm_class_filter'' β filter.vadd_comm_class_filter'', | |
| function.embedding.smul_comm_class β function.embedding.vadd_comm_class, | |
| commute.symm β add_commute.symm, | |
| subgroup.normal.map β add_subgroup.normal.map, | |
| lattice_ordered_comm_group.sup_sq_eq_mul_mul_abs_div β lattice_ordered_comm_group.two_sup_eq_add_add_abs_sub, | |
| measure_theory.ae_eq_fun.has_one β measure_theory.ae_eq_fun.has_zero, | |
| monoid_hom.is_of_fin_order β add_monoid_hom.is_of_fin_order, | |
| left.mul_le_one β left.add_nonpos, | |
| continuous_map.coe_zpow β continuous_map.coe_zsmul, | |
| mul_opposite.nndist_op β add_opposite.nndist_op, | |
| cancel_comm_monoid.ext β add_cancel_comm_monoid.ext, | |
| measure_theory.strongly_measurable.smul β measure_theory.strongly_measurable.vadd, | |
| division_monoid.mul β subtraction_monoid.add, | |
| mul_hom.mk_coe β add_hom.mk_coe, | |
| mul_ite β add_ite, | |
| has_compact_mul_support.is_compact_range β has_compact_support.is_compact_range, | |
| lt_div_iff_mul_lt β lt_sub_iff_add_lt, | |
| quotient_group.has_quotient.quotient.has_coe_t β quotient_add_group.has_quotient.quotient.has_coe_t, | |
| is_cyclic.comm_group β is_add_cyclic.add_comm_group, | |
| norm_div_sub_norm_div_le_norm_div β norm_sub_sub_norm_sub_le_norm_sub, | |
| mul_equiv.to_equiv_symm β add_equiv.to_equiv_symm, | |
| submonoid.set_like β add_submonoid.set_like, | |
| monoid_hom.inr β add_monoid_hom.inr, | |
| is_monoid_hom.id β is_add_monoid_hom.id, | |
| monoid_hom.to_one_hom β add_monoid_hom.to_zero_hom, | |
| finset.prod_Ico_eq_prod_range β finset.sum_Ico_eq_sum_range, | |
| ulift.mul_one_class β ulift.add_zero_class, | |
| local_is_compact_is_closed_nhds_of_group β local_is_compact_is_closed_nhds_of_add_group, | |
| mul_hom.coe_srange β add_hom.coe_srange, | |
| inducing.has_continuous_inv β inducing.has_continuous_neg, | |
| ordered_comm_monoid.to_covariant_class_left β ordered_add_comm_monoid.to_covariant_class_left, | |
| set.inv_subset_inv β set.neg_subset_neg, | |
| bdd_below.mul β bdd_below.add, | |
| quotient_group.eq β quotient_add_group.eq, | |
| submonoid.centralizer β add_submonoid.centralizer, | |
| order_of_inv β order_of_neg, | |
| commute.mul_inv_cancel_assoc β add_commute.add_neg_cancel_assoc, | |
| measurable_mul_unop β measurable_add_unop, | |
| subsemigroup.comap_inf β add_subsemigroup.comap_inf, | |
| set.mul_indicator_apply_eq_self β set.indicator_apply_eq_self, | |
| subgroup.bot_to_submonoid β add_subgroup.bot_to_add_submonoid, | |
| set.mul_indicator_apply_le_one β set.indicator_apply_nonpos, | |
| free_magma.rec_on_mul β free_add_magma.rec_on_add, | |
| monoid_hom.restrict_mker β add_monoid_hom.restrict_mker, | |
| le_iff_forall_lt_one_mul_le β le_iff_forall_neg_add_le, | |
| mul_action.image_inter_image_iff β add_action.image_inter_image_iff, | |
| dfinsupp.prod_map_range_index β dfinsupp.sum_map_range_index, | |
| free_group.inv_rev_bijective β free_add_group.neg_rev_bijective, | |
| units.mul_right_bijective β add_units.add_right_bijective, | |
| monoid.order_dvd_exponent β add_monoid.add_order_dvd_exponent, | |
| one_lt_pow_iff β nsmul_pos_iff, | |
| map_multiset_prod β map_multiset_sum, | |
| order_monoid_hom.comp_mul β order_add_monoid_hom.comp_add, | |
| uniform_fun.comm_monoid β uniform_fun.add_comm_monoid, | |
| free_group.red.red_iff_irreducible β free_add_group.red.red_iff_irreducible, | |
| filter.smul_le_smul_left β filter.vadd_le_vadd_left, | |
| eq_one_div_of_mul_eq_one_right β eq_zero_sub_of_add_eq_zero_right, | |
| subgroup.fg β add_subgroup.fg, | |
| cont_mdiff_at_one β cont_mdiff_at_zero, | |
| measure_theory.measure.pi.is_mul_left_invariant β measure_theory.measure.pi.is_add_left_invariant, | |
| left.one_lt_mul_of_lt_of_le β left.add_pos_of_pos_of_nonneg, | |
| smul_univ_pi β vadd_univ_pi, | |
| zpow_left_inj β zsmul_right_inj, | |
| mul_equiv.Pi_congr_right_trans β add_equiv.Pi_congr_right_trans, | |
| ulift.cancel_comm_monoid β ulift.add_cancel_monoid, | |
| list.nth_zero_mul_tail_prod β list.nth_zero_add_tail_sum, | |
| finset.inv_mem_inv β finset.neg_mem_neg, | |
| measurable_equiv.mul_left β measurable_equiv.add_left, | |
| mul_hom.mul_hom_class β add_hom.add_hom_class, | |
| seminormed_comm_group.to_comm_group β seminormed_add_comm_group.to_add_comm_group, | |
| mul_equiv.refl β add_equiv.refl, | |
| mul_rotate β add_rotate, | |
| measure_theory.measure_univ_of_is_mul_left_invariant β measure_theory.measure_univ_of_is_add_left_invariant, | |
| filter.inv_le_inv_iff β filter.neg_le_neg_iff, | |
| mul_action.self_equiv_sigma_orbits' β add_action.self_equiv_sigma_orbits', | |
| finset.mul_action_finset β finset.add_action_finset, | |
| one_hom.one_hom_class β zero_hom.zero_hom_class, | |
| monoid_hom.mrange_restrict β add_monoid_hom.mrange_restrict, | |
| subgroup.map_eq_range_iff β add_subgroup.map_eq_range_iff, | |
| bdd_below_inv β bdd_below_neg, | |
| uniform_group.to_uniform_space_eq β uniform_add_group.to_uniform_space_eq, | |
| finset.coe_singleton_monoid_hom β finset.coe_singleton_add_monoid_hom, | |
| measure_theory.forall_measure_preimage_mul_iff β measure_theory.forall_measure_preimage_add_iff, | |
| le_mul_right β le_add_right, | |
| upper_set.comm_semigroup β upper_set.add_comm_semigroup, | |
| list.prod_cons β list.sum_cons, | |
| Group.large_category β AddGroup.large_category, | |
| monoid_hom.coe_eq_to_one_hom β add_monoid_hom.coe_eq_to_zero_hom, | |
| magma.assoc_quotient.induction_on β add_magma.free_add_semigroup.induction_on, | |
| mul_lt_of_lt_of_le_one β add_lt_of_lt_of_nonpos, | |
| finset.prod_range_succ_div_prod β finset.sum_range_succ_sub_sum, | |
| tactic.norm_num.multiset.prod_congr β tactic.norm_num.multiset.sum_congr, | |
| inf_edist_inv β inf_edist_neg, | |
| set.div_Unionβ β set.sub_Unionβ, | |
| free_group.red.inv_of_red_of_ne β free_add_group.red.neg_of_red_of_ne, | |
| finset.le_prod_of_submultiplicative_on_pred β finset.le_sum_of_subadditive_on_pred, | |
| submonoid.coe_equiv_map_of_injective_apply β add_submonoid.coe_equiv_map_of_injective_apply, | |
| measure_theory.is_fundamental_domain.mk'' β measure_theory.is_add_fundamental_domain.mk'', | |
| prod.uniform_group β prod.uniform_add_group, | |
| finset.singleton_one_hom β finset.singleton_zero_hom, | |
| Magma.coe_of β AddMagma.coe_of, | |
| one_le_inv_of_le_one β neg_nonneg_of_nonpos, | |
| subgroup.nontrivial_iff_exists_ne_one β add_subgroup.nontrivial_iff_exists_ne_zero, | |
| left.inv_le_self β left.neg_le_self, | |
| dfinsupp.prod_subtype_domain_index β dfinsupp.sum_subtype_domain_index, | |
| strict_mono.mul_monotone' β strict_mono.add_monotone, | |
| finset.mul_pluennecke_petridis β finset.add_pluennecke_petridis, | |
| smooth_map.coe_div β smooth_map.coe_sub, | |
| has_continuous_mul.of_nhds_one β has_continuous_add.of_nhds_zero, | |
| inv_le_div_iff_le_mul β neg_le_sub_iff_le_add, | |
| freiman_hom.cancel_right_on β add_freiman_hom.cancel_right_on, | |
| multiset.le_prod_nonempty_of_submultiplicative β multiset.le_sum_nonempty_of_subadditive, | |
| subgroup.quotient_equiv_of_eq β add_subgroup.quotient_equiv_of_eq, | |
| hindman.FP β hindman.FS, | |
| submonoid.inv_le β add_submonoid.neg_le, | |
| subgroup.top_equiv β add_subgroup.top_equiv, | |
| isometry_equiv.mul_left β isometry_equiv.add_left, | |
| continuous_on.smul β continuous_on.vadd, | |
| free_group.red.cons_cons_iff β free_add_group.red.cons_cons_iff, | |
| has_measurable_smul_of_mul β has_measurable_vadd_of_add, | |
| right_cancel_monoid.one β add_right_cancel_monoid.zero, | |
| con.coe_mul β add_con.coe_add, | |
| cancel_comm_monoid.mul_comm β add_cancel_comm_monoid.add_comm, | |
| Group.sections_subgroup β AddGroup.sections_add_subgroup, | |
| set.bUnion_smul_set β set.bUnion_vadd_set, | |
| normed_comm_group.to_comm_group β normed_add_comm_group.to_add_comm_group, | |
| continuous_on.div' β continuous_on.sub, | |
| mul_opposite.semiconj_by_unop β add_opposite.semiconj_by_unop, | |
| mul_roth_number_empty β add_roth_number_empty, | |
| units.inv_val β add_units.neg_val, | |
| is_submonoid.mul_mem β is_add_submonoid.add_mem, | |
| set.piecewise_mul β set.piecewise_add, | |
| finprod_mem_image' β finsum_mem_image', | |
| topological_group.of_nhds_aux β topological_add_group.of_nhds_aux, | |
| filter.mul_bot β filter.add_bot, | |
| units.partial_order β add_units.partial_order, | |
| mul_inv_lt_mul_inv_iff' β add_neg_lt_add_neg_iff, | |
| subsemigroup.comap_id β add_subsemigroup.comap_id, | |
| monoid_hom.coe_copy β add_monoid_hom.coe_copy, | |
| topological_group.t2_space_iff_one_closed β topological_add_group.t2_space_iff_zero_closed, | |
| prod.pow_swap β prod.smul_swap, | |
| submonoid.gci_map_comap β add_submonoid.gci_map_comap, | |
| div_one β sub_zero, | |
| pi_norm_const_le' β pi_norm_const_le, | |
| continuous_one β continuous_zero, | |
| mul_action.orbit_equiv_quotient_stabilizer_symm_apply β add_action.orbit_equiv_quotient_stabilizer_symm_apply, | |
| group.in_closure.mul β add_group.in_closure.add, | |
| uniformity_translate_mul β uniformity_translate_add, | |
| submonoid.map_inf_comap_of_surjective β add_submonoid.map_inf_comap_of_surjective, | |
| set.inter_inv β set.inter_neg, | |
| subgroup.quotient_subgroup_of_map_of_le β add_subgroup.quotient_add_subgroup_of_map_of_le, | |
| eq_inv_of_mul_eq_one_right β eq_neg_of_add_eq_zero_right, | |
| linear_ordered_comm_group.zpow_neg' β linear_ordered_add_comm_group.zsmul_neg', | |
| is_subgroup.mul_mem_cancel_left β is_add_subgroup.add_mem_cancel_left, | |
| subgroup.closure_inductionβ β add_subgroup.closure_inductionβ, | |
| set.singleton_mul β set.singleton_add, | |
| ordered_cancel_comm_monoid.one β ordered_cancel_add_comm_monoid.zero, | |
| mul_hom.comp_left_apply β add_hom.comp_left_apply, | |
| subgroup.mem_mk β add_subgroup.mem_mk, | |
| mul_action.injective β add_action.injective, | |
| pow_eq_mod_card β nsmul_eq_mod_card, | |
| subgroup.card_le_one_iff_eq_bot β add_subgroup.card_nonpos_iff_eq_bot, | |
| monoid_hom_of_tendsto β add_monoid_hom_of_tendsto, | |
| edist_mul_right β edist_add_right, | |
| self_le_mul_left β self_le_add_left, | |
| pi.mul_single_commute β pi.single_commute, | |
| set.smul_set_Union β set.vadd_set_Union, | |
| zpow_of_nat β of_nat_zsmul, | |
| div_right_inj β sub_right_inj, | |
| left_cancel_semigroup.covariant_mul_lt_of_covariant_mul_le β add_left_cancel_semigroup.covariant_add_lt_of_covariant_add_le, | |
| option.smul_comm_class β option.vadd_comm_class, | |
| measure_theory.measure.haar.index_pos β measure_theory.measure.haar.add_index_pos, | |
| smul_mul_assoc β vadd_add_assoc, | |
| one_hom.to_fun_eq_coe β zero_hom.to_fun_eq_coe, | |
| mul_roth_number_map_mul_right β add_roth_number_map_add_right, | |
| finset.smul_finset_empty β finset.vadd_finset_empty, | |
| has_mul.to_covariant_class_left β has_add.to_covariant_class_left, | |
| con.induction_onβ β add_con.induction_onβ, | |
| subgroup.relindex_le_of_le_right β add_subgroup.relindex_le_of_le_right, | |
| mul_action.orbit_zpowers_equiv_symm_apply' β add_action.orbit_zmultiples_equiv_symm_apply', | |
| measurable.mul' β measurable.add', | |
| right.inv_le_one_iff β right.neg_nonpos_iff, | |
| finprod_mem_mul_diff β finsum_mem_add_diff, | |
| is_submonoid.inter β is_add_submonoid.inter, | |
| monoid_hom.independent_range_of_coprime_order β add_monoid_hom.independent_range_of_coprime_order, | |
| freiman_hom.ext β add_freiman_hom.ext, | |
| set.mul_indicator_inv' β set.indicator_neg', | |
| fin.partial_prod_succ β fin.partial_sum_succ, | |
| one_mem_class.coe_one β zero_mem_class.coe_zero, | |
| filter.ne_bot.of_smul_filter β filter.ne_bot.of_vadd_filter, | |
| list.prod_range_succ' β list.sum_range_succ', | |
| subgroup.left_transversals β add_subgroup.left_transversals, | |
| subsemigroup.gi β add_subsemigroup.gi, | |
| group_seminorm.comp β add_group_seminorm.comp, | |
| continuous_monoid_hom.mk' β continuous_add_monoid_hom.mk', | |
| mul_equiv.inhabited β add_equiv.inhabited, | |
| order_monoid_hom.coe_comp_order_hom β order_add_monoid_hom.coe_comp_order_hom, | |
| zpow_mul β mul_zsmul', | |
| units.mul_lift_right_inv β add_units.add_lift_right_neg, | |
| submonoid.localization_map.epic_of_localization_map β add_submonoid.localization_map.epic_of_localization_map, | |
| finset.is_unit_singleton β finset.is_add_unit_singleton, | |
| list.sublist_forallβ.prod_le_prod' β list.sublist_forallβ.sum_le_sum, | |
| uniform_continuous.zpow_const β uniform_continuous.const_zsmul, | |
| of_lex_smul' β of_lex_vadd', | |
| with_one.some_eq_coe β with_zero.some_eq_coe, | |
| lattice_ordered_comm_group.neg_of_one_le_inv β lattice_ordered_comm_group.neg_of_inv_nonneg, | |
| finset.noncomm_prod_union_of_disjoint β finset.noncomm_sum_union_of_disjoint, | |
| locally_constant.mul_indicator_of_not_mem β locally_constant.indicator_of_not_mem, | |
| continuous_map.comm_group β continuous_map.add_comm_group, | |
| free_group.red.exact β free_add_group.red.exact, | |
| dist_mul_self_left β dist_add_self_left, | |
| finprod_mem_induction β finsum_mem_induction, | |
| mul_salem_spencer_pi β add_salem_spencer_pi, | |
| finset.coe_pow β finset.coe_nsmul, | |
| submonoid.map_strict_mono_of_injective β add_submonoid.map_strict_mono_of_injective, | |
| pi.apply_mul_singleβ β pi.apply_singleβ, | |
| CommMon.comm_monoid_obj β AddCommMon.add_comm_monoid_obj, | |
| finset.one_lt_prod' β finset.sum_pos', | |
| semiconj_by.one_left β add_semiconj_by.zero_left, | |
| dist_eq_norm_div β dist_eq_norm_sub, | |
| le_max_of_sq_le_mul β le_max_of_two_nsmul_le_add, | |
| set.is_wf.mul β set.is_wf.add, | |
| submonoid.map_surjective_of_surjective β add_submonoid.map_surjective_of_surjective, | |
| localization.mk_eq_mk_iff β add_localization.mk_eq_mk_iff, | |
| pow_iterate β nsmul_iterate, | |
| finprod_eq_prod_plift_of_mul_support_subset β finsum_eq_sum_plift_of_support_subset, | |
| is_open_map_inv β is_open_map_neg, | |
| canonically_ordered_monoid.exists_mul_of_le β canonically_ordered_add_monoid.exists_add_of_le, | |
| subgroup_class.subtype β add_subgroup_class.subtype, | |
| freiman_hom.to_freiman_hom_injective β add_freiman_hom.to_freiman_hom_injective, | |
| free_monoid.of_list_cons β free_add_monoid.of_list_cons, | |
| measure_theory.measure.haar.nonempty_Inter_cl_prehaar β measure_theory.measure.haar.nonempty_Inter_cl_add_prehaar, | |
| mul_singleton_mem_nhds_of_nhds_one β add_singleton_mem_nhds_of_nhds_zero, | |
| finset.prod_eq_single β finset.sum_eq_single, | |
| filter.eventually_eq.mul β filter.eventually_eq.add, | |
| inf_edist_inv_inv β inf_edist_neg_neg, | |
| subsemigroup.centralizer β add_subsemigroup.centralizer, | |
| free_monoid.lift β free_add_monoid.lift, | |
| filter.germ.mul_action' β filter.germ.add_action', | |
| subgroup.normal_subgroup_of β add_subgroup.normal_add_subgroup_of, | |
| group_seminorm.is_scalar_tower β add_group_seminorm.is_scalar_tower, | |
| continuous_on_pow β continuous_on_nsmul, | |
| inv_inv β neg_neg, | |
| set.nonempty.smul_set β set.nonempty.vadd_set, | |
| submonoid.mem_top β add_submonoid.mem_top, | |
| mul_equiv.op_apply_symm_apply β add_equiv.op_apply_symm_apply, | |
| has_uniform_continuous_const_smul.uniform_continuous_const_smul β has_uniform_continuous_const_vadd.uniform_continuous_const_vadd, | |
| pi.has_continuous_inv' β pi.has_continuous_neg', | |
| subgroup.center β add_subgroup.center, | |
| filter.germ.has_smul β filter.germ.has_vadd, | |
| finset.prod_eq_one_iff_of_one_le' β finset.sum_eq_zero_iff_of_nonneg, | |
| lex.right_cancel_semigroup β lex.right_cancel_add_semigroup, | |
| list.prod_replicate β list.sum_replicate, | |
| div_le_div'' β sub_le_sub, | |
| submonoid.has_smul β add_submonoid.has_vadd, | |
| submonoid.localization_map.mul_inv β add_submonoid.localization_map.add_neg, | |
| subgroup.le_normalizer β add_subgroup.le_normalizer, | |
| measure_theory.measure.haar.chaar_sup_le β measure_theory.measure.haar.add_chaar_sup_le, | |
| CommGroup.comm_group.to_group.category_theory.bundled_hom.parent_projection β AddCommGroup.comm_group.to_group.category_theory.bundled_hom.parent_projection, | |
| con.mk'_ker β add_con.mk'_ker, | |
| measure_theory.simple_func.comm_group β measure_theory.simple_func.add_comm_group, | |
| free_semigroup.lift_comp_of β free_add_semigroup.lift_comp_of, | |
| subgroup.coe_mul β add_subgroup.coe_add, | |
| nat.prod_factors_gcd_mul_prod_factors_mul β nat.sum_factors_gcd_add_sum_factors_mul, | |
| commute.op β add_commute.op, | |
| cmp_mul_right' β cmp_add_right, | |
| finset.prod_insert_one β finset.sum_insert_zero, | |
| mul_equiv.of_bijective_apply β add_equiv.of_bijective_apply, | |
| set.mul_indicator_rel_mul_indicator β set.indicator_rel_indicator, | |
| continuous_on_finset_prod β continuous_on_finset_sum, | |
| function.mul_support_prod_mk β function.support_prod_mk, | |
| monoid_hom.subgroup_map_surjective β add_monoid_hom.add_subgroup_map_surjective, | |
| group_norm.ext β add_group_norm.ext, | |
| set.div_singleton β set.sub_singleton, | |
| bot.is_cyclic β bot.is_add_cyclic, | |
| subgroup_class.to_ordered_comm_group β add_subgroup_class.to_ordered_add_comm_group, | |
| div_div β sub_sub, | |
| group_norm.to_fun_eq_coe β add_group_norm.to_fun_eq_coe, | |
| continuous_on_multiset_prod β continuous_on_multiset_sum, | |
| le_inv' β le_neg, | |
| mul_inv_eq_of_eq_mul β add_neg_eq_of_eq_add, | |
| submonoid.of β add_submonoid.of, | |
| to_dual_smul β to_dual_vadd, | |
| is_locally_constant.inv β is_locally_constant.neg, | |
| open_subgroup.one_mem β open_add_subgroup.zero_mem, | |
| is_unit.filter β is_add_unit.filter, | |
| finsupp.prod_add_index' β finsupp.sum_add_index', | |
| inv_mem_class.inv_mem β neg_mem_class.neg_mem, | |
| semiconj_by.inv_symm_left_iff β add_semiconj_by.neg_symm_left_iff, | |
| is_unit.div_eq_iff β is_add_unit.sub_eq_iff, | |
| free_group.has_mul β free_add_group.has_add, | |
| units.val_inv β add_units.val_neg, | |
| subgroup.map_injective β add_subgroup.map_injective, | |
| measure_theory.measure.is_haar_measure_eq_smul_is_haar_measure β measure_theory.measure.is_add_haar_measure_eq_smul_is_add_haar_measure, | |
| ulift.seminormed_group β ulift.seminormed_add_group, | |
| continuous_map.semigroup β continuous_map.add_semigroup, | |
| is_closed.right_coset β is_closed.right_add_coset, | |
| finset.one_mem_one β finset.zero_mem_zero, | |
| finset.exists_subset_mul_div β finset.exists_subset_add_sub, | |
| subgroup.nat_card_dvd_of_injective β add_subgroup.nat_card_dvd_of_injective, | |
| ultrafilter.continuous_mul_left β ultrafilter.continuous_add_left, | |
| group_seminorm.comp_id β add_group_seminorm.comp_id, | |
| continuous_map.has_zpow β continuous_map.has_zsmul, | |
| fin.prod_cons β fin.sum_cons, | |
| function.bijective.prod_comp β function.bijective.sum_comp, | |
| subgroup.index_dvd_of_le β add_subgroup.index_dvd_of_le, | |
| mul_opposite.has_one β add_opposite.has_zero, | |
| submonoid.coe_copy β add_submonoid.coe_copy, | |
| mul_action.of_quotient_stabilizer_mem_orbit β add_action.of_quotient_stabilizer_mem_orbit, | |
| subgroup.finite_index_of_finite β add_subgroup.finite_index_of_finite, | |
| hindman.FP.mul β hindman.FS.add, | |
| submonoid.localization_map.mul_equiv_of_localizations_symm_eq_mul_equiv_of_localizations β add_submonoid.localization_map.add_equiv_of_localizations_symm_eq_add_equiv_of_localizations, | |
| quotient_group.subgroup_eq_top_of_subsingleton β quotient_add_group.add_subgroup_eq_top_of_subsingleton, | |
| set.Unionβ_mul β set.Unionβ_add, | |
| subgroup.npow_mem_zpowers β add_subgroup.nsmul_mem_zmultiples, | |
| set.mul_indicator_eq_one β set.indicator_eq_zero, | |
| one_le_pow_of_one_le' β nsmul_nonneg, | |
| finset.prod_bij_ne_one β finset.sum_bij_ne_zero, | |
| uniform_fun.group β uniform_fun.add_group, | |
| order_iso.mul_left β order_iso.add_left, | |
| finset.noncomm_prod_eq_pow_card β finset.noncomm_sum_eq_card_nsmul, | |
| finset.comm_monoid β finset.add_comm_monoid, | |
| function.mul_support_inv β function.support_neg, | |
| measure_theory.lintegral_mul_right_eq_self β measure_theory.lintegral_add_right_eq_self, | |
| free_magma.map_mul' β free_add_magma.map_add', | |
| list.prod_hom β list.sum_hom, | |
| canonically_ordered_monoid.mul_le_mul_left β canonically_ordered_add_monoid.add_le_add_left, | |
| set.compl_inv β set.compl_neg, | |
| has_uniform_continuous_const_smul β has_uniform_continuous_const_vadd, | |
| topological_group.tendsto_locally_uniformly_iff β topological_add_group.tendsto_locally_uniformly_iff, | |
| inv_div_left β neg_sub_left, | |
| is_compact.div_closed_ball_one β is_compact.sub_closed_ball_zero, | |
| finset.nat.prod_antidiagonal_subst β finset.nat.sum_antidiagonal_subst, | |
| subset_upper_bounds_mul β subset_upper_bounds_add, | |
| order_dual.comm_monoid β order_dual.add_comm_monoid, | |
| filter.tendsto.inv β filter.tendsto.neg, | |
| has_involutive_inv.inv_inv β has_involutive_neg.neg_neg, | |
| submonoid.coe_mul β add_submonoid.coe_add, | |
| has_compact_mul_support.comp_smul β has_compact_support.comp_smul, | |
| mul_action.mem_orbit_smul β add_action.mem_orbit_vadd, | |
| set.empty_smul β set.empty_vadd, | |
| function.compl_mul_support β function.compl_support, | |
| finset.prod_le_one' β finset.sum_nonpos, | |
| exists_pow_eq_self_of_coprime β exists_nsmul_eq_self_of_coprime, | |
| free_monoid.map_id β free_add_monoid.map_id, | |
| division_monoid.zpow β subtraction_monoid.zsmul, | |
| isometry_equiv.coe_mul_left β isometry_equiv.coe_add_left, | |
| submonoid.localization_map.lift_unique β add_submonoid.localization_map.lift_unique, | |
| mul_hom.subsemigroup_comap β add_hom.subsemigroup_comap, | |
| pow_le_pow_iff' β nsmul_le_nsmul_iff, | |
| mul_equiv.unique_prod β add_equiv.unique_prod, | |
| submonoid.localization_map.mul_equiv_of_localizations β add_submonoid.localization_map.add_equiv_of_localizations, | |
| quotient_group.right_rel_eq β quotient_add_group.right_rel_eq, | |
| measurable.mul_const β measurable.add_const, | |
| subsemigroup.prod_top β add_subsemigroup.prod_top, | |
| submonoid.unit_mem_left_inv β add_submonoid.add_unit_mem_left_neg, | |
| monoid_hom.comp_hom' β add_monoid_hom.comp_hom', | |
| left.pow_lt_one_iff β left.nsmul_neg_iff, | |
| subset_interior_div β subset_interior_sub, | |
| monoid_hom.copy β add_monoid_hom.copy, | |
| finset.prod_attach_univ β finset.sum_attach_univ, | |
| continuous_map.has_inv β continuous_map.has_neg, | |
| max_one_div_max_inv_one_eq_self β max_zero_sub_max_neg_zero_eq_self, | |
| submonoid.mem_sup β add_submonoid.mem_sup, | |
| one_div_one_div β zero_sub_zero_sub, | |
| subgroup.inv_mem_iff β add_subgroup.neg_mem_iff, | |
| is_open.div_closure β is_open.sub_closure, | |
| is_torsion_free.not_torsion β add_monoid.is_torsion_free.not_torsion, | |
| submonoid.one_mem' β add_submonoid.zero_mem', | |
| measure_theory.measure.haar.haar_content_outer_measure_self_pos β measure_theory.measure.haar.add_haar_content_outer_measure_self_pos, | |
| cauchy_seq.mul_const β cauchy_seq.add_const, | |
| ne_one_of_mem_sphere β ne_zero_of_mem_sphere, | |
| free_semigroup.hom_ext β free_add_semigroup.hom_ext, | |
| quotient_group.mk_surjective β quotient_add_group.mk_surjective, | |
| function.mem_mul_support β function.mem_support, | |
| free_group.red.length β free_add_group.red.length, | |
| Mon.filtered_colimits.colimit_monoid β AddMon.filtered_colimits.colimit_add_monoid, | |
| unique_mul.subsingleton β unique_add.subsingleton, | |
| finsupp.mul_prod_erase' β finsupp.add_sum_erase', | |
| cmp_mul_left' β cmp_add_left, | |
| le_map_mul_map_div β le_map_add_map_sub, | |
| set.mul_indicator_apply_ne_one β set.indicator_apply_ne_zero, | |
| submonoid_class.to_ordered_comm_monoid β add_submonoid_class.to_ordered_add_comm_monoid, | |
| of_real_norm_eq_coe_nnnorm' β of_real_norm_eq_coe_nnnorm, | |
| quotient_group.quotient_map_subgroup_of_of_le β quotient_add_group.quotient_map_add_subgroup_of_of_le, | |
| is_group_hom.is_normal_subgroup_ker β is_add_group_hom.is_normal_add_subgroup_ker, | |
| comm_group.npow_zero' β add_comm_group.nsmul_zero', | |
| order_monoid_hom.to_monoid_hom_injective β order_add_monoid_hom.to_add_monoid_hom_injective, | |
| group_seminorm.zero_apply β add_group_seminorm.zero_apply, | |
| continuous_at.mul β continuous_at.add, | |
| quotient_group.equiv_quotient_zpow_of_equiv β quotient_add_group.equiv_quotient_zsmul_of_equiv, | |
| le_div_comm β le_sub_comm, | |
| function.const_lt_one β function.const_neg, | |
| finprod_eq_finset_prod_of_mul_support_subset β finsum_eq_finset_sum_of_support_subset, | |
| singleton_mul_mem_nhds_of_nhds_one β singleton_add_mem_nhds_of_nhds_zero, | |
| submonoid.localization_map.mul_equiv_of_localizations_right_inv β add_submonoid.localization_map.add_equiv_of_localizations_right_inv, | |
| uniform_continuous_norm' β uniform_continuous_norm, | |
| set.smul_mem_smul_set_iff β set.vadd_mem_vadd_set_iff, | |
| units.mk_of_mul_eq_one β add_units.mk_of_add_eq_zero, | |
| submonoid.coe_top β add_submonoid.coe_top, | |
| measurable_embedding_mul_left β measurable_embedding_add_left, | |
| multiset.noncomm_prod_cons' β multiset.noncomm_sum_cons', | |
| division_comm_monoid.div β subtraction_comm_monoid.sub, | |
| magma.assoc_quotient.quot_mk_assoc β add_magma.free_add_semigroup.quot_mk_assoc, | |
| group.npow_succ' β add_group.nsmul_succ', | |
| normed_comm_group.induced β normed_add_comm_group.induced, | |
| con.quotient_ker_equiv_of_right_inverse_symm_apply β add_con.quotient_ker_equiv_of_right_inverse_symm_apply, | |
| monoid_hom.comp_apply β add_monoid_hom.comp_apply, | |
| filter.not_one_le_div_iff β filter.not_nonneg_sub_iff, | |
| subgroup.equiv_map_of_injective_coe_mul_equiv β add_subgroup.equiv_map_of_injective_coe_add_equiv, | |
| smul_eq_mul β vadd_eq_add, | |
| mul_equiv.ext β add_equiv.ext, | |
| submonoid.localization_map.symm_comp_of_mul_equiv_of_localizations_apply β add_submonoid.localization_map.symm_comp_of_add_equiv_of_localizations_apply, | |
| subgroup.is_closed_of_discrete β add_subgroup.is_closed_of_discrete, | |
| pi.mul_single_eq_same β pi.single_eq_same, | |
| open_subgroup.has_coe_subgroup β open_add_subgroup.has_coe_add_subgroup, | |
| free_magma.traverse_mul' β free_add_magma.traverse_add', | |
| filter.div_pure β filter.sub_pure, | |
| subgroup.one_mem β add_subgroup.zero_mem, | |
| submonoid.closure_empty β add_submonoid.closure_empty, | |
| open_subgroup.to_subgroup β open_add_subgroup.to_add_subgroup, | |
| subgroup.subgroup_of β add_subgroup.add_subgroup_of, | |
| subgroup.mem_zpowers_iff β add_subgroup.mem_zmultiples_iff, | |
| measure_theory.prog_measurable.inv β measure_theory.prog_measurable.neg, | |
| Group.inhabited β AddGroup.inhabited, | |
| fin.partial_prod_zero β fin.partial_sum_zero, | |
| measure_theory.measure_is_open_pos_of_smul_invariant_of_ne_zero β measure_theory.measure_is_open_pos_of_vadd_invariant_of_ne_zero, | |
| measurable.div β measurable.sub, | |
| set.has_div β set.has_sub, | |
| subgroup.center_eq_infi' β add_subgroup.center_eq_infi', | |
| submonoid.map β add_submonoid.map, | |
| lattice_ordered_comm_group.has_one_lattice_has_pos_part β lattice_ordered_comm_group.has_zero_lattice_has_pos_part, | |
| category_theory.discrete.monoidal β discrete.add_monoidal, | |
| group_seminorm.zero_comp β add_group_seminorm.zero_comp, | |
| monoid_hom.congr_fun β add_monoid_hom.congr_fun, | |
| uniform_embedding_translate_mul β uniform_embedding_translate_add, | |
| filter.is_scalar_tower β filter.vadd_assoc_class, | |
| finset.singleton_div_singleton β finset.singleton_sub_singleton, | |
| mul_salem_spencer_empty β add_salem_spencer_empty, | |
| mul_salem_spencer.mono β add_salem_spencer.mono, | |
| inv_mul_le_one_iff β neg_add_nonpos_iff, | |
| free_semigroup.tail_mul β free_add_semigroup.tail_add, | |
| right.one_lt_mul_of_le_of_lt β right.add_pos_of_nonneg_of_pos, | |
| subsemigroup.coe_center β add_subsemigroup.coe_center, | |
| mul_opposite.t2_space β add_opposite.t2_space, | |
| pi.inv_apply β pi.neg_apply, | |
| subgroup.inf_relindex_left β add_subgroup.inf_relindex_left, | |
| group_norm.map_one' β add_group_norm.map_zero', | |
| mul_hom.unop β add_hom.unop, | |
| group.closure_subset β add_group.closure_subset, | |
| subsemigroup.inclusion β add_subsemigroup.inclusion, | |
| mul_comm β add_comm, | |
| free_semigroup.mul_map_seq β free_add_semigroup.add_map_seq, | |
| tactic.group.zpow_trick_sub β tactic.group.zsmul_trick_sub, | |
| finset.prod_multiset_count_of_subset β finset.sum_multiset_count_of_subset, | |
| free_semigroup.traverse_mul' β free_add_semigroup.traverse_add', | |
| mem_powers_iff_mem_zpowers β mem_multiples_iff_mem_zmultiples, | |
| set.not_one_mem_div_iff β set.not_zero_mem_sub_iff, | |
| finprod_mem_mul_distrib' β finsum_mem_add_distrib', | |
| topological_comm_group_is_uniform β topological_add_comm_group_is_uniform, | |
| free_group.red.reduce_right β free_add_group.red.reduce_right, | |
| continuous_on_inv β continuous_on_neg, | |
| nnnorm_le_nnnorm_add_nnnorm_div β nnnorm_le_nnnorm_add_nnnorm_sub, | |
| set.mul_indicator_union_mul_inter β set.indicator_union_add_inter, | |
| right_coset_assoc β right_add_coset_assoc, | |
| finprod_mem_Union β finsum_mem_Union, | |
| Group.filtered_colimits.G β AddGroup.filtered_colimits.G, | |
| quotient_group.quotient_lift_on_coe β quotient_add_group.quotient_lift_on_coe, | |
| map_div' β map_sub', | |
| lt_mul_of_inv_mul_lt_left β lt_add_of_neg_add_lt_left, | |
| lt_of_mul_lt_mul_right' β lt_of_add_lt_add_right, | |
| set.one_mem_centralizer β set.zero_mem_add_centralizer, | |
| filter.map_inv β filter.map_neg, | |
| has_compact_mul_support.is_compact β has_compact_support.is_compact, | |
| finset.image_mul_right β finset.image_add_right, | |
| measure_theory.simple_func.inv_apply β measure_theory.simple_func.neg_apply, | |
| is_regular_mul_and_mul_iff β is_add_regular_add_and_add_iff, | |
| subsemigroup.not_mem_of_not_mem_closure β add_subsemigroup.not_mem_of_not_mem_closure, | |
| order_of_pow_coprime β add_order_of_nsmul_coprime, | |
| filter.germ.has_div β filter.germ.has_sub, | |
| Group.of_unique β AddGroup.of_unique, | |
| smooth_within_at_finset_prod β smooth_within_at_finset_sum, | |
| cont_mdiff_on_finset_prod β cont_mdiff_on_finset_sum, | |
| finset.smul_finset_mem_smul_finset β finset.vadd_finset_mem_vadd_finset, | |
| finset.coe_singleton_mul_hom β finset.coe_singleton_add_hom, | |
| filter.tendsto.nnnorm' β filter.tendsto.nnnorm, | |
| filter.germ.has_one β filter.germ.has_zero, | |
| has_continuous_div.continuous_div' β has_continuous_sub.continuous_sub, | |
| filter.mul_action_filter β filter.add_action_filter, | |
| filter.has_one β filter.has_zero, | |
| pow_bit0 β bit0_nsmul, | |
| subgroup.comap_inclusion_subgroup_of β add_subgroup.comap_inclusion_add_subgroup_of, | |
| finset.single_le_prod' β finset.single_le_sum, | |
| subgroup.map_eq_bot_iff β add_subgroup.map_eq_bot_iff, | |
| mul_action.orbit_rel β add_action.orbit_rel, | |
| free_magma.map_of β free_add_magma.map_of, | |
| units.inv_mk β add_units.neg_mk, | |
| submonoid.inv_infi β add_submonoid.neg_infi, | |
| set.semigroup β set.add_semigroup, | |
| subgroup.mem_Inf β add_subgroup.mem_Inf, | |
| prod.has_smul β prod.has_vadd, | |
| open_subgroup.inv_mem β open_add_subgroup.neg_mem, | |
| exists_prime_order_of_dvd_card β exists_prime_add_order_of_dvd_card, | |
| finsupp.prod_add_index_of_disjoint β finsupp.sum_add_index_of_disjoint, | |
| subsemigroup.dense_induction β add_subsemigroup.dense_induction, | |
| free_monoid.of_injective β free_add_monoid.of_injective, | |
| finset.coe_smul β finset.coe_vadd, | |
| has_measurable_mul β has_measurable_add, | |
| smul_one_hom β vadd_zero_hom, | |
| subgroup.prod_equiv β add_subgroup.prod_equiv, | |
| lattice_ordered_comm_group.sup_eq_mul_pos_div β lattice_ordered_comm_group.sup_eq_add_pos_sub, | |
| group_topology.to_topological_group β add_group_topology.to_topological_add_group, | |
| mul_equiv.coe_monoid_hom_refl β add_equiv.coe_add_monoid_hom_refl, | |
| measure_theory.ae_eq_fun.coe_fn_one β measure_theory.ae_eq_fun.coe_fn_zero, | |
| subgroup.characteristic_iff_comap_le β add_subgroup.characteristic_iff_comap_le, | |
| finset.multiplicative_energy_comm β finset.additive_energy_comm, | |
| monoid_hom.to_mul_hom_coe β add_monoid_hom.to_add_hom_coe, | |
| subgroup.coe_inv β add_subgroup.coe_neg, | |
| free_monoid.cases_on_of_mul β free_add_monoid.cases_on_of_add, | |
| disjoint.one_not_mem_div_set β disjoint.zero_not_mem_sub_set, | |
| finsupp.prod_mul β finsupp.sum_add, | |
| mul_action.minimal_period_eq_card β add_action.minimal_period_eq_card, | |
| edist_mul_left β edist_add_left, | |
| finset.exists_ne_one_of_prod_ne_one β finset.exists_ne_zero_of_sum_ne_zero, | |
| set.div_Inter_subset β set.sub_Inter_subset, | |
| measure_theory.measure_preserving_mul_prod β measure_theory.measure_preserving_add_prod, | |
| is_compact.closed_ball_one_div β is_compact.closed_ball_zero_sub, | |
| subsemigroup.closure_Union β add_subsemigroup.closure_Union, | |
| with_one.coe_inv β with_zero.coe_neg, | |
| monoid_hom.coprod_apply β add_monoid_hom.coprod_apply, | |
| monoid_hom.eq_locus_same β add_monoid_hom.eq_locus_same, | |
| finset.noncomm_prod_insert_of_not_mem' β finset.noncomm_sum_insert_of_not_mem', | |
| measure_theory.measure_eq_div_smul β measure_theory.measure_eq_sub_vadd, | |
| unique_mul β unique_add, | |
| subgroup.prod β add_subgroup.prod, | |
| cancel_comm_monoid.mul_left_cancel β add_cancel_comm_monoid.add_left_cancel, | |
| smooth_map.coe_fn_monoid_hom_apply β smooth_map.coe_fn_add_monoid_hom_apply, | |
| monoid_hom.prod_unique β add_monoid_hom.prod_unique, | |
| norm_le_pi_norm' β norm_le_pi_norm, | |
| cInf_mul β cInf_add, | |
| submonoid.gi β add_submonoid.gi, | |
| subgroup.opposite.countable β add_subgroup.opposite.countable, | |
| Group.is_zero_of_subsingleton β AddGroup.is_zero_of_subsingleton, | |
| prod.snd_inv β prod.snd_neg, | |
| strict_anti_on.mul_antitone' β strict_anti_on.add_antitone, | |
| dist_self_mul_left β dist_self_add_left, | |
| pi.has_inv β pi.has_neg, | |
| free_group.reduce.cons β free_add_group.reduce.cons, | |
| mul_equiv.Pi_congr_right_apply β add_equiv.Pi_congr_right_apply, | |
| homeomorph.div_left_apply β homeomorph.sub_left_apply, | |
| mul_opposite.op_div β add_opposite.op_sub, | |
| punit.is_scalar_tower β punit.vadd_assoc_class, | |
| monoid_hom.prod_map_comap_prod' β add_monoid_hom.sum_map_comap_sum', | |
| topological_group.t1_space β topological_add_group.t1_space, | |
| set.one_nonempty β set.zero_nonempty, | |
| norm_zpow_le_mul_norm β norm_zsmul_le, | |
| semiconj_by.units_inv_symm_left β add_semiconj_by.add_units_neg_symm_left, | |
| submonoid.localization_map.of_mul_equiv_of_localizations_eq_iff_eq β add_submonoid.localization_map.of_add_equiv_of_localizations_eq_iff_eq, | |
| submonoid.localization_map.inv_unique β add_submonoid.localization_map.neg_unique, | |
| ulift.comm_semigroup β ulift.add_comm_semigroup, | |
| units.mul_left_bijective β add_units.add_left_bijective, | |
| submonoid.closure_le β add_submonoid.closure_le, | |
| monoid_hom.coprod_inl_inr β add_monoid_hom.coprod_inl_inr, | |
| subgroup.subgroup.centralizer.characteristic β add_subgroup.subgroup.centralizer.characteristic, | |
| smooth_at_finset_prod β smooth_at_finset_sum, | |
| monoid_hom.coe_to_hom_units β add_monoid_hom.coe_to_hom_add_units, | |
| has_one β has_zero, | |
| free_monoid.hom_map_lift β free_add_monoid.hom_map_lift, | |
| submonoid.closure_Union β add_submonoid.closure_Union, | |
| division_monoid.inv β subtraction_monoid.neg, | |
| comm_monoid.npow_succ' β add_comm_monoid.nsmul_succ', | |
| Group.filtered_colimits.forgetβ_Mon_preserves_filtered_colimits β AddGroup.filtered_colimits.forgetβ_AddMon_preserves_filtered_colimits, | |
| subgroup.le_comap_map β add_subgroup.le_comap_map, | |
| lt_mul_of_lt_of_one_lt β lt_add_of_lt_of_pos, | |
| set.image2_div β set.image2_sub, | |
| Magma.forget_reflects_isos β AddMagma.forget_reflects_isos, | |
| div_inv_one_monoid.zpow_neg' β sub_neg_zero_monoid.zsmul_neg', | |
| function.update_inv β function.update_neg, | |
| max_mul_mul_left β max_add_add_left, | |
| subgroup.eq_bot_of_card_eq β add_subgroup.eq_bot_of_card_eq, | |
| freiman_hom.inv_comp β add_freiman_hom.neg_comp, | |
| lipschitz_with.norm_div_le β lipschitz_with.norm_sub_le, | |
| smul_left_injective' β vadd_left_injective', | |
| finset.coe_monoid_hom_apply β finset.coe_add_monoid_hom_apply, | |
| inv_mul_self β neg_add_self, | |
| submonoid.localization_map.mk'_eq_of_eq β add_submonoid.localization_map.mk'_eq_of_eq, | |
| comm_monoid.mul_one β add_comm_monoid.add_zero, | |
| measurable_equiv.symm_inv β measurable_equiv.symm_neg, | |
| uniform_continuous_mul β uniform_continuous_add, | |
| CommGroup.filtered_colimits.G β AddCommGroup.filtered_colimits.G, | |
| finset.prod_mono_set_of_one_le' β finset.sum_mono_set_of_nonneg, | |
| finset.smul_comm_class_finset' β finset.vadd_comm_class_finset', | |
| Sup_one β Sup_zero, | |
| free_group.red.singleton_iff β free_add_group.red.singleton_iff, | |
| nonempty_interval.snd_pow β nonempty_interval.snd_nsmul, | |
| comm_semigroup.to_semigroup β add_comm_semigroup.to_add_semigroup, | |
| measure_theory.measure.is_mul_left_invariant_haar_measure β measure_theory.measure.is_add_left_invariant_add_haar_measure, | |
| subsemigroup.closure_mono β add_subsemigroup.closure_mono, | |
| zpow_neg_succ_of_nat β zsmul_neg_succ_of_nat, | |
| con.quotient_ker_equiv_range β add_con.quotient_ker_equiv_range, | |
| subsemigroup.map_equiv_top β add_subsemigroup.map_equiv_top, | |
| monoid_hom.coe_dfinsupp_prod β add_monoid_hom.coe_dfinsupp_sum, | |
| is_subgroup.inv_mem_iff β is_add_subgroup.neg_mem_iff, | |
| continuous_monoid_hom.diag β continuous_add_monoid_hom.diag, | |
| comm_group.mul_left_inv β add_comm_group.add_left_neg, | |
| free_monoid.lift_symm_apply β free_add_monoid.lift_symm_apply, | |
| submonoid.mem_closure_pair β add_submonoid.mem_closure_pair, | |
| sum.elim_one_one β sum.elim_zero_zero, | |
| is_of_fin_order.of_mem_zpowers β is_of_fin_add_order.of_mem_zmultiples, | |
| has_smul.comp.smul_comm_class β has_vadd.comp.vadd_comm_class, | |
| monoid_hom.mem_range β add_monoid_hom.mem_range, | |
| measurable.smul_const β measurable.vadd_const, | |
| eq_mul_of_inv_mul_eq β eq_add_of_neg_add_eq, | |
| quotient_group.measurable_coe β quotient_add_group.measurable_coe, | |
| div_monoid_hom β sub_add_monoid_hom, | |
| function.mul_support_subset_iff' β function.support_subset_iff', | |
| filter.top_mul_of_one_le β filter.top_add_of_nonneg, | |
| finprod_eq_prod_plift_of_mul_support_to_finset_subset β finsum_eq_sum_plift_of_support_to_finset_subset, | |
| monoid_hom.snd_comp_inr β add_monoid_hom.snd_comp_inr, | |
| subsemigroup.top_equiv β add_subsemigroup.top_equiv, | |
| hindman.exists_FP_of_finite_cover β hindman.exists_FS_of_finite_cover, | |
| monoid_hom.prod_map β add_monoid_hom.prod_map, | |
| finprod_mem_insert' β finsum_mem_insert', | |
| comm_group.mul_one β add_comm_group.add_zero, | |
| set.div_mem_centralizer β set.sub_mem_add_centralizer, | |
| free_monoid.map_of β free_add_monoid.map_of, | |
| order_eq_card_zpowers β add_order_eq_card_zmultiples, | |
| units.mul_left_apply β add_units.add_left_apply, | |
| subsemigroup.range_subtype β add_subsemigroup.range_subtype, | |
| monoid_hom.comp_left_continuous_apply β add_monoid_hom.comp_left_continuous_apply, | |
| linear_ordered_comm_group.zpow_zero' β linear_ordered_add_comm_group.zsmul_zero', | |
| finset.smul_comm_class β finset.vadd_comm_class, | |
| mv_polynomial.eval_prod β mv_polynomial.eval_sum, | |
| is_group_hom.id β is_add_group_hom.id, | |
| norm_of_subsingleton' β norm_of_subsingleton, | |
| nonarchimedean_group.prod.nonarchimedean_group β nonarchimedean_add_group.prod.nonarchimedean_add_group, | |
| division_comm_monoid β subtraction_comm_monoid, | |
| free_group.lift.mk β free_add_group.lift.mk, | |
| semiconj_by.inv_inv_symm β add_semiconj_by.neg_neg_symm, | |
| is_unit.mul_right_injective β is_add_unit.add_right_injective, | |
| is_closed_set_of_map_one β is_closed_set_of_map_zero, | |
| ite_smul β ite_vadd, | |
| singleton_mul_closed_ball β singleton_add_closed_ball, | |
| mul_equiv.of_bijective β add_equiv.of_bijective, | |
| mul_zpow β zsmul_add, | |
| monoid β add_monoid, | |
| mul_left_iterate β add_left_iterate, | |
| monoid_hom.comp_hom β add_monoid_hom.comp_hom, | |
| subgroup.to_linear_ordered_comm_group β add_subgroup.to_linear_ordered_add_comm_group, | |
| group.covariant_swap_iff_contravariant_swap β add_group.covariant_swap_iff_contravariant_swap, | |
| submonoid.mul_left_inv_equiv β add_submonoid.add_left_neg_equiv, | |
| ordered_comm_group.zpow_zero' β ordered_add_comm_group.zsmul_zero', | |
| ulift.group β ulift.add_group, | |
| con.correspondence β add_con.correspondence, | |
| Mon.monoid_obj β AddMon.add_monoid_obj, | |
| filter.tendsto.op_one_is_bounded_under_le β filter.tendsto.op_zero_is_bounded_under_le, | |
| con.inf_iff_and β add_con.inf_iff_and, | |
| list.prod_reverse_noncomm β list.sum_reverse_noncomm, | |
| finset.nonempty.of_smul_right β finset.nonempty.of_vadd_right, | |
| subgroup.list_prod_mem β add_subgroup.list_sum_mem, | |
| group.in_closure.one β add_group.in_closure.zero, | |
| finset.pow_subset_pow_of_one_mem β finset.nsmul_subset_nsmul_of_zero_mem, | |
| pi.comm_group β pi.add_comm_group, | |
| order_monoid_hom.inhabited β order_add_monoid_hom.inhabited, | |
| with_one.can_lift β with_zero.can_lift, | |
| commute.units_inv_right β add_commute.add_units_neg_right, | |
| inv_mul_lt_of_lt_mul β neg_add_lt_of_lt_add, | |
| subgroup.map_injective_of_ker_le β add_subgroup.map_injective_of_ker_le, | |
| subgroup.coe_supr_of_directed β add_subgroup.coe_supr_of_directed, | |
| mul_equiv.to_Mon_iso_hom β add_equiv.to_AddMon_iso_hom, | |
| mul_action.to_perm_injective β add_action.to_perm_injective, | |
| submonoid.map_equiv_eq_comap_symm β add_submonoid.map_equiv_eq_comap_symm, | |
| submonoid.smul_comm_class_right β add_submonoid.vadd_comm_class_right, | |
| subgroup.to_submonoid β add_subgroup.to_add_submonoid, | |
| finset.nonempty.div β finset.nonempty.sub, | |
| uniformity_eq_comap_nhds_one_swapped β uniformity_eq_comap_nhds_zero_swapped, | |
| inv_one β neg_zero, | |
| finset.univ_pow β finset.nsmul_univ, | |
| measure_theory.ae_eq_fun.has_inv β measure_theory.ae_eq_fun.has_neg, | |
| mul_hom.comp_left β add_hom.comp_left, | |
| pi.const_inv β pi.const_neg, | |
| one_le_inv' β neg_nonneg, | |
| mul_lt_mul_iff_left β add_lt_add_iff_left, | |
| measure_theory.quasi_measure_preserving_inv_of_right_invariant β measure_theory.quasi_measure_preserving_neg_of_right_invariant, | |
| con.comap_quotient_equiv β add_con.comap_quotient_equiv, | |
| pow_to_dual β to_dual_smul', | |
| list.exists_le_of_prod_le' β list.exists_le_of_sum_le, | |
| submonoid.localization_map.mk'_spec β add_submonoid.localization_map.mk'_spec, | |
| free_group.red.nil_iff β free_add_group.red.nil_iff, | |
| Magma β AddMagma, | |
| pi.rootable_by β pi.divisible_by, | |
| pow_of_lex β of_lex_smul, | |
| filter.is_central_scalar β filter.is_central_vadd, | |
| option.is_scalar_tower β option.vadd_assoc_class, | |
| prod.mk_eq_one β prod.mk_eq_zero, | |
| bdd_above.mul β bdd_above.add, | |
| freiman_hom.one_comp β add_freiman_hom.zero_comp, | |
| free_group.reduce.not β free_add_group.reduce.not, | |
| set.list_prod_singleton β set.list_sum_singleton, | |
| continuous_within_at.div' β continuous_within_at.sub, | |
| group.closure_mono β add_group.closure_mono, | |
| prod.is_scalar_tower β prod.vadd_assoc_class, | |
| monoid_hom.mrange_top_of_surjective β add_monoid_hom.mrange_top_of_surjective, | |
| con_gen.rel.mul β add_con_gen.rel.add, | |
| is_monoid_hom.comp β is_add_monoid_hom.comp, | |
| ordered_comm_monoid.npow_succ' β ordered_add_comm_monoid.nsmul_succ', | |
| locally_constant.one_apply β locally_constant.zero_apply, | |
| is_mul_hom.comp β is_add_hom.comp, | |
| measure_theory.adapted.mul β measure_theory.adapted.add, | |
| submonoid.subset_closure β add_submonoid.subset_closure, | |
| coe_to_units β coe_to_add_units, | |
| part.mul_mem_mul β part.add_mem_add, | |
| punit.comm_group β punit.add_comm_group, | |
| monoid_hom.map_mul_inv β add_monoid_hom.map_add_neg, | |
| free_semigroup.map_mul' β free_add_semigroup.map_add', | |
| finprod_of_infinite_mul_support β finsum_of_infinite_support, | |
| Group.forgetβ_Mon_preserves_limits β AddGroup.forgetβ_Mon_preserves_limits, | |
| continuous_on.norm' β continuous_on.norm, | |
| finset.div_union β finset.sub_union, | |
| subgroup.mem_map_iff_mem β add_subgroup.mem_map_iff_mem, | |
| is_subgroup.univ_subgroup β is_add_subgroup.univ_add_subgroup, | |
| is_upper_set.div_right β is_upper_set.sub_right, | |
| mul_left_surjective β add_left_surjective, | |
| submonoid_class β add_submonoid_class, | |
| continuous_zpow β continuous_zsmul, | |
| finset.one_lt_prod β finset.sum_pos, | |
| monoid_hom.eq_mlocus β add_monoid_hom.eq_mlocus, | |
| set.mul_support_mul_indicator_subset β set.support_indicator_subset, | |
| submonoid_class.to_one_mem_class β add_submonoid_class.to_zero_mem_class, | |
| div_lt_iff_lt_mul β sub_lt_iff_lt_add, | |
| mul_hom.ext_iff β add_hom.ext_iff, | |
| submonoid_class.to_linear_ordered_comm_monoid β add_submonoid_class.to_linear_ordered_add_comm_monoid, | |
| is_of_fin_order_one β is_of_fin_order_zero, | |
| finprod_cond_eq_prod_of_cond_iff β finsum_cond_eq_sum_of_cond_iff, | |
| prod.cancel_monoid β prod.cancel_add_monoid, | |
| set.mul_indicator_const_preimage β set.indicator_const_preimage, | |
| subgroup.properly_discontinuous_smul_opposite_of_tendsto_cofinite β add_subgroup.properly_discontinuous_vadd_opposite_of_tendsto_cofinite, | |
| free_group.prod β free_add_group.sum, | |
| part.div_mem_div β part.sub_mem_sub, | |
| subset_interior_div_left β subset_interior_sub_left, | |
| approx_order_of.image_pow_subset β approx_add_order_of.image_nsmul_subset, | |
| finprod_prod_comm β finsum_sum_comm, | |
| measure_theory.quasi_measure_preserving_div_of_right_invariant β measure_theory.quasi_measure_preserving_sub_of_right_invariant, | |
| measure_theory.measure_preserving_div_right β measure_theory.measure_preserving_sub_right, | |
| to_lex_smul' β to_lex_vadd', | |
| monoid_hom.eq_of_eq_on_mtop β add_monoid_hom.eq_of_eq_on_mtop, | |
| set.mul_indicator_apply_le β set.indicator_apply_le, | |
| monoid_hom.is_monoid_hom_coe β add_monoid_hom.is_add_monoid_hom_coe, | |
| is_open.left_coset β is_open.left_add_coset, | |
| mul_hom.subsemigroup_comap_apply_coe β add_hom.subsemigroup_comap_apply_coe, | |
| group_seminorm.coe_smul β add_group_seminorm.coe_smul, | |
| submonoid.coe_center β add_submonoid.coe_center, | |
| smul_left_cancel_iff β vadd_left_cancel_iff, | |
| pi.mul_comp β pi.add_comp, | |
| subgroup.centralizer β add_subgroup.centralizer, | |
| mul_opposite.mul_action β add_opposite.add_action, | |
| mul_salem_spencer.mul_left β add_salem_spencer.add_left, | |
| subgroup.relindex_bot_left β add_subgroup.relindex_bot_left, | |
| CommGroup.ker_eq_bot_of_mono β AddCommGroup.ker_eq_bot_of_mono, | |
| con.has_div β add_con.has_sub, | |
| mul_hom.to_mul_equiv_apply β add_hom.to_add_equiv_apply, | |
| subsemigroup.mem_map_equiv β add_subsemigroup.mem_map_equiv, | |
| mul_equiv.prod_comm β add_equiv.prod_comm, | |
| set.image_div β set.image_sub, | |
| division_monoid.to_div_inv_monoid β subtraction_monoid.to_sub_neg_monoid, | |
| measure_theory.measure_preserving_prod_inv_mul β measure_theory.measure_preserving_prod_neg_add, | |
| con.partial_order β add_con.partial_order, | |
| con.smul β add_con.vadd, | |
| measure_theory.absolutely_continuous_of_is_mul_left_invariant β measure_theory.absolutely_continuous_of_is_add_left_invariant, | |
| eq_div_of_mul_eq' β eq_sub_of_add_eq, | |
| finprod_mem_mul_distrib β finsum_mem_add_distrib, | |
| measurable_set.inv β measurable_set.neg, | |
| is_upper_set.mul_right β is_upper_set.add_right, | |
| lt_one_of_mul_lt_left β neg_of_add_lt_left, | |
| function.one_lt_const β function.const_pos, | |
| mul_action.of_quotient_stabilizer β add_action.of_quotient_stabilizer, | |
| finset.smul_empty β finset.vadd_empty, | |
| one_div_div β zero_sub_sub, | |
| subgroup.subgroup_of_equiv_of_le_symm_apply_coe_coe β add_subgroup.add_subgroup_of_equiv_of_le_symm_apply_coe_coe, | |
| to_dual_pow β to_dual_smul, | |
| metric.bounded.exists_norm_le' β metric.bounded.exists_norm_le, | |
| mul_equiv.map_div β add_equiv.map_sub, | |
| group_seminorm.partial_order β add_group_seminorm.partial_order, | |
| measure_theory.smul_invariant_measure.measure_preimage_smul β measure_theory.vadd_invariant_measure.measure_preimage_vadd, | |
| order_of_eq_iff β add_order_of_eq_iff, | |
| vector.prod_update_nth' β vector.sum_update_nth', | |
| semiconj_by.units_inv_symm_left_iff β add_semiconj_by.add_units_neg_symm_left_iff, | |
| _private.287307625.mul_aux β _private.287307625.add_aux, | |
| order_dual.has_mul β order_dual.has_add, | |
| subsemigroup.map_comap_map β add_subsemigroup.map_comap_map, | |
| order_dual.cancel_comm_monoid β order_dual.cancel_add_comm_monoid, | |
| continuous_monoid_hom.inhabited β continuous_add_monoid_hom.inhabited, | |
| mul_roth_number_union_le β add_roth_number_union_le, | |
| continuous_monoid_hom.continuous_comp_left β continuous_add_monoid_hom.continuous_comp_left, | |
| finset.prod_ite_irrel β finset.sum_ite_irrel, | |
| abs_dist_sub_le_dist_mul_mul β abs_dist_sub_le_dist_add_add, | |
| linear_ordered_comm_group.to_no_max_order β linear_ordered_add_comm_group.to_no_max_order, | |
| finset.image_mul_hom_apply β finset.image_add_hom_apply, | |
| monoid_hom.from_opposite_apply β add_monoid_hom.from_opposite_apply, | |
| free_group.lift β free_add_group.lift, | |
| pow_card_subgroup β smul_card_add_subgroup, | |
| _private.1872109697.one_mul β _private.1872109697.zero_add, | |
| div_eq_self β sub_eq_self, | |
| submonoid.map_supr β add_submonoid.map_supr, | |
| mul_lt_iff_lt_one_right' β add_lt_iff_neg_right, | |
| ordered_comm_group β ordered_add_comm_group, | |
| smul_ball'' β vadd_ball'', | |
| list.prod_update_nth' β list.sum_update_nth', | |
| multiset.coe_prod β multiset.coe_sum, | |
| monoid_hom.comap_ker β add_monoid_hom.comap_ker, | |
| mul_action.fixed_points β add_action.fixed_points, | |
| measure_theory.is_fundamental_domain.sum_restrict_of_ac β measure_theory.is_add_fundamental_domain.sum_restrict_of_ac, | |
| eq_mul_inv_of_mul_eq β eq_add_neg_of_add_eq, | |
| with_bot.one_lt_coe β with_bot.coe_pos, | |
| mul_inv_cancel_comm β add_neg_cancel_comm, | |
| subgroup.centralizer_top β add_subgroup.centralizer_top, | |
| mul_le_cancellable.mul_le_iff_le_one_right β add_le_cancellable.add_le_iff_nonpos_right, | |
| submonoid.nontrivial_iff β add_submonoid.nontrivial_iff, | |
| finset.exists_one_lt_of_prod_one_of_exists_ne_one' β finset.exists_pos_of_sum_zero_of_exists_nonzero, | |
| measurable.const_smul β measurable.const_vadd, | |
| subgroup.index_eq_zero_of_relindex_eq_zero β add_subgroup.index_eq_zero_of_relindex_eq_zero, | |
| sum.smul_inr β sum.vadd_inr, | |
| finset.is_scalar_tower β finset.vadd_assoc_class, | |
| lipschitz_with_one_norm' β lipschitz_with_one_norm, | |
| set.mul_antidiagonal.finite_of_is_pwo β set.add_antidiagonal.finite_of_is_pwo, | |
| pow_inj_iff_of_order_of_eq_zero β nsmul_inj_iff_of_add_order_of_eq_zero, | |
| order_monoid_hom.coe_order_hom β order_add_monoid_hom.coe_order_hom, | |
| is_unit.unit β is_add_unit.add_unit, | |
| zpow_strict_mono_left β zsmul_strict_mono_right, | |
| pi.inv_def β pi.neg_def, | |
| mul_lt_mul_right' β add_lt_add_right, | |
| continuous_map.coe_inv β continuous_map.coe_neg, | |
| finset.prod_eq_mul_prod_diff_singleton β finset.sum_eq_add_sum_diff_singleton, | |
| subgroup.mul_self_mem_of_index_two β add_subgroup.add_self_mem_of_index_two, | |
| pow_strict_mono_right' β nsmul_strict_mono_left, | |
| mul_opposite.cancel_comm_monoid β add_opposite.cancel_add_comm_monoid, | |
| exists_nhds_split_inv β exists_nhds_half_neg, | |
| mul_action.card_eq_sum_card_group_div_card_stabilizer' β add_action.card_eq_sum_card_add_group_sub_card_stabilizer', | |
| locally_constant.const_monoid_hom_apply β locally_constant.const_add_monoid_hom_apply, | |
| set.smul_set_empty β set.vadd_set_empty, | |
| subgroup.comap_mono β add_subgroup.comap_mono, | |
| Group.of β AddGroup.of, | |
| is_minimal_iff_closed_smul_invariant β is_minimal_iff_closed_vadd_invariant, | |
| is_subgroup.normalizer_is_subgroup β is_add_subgroup.normalizer_is_add_subgroup, | |
| order_monoid_hom.coe_copy β order_add_monoid_hom.coe_copy, | |
| ordered_cancel_comm_monoid.to_contravariant_class_le_left β ordered_cancel_add_comm_monoid.to_contravariant_class_le_left, | |
| comm_semigroup.mul_assoc β add_comm_semigroup.add_assoc, | |
| comm_group.one β add_comm_group.zero, | |
| subsemigroup.mul_mem' β add_subsemigroup.add_mem', | |
| group_seminorm_class.map_mul_le_add β add_group_seminorm_class.map_add_le_add, | |
| subgroup.is_subgroup β add_subgroup.is_add_subgroup, | |
| mul_roth_number_map_mul_left β add_roth_number_map_add_left, | |
| lt_inv' β lt_neg, | |
| le_inv_mul_iff_mul_le β le_neg_add_iff_add_le, | |
| finset.noncomm_prod_eq_prod β finset.noncomm_sum_eq_sum, | |
| free_group.to_word_inv β free_add_group.to_word_neg, | |
| subsemigroup β add_subsemigroup, | |
| cont_mdiff_on.mul β cont_mdiff_on.add, | |
| one_hom.coe_inj β zero_hom.coe_inj, | |
| subgroup.coe_center β add_subgroup.coe_center, | |
| submonoid.mem_supr_of_mem β add_submonoid.mem_supr_of_mem, | |
| min_mul_distrib β min_add_distrib, | |
| cont_mdiff_at.mul β cont_mdiff_at.add, | |
| finset.image_mul_hom β finset.image_add_hom, | |
| lt_mul_of_lt_mul_left β lt_add_of_lt_add_left, | |
| filter.ne_bot.of_smul_right β filter.ne_bot.of_vadd_right, | |
| finset.mul_one_class β finset.add_zero_class, | |
| is_subgroup.mul_mem_cancel_right β is_add_subgroup.add_mem_cancel_right, | |
| mul_opposite.commute_unop β add_opposite.commute_unop, | |
| inv_mul' β neg_add', | |
| comm_semigroup.to_is_commutative β add_comm_semigroup.to_is_commutative, | |
| submonoid.top_equiv_symm_apply_coe β add_submonoid.top_equiv_symm_apply_coe, | |
| ne_one_of_map β ne_zero_of_map, | |
| measure_theory.measurable_measure_mul_right β measure_theory.measurable_measure_add_right, | |
| mul_le_cancellable β add_le_cancellable, | |
| strict_mono.inv β strict_mono.neg, | |
| free_magma.traverse_pure β free_add_magma.traverse_pure, | |
| monoid.to_semigroup β add_monoid.to_add_semigroup, | |
| with_top.coe_eq_one β with_top.coe_eq_zero, | |
| filter.germ.semigroup β filter.germ.add_semigroup, | |
| finset.prod_to_finset_eq_subtype β finset.sum_to_finset_eq_subtype, | |
| pi.mul_single_injective β pi.single_injective, | |
| measure_theory.measure_preserving_mul_left β measure_theory.measure_preserving_add_left, | |
| ordered_comm_monoid.to_covariant_class_right β ordered_add_comm_monoid.to_covariant_class_right, | |
| option.has_faithful_smul β option.has_faithful_vadd, | |
| set.singleton_one_hom β set.singleton_zero_hom, | |
| is_group_hom.one_ker_inv β is_add_group_hom.zero_ker_neg, | |
| subsemigroup.coe_Inf β add_subsemigroup.coe_Inf, | |
| semiconj_by.inv_inv_symm_iff β add_semiconj_by.neg_neg_symm_iff, | |
| smooth_map.coe_mul β smooth_map.coe_add, | |
| equiv.pow_mul_right β equiv.pow_add_right, | |
| finprod_div_distrib β finsum_sub_distrib, | |
| dfinsupp.prod_eq_one β dfinsupp.sum_eq_zero, | |
| mul_hom.comp_assoc β add_hom.comp_assoc, | |
| subgroup.coe_bot β add_subgroup.coe_bot, | |
| subgroup.noncomm_prod_mem β add_subgroup.noncomm_sum_mem, | |
| fin_equiv_powers_apply β fin_equiv_multiples_apply, | |
| mul_opposite.has_uniform_continuous_const_smul β add_opposite.has_uniform_continuous_const_vadd, | |
| exists_idempotent_in_compact_subsemigroup β exists_idempotent_in_compact_add_subsemigroup, | |
| le_of_mul_le_of_one_le_left β le_of_add_le_of_nonneg_left, | |
| equiv.div_def β equiv.sub_def, | |
| right_cancel_monoid.npow β add_right_cancel_monoid.nsmul, | |
| subgroup.subgroup_of_equiv_of_le β add_subgroup.add_subgroup_of_equiv_of_le, | |
| submonoid.from_left_inv_left_inv_equiv_symm β add_submonoid.from_left_neg_left_neg_equiv_symm, | |
| subgroup.mem_subgroup_of β add_subgroup.mem_add_subgroup_of, | |
| order_monoid_hom.has_mul β order_add_monoid_hom.has_add, | |
| pow_right_comm β nsmul_left_comm, | |
| sigma.mul_action β sigma.add_action, | |
| measure_theory.measure.is_haar_measure.sigma_finite β measure_theory.measure.is_add_haar_measure.sigma_finite, | |
| monoid_hom.finset_prod_apply β add_monoid_hom.finset_sum_apply, | |
| equiv.mul_left_symm β equiv.add_left_symm, | |
| CommGroup.forget_reflects_isos β AddCommGroup.forget_reflects_isos, | |
| has_measurable_smul β has_measurable_vadd, | |
| div_mul_cancel'' β sub_add_cancel', | |
| finset.smul_nonempty_iff β finset.vadd_nonempty_iff, | |
| topological_group_quotient β topological_add_group_quotient, | |
| mul_eq_of_eq_div' β add_eq_of_eq_sub', | |
| subsemigroup.coe_top β add_subsemigroup.coe_top, | |
| subgroup.mem_centralizer_iff β add_subgroup.mem_centralizer_iff, | |
| pi.const_monoid_hom_apply β pi.const_add_monoid_hom_apply, | |
| Group.limit_group β AddGroup.limit_add_group, | |
| left_cancel_semigroup.to_semigroup β add_left_cancel_semigroup.to_add_semigroup, | |
| measure_theory.mem_fundamental_frontier β measure_theory.mem_add_fundamental_frontier, | |
| dist_mul_right β dist_add_right, | |
| with_one.inhabited β with_zero.inhabited, | |
| quotient_group.quotient_quotient_equiv_quotient_aux_coe β quotient_add_group.quotient_quotient_equiv_quotient_aux_coe, | |
| subgroup.to_ordered_comm_group β add_subgroup.to_ordered_add_comm_group, | |
| is_mul_hom.id β is_add_hom.id, | |
| monoid.is_torsion.torsion_mul_equiv β add_monoid.is_torsion.torsion_add_equiv, | |
| le_inv_mul_iff_le β le_neg_add_iff_le, | |
| group_filter_basis.nhds_has_basis β add_group_filter_basis.nhds_has_basis, | |
| topological_group.tendsto_uniformly_iff β topological_add_group.tendsto_uniformly_iff, | |
| covariant_mul_lt_of_contravariant_mul_le β covariant_add_lt_of_contravariant_add_le, | |
| monoid_hom.from_opposite β add_monoid_hom.from_opposite, | |
| free_group.red.step β free_add_group.red.step, | |
| group.inv β add_group.neg, | |
| right.mul_lt_one β right.add_neg, | |
| finset.coe_one β finset.coe_zero, | |
| linear_ordered_cancel_comm_monoid.npow_zero' β linear_ordered_cancel_add_comm_monoid.nsmul_zero', | |
| fin_equiv_powers β fin_equiv_multiples, | |
| con.quotient.inhabited β add_con.quotient.inhabited, | |
| continuous_map.units_lift β continuous_map.add_units_lift, | |
| subsemigroup.comap_strict_mono_of_surjective β add_subsemigroup.comap_strict_mono_of_surjective, | |
| commute.function_commute_mul_left β add_commute.function_commute_add_left, | |
| ordered_cancel_comm_monoid.npow β ordered_cancel_add_comm_monoid.nsmul, | |
| punit β punit, | |
| finset.image_monoid_hom β finset.image_add_monoid_hom, | |
| cancel_monoid.to_left_cancel_monoid_injective β add_cancel_monoid.to_left_cancel_add_monoid_injective, | |
| finprod_mem_range β finsum_mem_range, | |
| subgroup.index_dvd_card β add_subgroup.index_dvd_card, | |
| dist_norm_norm_le' β dist_norm_norm_le, | |
| measure_theory.content.inner_content_pos_of_is_mul_left_invariant β measure_theory.content.inner_content_pos_of_is_add_left_invariant, | |
| monoid.exists_list_of_mem_closure β add_monoid.exists_list_of_mem_closure, | |
| finset.prod_eq_multiset_prod β finset.sum_eq_multiset_sum, | |
| submonoid.localization_map.lift_eq_iff β add_submonoid.localization_map.lift_eq_iff, | |
| continuous_map.inv_comp β continuous_map.neg_comp, | |
| subgroup.quotient_map_of_le β add_subgroup.quotient_map_of_le, | |
| free_group.red.step.bnot_rev β free_add_group.red.step.bnot_rev, | |
| units.right_of_mul β add_units.right_of_add, | |
| pi.multiset_prod_apply β pi.multiset_sum_apply, | |
| con.has_coe_to_fun β add_con.has_coe_to_fun, | |
| semigroup.to_is_associative β add_semigroup.to_is_associative, | |
| left_inverse_mul_right_inv_mul β left_inverse_add_right_neg_add, | |
| units.ext_iff β add_units.ext_iff, | |
| mul_action.to_perm_symm_apply β add_action.to_perm_symm_apply, | |
| is_simple_group.prime_card β is_simple_add_group.prime_card, | |
| localization.lift_on_mk β add_localization.lift_on_mk, | |
| equiv.inv β equiv.neg, | |
| norm_le_mul_norm_add β norm_le_add_norm_add, | |
| subgroup.coe_pow β add_subgroup.coe_nsmul, | |
| with_top.one_ne_top β with_top.zero_ne_top, | |
| ball_mul_singleton β ball_add_singleton, | |
| quotient_group.has_quotient.quotient.inhabited β quotient_add_group.has_quotient.quotient.inhabited, | |
| mul_div_mul_left_eq_div β add_sub_add_left_eq_sub, | |
| function.surjective.mul_one_class β function.surjective.add_zero_class, | |
| ulift.normed_comm_group β ulift.normed_add_comm_group, | |
| measure_theory.integral_mul_right_eq_self β measure_theory.integral_add_right_eq_self, | |
| measure_theory.is_mul_right_invariant_smul_nnreal β measure_theory.is_add_right_invariant_smul_nnreal, | |
| finprod_eq_prod_of_mul_support_subset β finsum_eq_sum_of_support_subset, | |
| measure_theory.measure_lintegral_div_measure β measure_theory.measure_lintegral_sub_measure, | |
| fintype.prod_subsingleton β fintype.sum_subsingleton, | |
| free_group.inhabited β free_add_group.inhabited, | |
| submonoid.mrange_inr' β add_submonoid.mrange_inr', | |
| filter.is_bounded_under_le_inv β filter.is_bounded_under_le_neg, | |
| mul_opposite.unop_smul β add_opposite.unop_vadd, | |
| lattice_ordered_comm_group.mabs_of_one_le β lattice_ordered_comm_group.abs_of_nonneg, | |
| con.map_apply β add_con.map_apply, | |
| monoid.not_is_torsion_iff β add_monoid.not_is_torsion_iff, | |
| set.decidable_mem_centralizer β set.decidable_mem_add_centralizer, | |
| mul_hom.coe_of_mdense β add_hom.coe_of_mdense, | |
| list_prod_mem β list_sum_mem, | |
| right_cancel_monoid.mul_one β add_right_cancel_monoid.add_zero, | |
| subgroup.left_transversals.diff_mul_diff β add_subgroup.left_transversals.diff_add_diff, | |
| lower_closure_smul β lower_closure_vadd, | |
| cancel_comm_monoid.mul_one β add_cancel_comm_monoid.add_zero, | |
| submonoid.mem_closure β add_submonoid.mem_closure, | |
| localization.induction_on β add_localization.induction_on, | |
| is_of_fin_order.finite_zpowers β is_of_fin_add_order.finite_zmultiples, | |
| Magma.concrete_category β AddMagma.concrete_category, | |
| free_semigroup.traverse_pure' β free_add_semigroup.traverse_pure', | |
| continuous_monoid_hom.comp_to_monoid_hom β continuous_add_monoid_hom.comp_to_add_monoid_hom, | |
| set.div_eq_empty β set.sub_eq_empty, | |
| ite_mul β ite_add, | |
| monoid_hom.inhabited β add_monoid_hom.inhabited, | |
| antilipschitz_with.mul_div_lipschitz_with β antilipschitz_with.add_sub_lipschitz_with, | |
| is_unit.mul_inv_cancel β is_add_unit.add_neg_cancel, | |
| finset.image_mul β finset.image_add, | |
| mul_hom.has_mul β add_hom.has_add, | |
| mul_smul_one β add_vadd_zero, | |
| measure_theory.measure.haar_measure_unique β measure_theory.measure.add_haar_measure_unique, | |
| nonempty_interval.coe_div_interval β nonempty_interval.coe_sub_interval, | |
| rootable_by β divisible_by, | |
| subgroup.gi β add_subgroup.gi, | |
| zpow_neg β neg_zsmul, | |
| part.has_mul β part.has_add, | |
| uniform_continuous.div β uniform_continuous.sub, | |
| div_inv_monoid.zpow_succ' β sub_neg_monoid.zsmul_succ', | |
| max_le_mul_of_one_le β max_le_add_of_nonneg, | |
| free_group.map_eq_lift β free_add_group.map_eq_lift, | |
| measure_theory.is_fundamental_domain.has_finite_integral_on_iff β measure_theory.is_add_fundamental_domain.has_finite_integral_on_iff, | |
| order_of_pos_iff β add_order_of_pos_iff, | |
| pi.has_exists_mul_of_le β pi.has_exists_add_of_le, | |
| submonoid.map_inl β add_submonoid.map_inl, | |
| finset.singleton_one_hom_apply β finset.singleton_zero_hom_apply, | |
| measure_theory.measure_pos_iff_nonempty_of_is_mul_left_invariant β measure_theory.measure_pos_iff_nonempty_of_is_add_left_invariant, | |
| order_eq_card_zpowers' β add_order_eq_card_zmultiples', | |
| comm_semigroup.mul_comm β add_comm_semigroup.add_comm, | |
| continuous_monoid_hom_class.map_one β continuous_add_monoid_hom_class.map_zero, | |
| quotient_group.lift_mk' β quotient_add_group.lift_mk', | |
| mul_opposite.cancel_monoid β add_opposite.cancel_add_monoid, | |
| mul_left_injective β add_left_injective, | |
| div_ne_one β sub_ne_zero, | |
| mul_opposite.has_continuous_smul β add_opposite.has_continuous_vadd, | |
| submonoid.localization_map.lift_eq β add_submonoid.localization_map.lift_eq, | |
| submonoid.inv_order_iso_apply_coe β add_submonoid.neg_order_iso_apply_coe, | |
| mul_inv_eq_one β add_neg_eq_zero, | |
| mul_lt_of_lt_one_left' β add_lt_of_neg_left, | |
| set.smul_set_sdiff β set.vadd_set_sdiff, | |
| subgroup.map_equiv_normalizer_eq β add_subgroup.map_equiv_normalizer_eq, | |
| div_le_one' β sub_nonpos, | |
| finset.smul_comm_class_finset β finset.vadd_comm_class_finset, | |
| homeomorph.coe_mul_left β homeomorph.coe_add_left, | |
| submonoid.top_equiv β add_submonoid.top_equiv, | |
| group.fg_iff' β add_group.fg_iff', | |
| measure_theory.measure_preserving_prod_mul_swap β measure_theory.measure_preserving_prod_add_swap, | |
| submonoid.disjoint_def' β add_submonoid.disjoint_def', | |
| set.univ_mul β set.univ_add, | |
| uniform_continuous.const_smul β uniform_continuous.const_vadd, | |
| linear_ordered_cancel_comm_monoid.mul_le_mul_left β linear_ordered_cancel_add_comm_monoid.add_le_add_left, | |
| mul_inv_lt_one_iff β add_neg_neg_iff, | |
| group_seminorm.coe_zero β add_group_seminorm.coe_zero, | |
| norm_eq_zero''' β norm_eq_zero', | |
| finprod_of_is_empty β finsum_of_is_empty, | |
| subsemigroup.copy β add_subsemigroup.copy, | |
| submonoid.coe_supr_of_directed β add_submonoid.coe_supr_of_directed, | |
| set.smul_set_symm_diff β set.vadd_set_symm_diff, | |
| group_topology.partial_order β add_group_topology.partial_order, | |
| with_one.map_comp β with_zero.map_comp, | |
| to_dual_inv β to_dual_neg, | |
| mul_is_right_regular_iff β add_is_add_right_regular_iff, | |
| subgroup.prod_mono_right β add_subgroup.prod_mono_right, | |
| con.lift_funext β add_con.lift_funext, | |
| free_monoid.hom_eq β free_add_monoid.hom_eq, | |
| monotone.mul_const' β monotone.add_const, | |
| multiset.prod_zero β multiset.sum_zero, | |
| finsupp.prod_single_index β finsupp.sum_single_index, | |
| list.continuous_prod β list.continuous_sum, | |
| probability_theory.ident_distrib.const_mul β probability_theory.ident_distrib.const_add, | |
| list.one_lt_prod_of_one_lt β list.sum_pos, | |
| subgroup.topological_closure_minimal β add_subgroup.topological_closure_minimal, | |
| ordered_cancel_comm_monoid.to_comm_monoid β ordered_cancel_add_comm_monoid.to_add_comm_monoid, | |
| subgroup.mem_left_transversals.to_equiv_apply β add_subgroup.mem_left_transversals.to_equiv_apply, | |
| finset.prod_lt_one β finset.sum_neg, | |
| function.surjective.div_inv_monoid β function.surjective.sub_neg_monoid, | |
| finset.prod_finset_product' β finset.sum_finset_product', | |
| measure_theory.content.outer_measure_pos_of_is_mul_left_invariant β measure_theory.content.outer_measure_pos_of_is_add_left_invariant, | |
| pi.is_scalar_tower' β pi.vadd_assoc_class', | |
| units.inv_eq_coe_inv β add_units.neg_eq_coe_neg, | |
| list.prod_take_succ β list.sum_take_succ, | |
| mul_action.mem_fixed_by β add_action.mem_fixed_by, | |
| uniform_continuous_div β uniform_continuous_sub, | |
| is_square.map β even.map, | |
| subgroup.mem_zpowers β add_subgroup.mem_zmultiples, | |
| finset.prod_Ico_eq_mul_inv β finset.sum_Ico_eq_add_neg, | |
| subgroup.index_infi_ne_zero β add_subgroup.index_infi_ne_zero, | |
| finset.union_div β finset.union_sub, | |
| pi.one_comp β pi.zero_comp, | |
| pi.mul_single_apply β pi.single_apply, | |
| subgroup.comap_map_eq_self β add_subgroup.comap_map_eq_self, | |
| subgroup.normal_mul β add_subgroup.normal_add, | |
| localization.npow β add_localization.nsmul, | |
| mul_equiv.Pi_congr_right_symm β add_equiv.Pi_congr_right_symm, | |
| units.mul_inv_cancel_left β add_units.add_neg_cancel_left, | |
| smooth_finprod β smooth_finsum, | |
| measure_theory.subgroup.smul_invariant_measure β measure_theory.subgroup.vadd_invariant_measure, | |
| finset.card_le_card_mul_left β finset.card_le_card_add_left, | |
| approx_order_of.image_pow_subset_of_coprime β approx_add_order_of.image_nsmul_subset_of_coprime, | |
| measure_theory.is_fundamental_domain.smul_invariant_measure_map β measure_theory.is_add_fundamental_domain.vadd_invariant_measure_map, | |
| set.finite.smul β set.finite.vadd, | |
| is_of_fin_order_iff_pow_eq_one β is_of_fin_add_order_iff_nsmul_eq_zero, | |
| monoid_hom.to_freiman_hom_coe β add_monoid_hom.to_freiman_hom_coe, | |
| filter.mul_pure β filter.add_pure, | |
| list.all_one_of_le_one_le_of_prod_eq_one β list.all_zero_of_le_zero_le_of_sum_eq_zero, | |
| CommGroup.epi_iff_surjective β AddCommGroup.epi_iff_surjective, | |
| order_monoid_hom_class.map_mul β order_add_monoid_hom_class.map_add, | |
| monoid_hom.ker_eq_bot_iff β add_monoid_hom.ker_eq_bot_iff, | |
| quotient_group.map β quotient_add_group.map, | |
| con.mul_ker_mk_eq β add_con.add_ker_mk_eq, | |
| filter.eventually_eq.smul β filter.eventually_eq.vadd, | |
| set.smul_mem_smul β set.vadd_mem_vadd, | |
| has_mul.to_covariant_class_right β has_add.to_covariant_class_right, | |
| edist_div_left β edist_sub_left, | |
| filter.ne_bot_inv_iff β filter.ne_bot_neg_iff, | |
| units.smul_def β add_units.vadd_def, | |
| le_mul_roth_number_product β le_add_roth_number_product, | |
| self_eq_mul_right β self_eq_add_right, | |
| commute.pow_pow β add_commute.nsmul_nsmul, | |
| subgroup.nontrivial_iff β add_subgroup.nontrivial_iff, | |
| subgroup.range_mem_left_transversals β add_subgroup.range_mem_left_transversals, | |
| subgroup.forall_mem_zpowers β add_subgroup.forall_mem_zmultiples, | |
| finset.prod_pow β finset.sum_nsmul, | |
| multiset_prod_mem β multiset_sum_mem, | |
| equiv.mul_left_symm_apply β equiv.add_left_symm_apply, | |
| lattice_ordered_comm_group.pos_of_one_le β lattice_ordered_comm_group.pos_of_nonneg, | |
| left_cancel_monoid.mul_assoc β add_left_cancel_monoid.add_assoc, | |
| measurable_equiv.shear_div_right β measurable_equiv.shear_sub_right, | |
| ordered_comm_monoid.mul_one β ordered_add_comm_monoid.add_zero, | |
| div_inv_one_monoid.zpow_zero' β sub_neg_zero_monoid.zsmul_zero', | |
| topological_group.to_has_continuous_div β topological_add_group.to_has_continuous_sub, | |
| div_inv_monoid.one_mul β sub_neg_monoid.zero_add, | |
| eq_div_iff_mul_eq'' β eq_sub_iff_add_eq', | |
| set.mul_indicator_mul_eq_right β set.indicator_add_eq_right, | |
| lt_mul_of_lt_of_one_le β lt_add_of_lt_of_nonneg, | |
| subgroup.is_complement'_comm β add_subgroup.is_complement'_comm, | |
| free_semigroup.lift β free_add_semigroup.lift, | |
| open_subgroup.mem_comap β open_add_subgroup.mem_comap, | |
| pi.smul_comm_class β pi.vadd_comm_class, | |
| set.mem_one β set.mem_zero, | |
| filter.tendsto.inv_inv β filter.tendsto.neg_neg, | |
| smul_comm_class.op_right β vadd_comm_class.op_right, | |
| ae_measurable.mul_const β ae_measurable.add_const, | |
| subgroup.multiset_prod_mem β add_subgroup.multiset_sum_mem, | |
| monoid.exp_eq_one_of_subsingleton β add_monoid.exp_eq_zero_of_subsingleton, | |
| right_coset_one β right_add_coset_zero, | |
| monoid_hom.eq_iff β add_monoid_hom.eq_iff, | |
| finprod_mem_inter_mul_support β finsum_mem_inter_support, | |
| mul_equiv.self_comp_symm β add_equiv.self_comp_symm, | |
| strict_mono.const_mul' β strict_mono.const_add, | |
| lt_or_lt_of_mul_lt_mul β lt_or_lt_of_add_lt_add, | |
| order_dual.division_monoid β order_dual.subtraction_monoid, | |
| subgroup.pow_index_mem β add_subgroup.nsmul_index_mem, | |
| fin.partial_prod_succ' β fin.partial_sum_succ', | |
| zpowers_hom β zmultiples_hom, | |
| equiv.mul_right_symm_apply β equiv.add_right_symm_apply, | |
| min_div_div_left' β min_sub_sub_left, | |
| monoid_hom.snd_comp_inl β add_monoid_hom.snd_comp_inl, | |
| subgroup.is_complement' β add_subgroup.is_complement', | |
| finprod_eq_prod_of_mul_support_to_finset_subset β finsum_eq_sum_of_support_to_finset_subset, | |
| eq_one_of_inv_eq' β eq_zero_of_neg_eq, | |
| pi.has_measurable_div β pi.has_measurable_sub, | |
| with_one.lift_one β with_zero.lift_zero, | |
| free_magma.to_free_semigroup_comp_of β free_add_magma.to_free_add_semigroup_comp_of, | |
| is_cancel_mul.mul_right_cancel β is_cancel_add.add_right_cancel, | |
| mul_hom.from_opposite β add_hom.from_opposite, | |
| finset.div_mem_div β finset.sub_mem_sub, | |
| ulift.has_smul β ulift.has_vadd, | |
| div_eq_mul_inv β sub_eq_add_neg, | |
| quotient_group.quotient_bot_apply β quotient_add_group.quotient_bot_apply, | |
| finset.subset_smul β finset.subset_vadd, | |
| con.congr β add_con.congr, | |
| free_group.red.refl β free_add_group.red.refl, | |
| monoid_hom.id β add_monoid_hom.id, | |
| submonoid.monotone_comap β add_submonoid.monotone_comap, | |
| measure_theory.prog_measurable.div β measure_theory.prog_measurable.sub, | |
| subgroup.has_zpow β add_subgroup.has_zsmul, | |
| mul_one_class.to_has_one β add_zero_class.to_has_zero, | |
| mul_opposite.edist_op β add_opposite.edist_op, | |
| multiset.strongly_measurable_prod' β multiset.strongly_measurable_sum', | |
| monoid.is_torsion.torsion_eq_top β add_monoid.is_torsion.torsion_eq_top, | |
| free_group.red β free_add_group.red, | |
| one_smul_eq_id β zero_vadd_eq_id, | |
| finset.prod_range_succ' β finset.sum_range_succ', | |
| subgroup.coe_prod β add_subgroup.coe_prod, | |
| group_norm_class.eq_one_of_map_eq_zero β add_group_norm_class.eq_zero_of_map_eq_zero, | |
| con.lift_on_units_mk β add_con.lift_on_add_units_mk, | |
| contravariant.to_right_cancel_semigroup β contravariant.to_right_cancel_add_semigroup, | |
| mul_le_cancellable.injective β add_le_cancellable.injective, | |
| subgroup.of_div β add_subgroup.of_sub, | |
| is_unit.mem_submonoid_iff β is_add_unit.mem_add_submonoid_iff, | |
| subgroup.center_to_submonoid β add_subgroup.center_to_add_submonoid, | |
| finset.mul_singleton β finset.add_singleton, | |
| topological_group.t3_space β topological_add_group.t3_space, | |
| equiv.mul_right β equiv.add_right, | |
| mul_equiv.symm β add_equiv.symm, | |
| mul_le_cancellable.inj β add_le_cancellable.inj, | |
| measure_theory.measure.haar.chaar_mem_haar_product β measure_theory.measure.haar.add_chaar_mem_add_haar_product, | |
| free_monoid.rec_on_one β free_add_monoid.rec_on_zero, | |
| free_group.reduce.min β free_add_group.reduce.min, | |
| equiv.inv_apply β equiv.neg_apply, | |
| mem_powers_iff_mem_range_order_of' β mem_multiples_iff_mem_range_add_order_of', | |
| algebra_map.coe_prod β algebra_map.coe_sum, | |
| free_group.red.step.diamond β free_add_group.red.step.diamond, | |
| one_hom.has_coe_to_fun β zero_hom.has_coe_to_fun, | |
| function.injective.comm_semigroup β function.injective.add_comm_semigroup, | |
| locally_constant.to_continuous_map_monoid_hom β locally_constant.to_continuous_map_add_monoid_hom, | |
| finset.prod_powerset β finset.sum_powerset, | |
| image_range_order_of β image_range_add_order_of, | |
| localization.r' β add_localization.r', | |
| mul_equiv.subsemigroup_map β add_equiv.subsemigroup_map, | |
| submonoid.mem_mk β add_submonoid.mem_mk, | |
| free_group.inv_mk β free_add_group.neg_mk, | |
| pi.one_apply β pi.zero_apply, | |
| function.periodic.smul β function.periodic.vadd, | |
| div_self' β sub_self, | |
| set.union_div β set.union_sub, | |
| subgroup.forall_zpowers β add_subgroup.forall_zmultiples, | |
| group_seminorm.to_fun_eq_coe β add_group_seminorm.to_fun_eq_coe, | |
| finset.prod_bij β finset.sum_bij, | |
| subgroup.mem_sup_left β add_subgroup.mem_sup_left, | |
| lt_div_comm β lt_sub_comm, | |
| group.closure_eq_mclosure β add_group.closure_eq_mclosure, | |
| finset.mul_subset_iff β finset.add_subset_iff, | |
| mul_action.orbit_eq_iff β add_action.orbit_eq_iff, | |
| subgroup.disjoint_iff_mul_eq_one β add_subgroup.disjoint_iff_add_eq_zero, | |
| smul_comm_class.smul_comm β vadd_comm_class.vadd_comm, | |
| canonically_ordered_monoid.has_exists_mul_of_le β canonically_ordered_add_monoid.has_exists_add_of_le, | |
| subgroup_class.coe_subtype β add_subgroup_class.coe_subtype, | |
| con.inf_def β add_con.inf_def, | |
| mul_eq_mul_iff_eq_and_eq β add_eq_add_iff_eq_and_eq, | |
| division_comm_monoid.zpow_neg' β subtraction_comm_monoid.zsmul_neg', | |
| pi.div_inv_monoid β pi.sub_neg_monoid, | |
| multiset.prod β multiset.sum, | |
| group_seminorm_class β add_group_seminorm_class, | |
| isometry_equiv.mul_right_apply β isometry_equiv.add_right_apply, | |
| order_dual.has_continuous_const_smul' β order_dual.has_continuous_const_vadd', | |
| subgroup.ker_subtype β add_subgroup.ker_subtype, | |
| group_topology.has_top β add_group_topology.has_top, | |
| finset.prod_insert_of_eq_one_if_not_mem β finset.sum_insert_of_eq_zero_if_not_mem, | |
| powers_eq_zpowers β multiples_eq_zmultiples, | |
| submonoid.coe_bot β add_submonoid.coe_bot, | |
| inv_div β neg_sub, | |
| div_div_eq_mul_div β sub_sub_eq_add_sub, | |
| is_square_sq β even_two_nsmul, | |
| mul_le_mul_right' β add_le_add_right, | |
| inv_mem_connected_component_one β neg_mem_connected_component_zero, | |
| subgroup.smul_apply_eq_smul_apply_inv_smul β add_subgroup.vadd_apply_eq_vadd_apply_neg_vadd, | |
| pi.mul_single_comm β pi.single_comm, | |
| monoid_hom.iterate_map_inv β add_monoid_hom.iterate_map_neg, | |
| inv_inj β neg_inj, | |
| filter.pure_one_hom_apply β filter.pure_zero_hom_apply, | |
| has_involutive_inv.to_has_inv β has_involutive_neg.to_has_neg, | |
| pi.comp_one β pi.comp_zero, | |
| cont_mdiff_finprod_cond β cont_mdiff_finsum_cond, | |
| set.mul_indicator_one' β set.indicator_zero', | |
| finset.prod_apply β finset.sum_apply, | |
| measure_theory.measure_preserving.mul_right β measure_theory.measure_preserving.add_right, | |
| set.mul_Interβ_subset β set.add_Interβ_subset, | |
| monoid_hom.lift_of_right_inverse_aux_comp_apply β add_monoid_hom.lift_of_right_inverse_aux_comp_apply, | |
| prod.swap_one β prod.swap_zero, | |
| subgroup.relindex_comap β add_subgroup.relindex_comap, | |
| nonempty_interval.has_one β nonempty_interval.has_zero, | |
| quotient_group.quotient_ker_equiv_of_right_inverse_symm_apply β quotient_add_group.quotient_ker_equiv_of_right_inverse_symm_apply, | |
| lipschitz_with.div β lipschitz_with.sub, | |
| closed_ball_mul_singleton β closed_ball_add_singleton, | |
| pi.mul_action β pi.add_action, | |
| continuous_on.nnnorm' β continuous_on.nnnorm, | |
| subsemigroup.has_top β add_subsemigroup.has_top, | |
| linear_ordered_cancel_comm_monoid.to_linear_ordered_comm_monoid β linear_ordered_cancel_add_comm_monoid.to_linear_ordered_add_comm_monoid, | |
| con.comap_rel β add_con.comap_rel, | |
| subgroup.coe_copy β add_subgroup.coe_copy, | |
| open_subgroup.coe_comap β open_add_subgroup.coe_comap, | |
| nonempty_interval.to_prod_pow β nonempty_interval.to_prod_nsmul, | |
| subgroup.zpowers_one_eq_bot β add_subgroup.zmultiples_zero_eq_bot, | |
| subgroup.top_equiv_symm_apply_coe β add_subgroup.top_equiv_symm_apply_coe, | |
| submonoid.mem_map_iff_mem β add_submonoid.mem_map_iff_mem, | |
| measure_theory.null_measurable_set.smul β measure_theory.null_measurable_set.vadd, | |
| mul_le_of_le_one_left' β add_le_of_nonpos_left, | |
| powers β multiples, | |
| group_filter_basis.nhds_one_eq β add_group_filter_basis.nhds_zero_eq, | |
| function.injective.cancel_monoid β function.injective.add_cancel_monoid, | |
| canonically_linear_ordered_monoid.to_canonically_ordered_monoid β canonically_linear_ordered_add_monoid.to_canonically_ordered_add_monoid, | |
| right_coset_mem_right_coset β right_add_coset_mem_right_add_coset, | |
| finprod_inv_distrib β finsum_neg_distrib, | |
| order_dual.ordered_comm_group β order_dual.ordered_add_comm_group, | |
| submonoid.localization_map.lift_mk'_spec β add_submonoid.localization_map.lift_mk'_spec, | |
| commute.units_coe β add_commute.add_units_coe, | |
| inv_one_class.to_has_inv β neg_zero_class.to_has_neg, | |
| set.mul_indicator_mul' β set.indicator_add', | |
| mul_opposite.op_inj β add_opposite.op_inj, | |
| strict_anti.mul' β strict_anti.add, | |
| set.subsingleton.mul_salem_spencer β set.subsingleton.add_salem_spencer, | |
| submonoid.coe_one β add_submonoid.coe_zero, | |
| subgroup.le_normalizer_of_normal β add_subgroup.le_normalizer_of_normal, | |
| measurable_equiv.div_left β measurable_equiv.sub_left, | |
| finset.mul_antidiagonal_mono_right β finset.add_antidiagonal_mono_right, | |
| is_group_hom.ker β is_add_group_hom.ker, | |
| monoid_hom.inl_apply β add_monoid_hom.inl_apply, | |
| finprod_mem_eq_prod_of_subset β finsum_mem_eq_sum_of_subset, | |
| submonoid.localization_map.lift_id β add_submonoid.localization_map.lift_id, | |
| finset.prod_sdiff_eq_div β finset.sum_sdiff_eq_sub, | |
| monoid_hom.to_fun_eq_coe β add_monoid_hom.to_fun_eq_coe, | |
| finset.one_subset β finset.zero_subset, | |
| comm_monoid.to_monoid β add_comm_monoid.to_add_monoid, | |
| quotient_group.ker_lift_injective β quotient_add_group.ker_lift_injective, | |
| normed_comm_group.cauchy_seq_iff β normed_add_comm_group.cauchy_seq_iff, | |
| cancel_monoid.mul β add_cancel_monoid.add, | |
| lt_of_pow_lt_pow' β lt_of_nsmul_lt_nsmul, | |
| cont_mdiff_at_finset_prod' β cont_mdiff_at_finset_sum', | |
| continuous_map.topological_group β continuous_map.topological_add_group, | |
| category_theory.iso.CommGroup_iso_to_mul_equiv_apply β category_theory.iso.AddCommGroup_iso_to_add_equiv_apply, | |
| commute.inv_right β add_commute.neg_right, | |
| group.fg_of_finite β add_group.fg_of_finite, | |
| continuous_finprod_cond β continuous_finsum_cond, | |
| commute.is_of_fin_order_mul β add_commute.is_of_fin_order_add, | |
| group.mem_closure_union_iff β add_group.mem_closure_union_iff, | |
| monoid_hom.range_restrict_surjective β add_monoid_hom.range_restrict_surjective, | |
| free_group.monad β free_add_group.monad, | |
| measurable_equiv.inv_to_equiv β measurable_equiv.neg_to_equiv, | |
| is_unit.mul β is_add_unit.add, | |
| free_magma.lift_comp_of β free_add_magma.lift_comp_of, | |
| finset.smul_finset_singleton β finset.vadd_finset_singleton, | |
| max_inv_inv' β max_neg_neg, | |
| list.alternating_prod_nil β list.alternating_sum_nil, | |
| semiconj_by.zpow_right β add_semiconj_by.zsmul_right, | |
| monoid_hom.inverse β add_monoid_hom.inverse, | |
| submonoid.localization_map.mk'_one β add_submonoid.localization_map.mk'_zero, | |
| is_unit_of_mul_is_unit_left β is_add_unit_of_add_is_add_unit_left, | |
| ordered_comm_monoid.mul_le_mul_left β ordered_add_comm_monoid.add_le_add_left, | |
| csupr_div β csupr_sub, | |
| mul_div_assoc β add_sub_assoc, | |
| mul_equiv.map_one β add_equiv.map_zero, | |
| list.head_mul_tail_prod_of_ne_nil β list.head_add_tail_sum_of_ne_nil, | |
| submonoid.inv_order_iso_symm_apply_coe β add_submonoid.neg_order_iso_symm_apply_coe, | |
| free_group.reduce.exact β free_add_group.reduce.exact, | |
| list.prod_take_of_fn β list.sum_take_of_fn, | |
| mul_equiv.has_coe_to_fun β add_equiv.has_coe_to_fun, | |
| fin.prod_univ_eq_prod_range β fin.sum_univ_eq_sum_range, | |
| zpow_neg_coe_of_pos β zsmul_neg_coe_of_pos, | |
| interval.mul_one_class β interval.add_zero_class, | |
| monoid.exponent_eq_zero_iff β add_monoid.exponent_eq_zero_iff, | |
| filter.germ.div_inv_monoid β filter.germ.sub_neg_monoid, | |
| mul_opposite.continuous_unop β add_opposite.continuous_unop, | |
| division_monoid.one β subtraction_monoid.zero, | |
| comm_group.div_eq_mul_inv β add_comm_group.sub_eq_add_neg, | |
| free_monoid.map_comp β free_add_monoid.map_comp, | |
| free_magma_assoc_quotient_equiv β free_add_magma_assoc_quotient_equiv, | |
| mul_hom.prod_unique β add_hom.prod_unique, | |
| order_dual.contravariant_class_mul_lt β order_dual.contravariant_class_add_lt, | |
| set.image_op_mul β set.image_op_add, | |
| homeomorph.div_right_apply β homeomorph.sub_right_apply, | |
| mul_opposite.op_eq_one_iff β add_opposite.op_eq_zero_iff, | |
| has_continuous_mul.has_measurable_mul β has_continuous_add.has_measurable_add, | |
| commute.is_unit_mul_iff β add_commute.is_add_unit_add_iff, | |
| fintype.prod_eq_mul β fintype.sum_eq_add, | |
| measure_theory.is_fundamental_domain.lintegral_eq_tsum β measure_theory.is_add_fundamental_domain.lintegral_eq_tsum, | |
| is_group_hom β is_add_group_hom, | |
| subgroup.noncomm_pi_coprod_mul_single β add_subgroup.noncomm_pi_coprod_single, | |
| multiset.prod_homβ β multiset.sum_homβ, | |
| nat.prime.prod_proper_divisors β nat.prime.sum_proper_divisors, | |
| mul_div_div_cancel β add_sub_sub_cancel, | |
| monoid.powers_fg β add_monoid.multiples_fg, | |
| ordered_comm_monoid.npow_zero' β ordered_add_comm_monoid.nsmul_zero', | |
| prod.comm_monoid β prod.add_comm_monoid, | |
| zpow_le_zpow β zsmul_le_zsmul, | |
| subgroup.opposite_equiv_symm_apply_coe β add_subgroup.opposite_equiv_symm_apply_coe, | |
| subgroup.mem_left_transversals.inv_to_fun_mul_mem β add_subgroup.mem_left_transversals.neg_to_fun_add_mem, | |
| coe_nnnorm' β coe_nnnorm, | |
| monoid.exponent_min β add_monoid.exponent_min, | |
| units.eq_iff β add_units.eq_iff, | |
| mul_equiv.coe_prod_comm β add_equiv.coe_prod_comm, | |
| set.smul_set_Interβ_subset β set.vadd_set_Interβ_subset, | |
| inducing.has_continuous_mul β inducing.has_continuous_add, | |
| singleton_mul_mem_nhds β singleton_add_mem_nhds, | |
| zpow_bit0 β bit0_zsmul, | |
| finset.noncomm_prod_mul_single β finset.noncomm_sum_single, | |
| mul_opposite.op_smul β add_opposite.op_vadd, | |
| has_smul.comp.is_scalar_tower β has_vadd.comp.vadd_assoc_class, | |
| equiv.div_left_apply β equiv.sub_left_apply, | |
| pi.eval_mul_hom β pi.eval_add_hom, | |
| lt_mul_inv_iff_mul_lt β lt_add_neg_iff_add_lt, | |
| is_regular β is_add_regular, | |
| pi.mul_single_op β pi.single_op, | |
| Semigroup.has_forget_to_Magma β AddSemigroup.has_forget_to_AddMagma, | |
| continuous_map.coe_one β continuous_map.coe_zero, | |
| subgroup.smul_opposite_image_mul_preimage β add_subgroup.vadd_opposite_image_add_preimage, | |
| equiv.has_pow β equiv.has_smul, | |
| submonoid.localization_map.mk'_self β add_submonoid.localization_map.mk'_self, | |
| right.inv_lt_one_iff β right.neg_neg_iff, | |
| units.copy β add_units.copy, | |
| function.one_le_const_of_one_le β function.const_nonneg_of_nonneg, | |
| subsemigroup.top_equiv_to_mul_hom β add_subsemigroup.top_equiv_to_add_hom, | |
| units.inv_mul_of_eq β add_units.neg_add_of_eq, | |
| measure_theory.quasi_measure_preserving_inv β measure_theory.quasi_measure_preserving_neg, | |
| is_unit.mul_right_cancel β is_add_unit.add_right_cancel, | |
| mul_mul_hom_apply β add_add_hom_apply, | |
| one_hom.ext_iff β zero_hom.ext_iff, | |
| with_bot.coe_eq_one β with_bot.coe_eq_zero, | |
| subgroup.le_pi_iff β add_subgroup.le_pi_iff, | |
| subgroup_class.coe_inclusion β add_subgroup_class.coe_inclusion, | |
| multiset.prod_sum β multiset.sum_sum, | |
| free_group.lift.range_eq_closure β free_add_group.lift.range_eq_closure, | |
| mul_equiv.to_Mon_iso_inv β add_equiv.to_AddMon_iso_neg, | |
| norm_eq_zero'' β norm_eq_zero, | |
| mul_opposite.unop β add_opposite.unop, | |
| order_dual.has_pow' β order_dual.has_smul', | |
| mul_hom.prod_map_def β add_hom.prod_map_def, | |
| commutative_of_cyclic_center_quotient β commutative_of_add_cyclic_center_quotient, | |
| bounded_continuous_function.one_comp_continuous β bounded_continuous_function.zero_comp_continuous, | |
| uniform_group.mk' β uniform_add_group.mk', | |
| commute.zpow_zpow_self β add_commute.zsmul_zsmul_self, | |
| has_lipschitz_mul.lipschitz_mul β has_lipschitz_add.lipschitz_add, | |
| submonoid.map_id β add_submonoid.map_id, | |
| mul_equiv.submonoid_congr β add_equiv.add_submonoid_congr, | |
| submonoid.coe_inv β add_submonoid.coe_neg, | |
| subgroup.mem_supr_of_mem β add_subgroup.mem_supr_of_mem, | |
| free_monoid.to_list_mul β free_add_monoid.to_list_add, | |
| pow_card_eq_one β card_nsmul_eq_zero, | |
| measure_theory.simple_func.range_one β measure_theory.simple_func.range_zero, | |
| le_mul_of_le_of_one_le β le_add_of_le_of_nonneg, | |
| lattice_ordered_comm_group.pos_le_one_iff β lattice_ordered_comm_group.pos_nonpos_iff, | |
| finset.inv_singleton β finset.neg_singleton, | |
| finset.prod_lt_prod_of_nonempty' β finset.sum_lt_sum_of_nonempty, | |
| group_seminorm.inhabited β add_group_seminorm.inhabited, | |
| mul_hom_class.map_mul β add_hom_class.map_add, | |
| monoid_hom.fintype_mrange β add_monoid_hom.fintype_mrange, | |
| div_lt_div_left' β sub_lt_sub_left, | |
| has_compact_mul_support.mono' β has_compact_support.mono', | |
| continuous_monoid_hom.to_continuous_map β continuous_add_monoid_hom.to_continuous_map, | |
| inv.is_group_hom β neg.is_add_group_hom, | |
| measure_theory.measure.haar β measure_theory.measure.add_haar, | |
| monoid_hom.normal_ker β add_monoid_hom.normal_ker, | |
| exists_ne_one_of_finprod_mem_ne_one β exists_ne_zero_of_finsum_mem_ne_zero, | |
| finset.prod_empty β finset.sum_empty, | |
| submonoid.bot_or_exists_ne_one β add_submonoid.bot_or_exists_ne_zero, | |
| submonoid.exists_multiset_of_mem_closure β add_submonoid.exists_multiset_of_mem_closure, | |
| mul_left_embedding_eq_mul_right_embedding β add_left_embedding_eq_add_right_embedding, | |
| subgroup.is_commutative.comm_group β add_subgroup.is_commutative.add_comm_group, | |
| multiset.ae_measurable_prod β multiset.ae_measurable_sum, | |
| mul_right_embedding_apply β add_right_embedding_apply, | |
| filter.le_div_iff β filter.le_sub_iff, | |
| multiset.single_le_prod β multiset.single_le_sum, | |
| order_monoid_hom.coe_mk β order_add_monoid_hom.coe_mk, | |
| con.mul β add_con.add, | |
| powers_hom β multiples_hom, | |
| map_prod β map_sum, | |
| measure_theory.measure_eq_zero_iff_eq_empty_of_smul_invariant β measure_theory.measure_eq_zero_iff_eq_empty_of_vadd_invariant, | |
| CommMon.concrete_category β AddCommMon.concrete_category, | |
| subgroup.subgroup_normal.mem_comm β add_subgroup.subgroup_normal.mem_comm, | |
| free_magma.lift β free_add_magma.lift, | |
| measure_theory.measure.measure_preimage_inv β measure_theory.measure.measure_preimage_neg, | |
| comm_semigroup β add_comm_semigroup, | |
| set.smul_set_inter β set.vadd_set_inter, | |
| finset.smul_card_le β finset.vadd_card_le, | |
| tendsto_norm_div_self β tendsto_norm_sub_self, | |
| freiman_hom.mk_coe β add_freiman_hom.mk_coe, | |
| orbit_subgroup_eq_right_coset β orbit_add_subgroup_eq_right_coset, | |
| inv_involutive β neg_involutive, | |
| is_unit.mul_left_inj β is_add_unit.add_left_inj, | |
| inv_mul_lt_one_iff β neg_add_neg_iff, | |
| submonoid.comap_le_comap_iff_of_surjective β add_submonoid.comap_le_comap_iff_of_surjective, | |
| monoid_hom.map_invβ β add_monoid_hom.map_invβ, | |
| semigroup.opposite_smul_comm_class β add_semigroup.opposite_vadd_comm_class, | |
| zpow_rec β zsmul_rec, | |
| pow_sub β sub_nsmul, | |
| compact_covered_by_mul_left_translates β compact_covered_by_add_left_translates, | |
| prod.nnorm_def β prod.nnnorm_def', | |
| of_dual_smul β of_dual_vadd, | |
| list.perm.prod_eq' β list.perm.sum_eq', | |
| finset.prod_lt_prod' β finset.sum_lt_sum, | |
| left.mul_lt_one_of_le_of_lt β left.add_neg_of_nonpos_of_neg, | |
| with_top.coe_lt_one β with_top.coe_lt_zero, | |
| measurable.const_mul β measurable.const_add, | |
| Mon.filtered_colimits.colimit_desc β AddMon.filtered_colimits.colimit_desc, | |
| filter.tendsto.div_div β filter.tendsto.sub_sub, | |
| multiset.prod_induction_nonempty β multiset.sum_induction_nonempty, | |
| is_unit.map β is_add_unit.map, | |
| Mon β AddMon, | |
| powers.self_mem β multiples.self_mem, | |
| finset.nonempty.smul_finset β finset.nonempty.vadd_finset, | |
| multiset.prod_map_one β multiset.sum_map_zero, | |
| con.has_inv β add_con.has_neg, | |
| smul_mem_nhds β vadd_mem_nhds, | |
| mul_le_of_le_inv_mul β add_le_of_le_neg_add, | |
| mul_equiv.map_finprod β add_equiv.map_finsum, | |
| set.smul_Union β set.vadd_Union, | |
| submonoid.comap_top β add_submonoid.comap_top, | |
| finset.image_monoid_hom_apply β finset.image_add_monoid_hom_apply, | |
| mul_mem_class.coe_mul β add_mem_class.coe_add, | |
| seminormed_comm_group.of_mul_dist β seminormed_add_comm_group.of_add_dist, | |
| con.map_gen β add_con.map_gen, | |
| continuous_map.comm_monoid β continuous_map.add_comm_monoid, | |
| measure_theory.measure.haar.chaar_empty β measure_theory.measure.haar.add_chaar_empty, | |
| subgroup.smul_to_equiv β add_subgroup.vadd_to_equiv, | |
| path.mul β path.add, | |
| mul_rotate' β add_rotate', | |
| group_topology.complete_semilattice_Inf β add_group_topology.complete_semilattice_Inf, | |
| eq_mul_of_div_eq' β eq_add_of_sub_eq', | |
| subgroup_class.to_comm_group β add_subgroup_class.to_add_comm_group, | |
| uniform_on_fun.monoid β uniform_on_fun.add_monoid, | |
| free_group.red.cons_nil_iff_singleton β free_add_group.red.cons_nil_iff_singleton, | |
| is_periodic_pt_mul_iff_pow_eq_one β is_periodic_pt_add_iff_nsmul_eq_zero, | |
| commute.list_prod_left β add_commute.list_sum_left, | |
| subgroup.prod_le_iff β add_subgroup.prod_le_iff, | |
| order_monoid_hom.comp_one β order_add_monoid_hom.comp_zero, | |
| set.set_smul_subset_set_smul_iff β set.set_vadd_subset_set_vadd_iff, | |
| localization.away β add_localization.away, | |
| finset.prod_congr_set β finset.sum_congr_set, | |
| ultrafilter.semigroup β ultrafilter.add_semigroup, | |
| mul_equiv.coe_monoid_hom_trans β add_equiv.coe_add_monoid_hom_trans, | |
| mul_equiv.to_CommGroup_iso_inv β add_equiv.to_AddCommGroup_iso_neg, | |
| left.self_le_inv β left.self_le_neg, | |
| free_monoid.to_list_of_mul β free_add_monoid.to_list_of_add, | |
| smooth_on.inv β smooth_on.neg, | |
| mul_sup β add_sup, | |
| mul_hom.mul_comp β add_hom.add_comp, | |
| con_gen.rel β add_con_gen.rel, | |
| linear_ordered_comm_group.zpow_succ' β linear_ordered_add_comm_group.zsmul_succ', | |
| covariant_swap_mul_lt_of_covariant_mul_lt β covariant_swap_add_lt_of_covariant_add_lt, | |
| linear_ordered_comm_group.mul β linear_ordered_add_comm_group.add, | |
| measure_theory.content.is_mul_left_invariant_inner_content β measure_theory.content.is_add_left_invariant_inner_content, | |
| set.inv_mem_Ioc_iff β set.neg_mem_Ioc_iff, | |
| subgroup.relindex_eq_zero_of_le_left β add_subgroup.relindex_eq_zero_of_le_left, | |
| linear_ordered_comm_monoid.npow_zero' β linear_ordered_add_comm_monoid.nsmul_zero', | |
| localization.away.mul_equiv_of_quotient β add_localization.away.add_equiv_of_quotient, | |
| mul_equiv.subgroup_map β add_equiv.add_subgroup_map, | |
| set.preimage_mul_right_singleton β set.preimage_add_right_singleton, | |
| measure_theory.measure_preserving_prod_mul β measure_theory.measure_preserving_prod_add, | |
| finsupp.prod_filter_mul_prod_filter_not β finsupp.sum_filter_add_sum_filter_not, | |
| finset.is_unit_coe β finset.is_add_unit_coe, | |
| subgroup.pi β add_subgroup.pi, | |
| antitone.mul_strict_anti' β antitone.add_strict_anti, | |
| subgroup_class.inclusion β add_subgroup_class.inclusion, | |
| finset.smul_finset_subset_smul_finset_iff β finset.vadd_finset_subset_vadd_finset_iff, | |
| eq_div_iff_mul_eq' β eq_sub_iff_add_eq, | |
| finset.prod_Ico_add' β finset.sum_Ico_add', | |
| finset.prod_erase_mul β finset.sum_erase_add, | |
| subgroup.mem_left_transversals_iff_exists_unique_quotient_mk'_eq β add_subgroup.mem_left_transversals_iff_exists_unique_quotient_mk'_eq, | |
| category_theory.discrete.monoidal_functor_to_lax_monoidal_functor_to_functor_obj_as β discrete.add_monoidal_functor_to_lax_monoidal_functor_to_functor_obj_as, | |
| free_group.red.step.sublist β free_add_group.red.step.sublist, | |
| mem_emetric_ball_one_iff β mem_emetric_ball_zero_iff, | |
| continuous.exists_forall_le_of_has_compact_mul_support β continuous.exists_forall_le_of_has_compact_support, | |
| mem_left_coset_left_coset β mem_left_add_coset_left_add_coset, | |
| mul_equiv_iso_CommGroup_iso β add_equiv_iso_AddCommGroup_iso, | |
| division_monoid β subtraction_monoid, | |
| finset.smul_subset_smul_left β finset.vadd_subset_vadd_left, | |
| mul_equiv.ext_iff β add_equiv.ext_iff, | |
| set_like.smul_def β set_like.vadd_def, | |
| is_unit.mul_div_mul_left β is_add_unit.add_sub_add_left, | |
| set.one_le_mul_indicator β set.indicator_nonneg, | |
| filter.tendsto.smul β filter.tendsto.vadd, | |
| group.mul_left_inv β add_group.add_left_neg, | |
| map_mul_map_eq_map_mul_map β map_add_map_eq_map_add_map, | |
| order_dual.covariant_class_mul_lt β order_dual.covariant_class_add_lt, | |
| smul_eq_self_of_preimage_zpow_eq_self β vadd_eq_self_of_preimage_zsmul_eq_self, | |
| strict_anti.const_mul' β strict_anti.const_add, | |
| subgroup.relindex_infi_ne_zero β add_subgroup.relindex_infi_ne_zero, | |
| finset.pow_eq_prod_const β finset.nsmul_eq_sum_const, | |
| div_mul_eq_div_mul_one_div β sub_add_eq_sub_add_zero_sub, | |
| has_lipschitz_mul.C β has_lipschitz_add.C, | |
| mul_opposite.edist_unop β add_opposite.edist_unop, | |
| submonoid.localization_map.map_right_cancel β add_submonoid.localization_map.map_right_cancel, | |
| interval.has_one β interval.has_zero, | |
| order_dual.cancel_monoid β order_dual.cancel_add_monoid, | |
| smooth_mul β smooth_add, | |
| finsupp.prod_ite_eq' β finsupp.sum_ite_eq', | |
| measure_theory.integrable_comp_div_left β measure_theory.integrable_comp_sub_left, | |
| mul_action.orbit.coe_smul β add_action.orbit.coe_vadd, | |
| mul_equiv.op β add_equiv.op, | |
| finprod_eq_if β finsum_eq_if, | |
| inf_eq_bot_of_coprime β add_inf_eq_bot_of_coprime, | |
| multiset.prod_map_eq_pow_single β multiset.sum_map_eq_nsmul_single, | |
| norm_mul_le' β norm_add_le, | |
| measure_theory.measure_mul_lintegral_eq β measure_theory.measure_add_lintegral_eq, | |
| tendsto_inv_nhds_within_Ici_inv β tendsto_neg_nhds_within_Ici_neg, | |
| is_cyclic β is_add_cyclic, | |
| set.smul_set_singleton β set.vadd_set_singleton, | |
| is_unit_iff_exists_inv' β is_add_unit_iff_exists_neg', | |
| submonoid.mem_sup_left β add_submonoid.mem_sup_left, | |
| set.smul_set_Unionβ β set.vadd_set_Unionβ, | |
| submonoid.localization_map.of_mul_equiv_of_dom β add_submonoid.localization_map.of_add_equiv_of_dom, | |
| finset.multiplicative_energy_mono β finset.additive_energy_mono, | |
| measure_theory.is_fundamental_domain.is_mul_left_invariant_map β measure_theory.is_add_fundamental_domain.is_add_left_invariant_map, | |
| mul_action.orbit_rel.quotient.orbit_eq_orbit_out β add_action.orbit_rel.quotient.orbit_eq_orbit_out, | |
| of_lex_pow β of_lex_smul, | |
| free_monoid.of_list_map β free_add_monoid.of_list_map, | |
| filter.pure_mul β filter.pure_add, | |
| group.fintype_of_ker_of_codom β add_group.fintype_of_ker_of_codom, | |
| mul_hom.coprod_apply β add_hom.coprod_apply, | |
| continuous_on.const_smul β continuous_on.const_vadd, | |
| group.to_monoid β add_group.to_add_monoid, | |
| Group.mono_iff_injective β AddGroup.mono_iff_injective, | |
| units.continuous_coe β add_units.continuous_coe, | |
| mul_action.comp_hom β add_action.comp_hom, | |
| is_group_hom.trivial_ker_iff_eq_one β is_add_group_hom.trivial_ker_iff_eq_zero, | |
| finset.prod_extend_by_one β finset.sum_extend_by_zero, | |
| mul_equiv.arrow_congr β add_equiv.arrow_congr, | |
| le_of_mul_le_right β le_of_add_le_right, | |
| freiman_hom.cancel_left_on β add_freiman_hom.cancel_left_on, | |
| right.self_le_inv β right.self_le_neg, | |
| div_inv_monoid.inv β sub_neg_monoid.neg, | |
| finset.mul_antidiagonal_mono_left β finset.add_antidiagonal_mono_left, | |
| subsemigroup.map_le_of_le_comap β add_subsemigroup.map_le_of_le_comap, | |
| Mon.limit_Ο_monoid_hom β AddMon.limit_Ο_add_monoid_hom, | |
| metric.bounded.exists_pos_norm_le' β metric.bounded.exists_pos_norm_le, | |
| group_topology.coinduced_continuous β add_group_topology.coinduced_continuous, | |
| is_compact.mul_closed_ball_one β is_compact.add_closed_ball_zero, | |
| has_continuous_mul_infi β has_continuous_add_infi, | |
| order_of_eq_of_pow_and_pow_div_prime β add_order_of_eq_of_nsmul_and_div_prime_nsmul, | |
| mul_salem_spencer.image β add_salem_spencer.image, | |
| mul_equiv.inv β add_equiv.neg, | |
| submonoid.mem_prod β add_submonoid.mem_prod, | |
| monoid_hom.comap_mker β add_monoid_hom.comap_mker, | |
| mul_action.orbit_zpowers_equiv β add_action.orbit_zmultiples_equiv, | |
| not_mem_mul_tsupport_iff_eventually_eq β not_mem_tsupport_iff_eventually_eq, | |
| ordered_comm_monoid.one β ordered_add_comm_monoid.zero, | |
| con.induction_on β add_con.induction_on, | |
| set.finite.smul_set β set.finite.vadd_set, | |
| has_compact_mul_support.intro β has_compact_support.intro, | |
| subgroup.injective_noncomm_pi_coprod_of_independent β add_subgroup.injective_noncomm_pi_coprod_of_independent, | |
| free_monoid.of_list_join β free_add_monoid.of_list_join, | |
| free_magma.mul_map_seq β free_add_magma.add_map_seq, | |
| measurable.smul β measurable.vadd, | |
| one_hom.comp_apply β zero_hom.comp_apply, | |
| function.extend_one β function.extend_zero, | |
| mem_closure_one_iff_norm β mem_closure_zero_iff_norm, | |
| ulift.right_cancel_semigroup β ulift.add_right_cancel_semigroup, | |
| comm_monoid.mul β add_comm_monoid.add, | |
| filter.smul_comm_class_filter' β filter.vadd_comm_class_filter', | |
| comm_semigroup.is_left_cancel_mul.to_is_cancel_mul β add_comm_semigroup.is_left_cancel_add.to_is_cancel_add, | |
| inv_comp_inv β neg_comp_neg, | |
| subgroup.closure_induction_right β add_subgroup.closure_induction_right, | |
| multiset.noncomm_prod_cons β multiset.noncomm_sum_cons, | |
| con.ext' β add_con.ext', | |
| continuous_norm' β continuous_norm, | |
| function.embedding.mul_action β function.embedding.add_action, | |
| monoid_hom.comp_hom_apply_apply β add_monoid_hom.comp_hom_apply_apply, | |
| homeomorph.shear_mul_right_coe β homeomorph.shear_add_right_coe, | |
| submonoid.localization_map.to_map β add_submonoid.localization_map.to_map, | |
| norm_prod_le β norm_sum_le, | |
| set.div_Interβ_subset β set.sub_Interβ_subset, | |
| finset.has_mul β finset.has_add, | |
| is_lub.inv β is_lub.neg, | |
| subgroup_class.inclusion_right β add_subgroup_class.inclusion_right, | |
| free_group.to_word_eq_nil_iff β free_add_group.to_word_eq_nil_iff, | |
| interval.bot_pow β interval.bot_nsmul, | |
| free_semigroup.rec_on_mul β free_add_semigroup.rec_on_add, | |
| inv_one_class.to_has_one β neg_zero_class.to_has_zero, | |
| lattice_ordered_comm_group.mabs_mul_le β lattice_ordered_comm_group.abs_add_le, | |
| submonoid.mem_carrier β add_submonoid.mem_carrier, | |
| subsemigroup.coe_map β add_subsemigroup.coe_map, | |
| part.some_div_some β part.some_sub_some, | |
| finprod_mem_union β finsum_mem_union, | |
| subgroup.mem_right_transversals.mul_inv_to_fun_mem β add_subgroup.mem_right_transversals.add_neg_to_fun_mem, | |
| measure_theory.measure.haar.prehaar_mem_haar_product β measure_theory.measure.haar.add_prehaar_mem_add_haar_product, | |
| continuous_at.inv β continuous_at.neg, | |
| _private.2630859353.mul_normal_aux β _private.2630859353.add_normal_aux, | |
| group.to_cancel_monoid β add_group.to_cancel_add_monoid, | |
| measure_theory.is_fundamental_domain.mk' β measure_theory.is_add_fundamental_domain.mk', | |
| semiconj_by.units_of_coe β add_semiconj_by.add_units_of_coe, | |
| prod.ordered_comm_monoid β prod.ordered_add_comm_monoid, | |
| submonoid.le_prod_iff β add_submonoid.le_prod_iff, | |
| measure_theory.integral_eq_zero_of_mul_right_eq_neg β measure_theory.integral_eq_zero_of_add_right_eq_neg, | |
| tendsto_one_iff_norm_tendsto_one β tendsto_zero_iff_norm_tendsto_zero, | |
| monoid.pow_exponent_eq_one β add_monoid.exponent_nsmul_eq_zero, | |
| prod.snd_one β prod.snd_zero, | |
| with_top.coe_one β with_top.coe_zero, | |
| division_monoid.div β subtraction_monoid.sub, | |
| is_subgroup.trivial β is_add_subgroup.trivial, | |
| smooth_map.monoid β smooth_map.add_monoid, | |
| function.injective.map_at_top_finset_prod_eq β function.injective.map_at_top_finset_sum_eq, | |
| set.mem_center_iff β set.mem_add_center, | |
| mul_equiv.apply_eq_iff_symm_apply β add_equiv.apply_eq_iff_symm_apply, | |
| set.one_mem_center β set.zero_mem_add_center, | |
| finset.coe_div β finset.coe_sub, | |
| has_exists_mul_of_le.exists_mul_of_le β has_exists_add_of_le.exists_add_of_le, | |
| is_unit.mul_inv_cancel_right β is_add_unit.add_neg_cancel_right, | |
| subgroup.saturated β add_subgroup.saturated, | |
| ulift.left_cancel_monoid β ulift.add_left_cancel_monoid, | |
| set.finite.mul β set.finite.add, | |
| left.inv_lt_one_iff β left.neg_neg_iff, | |
| set.inv_subset β set.neg_subset, | |
| min_mul_max β min_add_max, | |
| con.eq β add_con.eq, | |
| finset.prod_eq_prod_iff_of_le β finset.sum_eq_sum_iff_of_le, | |
| free_magma.lift_of β free_add_magma.lift_of, | |
| measure_theory.is_fundamental_domain.restrict_restrict β measure_theory.is_add_fundamental_domain.restrict_restrict, | |
| linear_ordered_comm_group.one β linear_ordered_add_comm_group.zero, | |
| con.ker_lift_range_eq β add_con.ker_lift_range_eq, | |
| filter.smul_filter_ne_bot_iff β filter.vadd_filter_ne_bot_iff, | |
| is_lower_set.inv β is_lower_set.neg, | |
| Group.ker_eq_bot_of_mono β AddGroup.ker_eq_bot_of_mono, | |
| mul_equiv.is_mul_hom β add_equiv.is_add_hom, | |
| set.smul_comm_class_set'' β set.vadd_comm_class_set'', | |
| submonoid.comap_inf_map_of_injective β add_submonoid.comap_inf_map_of_injective, | |
| is_unit.mul_inv_eq_one β is_add_unit.add_neg_eq_zero, | |
| is_simple_group β is_simple_add_group, | |
| free_group.lift.range_le β free_add_group.lift.range_le, | |
| free_group.decidable_eq β free_add_group.decidable_eq, | |
| continuous_monoid_hom_class.map_mul β continuous_add_monoid_hom_class.map_add, | |
| multiset.one_le_prod_of_one_le β multiset.sum_nonneg, | |
| one_hom.comp_one β zero_hom.comp_zero, | |
| set.finset_prod_subset_finset_prod β set.finset_sum_subset_finset_sum, | |
| is_unit.inv_mul_cancel_right β is_add_unit.neg_add_cancel_right, | |
| has_continuous_inv_Inf β has_continuous_neg_Inf, | |
| submonoid.localization_map.mul_equiv_of_localizations_apply β add_submonoid.localization_map.add_equiv_of_localizations_apply, | |
| is_subgroup β is_add_subgroup, | |
| pow_one β one_nsmul, | |
| prod.smul_fst β prod.vadd_fst, | |
| group_topology.coinduced β add_group_topology.coinduced, | |
| finprod_mem_insert β finsum_mem_insert, | |
| multiset.prod_add β multiset.sum_add, | |
| commute.inv_mul_cancel_assoc β add_commute.neg_add_cancel_assoc, | |
| finset.prod_subtype β finset.sum_subtype, | |
| units.comm_group β add_units.add_comm_group, | |
| group_seminorm.to_seminormed_group β add_group_seminorm.to_seminormed_add_group, | |
| dense_range_smul β dense_range_vadd, | |
| subset_interior_div_right β subset_interior_sub_right, | |
| div_inv_one_monoid.to_div_inv_monoid β sub_neg_zero_monoid.to_sub_neg_monoid, | |
| set.mul_indicator_const_preimage_eq_union β set.indicator_const_preimage_eq_union, | |
| finset.mul_action β finset.add_action, | |
| lattice_ordered_comm_group.pos_mul_neg β lattice_ordered_comm_group.pos_add_neg, | |
| quotient_group.nhds_one_is_countably_generated β quotient_add_group.nhds_zero_is_countably_generated, | |
| free_semigroup.traverse_mul β free_add_semigroup.traverse_add, | |
| submonoid.coe_subtype β add_submonoid.coe_subtype, | |
| is_unit.exists_right_inv β is_add_unit.exists_neg, | |
| is_monoid_hom.to_is_mul_hom β is_add_monoid_hom.to_is_add_hom, | |
| commute.pow_left β add_commute.nsmul_left, | |
| is_unit.coe_inv_mul β is_add_unit.coe_neg_add, | |
| mul_salem_spencer_singleton β add_salem_spencer_singleton, | |
| group.fg_of_surjective β add_group.fg_of_surjective, | |
| con.mul_ker β add_con.add_ker, | |
| finset.is_pwo_support_mul_antidiagonal β finset.is_pwo_support_add_antidiagonal, | |
| quotient_group.map_id_apply β quotient_add_group.map_id_apply, | |
| finset.nonempty.of_mul_left β finset.nonempty.of_add_left, | |
| set_like.has_smul β set_like.has_vadd, | |
| prod.comm_group β prod.add_comm_group, | |
| list.prod_eq_one_iff β list.sum_eq_zero_iff, | |
| is_upper_set.inv β is_upper_set.neg, | |
| set.smul_set_union β set.vadd_set_union, | |
| free_group.reduce.church_rosser β free_add_group.reduce.church_rosser, | |
| subgroup.ker_le_comap β add_subgroup.ker_le_comap, | |
| semiconj_by.function_semiconj_mul_left β add_semiconj_by.function_semiconj_add_left, | |
| submonoid_class.to_linear_ordered_cancel_comm_monoid β add_submonoid_class.to_linear_ordered_cancel_add_comm_monoid, | |
| subgroup.subtype_comp_inclusion β add_subgroup.subtype_comp_inclusion, | |
| Mon.filtered_colimits.cocone_morphism β AddMon.filtered_colimits.cocone_morphism, | |
| filter.comm_semigroup β filter.add_comm_semigroup, | |
| submonoid.mul_subset_closure β add_submonoid.add_subset_closure, | |
| subsemigroup.closure_closure_coe_preimage β add_subsemigroup.closure_closure_coe_preimage, | |
| submonoid.localization_map.mk'_eq_iff_eq_mul β add_submonoid.localization_map.mk'_eq_iff_eq_add, | |
| set.mem_div β set.mem_sub, | |
| pow_inv_comm β nsmul_neg_comm, | |
| is_right_cancel_mul.mul_right_cancel β is_right_cancel_add.add_right_cancel, | |
| units.pow_of_pow_eq_one β add_units.nsmul_of_nsmul_eq_zero, | |
| submonoid.comap_surjective_of_injective β add_submonoid.comap_surjective_of_injective, | |
| free_monoid.to_list β free_add_monoid.to_list, | |
| monoid_hom.comp_assoc β add_monoid_hom.comp_assoc, | |
| prod.right_cancel_semigroup β prod.right_cancel_add_semigroup, | |
| measurable_one β measurable_zero, | |
| CommGroup.forgetβ_Group_preserves_limits β AddCommGroup.forgetβ_Group_preserves_limits, | |
| powers_hom_symm_apply β multiples_hom_symm_apply, | |
| subgroup.normal.eq_bot_or_eq_top β add_subgroup.normal.eq_bot_or_eq_top, | |
| strict_mono_on.inv β strict_mono_on.neg, | |
| mul_one_class.ext β add_zero_class.ext, | |
| pow_mem_closed_ball β nsmul_mem_closed_ball, | |
| set.smul_set_eq_empty β set.vadd_set_eq_empty, | |
| category_theory.iso.Magma_iso_to_mul_equiv β category_theory.iso.AddMagma_iso_to_add_equiv, | |
| finprod_mem_finset_eq_prod β finsum_mem_finset_eq_sum, | |
| free_group.norm_mk_le β free_add_group.norm_mk_le, | |
| ordered_comm_group.mul_assoc β ordered_add_comm_group.add_assoc, | |
| measure_theory.measure.haar.mul_left_index_le β measure_theory.measure.haar.add_left_add_index_le, | |
| finset.eq_of_card_le_one_of_prod_eq β finset.eq_of_card_le_one_of_sum_eq, | |
| subgroup.is_complement'_bot_right β add_subgroup.is_complement'_bot_right, | |
| monoid_hom.coe_finset_prod β add_monoid_hom.coe_finset_sum, | |
| measure_theory.quasi_measure_preserving_div_left_of_right_invariant β measure_theory.quasi_measure_preserving_sub_left_of_right_invariant, | |
| finset.div_subset_div_left β finset.sub_subset_sub_left, | |
| canonically_ordered_monoid.to_ordered_comm_monoid β canonically_ordered_add_monoid.to_ordered_add_comm_monoid, | |
| lt_mul_of_one_lt_of_lt β lt_add_of_pos_of_lt, | |
| measure_theory.simple_func.has_mul β measure_theory.simple_func.has_add, | |
| free_group.map_pure β free_add_group.map_pure, | |
| cancel_monoid.to_right_cancel_monoid β add_cancel_monoid.to_add_right_cancel_monoid, | |
| ball_mul β ball_add, | |
| group_seminorm.coe_sup β add_group_seminorm.coe_sup, | |
| free_group.lift_symm_apply β free_add_group.lift_symm_apply, | |
| continuous_monoid_hom.ext β continuous_add_monoid_hom.ext, | |
| norm_le_zero_iff''' β norm_le_zero_iff', | |
| right.pow_le_one_of_le β right.pow_nonpos, | |
| set.mul_indicator_eq_one' β set.indicator_eq_zero', | |
| continuous_on_zpow β continuous_on_zsmul, | |
| tendsto_uniformly_on_filter.mul β tendsto_uniformly_on_filter.add, | |
| mul_action β add_action, | |
| div_eq_iff_eq_mul' β sub_eq_iff_eq_add', | |
| subgroup.coe_subgroup_of β add_subgroup.coe_add_subgroup_of, | |
| is_unit.eq_div_iff β is_add_unit.eq_sub_iff, | |
| set.div_subset_div_left β set.sub_subset_sub_left, | |
| comm_group.to_division_comm_monoid β add_comm_group.to_division_add_comm_monoid, | |
| quotient_group.congr β quotient_add_group.congr, | |
| subgroup.rank_closure_finset_le_card β add_subgroup.rank_closure_finset_le_card, | |
| free_monoid.of_list_singleton β free_add_monoid.of_list_singleton, | |
| is_right_regular.of_mul β is_add_right_regular.of_add, | |
| monotone.const_mul' β monotone.const_add, | |
| quotient_group.coe_pow β quotient_add_group.coe_nsmul, | |
| pow_succ' β succ_nsmul', | |
| pi.monoid_hom β pi.add_monoid_hom, | |
| inv_le_one' β neg_nonpos, | |
| subgroup.is_complement_singleton_top β add_subgroup.is_complement_singleton_top, | |
| CommGroup.has_forget_to_CommMon β AddCommGroup.has_forget_to_AddCommMon, | |
| mul_hom.mem_srange β add_hom.mem_srange, | |
| has_uniform_continuous_const_smul.to_has_continuous_const_smul β has_uniform_continuous_const_vadd.to_has_continuous_const_vadd, | |
| subgroup.has_npow β add_subgroup.has_nsmul, | |
| subgroup.supr_induction β add_subgroup.supr_induction, | |
| one_mul_eq_id β zero_add_eq_id, | |
| monoid_hom_class.isometry_of_norm β add_monoid_hom_class.isometry_of_norm, | |
| div_mul_comm β sub_add_comm, | |
| inv_smul_smul β neg_vadd_vadd, | |
| monoid_hom.eq_of_eq_on_dense β add_monoid_hom.eq_of_eq_on_dense, | |
| subsemigroup.closure_empty β add_subsemigroup.closure_empty, | |
| submonoid.localization_map.mul_equiv_of_mul_equiv β add_submonoid.localization_map.add_equiv_of_add_equiv, | |
| measure_theory.measure.is_mul_left_invariant β measure_theory.measure.is_add_left_invariant, | |
| group_topology.semilattice_inf β add_group_topology.semilattice_inf, | |
| mul_equiv.to_CommGroup_iso β add_equiv.to_AddCommGroup_iso, | |
| filter.germ.coe_inv β filter.germ.coe_neg, | |
| mul_hom.comp_id β add_hom.comp_id, | |
| filter.mul_action β filter.add_action, | |
| mul_le_one' β add_nonpos, | |
| CommGroup.is_zero_of_subsingleton β AddCommGroup.is_zero_of_subsingleton, | |
| con.nat.has_pow β add_con.quotient.has_nsmul, | |
| finprod_mem_image β finsum_mem_image, | |
| subgroup.bot_or_nontrivial β add_subgroup.bot_or_nontrivial, | |
| to_dual_one β to_dual_zero, | |
| zpow_pow_order_of β zsmul_smul_order_of, | |
| uniform_on_fun.uniform_group β uniform_on_fun.uniform_add_group, | |
| subgroup.fg_iff β add_subgroup.fg_iff, | |
| dist_div_eq_dist_mul_right β dist_sub_eq_dist_add_right, | |
| free_group β free_add_group, | |
| continuous_monoid_hom.mk'_to_monoid_hom_apply β continuous_add_monoid_hom.mk'_to_add_monoid_hom_apply, | |
| cInf_one β cInf_zero, | |
| division_comm_monoid.zpow_succ' β subtraction_comm_monoid.zsmul_succ', | |
| le_mul_of_one_le_right' β le_add_of_nonneg_right, | |
| group_seminorm.coe_le_coe β add_group_seminorm.coe_le_coe, | |
| function.embedding.has_smul β function.embedding.has_vadd, | |
| submonoid.map_bot β add_submonoid.map_bot, | |
| commute.zpow_right β add_commute.zsmul_right, | |
| finset.div_subset_div_right β finset.sub_subset_sub_right, | |
| mul_opposite.op_mul β add_opposite.op_add, | |
| set.piecewise_eq_mul_indicator β set.piecewise_eq_indicator, | |
| group.one β add_group.zero, | |
| finset.univ_mul_of_one_mem β finset.univ_add_of_zero_mem, | |
| monoid_hom.comprβ β add_monoid_hom.comprβ, | |
| tendsto_uniformly_on.div β tendsto_uniformly_on.sub, | |
| freiman_hom.coe_mk β add_freiman_hom.coe_mk, | |
| map_one β map_zero, | |
| submonoid.not_mem_of_not_mem_closure β add_submonoid.not_mem_of_not_mem_closure, | |
| function.mul_support_along_fiber_finite_of_finite β function.support_along_fiber_finite_of_finite, | |
| smul_left_cancel β vadd_left_cancel, | |
| sum_card_order_of_eq_card_pow_eq_one β sum_card_add_order_of_eq_card_nsmul_eq_zero, | |
| function.injective.semigroup β function.injective.add_semigroup, | |
| continuous_monoid_hom.t2_space β continuous_add_monoid_hom.t2_space, | |
| freiman_hom_class β add_freiman_hom_class, | |
| pi.mul_single β pi.single, | |
| has_compact_mul_support.comp_homeomorph β has_compact_support.comp_homeomorph, | |
| finset.div_inter_subset β finset.sub_inter_subset, | |
| Mon.filtered_colimits.colimit_cocone_is_colimit β AddMon.filtered_colimits.colimit_cocone_is_colimit, | |
| tendsto_inv_nhds_within_Iic β tendsto_neg_nhds_within_Iic, | |
| locally_constant.coe_one β locally_constant.coe_zero, | |
| ordered_comm_group.npow β ordered_add_comm_group.nsmul, | |
| group_filter_basis.conj β add_group_filter_basis.conj, | |
| mul_opposite.pseudo_metric_space β add_opposite.pseudo_metric_space, | |
| exponent_exists.is_torsion β exponent_exists.is_add_torsion, | |
| submonoid.mem_inv β add_submonoid.mem_neg, | |
| order_of_eq_zero_iff β add_order_of_eq_zero_iff, | |
| measure_theory.strongly_measurable.mul_const β measure_theory.strongly_measurable.add_const, | |
| is_compact.mul_closed_ball β is_compact.add_closed_ball, | |
| measure_theory.smul_invariant_measure.zero β measure_theory.vadd_invariant_measure.zero, | |
| nonarchimedean_group.prod_subset β nonarchimedean_add_group.prod_subset, | |
| subgroup.noncomm_pi_coprod β add_subgroup.noncomm_pi_coprod, | |
| preimage_mul_sphere β preimage_add_sphere, | |
| inv_mul_le_iff_le_mul β neg_add_le_iff_le_add, | |
| is_simple_group.is_simple_group_of_surjective β is_simple_add_group.is_simple_add_group_of_surjective, | |
| set.Union_smul_left_image β set.Union_vadd_left_image, | |
| monoid_hom.cod_restrict β add_monoid_hom.cod_restrict, | |
| finprod_eq_mul_indicator_apply β finsum_eq_indicator_apply, | |
| div_eq_mul_one_div β sub_eq_add_zero_sub, | |
| submonoid.coe_Inf β add_submonoid.coe_Inf, | |
| open_subgroup.mul_mem β open_add_subgroup.add_mem, | |
| filter.germ.linear_ordered_comm_group β filter.germ.linear_ordered_add_comm_group, | |
| monoid_hom.comap_bot' β add_monoid_hom.comap_bot', | |
| set.image_one β set.image_zero, | |
| set.mul_subset_mul β set.add_subset_add, | |
| group_seminorm.add_apply β add_group_seminorm.add_apply, | |
| list.alternating_prod_singleton β list.alternating_sum_singleton, | |
| freiman_hom.map_prod_eq_map_prod' β add_freiman_hom.map_sum_eq_map_sum', | |
| con.to_submonoid β add_con.to_add_submonoid, | |
| measure_theory.simple_func.has_one β measure_theory.simple_func.has_zero, | |
| subgroup.card_left_transversal β add_subgroup.card_left_transversal, | |
| set.mul_indicator_le_one β set.indicator_nonpos, | |
| monoid_hom.coprod β add_monoid_hom.coprod, | |
| submonoid.mul_mem β add_submonoid.add_mem, | |
| pow_lt_one' β nsmul_neg, | |
| submonoid.localization_map.eq' β add_submonoid.localization_map.eq', | |
| exists_open_nhds_one_split β exists_open_nhds_zero_half, | |
| set.mul_indicator_empty' β set.indicator_empty', | |
| subsemigroup.supr_induction β add_subsemigroup.supr_induction, | |
| filter.germ.const_smul β filter.germ.const_vadd, | |
| finset.prod_range_zero β finset.sum_range_zero, | |
| inv_eq_one β neg_eq_zero, | |
| locally_constant.mul_indicator β locally_constant.indicator, | |
| free_monoid.to_list_of β free_add_monoid.to_list_of, | |
| mul_singleton_mem_nhds β add_singleton_mem_nhds, | |
| finset.nonempty.smul β finset.nonempty.vadd, | |
| map_pos_of_ne_one β map_pos_of_ne_zero, | |
| subgroup.closure_union β add_subgroup.closure_union, | |
| measure_theory.measure.prod.measure.is_mul_right_invariant β measure_theory.measure.prod.measure.is_add_right_invariant, | |
| set.mul_mem_centralizer β set.add_mem_add_centralizer, | |
| finset.inter_mul_subset β finset.inter_add_subset, | |
| measure_theory.simple_func.coe_mul β measure_theory.simple_func.coe_add, | |
| mul_salem_spencer_pair β add_salem_spencer_pair, | |
| zpow_eq_mod_card β zsmul_eq_mod_card, | |
| punit.smul_comm_class β punit.vadd_comm_class, | |
| equiv.mul_right_mul β equiv.add_right_add, | |
| ulift.seminormed_comm_group β ulift.seminormed_add_comm_group, | |
| con.sup_eq_con_gen β add_con.sup_eq_add_con_gen, | |
| order_of_le_card_univ β add_order_of_le_card_univ, | |
| subgroup.subgroup_of_eq_top β add_subgroup.add_subgroup_of_eq_top, | |
| mul_action.regular.is_pretransitive β add_action.regular.is_pretransitive, | |
| finset.prod_fn β finset.sum_fn, | |
| measure_theory.strongly_measurable.const_mul β measure_theory.strongly_measurable.const_add, | |
| dfinsupp.prod_inv β dfinsupp.sum_neg, | |
| subgroup.relindex_inf_mul_relindex β add_subgroup.relindex_inf_mul_relindex, | |
| approx_order_of.smul_subset_of_coprime β approx_add_order_of.vadd_subset_of_coprime, | |
| subgroup.mem_right_transversals_iff_bijective β add_subgroup.mem_right_transversals_iff_bijective, | |
| one_lt_mul_of_le_of_lt' β add_pos_of_nonneg_of_pos, | |
| is_square.exists_sq β even.exists_two_nsmul, | |
| comm_group.npow_succ' β add_comm_group.nsmul_succ', | |
| measure_theory.measure_preserving_smul β measure_theory.measure_preserving_vadd, | |
| inv_pow β neg_nsmul, | |
| div_mul_eq_div_div_swap β sub_add_eq_sub_sub_swap, | |
| mul_equiv_iso_CommMon_iso β add_equiv_iso_AddCommMon_iso, | |
| mul_action.zpow_smul_eq_iff_minimal_period_dvd β add_action.zsmul_vadd_eq_iff_minimal_period_dvd, | |
| finset.div_nonempty β finset.sub_nonempty, | |
| measure_theory.fundamental_interior_union_fundamental_frontier β measure_theory.add_fundamental_interior_union_add_fundamental_frontier, | |
| list.rel_prod β list.rel_sum, | |
| multiset.prod_map_erase β multiset.sum_map_erase, | |
| subgroup.normal.mem_comm β add_subgroup.normal.mem_comm, | |
| sym_alg.unsym_eq_one_iff β sym_alg.unsym_eq_zero_iff, | |
| set.mul_indicator_finset_prod β set.indicator_finset_sum, | |
| quotient_group.coe_one β quotient_add_group.coe_zero, | |
| filter.div_le_div_left β filter.sub_le_sub_left, | |
| monoid_hom.to_mul_equiv β add_monoid_hom.to_add_equiv, | |
| set.one_subset β set.zero_subset, | |
| prod.swap_div β prod.swap_sub, | |
| le_map_div_mul_map_div β le_map_sub_add_map_sub, | |
| set.center_eq_univ β set.add_center_eq_univ, | |
| finset.card_pow_div_pow_le β finset.card_nsmul_sub_nsmul_le, | |
| subgroup.map_comap_eq β add_subgroup.map_comap_eq, | |
| con.lift_onβ β add_con.lift_onβ, | |
| one_lt_of_inv_lt_one β pos_of_neg_neg, | |
| measure_theory.measure_pos_iff_nonempty_of_smul_invariant β measure_theory.measure_pos_iff_nonempty_of_vadd_invariant, | |
| monoid_hom.coe_ker β add_monoid_hom.coe_ker, | |
| le_mul_left β le_add_left, | |
| mv_polynomial.aeval_prod β mv_polynomial.aeval_sum, | |
| norm_div_le β norm_sub_le, | |
| Mon.filtered_colimits.colimit_mul_aux β AddMon.filtered_colimits.colimit_add_aux, | |
| monoid_hom.flip_hom_apply β add_monoid_hom.flip_hom_apply, | |
| units.embedding_embed_product β add_units.embedding_embed_product, | |
| measure_theory.simple_func.comm_monoid β measure_theory.simple_func.add_comm_monoid, | |
| submonoid.top_equiv_to_monoid_hom β add_submonoid.top_equiv_to_add_monoid_hom, | |
| open_subgroup.has_top β open_add_subgroup.has_top, | |
| is_unit.mul_eq_one_iff_eq_inv β is_add_unit.add_eq_zero_iff_eq_neg, | |
| finset.subset_smul_finset_iff β finset.subset_vadd_finset_iff, | |
| finset.singleton_mul β finset.singleton_add, | |
| div_le_div_flip β sub_le_sub_flip, | |
| group_filter_basis.to_filter_basis β add_group_filter_basis.to_filter_basis, | |
| set.Interβ_smul_subset β set.Interβ_vadd_subset, | |
| cancel_comm_monoid β add_cancel_comm_monoid, | |
| nonempty_interval.comm_monoid β nonempty_interval.add_comm_monoid, | |
| monoid_hom.of_map_mul_inv β add_monoid_hom.of_map_add_neg, | |
| con.mk' β add_con.mk', | |
| zpow_one β one_zsmul, | |
| with_one.lift_coe β with_zero.lift_coe, | |
| dense.smul β dense.vadd, | |
| Mon.forget_preserves_limits β AddMon.forget_preserves_limits, | |
| order_of_injective β add_order_of_injective, | |
| pow_mul β mul_nsmul', | |
| finset.prod_eq_mul_of_mem β finset.sum_eq_add_of_mem, | |
| cancel_monoid.npow β add_cancel_monoid.nsmul, | |
| mul_equiv.map_ne_one_iff β add_equiv.map_ne_zero_iff, | |
| unique_mul.set_subsingleton β unique_add.set_subsingleton, | |
| mul_opposite.op_homeomorph_symm_apply β add_opposite.op_homeomorph_symm_apply, | |
| quotient_group.hom_quotient_zpow_of_hom_comp_of_right_inverse β quotient_add_group.hom_quotient_zsmul_of_hom_comp_of_right_inverse, | |
| zpow_sub_one β sub_one_zsmul, | |
| finset.multiplicative_energy_univ_right β finset.additive_energy_univ_right, | |
| mul_action.self_equiv_sigma_orbits β add_action.self_equiv_sigma_orbits, | |
| one_lt_inv_of_inv β neg_pos_of_neg, | |
| subgroup.mem_right_transversals.mk'_to_equiv β add_subgroup.mem_right_transversals.mk'_to_equiv, | |
| measure_theory.measure.measure_preserving_mul_right_inv β measure_theory.measure.measure_preserving_add_right_neg, | |
| monoid.in_closure.mul β add_monoid.in_closure.add, | |
| bounded_continuous_function.has_one β bounded_continuous_function.has_zero, | |
| pi.normed_comm_group β pi.normed_add_comm_group, | |
| subgroup.one_lt_card_iff_ne_bot β add_subgroup.pos_card_iff_ne_bot, | |
| is_torsion_free.prod β add_monoid.is_torsion_free.prod, | |
| filter.eventually_eq.const_smul β filter.eventually_eq.const_vadd, | |
| subsemigroup.comap_injective_of_surjective β add_subsemigroup.comap_injective_of_surjective, | |
| monoid.exponent_eq_supr_order_of' β add_monoid.exponent_eq_supr_order_of', | |
| norm_div_pos_iff β norm_sub_pos_iff, | |
| con.to_submonoid_inj β add_con.to_add_submonoid_inj, | |
| div_inv_one_monoid.div_eq_mul_inv β sub_neg_zero_monoid.sub_eq_add_neg, | |
| is_lub_inv' β is_lub_neg', | |
| one_hom.single_apply β zero_hom.single_apply, | |
| mul_right_cancel_iff β add_right_cancel_iff, | |
| is_open.smul_left β is_open.vadd_left, | |
| order_eq_card_powers β add_order_of_eq_card_multiples, | |
| submonoid.localization_map.map_comp_map β add_submonoid.localization_map.map_comp_map, | |
| map_div β map_sub, | |
| subgroup.rank_congr β add_subgroup.rank_congr, | |
| measure_theory.forall_measure_preimage_mul_right_iff β measure_theory.forall_measure_preimage_add_right_iff, | |
| subgroup.unique β add_subgroup.unique, | |
| semiconj_by.map β add_semiconj_by.map, | |
| mul_mul_inv_cancel'_right β add_add_neg_cancel'_right, | |
| one_hom.coe_mk β zero_hom.coe_mk, | |
| subgroup.comap_map_eq_self_of_injective β add_subgroup.comap_map_eq_self_of_injective, | |
| linear_ordered_comm_group.mul_left_inv β linear_ordered_add_comm_group.add_left_neg, | |
| zpowers_hom_symm_apply β zmultiples_hom_symm_apply, | |
| pi.has_mul β pi.has_add, | |
| is_of_fin_order.mul β is_of_fin_add_order.add, | |
| zpow_left_injective β zsmul_right_injective, | |
| finset.coe_prod β finset.coe_sum, | |
| mul_equiv.subsemigroup_map_symm_apply_coe β add_equiv.subsemigroup_map_symm_apply_coe, | |
| Group.ext β AddGroup.ext, | |
| mul_ne_mul_right β add_ne_add_right, | |
| contravariant_swap_mul_lt_of_contravariant_mul_lt β contravariant_swap_add_lt_of_contravariant_add_lt, | |
| of_dual_one β of_dual_zero, | |
| pi.has_div β pi.has_sub, | |
| max_mul_mul_right β max_add_add_right, | |
| finset.noncomm_prod_map β finset.noncomm_sum_map, | |
| mul_eq_of_eq_mul_inv β add_eq_of_eq_add_neg, | |
| subgroup.dvd_index_map β add_subgroup.dvd_index_map, | |
| submonoid.range_subtype β add_submonoid.range_subtype, | |
| free_semigroup.map β free_add_semigroup.map, | |
| eq_of_norm_div_eq_zero β eq_of_norm_sub_eq_zero, | |
| hindman.FP_partition_regular β hindman.FS_partition_regular, | |
| with_one.lift_unique β with_zero.lift_unique, | |
| con.comm_monoid β add_con.add_comm_monoid, | |
| group_seminorm.add_comp β add_group_seminorm.add_comp, | |
| equiv.mul_right_one β equiv.add_right_zero, | |
| set.smul_subset_smul β set.vadd_subset_vadd, | |
| free_group.map.mk β free_add_group.map.mk, | |
| min_mul_mul_right β min_add_add_right, | |
| CommGroup.coe_of β AddCommGroup.coe_of, | |
| group_topology.has_bot β add_group_topology.has_bot, | |
| mem_ball_iff_norm''' β mem_ball_iff_norm', | |
| filter.eventually_eq.div β filter.eventually_eq.sub, | |
| Mon.coe_of β AddMon.coe_of, | |
| pow_gcd_card_eq_one_iff β gcd_nsmul_card_eq_zero_iff, | |
| comm_monoid.one β add_comm_monoid.zero, | |
| lt_mul_iff_one_lt_right' β lt_add_iff_pos_right, | |
| map_units_inv β map_add_units_neg, | |
| lattice_ordered_comm_group.one_le_abs β lattice_ordered_comm_group.abs_nonneg, | |
| pi.mul_support_mul_single_of_ne β pi.support_single_of_ne, | |
| function.embedding.smul_apply β function.embedding.vadd_apply, | |
| quotient_group.fintype_quotient_right_rel β quotient_add_group.fintype_quotient_right_rel, | |
| ball_one_eq β ball_zero_eq, | |
| monoid_hom.map_cyclic β monoid_add_hom.map_add_cyclic, | |
| has_continuous_mul_of_smooth β has_continuous_add_of_smooth, | |
| free_group.red.step.lift β free_add_group.red.step.lift, | |
| free_group.inv_rev_empty β free_add_group.neg_rev_empty, | |
| con.quotient.has_one β add_con.quotient.has_zero, | |
| div_inv_one_monoid.npow_zero' β sub_neg_zero_monoid.nsmul_zero', | |
| is_simple_group_of_prime_card β is_simple_add_group_of_prime_card, | |
| list.sublist.prod_le_prod' β list.sublist.sum_le_sum, | |
| set.Union_div_left_image β set.Union_sub_left_image, | |
| comm_group.torsion_eq_torsion_submonoid β add_comm_group.add_torsion_eq_add_torsion_submonoid, | |
| free_semigroup.is_lawful_traversable β free_add_semigroup.is_lawful_traversable, | |
| function.surjective.mul_action β function.surjective.add_action, | |
| units.mk_coe β add_units.mk_coe, | |
| CommGroup.epi_iff_range_eq_top β AddCommGroup.epi_iff_range_eq_top, | |
| csupr_mul_le β csupr_add_le, | |
| free_group.induction_on β free_add_group.induction_on, | |
| single_le_finprod β single_le_finsum, | |
| ae_measurable_one β ae_measurable_zero, | |
| mul_mem_upper_bounds_mul β add_mem_upper_bounds_add, | |
| set.mul_indicator_of_mem β set.indicator_of_mem, | |
| mul_equiv.Pi_subsingleton β add_equiv.Pi_subsingleton, | |
| one_zpow β zsmul_zero, | |
| measure_theory.is_locally_finite_measure_of_smul_invariant β measure_theory.is_locally_finite_measure_of_vadd_invariant, | |
| free_magma.has_repr β free_add_magma.has_repr, | |
| lower_set.has_smul β lower_set.has_vadd, | |
| subsemigroup.mul_mem_sup β add_subsemigroup.add_mem_sup, | |
| le_map_add_map_div' β le_map_add_map_sub', | |
| squeeze_one_norm β squeeze_zero_norm, | |
| subgroup_class.coe_inv β add_subgroup_class.coe_neg, | |
| CommGroup.range_eq_top_of_epi β AddCommGroup.range_eq_top_of_epi, | |
| interval.one_ne_bot β interval.zero_ne_bot, | |
| with_one.map_map β with_zero.map_map, | |
| range_subset_insert_image_mul_tsupport β range_subset_insert_image_tsupport, | |
| one_smul β zero_vadd, | |
| mul_equiv.mul_equiv_class β add_equiv.add_equiv_class, | |
| nonempty_interval.div_mem_div β nonempty_interval.sub_mem_sub, | |
| finset.prod_finset_coe β finset.sum_finset_coe, | |
| Mon.of β AddMon.of, | |
| set.mem_list_prod β set.mem_list_sum, | |
| submonoid.prod_mono β add_submonoid.prod_mono, | |
| commute.mul_right β add_commute.add_right, | |
| subgroup.map_sup β add_subgroup.map_sup, | |
| CommMon.filtered_colimits.colimit_cocone β AddCommMon.filtered_colimits.colimit_cocone, | |
| norm_eq_of_mem_sphere' β norm_eq_of_mem_sphere, | |
| mul_mem_connected_component_one β add_mem_connected_component_zero, | |
| lt_div_iff_mul_lt' β lt_sub_iff_add_lt', | |
| order_of_eq_prime_pow β add_order_of_eq_prime_pow, | |
| free_group.mk_to_word β free_add_group.mk_to_word, | |
| set.swap_mem_mul_antidiagonal β set.swap_mem_add_antidiagonal, | |
| Mon.filtered_colimits.M β AddMon.filtered_colimits.M, | |
| inv_mem_nhds_one β neg_mem_nhds_zero, | |
| mul_equiv_iso_Mon_iso β add_equiv_iso_AddMon_iso, | |
| set.mem_of_mul_indicator_ne_one β set.mem_of_indicator_ne_zero, | |
| finsupp.prod_add_index β finsupp.sum_add_index, | |
| has_inv.to_has_abs β has_neg.to_has_abs, | |
| monoid_hom.one_apply β add_monoid_hom.zero_apply, | |
| locally_constant.coe_inv β locally_constant.coe_neg, | |
| monoid_hom.map_finprod_mem β add_monoid_hom.map_finsum_mem, | |
| mul_equiv.symm_trans_apply β add_equiv.symm_trans_apply, | |
| nat.prod_divisors_antidiagonal β nat.sum_divisors_antidiagonal, | |
| con.quotient_ker_equiv_of_surjective β add_con.quotient_ker_equiv_of_surjective, | |
| subgroup.nat_card_dvd_of_le β add_subgroup.nat_card_dvd_of_le, | |
| group_norm.to_normed_comm_group β add_group_norm.to_normed_add_comm_group, | |
| seminormed_comm_group.of_mul_dist' β seminormed_add_comm_group.of_add_dist', | |
| fintype.prod_eq_one β fintype.sum_eq_zero, | |
| subgroup.centralizer_closure β add_subgroup.centralizer_closure, | |
| mul_hom.op β add_hom.op, | |
| is_central_scalar.unop_smul_eq_smul β is_central_vadd.unop_vadd_eq_vadd, | |
| subgroup.map_equiv_eq_comap_symm β add_subgroup.map_equiv_eq_comap_symm, | |
| units.val_eq_coe β add_units.val_eq_coe, | |
| monoid_hom.iterate_map_div β add_monoid_hom.iterate_map_sub, | |
| filter.inv_le_inv β filter.neg_le_neg, | |
| preimage_mul_closed_ball β preimage_add_closed_ball, | |
| free_monoid.mrange_lift β free_add_monoid.mrange_lift, | |
| order_of_dvd_of_pow_eq_one β add_order_of_dvd_of_nsmul_eq_zero, | |
| finset.inter_smul_subset β finset.inter_vadd_subset, | |
| nonempty_interval.to_prod_one β nonempty_interval.to_prod_zero, | |
| linear_ordered_comm_monoid.one_mul β linear_ordered_add_comm_monoid.zero_add, | |
| right_coset_equivalence β right_add_coset_equivalence, | |
| is_subgroup.mem_norm_comm_iff β is_add_subgroup.mem_norm_comm_iff, | |
| free_monoid β free_add_monoid, | |
| division_comm_monoid.one_mul β subtraction_comm_monoid.zero_add, | |
| submonoid.localization_map.map_map β add_submonoid.localization_map.map_map, | |
| pow_mem_ball β nsmul_mem_ball, | |
| is_subgroup.center_normal β is_add_subgroup.add_center_normal, | |
| group_filter_basis.has_basis β add_group_filter_basis.has_basis, | |
| free_group.red.step.append_left_iff β free_add_group.red.step.append_left_iff, | |
| set.image_mul_right' β set.image_add_right', | |
| mul_hom.coe_inj β add_hom.coe_inj, | |
| division_comm_monoid.to_comm_monoid β subtraction_comm_monoid.to_add_comm_monoid, | |
| measure_theory.measure.regular.inv β measure_theory.measure.regular.neg, | |
| set.Unionβ_div β set.Unionβ_sub, | |
| subgroup.fintype_of_index_ne_zero β add_subgroup.fintype_of_index_ne_zero, | |
| subsemigroup.comap_infi β add_subsemigroup.comap_infi, | |
| has_smul.comp.smul_comm_class' β has_vadd.comp.vadd_comm_class', | |
| measure_theory.is_fundamental_domain.set_integral_eq β measure_theory.is_add_fundamental_domain.set_integral_eq, | |
| set.subset_one_iff_eq β set.subset_zero_iff_eq, | |
| submonoid.localization_map.mul_equiv_of_mul_equiv_eq_map β add_submonoid.localization_map.add_equiv_of_add_equiv_eq_map, | |
| is_right_cancel_mul β is_right_cancel_add, | |
| smooth_at_finset_prod' β smooth_at_finset_sum', | |
| free_group.red.not_step_nil β free_add_group.red.not_step_nil, | |
| continuous_mul_right β continuous_add_right, | |
| con.le_iff β add_con.le_iff, | |
| fintype.eq_of_subsingleton_of_prod_eq β fintype.eq_of_subsingleton_of_sum_eq, | |
| finprod_mem_eq_of_bij_on β finsum_mem_eq_of_bij_on, | |
| finset.prod_le_prod_of_subset' β finset.sum_le_sum_of_subset, | |
| set.bdd_above_mul β set.bdd_above_add, | |
| submonoid.localization_map.mk'_mul_cancel_right β add_submonoid.localization_map.mk'_add_cancel_right, | |
| set.inter_div_subset β set.inter_sub_subset, | |
| subgroup.one_lt_index_of_ne_top β add_subgroup.one_lt_index_of_ne_top, | |
| quotient_group.eq_one_iff β quotient_add_group.eq_zero_iff, | |
| one_hom.comp_id β zero_hom.comp_id, | |
| is_group_hom.to_is_mul_hom β is_add_group_hom.to_is_add_hom, | |
| filter.has_mul β filter.has_add, | |
| submonoid.mul_mem_sup β add_submonoid.add_mem_sup, | |
| div_pow β nsmul_sub, | |
| div_div_div_comm β sub_sub_sub_comm, | |
| linear_ordered_comm_monoid.to_ordered_comm_monoid β linear_ordered_add_comm_monoid.to_ordered_add_comm_monoid, | |
| units.copy_eq β add_units.copy_eq, | |
| prod.smul_swap β prod.vadd_swap, | |
| finset.prod_range_one β finset.sum_range_one, | |
| subgroup.mem_map_of_mem β add_subgroup.mem_map_of_mem, | |
| nonempty_interval.mul_eq_one_iff β nonempty_interval.add_eq_zero_iff, | |
| pi.mul_single_one β pi.single_zero, | |
| continuous_monoid_hom.topological_group β continuous_add_monoid_hom.topological_add_group, | |
| units.inv_mul_eq_iff_eq_mul β add_units.neg_add_eq_iff_eq_add, | |
| subgroup.left_transversals.mul_action β add_subgroup.left_transversals.add_action, | |
| CommMon.large_category β AddCommMon.large_category, | |
| set.mul_Inter_subset β set.add_Inter_subset, | |
| free_magma.lift_comp_of' β free_add_magma.lift_comp_of', | |
| mem_ball_one_iff β mem_ball_zero_iff, | |
| function.mul_support_eq_preimage β function.support_eq_preimage, | |
| coe_norm_group_seminorm β coe_norm_add_group_seminorm, | |
| is_open.Union_smul β is_open.Union_vadd, | |
| division_comm_monoid.mul_one β subtraction_comm_monoid.add_zero, | |
| mul_equiv.to_Mon_iso β add_equiv.to_AddMon_iso, | |
| monotone.inv β monotone.neg, | |
| group β add_group, | |
| pow_coprime_one β nsmul_coprime_zero, | |
| pi.mul_apply β pi.add_apply, | |
| strict_anti_on.mul' β strict_anti_on.add, | |
| con.induction_on_units β add_con.induction_on_add_units, | |
| monoid_hom.coe_snd β add_monoid_hom.coe_snd, | |
| part.div_get_eq β part.sub_get_eq, | |
| set.div_Union β set.sub_Union, | |
| finprod_mem_bUnion β finsum_mem_bUnion, | |
| Sup_mul β Sup_add, | |
| is_compact.exists_finite_cover_smul β is_compact.exists_finite_cover_vadd, | |
| inv_mul_lt_one_iff_lt β neg_add_neg_iff_lt, | |
| filter.principal_one β filter.principal_zero, | |
| commute.eq β add_commute.eq, | |
| mul_action.supports β add_action.supports, | |
| CommGroup.filtered_colimits.forgetβ_Group_preserves_filtered_colimits β AddCommGroup.filtered_colimits.forgetβ_AddGroup_preserves_filtered_colimits, | |
| isometry_equiv.coe_mul_right β isometry_equiv.coe_add_right, | |
| monoid_hom.map_mrange β add_monoid_hom.map_mrange, | |
| con β add_con, | |
| inv_lt_one_of_one_lt β neg_neg_of_pos, | |
| finset.mul_subset_mul β finset.add_subset_add, | |
| multiset.ae_strongly_measurable_prod β multiset.ae_strongly_measurable_sum, | |
| mul_lt_of_mul_lt_left β add_lt_of_add_lt_left, | |
| filter.mem_inv β filter.mem_neg, | |
| units.coe_map_inv β add_units.coe_map_neg, | |
| monoid.is_torsion.torsion_mul_equiv_apply β add_monoid.is_torsion.torsion_add_equiv_apply, | |
| is_unit.coe_unit' β is_add_unit.coe_add_unit', | |
| list.tendsto_prod β list.tendsto_sum, | |
| canonically_linear_ordered_monoid.mul_le_mul_left β canonically_linear_ordered_add_monoid.add_le_add_left, | |
| measure_theory.simple_func.const_mul_eq_map β measure_theory.simple_func.const_add_eq_map, | |
| con.coe_mk' β add_con.coe_mk', | |
| subgroup.map_inf_eq β add_subgroup.map_inf_eq, | |
| fin.prod_univ_cast_succ β fin.sum_univ_cast_succ, | |
| filter.ne_bot.one_le_div β filter.ne_bot.nonneg_sub, | |
| con.map_of_surjective β add_con.map_of_surjective, | |
| mul_equiv.subsemigroup_congr β add_equiv.subsemigroup_congr, | |
| filter.has_npow β filter.has_nsmul, | |
| Mon.filtered_colimits.M.mk β AddMon.filtered_colimits.M.mk, | |
| homeomorph.smul β homeomorph.vadd, | |
| finprod_mem_sUnion β finsum_mem_sUnion, | |
| finset.prod_lt_prod_of_subset' β finset.sum_lt_sum_of_subset, | |
| Mon.sections_submonoid β AddMon.sections_add_submonoid, | |
| subgroup.ker_inclusion β add_subgroup.ker_inclusion, | |
| probability_theory.Indep_fun.indep_fun_finset_prod_of_not_mem β probability_theory.Indep_fun.indep_fun_finset_sum_of_not_mem, | |
| continuous_map.has_continuous_mul β continuous_map.has_continuous_add, | |
| punit.div_eq β punit.sub_eq, | |
| set.nonempty.of_div_left β set.nonempty.of_sub_left, | |
| finprod_mem_inter_mul_diff' β finsum_mem_inter_add_diff', | |
| mul_inv_le_inv_mul_iff β add_neg_le_neg_add_iff, | |
| function.mul_support_comp_eq_preimage β function.support_comp_eq_preimage, | |
| continuous_monoid_hom_class.to_continuous_map_class β continuous_add_monoid_hom_class.to_continuous_map_class, | |
| inv_mul_cancel_left β neg_add_cancel_left, | |
| edist_eq_coe_nnnorm_div β edist_eq_coe_nnnorm_sub, | |
| division_comm_monoid.inv_inv β subtraction_comm_monoid.neg_neg, | |
| pi.smul_comp β pi.vadd_comp, | |
| group.closure.is_subgroup β add_group.closure.is_add_subgroup, | |
| smooth_map.coe_inv β smooth_map.coe_neg, | |
| order_monoid_hom.cancel_right β order_add_monoid_hom.cancel_right, | |
| units.coe_one β add_units.coe_zero, | |
| set.inter_smul_subset β set.inter_vadd_subset, | |
| finprod_mem_inter_mul_support_eq β finsum_mem_inter_support_eq, | |
| units.mul_right β add_units.add_right, | |
| con.Inf_def β add_con.Inf_def, | |
| finset.prod_eq_mul β finset.sum_eq_add, | |
| strict_mono_on.const_mul' β strict_mono_on.const_add, | |
| localization.rec_mk β add_localization.rec_mk, | |
| finsupp.prod_finset_sum_index β finsupp.sum_finset_sum_index, | |
| subgroup.characteristic_iff_map_eq β add_subgroup.characteristic_iff_map_eq, | |
| finset.prod_zpow β finset.sum_zsmul, | |
| powers.is_submonoid β multiples.is_add_submonoid, | |
| ordered_comm_group.mul_comm β ordered_add_comm_group.add_comm, | |
| is_mul_hom.inv β is_add_hom.neg, | |
| mv_polynomial.evalβ_prod β mv_polynomial.evalβ_sum, | |
| monoid_hom.has_mul β add_monoid_hom.has_add, | |
| subgroup.map_eq_comap_of_inverse β add_subgroup.map_eq_comap_of_inverse, | |
| mul_equiv.is_monoid_hom β add_equiv.is_add_monoid_hom, | |
| set.inv_mem_inv β set.neg_mem_neg, | |
| finset.prod_range_succ_comm β finset.sum_range_succ_comm, | |
| monoid_hom.eq_locus β add_monoid_hom.eq_locus, | |
| list.prod_le_pow_card β list.sum_le_card_nsmul, | |
| finset.singleton_monoid_hom_apply β finset.singleton_add_monoid_hom_apply, | |
| inv_zpow β zsmul_neg, | |
| mul_tsupport β tsupport, | |
| mul_tsupport_eq_empty_iff β tsupport_eq_empty_iff, | |
| nhds_one_symm' β nhds_zero_symm', | |
| pi.mul_support_mul_single_one β pi.support_single_zero, | |
| monoid_hom.submonoid_map β add_monoid_hom.add_submonoid_map, | |
| multiset.prod_eq_foldr β multiset.sum_eq_foldr, | |
| continuous_monoid_hom.mul β continuous_add_monoid_hom.add, | |
| finset.multiplicative_energy β finset.additive_energy, | |
| measure_theory.measure.haar.prehaar_nonneg β measure_theory.measure.haar.add_prehaar_nonneg, | |
| properly_discontinuous_smul β properly_discontinuous_vadd, | |
| subgroup.index_inf_le β add_subgroup.index_inf_le, | |
| lattice_ordered_comm_group.neg_of_le_one β lattice_ordered_comm_group.neg_of_nonpos, | |
| list.alternating_prod_cons_cons β list.alternating_sum_cons_cons, | |
| mul_left_embedding β add_left_embedding, | |
| interval.div_bot β interval.sub_bot, | |
| subgroup.is_open_of_one_mem_interior β add_subgroup.is_open_of_zero_mem_interior, | |
| localization.r_eq_r' β add_localization.r_eq_r', | |
| submonoid.localization_map.symm_comp_of_mul_equiv_of_localizations_apply' β add_submonoid.localization_map.symm_comp_of_add_equiv_of_localizations_apply', | |
| has_faithful_smul β has_faithful_vadd, | |
| order_dual.contravariant_class_swap_mul_le β order_dual.contravariant_class_swap_add_le, | |
| localization.r_of_eq β add_localization.r_of_eq, | |
| nonempty_interval.coe_mul_interval β nonempty_interval.coe_add_interval, | |
| is_group_hom.inv β is_add_group_hom.neg, | |
| Group.forget_Group_preserves_epi β AddGroup.forget_Group_preserves_epi, | |
| mul_opposite.is_central_scalar β add_opposite.is_central_vadd, | |
| group.closure_finset_fg β add_group.closure_finset_fg, | |
| con.has_zpow β add_con.quotient.has_zsmul, | |
| has_continuous_const_smul.continuous_const_smul β has_continuous_const_vadd.continuous_const_vadd, | |
| nonempty_interval.fst_mul β nonempty_interval.fst_add, | |
| linear_ordered_comm_group.mul_assoc β linear_ordered_add_comm_group.add_assoc, | |
| normed_comm_group.tendsto_nhds_nhds β normed_add_comm_group.tendsto_nhds_nhds, | |
| eq_inv_of_eq_inv β eq_neg_of_eq_neg, | |
| mul_lt_mul_of_le_of_lt β add_lt_add_of_le_of_lt, | |
| mul_inv_le_one_iff β add_neg_nonpos_iff, | |
| set.mul_antidiagonal.finite_of_is_wf β set.add_antidiagonal.finite_of_is_wf, | |
| div_inv_one_monoid β sub_neg_zero_monoid, | |
| subgroup.commute_of_normal_of_disjoint β add_subgroup.commute_of_normal_of_disjoint, | |
| locally_constant.mul_indicator_apply_eq_if β locally_constant.indicator_apply_eq_if, | |
| submonoid.localization_map.eq_mk'_iff_mul_eq β add_submonoid.localization_map.eq_mk'_iff_add_eq, | |
| mul_equiv.of_left_inverse'_symm_apply β add_equiv.of_left_inverse'_symm_apply, | |
| div_div_div_cancel_left β sub_sub_sub_cancel_left, | |
| measure_theory.measure.measure_preserving_zpow β measure_theory.measure.measure_preserving_zsmul, | |
| of_dual_inv β of_dual_neg, | |
| equiv.coe_mul_right β equiv.coe_add_right, | |
| is_central_scalar.op_smul_eq_smul β is_central_vadd.op_vadd_eq_vadd, | |
| subgroup.map_le_map_iff β add_subgroup.map_le_map_iff, | |
| monoid_hom.restrict_apply β add_monoid_hom.restrict_apply, | |
| ordered_cancel_comm_monoid.to_contravariant_class_left β ordered_cancel_add_comm_monoid.to_contravariant_class_left, | |
| units.has_continuous_mul β add_units.has_continuous_add, | |
| measure_theory.ae_eq_fun.inv_to_germ β measure_theory.ae_eq_fun.neg_to_germ, | |
| is_closed_mul_tsupport β is_closed_tsupport, | |
| submonoid.topological_closure_minimal β add_submonoid.topological_closure_minimal, | |
| measure_theory.measure_preserving_mul_right β measure_theory.measure_preserving_add_right, | |
| subsemigroup.equiv_map_of_injective β add_subsemigroup.equiv_map_of_injective, | |
| finset.image_one_hom β finset.image_zero_hom, | |
| list.forallβ.prod_le_prod' β list.forallβ.sum_le_sum, | |
| with_bot.has_one β with_bot.has_zero, | |
| smooth_map.mul_comp β smooth_map.add_comp, | |
| right_cancel_semigroup.contravariant_swap_mul_le_of_contravariant_swap_mul_lt β add_right_cancel_semigroup.contravariant_swap_add_le_of_contravariant_swap_add_lt, | |
| localization.away.inv_self β add_localization.away.neg_self, | |
| ball_one_mul_singleton β ball_zero_add_singleton, | |
| submonoid.map_le_of_le_comap β add_submonoid.map_le_of_le_comap, | |
| order_monoid_hom.coe_comp β order_add_monoid_hom.coe_comp, | |
| finset.prod_eq_prod_Ico_succ_bot β finset.sum_eq_sum_Ico_succ_bot, | |
| interval.pure_one β interval.pure_zero, | |
| set.mul_indicator_empty β set.indicator_empty, | |
| order_iso.mul_left_apply β order_iso.add_left_apply, | |
| set.singleton_smul β set.singleton_vadd, | |
| freiman_hom.inv_apply β add_freiman_hom.neg_apply, | |
| monoid.is_torsion β add_monoid.is_torsion, | |
| comm_monoid β add_comm_monoid, | |
| commute.inv_left_iff β add_commute.neg_left_iff, | |
| seminormed_comm_group.to_uniform_group β seminormed_add_comm_group.to_uniform_add_group, | |
| multiset.prod_hom_rel β multiset.sum_hom_rel, | |
| mul_div_assoc' β add_sub_assoc', | |
| subgroup.comap_subtype β add_subgroup.comap_subtype, | |
| mul_hom.prod_map_comap_prod' β add_hom.sum_map_comap_sum', | |
| mul_equiv.eq_comp_symm β add_equiv.eq_comp_symm, | |
| subgroup.seminormed_comm_group β add_subgroup.seminormed_add_comm_group, | |
| measure_theory.measure.inv_apply β measure_theory.measure.neg_apply, | |
| with_one.map β with_zero.map, | |
| cont_mdiff_finprod β cont_mdiff_finsum, | |
| mul_hom.prod_map β add_hom.prod_map, | |
| order_of_units β order_of_add_units, | |
| submonoid.one_mem β add_submonoid.zero_mem, | |
| mul_opposite.nontrivial β add_opposite.nontrivial, | |
| monoid_hom.of_mclosure_eq_top_right β add_monoid_hom.of_mclosure_eq_top_right, | |
| set.inv_mem_Ico_iff β set.neg_mem_Ico_iff, | |
| mul_hom.congr_fun β add_hom.congr_fun, | |
| finsupp.prod_map_range_index β finsupp.sum_map_range_index, | |
| con.con_gen_eq β add_con.add_con_gen_eq, | |
| nonempty_interval.has_inv β nonempty_interval.has_neg, | |
| submonoid.localization_map.lift_mul_left β add_submonoid.localization_map.lift_add_left, | |
| cancel_comm_monoid.to_cancel_monoid β add_cancel_comm_monoid.to_cancel_add_monoid, | |
| subgroup.normal_subgroup_of_iff β add_subgroup.normal_add_subgroup_of_iff, | |
| subgroup.zpow_mem_zpowers β add_subgroup.zsmul_mem_zmultiples, | |
| ordered_comm_group.to_contravariant_class_right_le β ordered_add_comm_group.to_contravariant_class_right_le, | |
| prod.smul_comm_class β prod.vadd_comm_class, | |
| fin.prod_univ_def β fin.sum_univ_def, | |
| set.mul_indicator_apply_eq_one β set.indicator_apply_eq_zero, | |
| free_group.one_bind β free_add_group.zero_bind, | |
| div_eq_inv_self β sub_eq_neg_self, | |
| measure_theory.absolutely_continuous_inv β measure_theory.absolutely_continuous_neg, | |
| mul_opposite.has_smul β add_opposite.has_vadd, | |
| le_cinfi_mul β le_cinfi_add, | |
| set.has_smul_set β set.has_vadd_set, | |
| submonoid.closure_eq_of_le β add_submonoid.closure_eq_of_le, | |
| _private.4240140793.one_mul β _private.4240140793.zero_add, | |
| magma.assoc_quotient.quot_mk_assoc_left β add_magma.free_add_semigroup.quot_mk_assoc_left, | |
| set.preimage_mul_preimage_subset β set.preimage_add_preimage_subset, | |
| quotient_group.quotient_bot β quotient_add_group.quotient_bot, | |
| order_dual.comm_group β order_dual.add_comm_group, | |
| monoid_hom.eq_of_eq_on_top β add_monoid_hom.eq_of_eq_on_top, | |
| div_mul_div_cancel'' β sub_add_sub_cancel', | |
| free_group.free_group_empty_equiv_unit β free_add_group.free_add_group_empty_equiv_add_unit, | |
| division_comm_monoid.npow_succ' β subtraction_comm_monoid.nsmul_succ', | |
| set.centralizer_subset β set.add_centralizer_subset, | |
| singleton_mul_closed_ball_one β singleton_add_closed_ball_zero, | |
| filter.germ.has_smul' β filter.germ.has_vadd', | |
| pi.has_continuous_inv β pi.has_continuous_neg, | |
| mul_equiv.trans β add_equiv.trans, | |
| measure_theory.adapted.inv β measure_theory.adapted.neg, | |
| fintype.prod_fiberwise β fintype.sum_fiberwise, | |
| subgroup.inclusion_range β add_subgroup.inclusion_range, | |
| mul_mul_div_cancel β add_add_sub_cancel, | |
| is_open.div_right β is_open.sub_right, | |
| open_subgroup.is_open β open_add_subgroup.is_open, | |
| category_theory.discrete.monoidal_functor_to_lax_monoidal_functor_Ξ΅ β discrete.add_monoidal_functor_to_lax_monoidal_functor_Ξ΅, | |
| multiset.prod_map_prod_map β multiset.sum_map_sum_map, | |
| measure_theory.is_fundamental_domain.measure_set_eq β measure_theory.is_add_fundamental_domain.measure_set_eq, | |
| punit.inv_eq β punit.neg_eq, | |
| subgroup.is_open_mono β add_subgroup.is_open_mono, | |
| division_comm_monoid.zpow β subtraction_comm_monoid.zsmul, | |
| option.has_smul β option.has_vadd, | |
| semiconj_by.units_inv_right_iff β add_semiconj_by.add_units_neg_right_iff, | |
| group_norm.has_one β add_group_norm.has_one, | |
| ulift.div_inv_monoid β ulift.sub_neg_add_monoid, | |
| pi.seminormed_comm_group β pi.seminormed_add_comm_group, | |
| measure_theory.is_fundamental_domain.measure_eq_tsum' β measure_theory.is_add_fundamental_domain.measure_eq_tsum', | |
| nat.prime.exists_order_of_eq_pow_factorization_exponent β nat.prime.exists_order_of_eq_pow_padic_val_nat_add_exponent, | |
| finset.single_lt_prod' β finset.single_lt_sum, | |
| inv_lt_inv' β neg_lt_neg, | |
| subsemigroup.ext β add_subsemigroup.ext, | |
| antilipschitz_with.mul_lipschitz_with β antilipschitz_with.add_lipschitz_with, | |
| mul_hom.coe_copy β add_hom.coe_copy, | |
| set.smul_Inter_subset β set.vadd_Inter_subset, | |
| lower_set.comm_semigroup β lower_set.add_comm_semigroup, | |
| submonoid.from_left_inv β add_submonoid.from_left_neg, | |
| finset.comm_semigroup β finset.add_comm_semigroup, | |
| subgroup.map_supr β add_subgroup.map_supr, | |
| subgroup.subgroup_class β add_subgroup.add_subgroup_class, | |
| function.injective.left_cancel_semigroup β function.injective.add_left_cancel_semigroup, | |
| division_monoid.zpow_neg' β subtraction_monoid.zsmul_neg', | |
| subgroup.relindex_sup_left β add_subgroup.relindex_sup_left, | |
| submonoid.comap_strict_mono_of_surjective β add_submonoid.comap_strict_mono_of_surjective, | |
| filter.semigroup β filter.add_semigroup, | |
| div_eq_iff_eq_mul β sub_eq_iff_eq_add, | |
| mul_lt_of_le_of_lt_one β add_lt_of_le_of_neg, | |
| order_monoid_hom.coe_monoid_hom β order_add_monoid_hom.coe_add_monoid_hom, | |
| finset.pairwise_disjoint_smul_iff β finset.pairwise_disjoint_vadd_iff, | |
| div_mul_mul_cancel β sub_add_add_cancel, | |
| smooth.inv β smooth.neg, | |
| Group.limit_cone β AddGroup.limit_cone, | |
| mul_hom.id β add_hom.id, | |
| con.mrange_mk' β add_con.mrange_mk', | |
| linear_ordered_comm_group.mul_comm β linear_ordered_add_comm_group.add_comm, | |
| semigroup.mul β add_semigroup.add, | |
| uniform_group_inf β uniform_add_group_inf, | |
| measure_theory.measure.is_haar_measure_of_is_compact_nonempty_interior β measure_theory.measure.is_add_haar_measure_of_is_compact_nonempty_interior, | |
| is_open_map_mul_left β is_open_map_add_left, | |
| continuous.smul β continuous.vadd, | |
| zpow_mem β zsmul_mem, | |
| ulift.pow_down β ulift.smul_down, | |
| Mon.limit_monoid β AddMon.limit_add_monoid, | |
| measure_theory.ae_eq_fun.coe_fn_div β measure_theory.ae_eq_fun.coe_fn_sub, | |
| interval.one_mem_one β interval.zero_mem_zero, | |
| function.mul_support_supr β function.support_supr, | |
| free_monoid.inhabited β free_add_monoid.inhabited, | |
| topological_group.to_has_continuous_mul β topological_add_group.to_has_continuous_add, | |
| comp_smul_left β comp_vadd_left, | |
| submonoid.closure_inductionβ β add_submonoid.closure_inductionβ, | |
| mul_salem_spencer_insert_of_lt β add_salem_spencer_insert_of_lt, | |
| is_group_hom.one_iff_ker_inv' β is_add_group_hom.zero_iff_ker_neg', | |
| finset.singleton_smul_singleton β finset.singleton_vadd_singleton, | |
| comm_group.inv β add_comm_group.neg, | |
| finset.card_inv_le β finset.card_neg_le, | |
| seminormed_group.tendsto_uniformly_on_one β seminormed_add_group.tendsto_uniformly_on_zero, | |
| filter.pure_monoid_hom β filter.pure_add_monoid_hom, | |
| function.injective.group β function.injective.add_group, | |
| subgroup.closure_le β add_subgroup.closure_le, | |
| finset.prod_image' β finset.sum_image', | |
| smul_comm_class.symm β vadd_comm_class.symm, | |
| uniform_group_Inf β uniform_add_group_Inf, | |
| pi_nnnorm_le_iff' β pi_nnnorm_le_iff, | |
| set.inv_mem_Icc_iff β set.neg_mem_Icc_iff, | |
| mul_mem_class.mk_mul_mk β add_mem_class.mk_add_mk, | |
| right_cancel_semigroup.mul_assoc β add_right_cancel_semigroup.add_assoc, | |
| finset.prod_subtype_eq_prod_filter β finset.sum_subtype_eq_sum_filter, | |
| submonoid.sup_eq_closure β add_submonoid.sup_eq_closure, | |
| mul_one_class.mul β add_zero_class.add, | |
| order_monoid_hom.copy_eq β order_add_monoid_hom.copy_eq, | |
| group.covconv β add_group.covconv, | |
| one_mem_class.one_def β zero_mem_class.zero_def, | |
| is_unit.eq_div_of_mul_eq β is_add_unit.eq_sub_of_add_eq, | |
| dist_div_eq_dist_mul_left β dist_sub_eq_dist_add_left, | |
| mul_inv_self β add_neg_self, | |
| submonoid.noncomm_prod_mem β add_submonoid.noncomm_sum_mem, | |
| measure_theory.is_fundamental_domain.measure_fundamental_frontier β measure_theory.is_add_fundamental_domain.measure_add_fundamental_frontier, | |
| submonoid.le_comap_of_map_le β add_submonoid.le_comap_of_map_le, | |
| div_zpow β zsmul_sub, | |
| cSup_div β cSup_sub, | |
| lex.comm_semigroup β lex.add_comm_semigroup, | |
| canonically_ordered_monoid.mul β canonically_ordered_add_monoid.add, | |
| continuous_monoid_hom.prod β continuous_add_monoid_hom.sum, | |
| lipschitz_with.inv β lipschitz_with.neg, | |
| mul_right_cancel'' β add_right_cancel'', | |
| with_one.inv_one_class β with_zero.neg_zero_class, | |
| subgroup.comm_group_topological_closure β add_subgroup.add_comm_group_topological_closure, | |
| group.has_exists_mul_of_le β add_group.has_exists_add_of_le, | |
| sum.has_smul β sum.has_vadd, | |
| finset.empty_mul β finset.empty_add, | |
| division_comm_monoid.inv_eq_of_mul β subtraction_comm_monoid.neg_eq_of_add, | |
| filter.is_scalar_tower' β filter.vadd_assoc_class', | |
| pi.mul_hom_apply β pi.add_hom_apply, | |
| mul_le_of_le_one_of_le β add_le_of_nonpos_of_le, | |
| measure_theory.measure.haar.haar_content β measure_theory.measure.haar.add_haar_content, | |
| quotient_group.con β quotient_add_group.con, | |
| finset.smul_subset_smul β finset.vadd_subset_vadd, | |
| continuous_monoid_hom.diag_to_monoid_hom β continuous_add_monoid_hom.diag_to_add_monoid_hom, | |
| units.eq_inv_of_mul_eq_one_right β add_units.eq_neg_of_add_eq_zero_right, | |
| subsemigroup.coe_Sup_of_directed_on β add_subsemigroup.coe_Sup_of_directed_on, | |
| pi.sum_nnnorm_apply_le_nnnorm' β pi.sum_nnnorm_apply_le_nnnorm, | |
| subgroup.le_closure_to_submonoid β add_subgroup.le_closure_to_add_submonoid, | |
| subgroup.mul_mem_iff_of_index_two β add_subgroup.add_mem_iff_of_index_two, | |
| mul_hom.to_mul_equiv β add_hom.to_add_equiv, | |
| order_dual.ordered_cancel_comm_monoid β order_dual.ordered_cancel_add_comm_monoid, | |
| subgroup.is_complement_singleton_left β add_subgroup.is_complement_singleton_left, | |
| mul_equiv.is_group_hom β add_equiv.is_add_group_hom, | |
| seminormed_group β seminormed_add_group, | |
| dense_of_nonempty_smul_invariant β dense_of_nonempty_vadd_invariant, | |
| semigroup.is_scalar_tower β add_semigroup.vadd_assoc_class, | |
| free_magma.lift_aux β free_add_magma.lift_aux, | |
| div_ball_one β sub_ball_zero, | |
| monoid.lcm_order_of_dvd_exponent β add_monoid.lcm_add_order_of_dvd_exponent, | |
| submonoid.mem_map_equiv β add_submonoid.mem_map_equiv, | |
| mul_one_class β add_zero_class, | |
| comm_group.is_simple_iff_is_cyclic_and_prime_card β add_comm_group.is_simple_iff_is_add_cyclic_and_prime_card, | |
| measure_theory.sdiff_fundamental_frontier β measure_theory.sdiff_add_fundamental_frontier, | |
| mul_action.opposite_regular.is_pretransitive β add_action.opposite_regular.is_pretransitive, | |
| mul_hom.coprod β add_hom.coprod, | |
| normed_linear_ordered_group.to_linear_ordered_comm_group β normed_linear_ordered_add_group.to_linear_ordered_add_comm_group, | |
| finset.prod_product' β finset.sum_product', | |
| prod.has_continuous_const_smul β prod.has_continuous_const_vadd, | |
| is_square.zpow β even.zsmul, | |
| norm_div_eq_zero_iff β norm_sub_eq_zero_iff, | |
| uniform_continuous_nnnorm' β uniform_continuous_nnnorm, | |
| subgroup.comap_top β add_subgroup.comap_top, | |
| order_dual.contravariant_class_mul_le β order_dual.contravariant_class_add_le, | |
| left_cancel_monoid.npow_zero' β add_left_cancel_monoid.nsmul_zero', | |
| multiset.prod_le_prod_map β multiset.sum_le_sum_map, | |
| Group.has_coe_to_sort β AddGroup.has_coe_to_sort, | |
| mul_zpow_self β add_self_zsmul, | |
| comm_group.zpow_neg' β add_comm_group.zsmul_neg', | |
| injective_pow_iff_not_is_of_fin_order β injective_nsmul_iff_not_is_of_fin_add_order, | |
| subgroup.bot_prod_bot β add_subgroup.bot_sum_bot, | |
| ae_measurable.div' β ae_measurable.sub', | |
| is_upper_set.div_left β is_upper_set.sub_left, | |
| measurable_equiv.symm_mul_left β measurable_equiv.symm_add_left, | |
| zpow_mul_comm β zsmul_add_comm, | |
| subgroup.exists_left_transversal β add_subgroup.exists_left_transversal, | |
| right_cancel_monoid.mul_assoc β add_right_cancel_monoid.add_assoc, | |
| order_dual.mul_one_class β order_dual.add_zero_class, | |
| finsupp.prod_option_index β finsupp.sum_option_index, | |
| mul_equiv.of_left_inverse_apply β add_equiv.of_left_inverse_apply, | |
| finset.prod_ite_of_true β finset.sum_ite_of_true, | |
| nhds_mul β nhds_add, | |
| subsemigroup.closure_eq_of_le β add_subsemigroup.closure_eq_of_le, | |
| free_magma.map_pure β free_add_magma.map_pure, | |
| le_inv_iff_mul_le_one_left β le_neg_iff_add_nonpos_left, | |
| quotient_group.map_coe β quotient_add_group.map_coe, | |
| mul_equiv.refl_symm β add_equiv.refl_symm, | |
| is_of_fin_order_inv_iff β is_of_fin_order_neg_iff, | |
| finset.mem_smul β finset.mem_vadd, | |
| subgroup.comap_map_eq β add_subgroup.comap_map_eq, | |
| mul_le_cancellable.mul_le_iff_le_one_left β add_le_cancellable.add_le_iff_nonpos_left, | |
| interval.has_div β interval.has_sub, | |
| is_torsion_free.quotient_torsion β add_is_torsion_free.quotient_torsion, | |
| finset.division_monoid β finset.subtraction_monoid, | |
| set.finset_prod_singleton β set.finset_sum_singleton, | |
| measurable_equiv.coe_mul_left β measurable_equiv.coe_add_left, | |
| free_magma.inhabited β free_add_magma.inhabited, | |
| set.le_mul_indicator_apply β set.le_indicator_apply, | |
| multiset.prod_induction β multiset.sum_induction, | |
| normed_group.induced β normed_add_group.induced, | |
| monoid_hom.decidable_mem_range β add_monoid_hom.decidable_mem_range, | |
| measure_preserving_quotient_group.mk' β measure_preserving_quotient_add_group.mk', | |
| measure_theory.is_fundamental_domain.Union_smul_ae_eq β measure_theory.is_add_fundamental_domain.Union_vadd_ae_eq, | |
| is_torsion.exponent_exists β is_add_torsion.exponent_exists, | |
| monoid_hom.inv_apply β add_monoid_hom.neg_apply, | |
| filter.tendsto.mul_mul β filter.tendsto.add_add, | |
| freiman_hom_class.map_prod_eq_map_prod' β add_freiman_hom_class.map_sum_eq_map_sum', | |
| CommGroup.Group.has_coe β AddCommGroup.Group.has_coe, | |
| measure_theory.simple_func.has_div β measure_theory.simple_func.has_sub, | |
| mul_right_inv β add_right_neg, | |
| is_unit.eq_on_inv β is_add_unit.eq_on_neg, | |
| con.hrec_onβ_coe β add_con.hrec_onβ_coe, | |
| subgroup.index_map_dvd β add_subgroup.index_map_dvd, | |
| subsemigroup.closure_union β add_subsemigroup.closure_union, | |
| nat.prime.prod_divisors β nat.prime.sum_divisors, | |
| mul_div_cancel''' β add_sub_cancel', | |
| measure_theory.simple_func.coe_div β measure_theory.simple_func.coe_sub, | |
| pi.mul_single_inj β pi.single_inj, | |
| is_submonoid.Inter β is_add_submonoid.Inter, | |
| list.single_le_prod β list.single_le_sum, | |
| CommGroup.has_coe_to_sort β AddCommGroup.has_coe_to_sort, | |
| group_topology.has_inf β add_group_topology.has_inf, | |
| one_mem_class β zero_mem_class, | |
| subsemigroup.mem_sup_right β add_subsemigroup.mem_sup_right, | |
| with_one.mul_one_class β with_zero.add_zero_class, | |
| is_subgroup.normalizer β is_add_subgroup.add_normalizer, | |
| filter.ne_bot.of_smul_left β filter.ne_bot.of_vadd_left, | |
| subgroup.coe_Inf β add_subgroup.coe_Inf, | |
| multiset.prod_to_list β multiset.sum_to_list, | |
| cont_mdiff_within_at_one β cont_mdiff_within_at_zero, | |
| mul_opposite.op_unop β add_opposite.op_unop, | |
| mul_action.to_fun β add_action.to_fun, | |
| monoid_hom.range_top_iff_surjective β add_monoid_hom.range_top_iff_surjective, | |
| measurable_embedding_const_smul β measurable_embedding_const_vadd, | |
| lex.div_inv_monoid β lex.sub_neg_add_monoid, | |
| subgroup.eq_bot_iff_forall β add_subgroup.eq_bot_iff_forall, | |
| monoid_hom.map_zpow β add_monoid_hom.map_zsmul, | |
| pi.division_comm_monoid β pi.subtraction_comm_monoid, | |
| monoid_hom.lift_of_right_inverse β add_monoid_hom.lift_of_right_inverse, | |
| submonoid.localization_map.inv_inj β add_submonoid.localization_map.neg_inj, | |
| with_one.coe_inj β with_zero.coe_inj, | |
| mul_pow β nsmul_add, | |
| mul_opposite.nndist_unop β add_opposite.nndist_unop, | |
| group_topology β add_group_topology, | |
| set.Inter_smul_subset β set.Inter_vadd_subset, | |
| subsemigroup.decidable_mem_centralizer β add_subsemigroup.decidable_mem_centralizer, | |
| ite_mul_one β ite_add_zero, | |
| isometry_equiv.coe_inv β isometry_equiv.coe_neg, | |
| smooth_map.comm_monoid β smooth_map.add_comm_monoid, | |
| quotient_group.ker_lift_mk β quotient_add_group.ker_lift_mk, | |
| mul_salem_spencer_mul_right_iff β add_salem_spencer_add_right_iff, | |
| Group.forget_reflects_isos β AddGroup.forget_reflects_isos, | |
| Mon.bundled_hom β AddMon.bundled_hom, | |
| is_group_hom.preimage β is_add_group_hom.preimage, | |
| is_closed_map_smul β is_closed_map_vadd, | |
| magma.assoc_quotient.of β add_magma.free_add_semigroup.of, | |
| mul_action.mem_fixed_points' β add_action.mem_fixed_points', | |
| monoid_hom.eq_lift_of_right_inverse β add_monoid_hom.eq_lift_of_right_inverse, | |
| free_group.map.of β free_add_group.map.of, | |
| left_cancel_semigroup.mul_assoc β add_left_cancel_semigroup.add_assoc, | |
| function.smul_comm_class β function.vadd_comm_class, | |
| free_semigroup.decidable_eq β free_add_semigroup.decidable_eq, | |
| submonoid.nontrivial β add_submonoid.nontrivial, | |
| smul_one_smul β vadd_zero_vadd, | |
| Semigroup.semigroup.to_has_mul.category_theory.bundled_hom.parent_projection β AddSemigroup.semigroup.to_has_mul.category_theory.bundled_hom.parent_projection, | |
| semigroup.mul_assoc β add_semigroup.add_assoc, | |
| mul_equiv.to_monoid_hom β add_equiv.to_add_monoid_hom, | |
| list.alternating_prod β list.alternating_sum, | |
| lattice_ordered_comm_group.mabs_sup_div_sup_le_mabs β lattice_ordered_comm_group.abs_sup_sub_sup_le_abs, | |
| prod.fst_mul_snd β prod.fst_add_snd, | |
| submonoid.localization_map.of_mul_equiv_of_dom_apply β add_submonoid.localization_map.of_add_equiv_of_dom_apply, | |
| free_group.red.step.cons_bnot_rev β free_add_group.red.step.cons_bnot_rev, | |
| unit β unit, | |
| localization.one_rel β add_localization.zero_rel, | |
| inv_mul_le_iff_le_mul' β neg_add_le_iff_le_add', | |
| ae_measurable.const_div β ae_measurable.const_sub, | |
| quotient_group.induction_on' β quotient_add_group.induction_on', | |
| subgroup.closure_inv β add_subgroup.closure_neg, | |
| subgroup.map_eq_bot_iff_of_injective β add_subgroup.map_eq_bot_iff_of_injective, | |
| continuous_monoid_hom.inr β continuous_add_monoid_hom.inr, | |
| pi.monoid_hom_apply β pi.add_monoid_hom_apply, | |
| category_theory.iso.Semigroup_iso_to_mul_equiv β category_theory.iso.Semigroup_iso_to_add_equiv, | |
| monoid_hom.finsupp_prod_apply β add_monoid_hom.finsupp_sum_apply, | |
| finset.prod_Ico_consecutive β finset.sum_Ico_consecutive, | |
| subgroup.zpowers_eq_bot β add_subgroup.zmultiples_eq_bot, | |
| localization.mul_equiv_of_quotient_symm_mk β add_localization.add_equiv_of_quotient_symm_mk, | |
| CommMon.category_theory.forgetβ.category_theory.creates_limit β AddCommMon.category_theory.forgetβ.category_theory.creates_limit, | |
| div_inv_monoid.npow_succ' β sub_neg_monoid.nsmul_succ', | |
| continuous.units_map β continuous.add_units_map, | |
| is_lower_set.mul_right β is_lower_set.add_right, | |
| comm_monoid.torsion β add_comm_monoid.add_torsion, | |
| monoid_hom.snd β add_monoid_hom.snd, | |
| semiconj_by.inv_right_iff β add_semiconj_by.neg_right_iff, | |
| subsemigroup.gc_map_comap β add_subsemigroup.gc_map_comap, | |
| ordered_comm_group.div β ordered_add_comm_group.sub, | |
| submonoid.localization_map.mul_mk'_one_eq_mk' β add_submonoid.localization_map.add_mk'_zero_eq_mk', | |
| magma.assoc_quotient.inhabited β add_magma.free_add_semigroup.inhabited, | |
| free_semigroup β free_add_semigroup, | |
| multiset.prod_map_div β multiset.sum_map_sub, | |
| localization.inhabited β add_localization.inhabited, | |
| continuous_within_at.zpow β continuous_within_at.zsmul, | |
| monoid_hom.iterate_map_mul β add_monoid_hom.iterate_map_add, | |
| set.preimage_mul_left_singleton β set.preimage_add_left_singleton, | |
| continuous_monoid_hom.fst_to_monoid_hom β continuous_add_monoid_hom.fst_to_add_monoid_hom, | |
| measure_theory.integrable.comp_div_right β measure_theory.integrable.comp_sub_right, | |
| monotone_on.const_mul' β monotone_on.const_add, | |
| free_group.one_eq_mk β free_add_group.zero_eq_mk, | |
| finset.prod_dite_irrel β finset.sum_dite_irrel, | |
| comm_monoid.primary_component β add_comm_monoid.primary_component, | |
| finprod_induction β finsum_induction, | |
| free_semigroup.lift_of β free_add_semigroup.lift_of, | |
| pi.apply_mul_single β pi.apply_single, | |
| units.map β add_units.map, | |
| finset.ae_strongly_measurable_prod β finset.ae_strongly_measurable_sum, | |
| finset.mul_inter_subset β finset.add_inter_subset, | |
| magma.assoc_quotient.semigroup β add_magma.free_add_semigroup.add_semigroup, | |
| filter.covariant_swap_div β filter.covariant_swap_sub, | |
| measurable.const_smul' β measurable.const_vadd', | |
| group.fg_iff_monoid.fg β add_group.fg_iff_add_monoid.fg, | |
| nonempty_interval.division_comm_monoid β nonempty_interval.subtraction_comm_monoid, | |
| group_seminorm_class.to_nonneg_hom_class β add_group_seminorm_class.to_nonneg_hom_class, | |
| has_continuous_inv_of_discrete_topology β has_continuous_neg_of_discrete_topology, | |
| finset.smul_finset_subset_iff β finset.vadd_finset_subset_iff, | |
| mul_mem_cancel_left β add_mem_cancel_left, | |
| mul_equiv_iso_Magma_iso β add_equiv_iso_AddMagma_iso, | |
| measure_theory.measure_preimage_smul β measure_theory.measure_preimage_vadd, | |
| localization.lift_onβ_mk' β add_localization.lift_onβ_mk', | |
| group.rank_le β add_group.rank_le, | |
| measure_theory.measure.pi.is_mul_right_invariant β measure_theory.measure.pi.is_add_right_invariant, | |
| measurable_equiv.to_equiv_mul_left β measurable_equiv.to_equiv_add_left, | |
| subgroup.quotient_infi_subgroup_of_embedding β add_subgroup.quotient_infi_add_subgroup_of_embedding, | |
| linear_ordered_cancel_comm_monoid.mul_comm β linear_ordered_cancel_add_comm_monoid.add_comm, | |
| quotient_group.has_continuous_smul β quotient_add_group.has_continuous_vadd, | |
| group_norm.inhabited β add_group_norm.inhabited, | |
| seminormed_group.of_mul_dist' β seminormed_add_group.of_add_dist', | |
| powers_hom_apply β multiples_hom_apply, | |
| monoid_hom.of_left_inverse β add_monoid_hom.of_left_inverse, | |
| group.closure_subgroup β add_group.closure_add_subgroup, | |
| monoid_hom.range_eq_map β add_monoid_hom.range_eq_map, | |
| monoid_hom.of_left_inverse_symm_apply β add_monoid_hom.of_left_inverse_symm_apply, | |
| upper_set.Ici_one β upper_set.Ici_zero, | |
| measure_theory.measure.inv_eq_self β measure_theory.measure.neg_eq_self, | |
| subsemigroup.closure β add_subsemigroup.closure, | |
| filter.germ.ordered_comm_group β filter.germ.ordered_add_comm_group, | |
| norm_group_seminorm β norm_add_group_seminorm, | |
| division_monoid.npow β subtraction_monoid.nsmul, | |
| units.continuous_coe_inv β add_units.continuous_coe_neg, | |
| pi.normed_group β pi.normed_add_group, | |
| mul_equiv.of_left_inverse'_apply β add_equiv.of_left_inverse'_apply, | |
| is_monoid_hom.map_one β is_add_monoid_hom.map_zero, | |
| group_norm_class.map_one_eq_zero β add_group_norm_class.map_zero, | |
| submonoid.localization_map.mk' β add_submonoid.localization_map.mk', | |
| finprod_one β finsum_zero, | |
| group.mul_one β add_group.add_zero, | |
| filter.smul_ne_bot_iff β filter.vadd_ne_bot_iff, | |
| monotone_on.mul' β monotone_on.add, | |
| le_iff_exists_mul β le_iff_exists_add, | |
| set.singleton_smul_singleton β set.singleton_vadd_singleton, | |
| finset.smul_eq_empty β finset.vadd_eq_empty, | |
| div_inv_one_monoid.div β sub_neg_zero_monoid.sub, | |
| ulift.cancel_monoid β ulift.add_cancel_monoid, | |
| measure_theory.is_fundamental_domain.ae_strongly_measurable_on_iff β measure_theory.is_add_fundamental_domain.ae_strongly_measurable_on_iff, | |
| subgroup.mem_map β add_subgroup.mem_map, | |
| free_magma.is_lawful_monad β free_add_magma.is_lawful_monad, | |
| list.ae_strongly_measurable_prod' β list.ae_strongly_measurable_sum', | |
| group.zpow_neg' β add_group.zsmul_neg', | |
| finset.prod_preimage β finset.sum_preimage, | |
| is_right_regular.mul β is_add_right_regular.add, | |
| subgroup.fintype_bot β add_subgroup.fintype_bot, | |
| finset.prod_fiberwise_of_maps_to β finset.sum_fiberwise_of_maps_to, | |
| lex.division_comm_monoid β order_dual.subtraction_comm_monoid, | |
| con.lift_unique β add_con.lift_unique, | |
| finset.prod_Ico_succ_div_top β finset.sum_Ico_succ_sub_top, | |
| sigma.is_scalar_tower β sigma.vadd_assoc_class, | |
| finset.univ_mul_univ β finset.univ_add_univ, | |
| part.one_mem_one β part.zero_mem_zero, | |
| mul_hom_class β add_hom_class, | |
| bdd_above_inv β bdd_above_neg, | |
| monoid_hom.to_mul_equiv_apply β add_monoid_hom.to_add_equiv_apply, | |
| mem_sphere_one_iff_norm β mem_sphere_zero_iff_norm, | |
| filter.tendsto_one β filter.tendsto_zero, | |
| mul_le_cancellable.inj_left β add_le_cancellable.inj_left, | |
| set.singleton_div β set.singleton_sub, | |
| subsemigroup.map_comap_eq_of_surjective β add_subsemigroup.map_comap_eq_of_surjective, | |
| measurable_equiv.inv_apply β measurable_equiv.neg_apply, | |
| comm_group.mul_comm β add_comm_group.add_comm, | |
| order_iso.inv_apply β order_iso.neg_apply, | |
| open_subgroup.order_top β open_add_subgroup.order_top, | |
| monoid.exponent_pos_of_exists β add_monoid.exponent_pos_of_exists, | |
| injective_iff_map_eq_one β injective_iff_map_eq_zero, | |
| measure_theory.ae_strongly_measurable.mul β measure_theory.ae_strongly_measurable.add, | |
| prod.has_involutive_inv β prod.has_involutive_neg, | |
| measure_theory.measure.is_inv_invariant.inv_eq_self β measure_theory.measure.is_neg_invariant.neg_eq_self, | |
| strict_anti.mul_const' β strict_anti.add_const, | |
| one_hom.ext β zero_hom.ext, | |
| measure_theory.lintegral_mul_left_eq_self β measure_theory.lintegral_add_left_eq_self, | |
| set.nonempty.mul β set.nonempty.add, | |
| mul_equiv.Pi_subsingleton_symm_apply β add_equiv.Pi_subsingleton_symm_apply, | |
| finset.mul_subset_mul_left β finset.add_subset_add_left, | |
| submonoid.localization_map.map_units' β add_submonoid.localization_map.map_add_units', | |
| subsemigroup.top_equiv_symm_apply_coe β add_subsemigroup.top_equiv_symm_apply_coe, | |
| is_of_fin_order.apply β is_of_fin_add_order.apply, | |
| uniform_group.to_topological_group β uniform_add_group.to_topological_add_group, | |
| measure_theory.is_mul_left_invariant.smul_invariant_measure β measure_theory.is_mul_left_invariant.vadd_invariant_measure, | |
| cancel_comm_monoid.mul β add_cancel_comm_monoid.add, | |
| submonoid.eq_top_iff' β add_submonoid.eq_top_iff', | |
| subgroup.card_mul_index β add_subgroup.card_mul_index, | |
| mul_action.smul_orbit β add_action.vadd_orbit, | |
| submonoid.has_inf β add_submonoid.has_inf, | |
| homeomorph.shear_mul_right β homeomorph.shear_add_right, | |
| mul_hom.id_apply β add_hom.id_apply, | |
| subsemigroup.gci_map_comap β add_subsemigroup.gci_map_comap, | |
| con.ext'_iff β add_con.ext'_iff, | |
| list.prod_mul_prod_eq_prod_zip_with_mul_prod_drop β list.sum_add_sum_eq_sum_zip_with_add_sum_drop, | |
| one_hom.coe_copy β zero_hom.coe_copy, | |
| units.coe_inv_copy β add_units.coe_neg_copy, | |
| Group.filtered_colimits.colimit_inv_aux β AddGroup.filtered_colimits.colimit_neg_aux, | |
| canonically_linear_ordered_monoid.mul_one β canonically_linear_ordered_add_monoid.add_zero, | |
| order_dual.linear_ordered_cancel_comm_monoid β order_dual.linear_ordered_cancel_add_comm_monoid, | |
| prod.ordered_comm_group β prod.ordered_add_comm_group, | |
| mul_equiv.symm_trans_self β add_equiv.symm_trans_self, | |
| one_lt_mul_of_lt_of_le' β add_pos_of_pos_of_nonneg, | |
| category_theory.discrete.monoidal_tensor_obj_as β discrete.add_monoidal_tensor_obj_as, | |
| order_monoid_hom_class.map_one β order_add_monoid_hom_class.map_zero, | |
| monoid_hom.mrange β add_monoid_hom.mrange, | |
| measure_theory.strongly_measurable.mul β measure_theory.strongly_measurable.add, | |
| subgroup.relindex β add_subgroup.relindex, | |
| is_cyclic.image_range_order_of β is_add_cyclic.image_range_order_of, | |
| eq_one_or_one_lt β eq_zero_or_pos, | |
| measure_theory.integrable.comp_inv β measure_theory.integrable.comp_neg, | |
| continuous_finset_prod β continuous_finset_sum, | |
| filter.is_bounded_under_ge_inv β filter.is_bounded_under_ge_neg, | |
| Group.has_limits β AddGroup.has_limits, | |
| ordered_comm_group.npow_succ' β ordered_add_comm_group.nsmul_succ', | |
| lex.division_monoid β order_dual.subtraction_monoid, | |
| filter.map_div β filter.map_sub, | |
| le_of_le_mul_of_le_one_left β le_of_le_add_of_nonpos_left, | |
| pi.div_comp β pi.sub_comp, | |
| mul_hom.subsemigroup_map β add_hom.subsemigroup_map, | |
| con.lift_comp_mk' β add_con.lift_comp_mk', | |
| prod.snd_prod β prod.snd_sum, | |
| filter.has_basis.uniformity_of_nhds_one_inv_mul_swapped β filter.has_basis.uniformity_of_nhds_zero_neg_add_swapped, | |
| subgroup.right_transversals β add_subgroup.right_transversals, | |
| submonoid.localization_map.mk'_eq_of_eq' β add_submonoid.localization_map.mk'_eq_of_eq', | |
| mul_self_zpow β add_zsmul_self, | |
| has_smooth_mul.prod β has_smooth_add.sum, | |
| filter.map_smul β filter.map_vadd, | |
| free_monoid.cancel_monoid β free_add_monoid.cancel_add_monoid, | |
| with_one.has_mul β with_zero.has_add, | |
| free_semigroup.map_pure β free_add_semigroup.map_pure, | |
| set.union_smul β set.union_vadd, | |
| submonoid.prod_bot_sup_bot_prod β add_submonoid.prod_bot_sup_bot_prod, | |
| comm_monoid.primary_component.disjoint β add_comm_monoid.primary_component.disjoint, | |
| measure_theory.map_mul_left_eq_self β measure_theory.map_add_left_eq_self, | |
| open_subgroup.has_coe_opens β open_add_subgroup.has_coe_opens, | |
| subgroup.map β add_subgroup.map, | |
| measure_theory.lintegral_eq_zero_of_is_mul_left_invariant β measure_theory.lintegral_eq_zero_of_is_add_left_invariant, | |
| set.Inter_mul_subset β set.Inter_add_subset, | |
| multiset.noncomm_prod β multiset.noncomm_sum, | |
| min_le_mul_of_one_le_right β min_le_add_of_nonneg_right, | |
| function.mul_support_subset_comp β function.support_subset_comp, | |
| tactic.norm_num.list.prod_cons_congr β tactic.norm_num.list.sum_cons_congr, | |
| list.prod_inv_reverse β list.sum_neg_reverse, | |
| has_continuous_inv β has_continuous_neg, | |
| free_monoid.of_list_comp_to_list β free_add_monoid.of_list_comp_to_list, | |
| finset.prod_filter β finset.sum_filter, | |
| order_iso.inv β order_iso.neg, | |
| free_semigroup.mul_seq β free_add_semigroup.add_seq, | |
| group.div_eq_mul_inv β add_group.sub_eq_add_neg, | |
| freiman_hom.fun_like β add_freiman_hom.fun_like, | |
| free_group.to_word_one β free_add_group.to_word_zero, | |
| monoid_hom.coe_mrange_restrict β add_monoid_hom.coe_mrange_restrict, | |
| ordered_comm_group.npow_zero' β ordered_add_comm_group.nsmul_zero', | |
| cancel_comm_monoid.to_comm_monoid β add_cancel_comm_monoid.to_add_comm_monoid, | |
| order_dual.ordered_comm_monoid β order_dual.ordered_add_comm_monoid, | |
| finset.inv_def β finset.neg_def, | |
| finset.singleton_mul_hom β finset.singleton_add_hom, | |
| upper_set.coe_div β upper_set.coe_sub, | |
| subgroup.supr_induction' β add_subgroup.supr_induction', | |
| set.subset_mul_left β set.subset_add_left, | |
| map_finsupp_prod β map_finsupp_sum, | |
| subgroup.zpowers_le β add_subgroup.zmultiples_le, | |
| set.smul_Interβ_subset β set.vadd_Interβ_subset, | |
| commute.units_inv_left_iff β add_commute.add_units_neg_left_iff, | |
| inf_mul_sup β inf_add_sup, | |
| inv_le_inv_iff β neg_le_neg_iff, | |
| units.coe_hom β add_units.coe_hom, | |
| subgroup.inclusion_injective β add_subgroup.inclusion_injective, | |
| nndist_eq_nnnorm_div β nndist_eq_nnnorm_sub, | |
| Group.filtered_colimits.colimit_group β AddGroup.filtered_colimits.colimit_add_group, | |
| filter.ne_bot.inv β filter.ne_bot.neg, | |
| ordered_comm_group.mul_left_inv β ordered_add_comm_group.add_left_neg, | |
| finprod_mem_empty β finsum_mem_empty, | |
| subgroup.closure_eq_top_of_mclosure_eq_top β add_subgroup.closure_eq_top_of_mclosure_eq_top, | |
| ordered_comm_group.zpow_neg' β ordered_add_comm_group.zsmul_neg', | |
| subgroup.card_eq_one β add_subgroup.card_eq_one, | |
| is_subgroup.to_is_submonoid β is_add_subgroup.to_is_add_submonoid, | |
| linear_ordered_cancel_comm_monoid.npow β linear_ordered_cancel_add_comm_monoid.nsmul, | |
| prod.smul_snd β prod.vadd_snd, | |
| mul_left_cancel β add_left_cancel, | |
| abs_eq_sup_inv β abs_eq_sup_neg, | |
| one_hom.coe_comp β zero_hom.coe_comp, | |
| finset.mem_mul β finset.mem_add, | |
| subgroup.prod_mono_left β add_subgroup.prod_mono_left, | |
| mul_equiv.coe_mk β add_equiv.coe_mk, | |
| of_lex_inv β of_lex_neg, | |
| ordered_cancel_comm_monoid.mul_assoc β ordered_cancel_add_comm_monoid.add_assoc, | |
| filter.germ.has_inv β filter.germ.has_neg, | |
| set.piecewise_smul β set.piecewise_vadd, | |
| pow_to_lex β to_lex_smul, | |
| with_one.has_one β with_zero.has_zero, | |
| monoid_hom.coe_prod_map β add_monoid_hom.coe_prod_map, | |
| tendsto_norm_nhds_within_one β tendsto_norm_nhds_within_zero, | |
| set.empty_pow β set.empty_nsmul, | |
| group_norm.mul_le' β add_group_norm.add_le', | |
| measure_theory.measure.is_haar_measure_haar_measure β measure_theory.measure.is_add_haar_measure_add_haar_measure, | |
| finset.prod_mul_indicator_eq_prod_filter β finset.sum_indicator_eq_sum_filter, | |
| mul_equiv.inv' β add_equiv.neg', | |
| measure_theory.measure_preserving_mul_prod_inv_right β measure_theory.measure_preserving_add_prod_neg_right, | |
| lattice_ordered_comm_group.one_le_neg β lattice_ordered_comm_group.neg_nonneg, | |
| left_cancel_monoid.npow β add_left_cancel_monoid.nsmul, | |
| CommMon.forget_reflects_isos β AddCommMon.forget_reflects_isos, | |
| fintype.prod_subtype_mul_prod_subtype β fintype.sum_subtype_add_sum_subtype, | |
| order_of_le_of_pow_eq_one β add_order_of_le_of_nsmul_eq_zero, | |
| monoid_hom.to_freiman_hom β add_monoid_hom.to_add_freiman_hom, | |
| group.mul_right_bijective β add_group.add_right_bijective, | |
| continuous.zpow β continuous.zsmul, | |
| map_zpow β map_zsmul, | |
| div_inv_monoid.mul β sub_neg_monoid.add, | |
| quotient_group.lift_quot_mk β quotient_add_group.lift_quot_mk, | |
| localization.induction_onβ β add_localization.induction_onβ, | |
| magma.assoc_quotient.map_of β add_magma.free_add_semigroup.map_of, | |
| ordered_cancel_comm_monoid.le_of_mul_le_mul_left β ordered_cancel_add_comm_monoid.le_of_add_le_add_left, | |
| subgroup_class.to_inv_mem_class β add_subgroup_class.to_neg_mem_class, | |
| one_hom.comp β zero_hom.comp, | |
| Mon.forget_preserves_limits_of_size β AddMon.forget_preserves_limits_of_size, | |
| div_inv_monoid.div_eq_mul_inv β sub_neg_monoid.sub_eq_add_neg, | |
| pi.topological_group β pi.topological_add_group, | |
| eq_one_of_one_le_mul_right β eq_zero_of_add_nonneg_right, | |
| set.preimage_smul_inv β set.preimage_vadd_neg, | |
| set.mul_Unionβ β set.add_Unionβ, | |
| finset.mul_nonempty β finset.add_nonempty, | |
| CommGroup.filtered_colimits.colimit_cocone β AddCommGroup.filtered_colimits.colimit_cocone, | |
| locally_constant.has_one β locally_constant.has_zero, | |
| submonoid.localization_map.of_mul_equiv_of_dom_comp β add_submonoid.localization_map.of_add_equiv_of_dom_comp, | |
| measure_theory.measure_lt_top_of_is_compact_of_is_mul_left_invariant β measure_theory.measure_lt_top_of_is_compact_of_is_add_left_invariant, | |
| mul_equiv.coe_refl β add_equiv.coe_refl, | |
| is_regular_one β is_add_regular_zero, | |
| free_group.red.trans β free_add_group.red.trans, | |
| mul_equiv.symm_mk β add_equiv.symm_mk, | |
| mul_lt_of_lt_inv_mul β add_lt_of_lt_neg_add, | |
| submonoid.localization_map.of_mul_equiv_of_dom_comp_symm β add_submonoid.localization_map.of_add_equiv_of_dom_comp_symm, | |
| norm_sub_norm_le' β norm_sub_norm_le, | |
| free_group.free_group_congr β free_add_group.free_add_group_congr, | |
| mul_lt_of_lt_one_of_lt β add_lt_of_neg_of_lt, | |
| subgroup.opposite β add_subgroup.opposite, | |
| subgroup.mem_sup β add_subgroup.mem_sup, | |
| measure_theory.eventually_div_right_iff β measure_theory.eventually_sub_right_iff, | |
| has_measurable_divβ.measurable_div β has_measurable_subβ.measurable_sub, | |
| smul_closed_ball_one β vadd_closed_ball_zero, | |
| lt_mul_of_lt_mul_right β lt_add_of_lt_add_right, | |
| mul_equiv.monoid_hom_congr_apply β add_equiv.add_monoid_hom_congr_apply, | |
| con.lift_coe β add_con.lift_coe, | |
| div_inv_one_monoid.one β sub_neg_zero_monoid.zero, | |
| right_cancel_monoid β add_right_cancel_monoid, | |
| order_iso.mul_right_to_equiv β order_iso.add_right_to_equiv, | |
| with_one.nontrivial β with_zero.nontrivial, | |
| pi.const_one β pi.const_zero, | |
| multiset.noncomm_prod_commute β multiset.noncomm_sum_add_commute, | |
| ball_mul_one β ball_add_zero, | |
| monoid_hom.range_top_of_surjective β add_monoid_hom.range_top_of_surjective, | |
| prod.normed_group β prod.normed_add_group, | |
| Mon.filtered_colimits.colimit_one_eq β AddMon.filtered_colimits.colimit_zero_eq, | |
| subgroup.quotient_infi_embedding_apply_mk β add_subgroup.quotient_infi_embedding_apply_mk, | |
| subgroup.range_zpowers_hom β add_subgroup.range_zmultiples_hom, | |
| finsupp.prod_sum_index β finsupp.sum_sum_index, | |
| submonoid.mul_action β add_submonoid.add_action, | |
| measure_theory.mem_fundamental_interior β measure_theory.mem_add_fundamental_interior, | |
| monoid_hom.subgroup_comap β add_monoid_hom.add_subgroup_comap, | |
| finset.prod_product_right β finset.sum_product_right, | |
| group_norm.semilattice_sup β add_group_norm.semilattice_sup, | |
| one_lt_mul'' β add_pos', | |
| group.in_closure β add_group.in_closure, | |
| finset.mem_pow β finset.mem_nsmul, | |
| lex.has_pow β lex.has_smul, | |
| Sup_div β Sup_sub, | |
| smul_assoc β vadd_assoc, | |
| units.is_unit_units_mul β add_units.is_add_unit_add_units_add, | |
| subgroup.relindex_mul_relindex β add_subgroup.relindex_mul_relindex, | |
| subgroup.top_subgroup_of β add_subgroup.top_add_subgroup_of, | |
| mul_inv_cancel_left β add_neg_cancel_left, | |
| mul_lt_iff_lt_one_left' β add_lt_iff_neg_left, | |
| zpow_iterate β zsmul_iterate, | |
| monoid.mul_one β add_monoid.add_zero, | |
| submonoid.has_measurable_smul β add_submonoid.has_measurable_vadd, | |
| set.mul_support_mul_indicator β set.support_indicator, | |
| inv_inv_div_inv β neg_neg_sub_neg, | |
| finset.prod_dite β finset.sum_dite, | |
| nonempty_interval.pure_pow β nonempty_interval.pure_nsmul, | |
| min_le_mul_of_one_le_left β min_le_add_of_nonneg_left, | |
| finset.prod_range_mul_prod_Ico β finset.sum_range_add_sum_Ico, | |
| subgroup.zpowers_eq_closure β add_subgroup.zmultiples_eq_closure, | |
| norm_inv' β norm_neg, | |
| measure_theory.ae_eq_fun.mk_div β measure_theory.ae_eq_fun.mk_sub, | |
| le_one_of_one_le_inv β nonpos_of_neg_nonneg, | |
| submonoid.closure_singleton_le_iff_mem β add_submonoid.closure_singleton_le_iff_mem, | |
| open_subgroup.ext β open_add_subgroup.ext, | |
| measure_theory.measure.sigma_finite_haar_measure β measure_theory.measure.sigma_finite_add_haar_measure, | |
| finset.image_mul_left β finset.image_add_left, | |
| is_mul_hom β is_add_hom, | |
| submonoid.mrange_inl β add_submonoid.mrange_inl, | |
| group_seminorm.mul_le' β add_group_seminorm.add_le', | |
| is_closed.inv β is_closed.neg, | |
| cancel_comm_monoid.to_comm_monoid_injective β add_cancel_comm_monoid.to_add_comm_monoid_injective, | |
| filter.div_ne_bot_iff β filter.sub_ne_bot_iff, | |
| submonoid_class.coe_multiset_prod β add_submonoid_class.coe_multiset_sum, | |
| units.has_continuous_const_smul β add_units.has_continuous_const_vadd, | |
| is_lub_inv β is_lub_neg, | |
| continuous_monoid_hom.prod_map β continuous_add_monoid_hom.sum_map, | |
| antitone_on.mul_strict_anti' β antitone_on.add_strict_anti, | |
| pi.is_scalar_tower β pi.vadd_assoc_class, | |
| monoid_hom.noncomm_pi_coprod_range β add_monoid_hom.noncomm_pi_coprod_range, | |
| semiconj_by.transitive β add_semiconj_by.transitive, | |
| group_norm_class β add_group_norm_class, | |
| le_one_of_mul_le_right β nonpos_of_add_le_right, | |
| is_square.mul β even.add, | |
| subgroup.closure β add_subgroup.closure, | |
| topological_group.of_nhds_one' β topological_add_group.of_nhds_zero', | |
| subgroup.mem_bot β add_subgroup.mem_bot, | |
| homeomorph.div_left_symm_apply β homeomorph.sub_left_symm_apply, | |
| quotient_group.left_rel_eq β quotient_add_group.left_rel_eq, | |
| subgroup.normal_in_normalizer β add_subgroup.normal_in_normalizer, | |
| submonoid.mrange_inl_sup_mrange_inr β add_submonoid.mrange_inl_sup_mrange_inr, | |
| is_subgroup.trivial_normal β is_add_subgroup.trivial_normal, | |
| pow_card_subgroup_coe β smul_card_add_subgroup_coe, | |
| measurable_equiv.smul_apply β measurable_equiv.vadd_apply, | |
| pi_norm_const' β pi_norm_const, | |
| division_monoid.mul_inv_rev β subtraction_monoid.neg_add_rev, | |
| group_seminorm.smul_apply β add_group_seminorm.smul_apply, | |
| continuous_finprod β continuous_finsum, | |
| set.mul_indicator_congr β set.indicator_congr, | |
| submonoid.ext β add_submonoid.ext, | |
| finset.prod_bUnion β finset.sum_bUnion, | |
| subsemigroup.inhabited β add_subsemigroup.inhabited, | |
| mul_opposite.measurable_space β add_opposite.measurable_space, | |
| order_monoid_hom.to_monoid_hom β order_add_monoid_hom.to_add_monoid_hom, | |
| list.prod_map_hom β list.sum_map_hom, | |
| function.injective.right_cancel_monoid β function.injective.add_right_cancel_monoid, | |
| set.mul_subset_mul_left β set.add_subset_add_left, | |
| subgroup.comap_sup_eq β add_subgroup.comap_sup_eq, | |
| mul_right_embedding β add_right_embedding, | |
| mul_div β add_sub, | |
| submonoid.localization_map.sec_spec' β add_submonoid.localization_map.sec_spec', | |
| filter.tendsto.mul β filter.tendsto.add, | |
| commute.units_zpow_right β add_commute.add_units_zsmul_right, | |
| continuous_map.coe_inv_units_lift_apply_apply β continuous_map.coe_neg_add_units_lift_apply_apply, | |
| subgroup.index_mul_card β add_subgroup.index_mul_card, | |
| comm_semigroup.mul β add_comm_semigroup.add, | |
| equiv.comm_semigroup β equiv.add_comm_semigroup, | |
| filter.pure_smul_pure β filter.pure_vadd_pure, | |
| finset.mul_union β finset.add_union, | |
| left_cancel_semigroup.mul_left_cancel β add_left_cancel_semigroup.add_left_cancel, | |
| div_inv_monoid β sub_neg_monoid, | |
| multiset.pow_card_le_prod β multiset.card_nsmul_le_sum, | |
| subgroup.properly_discontinuous_smul_of_tendsto_cofinite β add_subgroup.properly_discontinuous_vadd_of_tendsto_cofinite, | |
| order_of_eq_prime β add_order_of_eq_prime, | |
| finprod_mem_union' β finsum_mem_union', | |
| set.Unionβ_smul β set.Unionβ_vadd, | |
| smooth_monoid_morphism.inhabited β smooth_add_monoid_morphism.inhabited, | |
| ultrafilter.has_mul β ultrafilter.has_add, | |
| free_group.reduce β free_add_group.reduce, | |
| monoid.exponent_dvd_of_forall_pow_eq_one β add_monoid.exponent_dvd_of_forall_nsmul_eq_zero, | |
| free_magma.mul_bind β free_add_magma.add_bind, | |
| submonoid.coe_comap β add_submonoid.coe_comap, | |
| has_measurable_smul.measurable_const_smul β has_measurable_vadd.measurable_const_vadd, | |
| group.fintype_of_ker_le_range β add_group.fintype_of_ker_le_range, | |
| multiset.prod_map_inv' β multiset.sum_map_neg', | |
| quotient_group.out_eq' β quotient_add_group.out_eq', | |
| topological_group_is_uniform_of_compact_space β topological_add_group_is_uniform_of_compact_space, | |
| free_semigroup.pure_bind β free_add_semigroup.pure_bind, | |
| function.mul_support_min β function.support_min, | |
| quotient_group.hom_quotient_zpow_of_hom_id β quotient_add_group.hom_quotient_zsmul_of_hom_id, | |
| cont_mdiff_on_one β cont_mdiff_on_zero, | |
| freiman_hom.freiman_hom_class_of_le β add_freiman_hom.add_freiman_hom_class_of_le, | |
| mul_mem_class.to_semigroup β add_mem_class.to_add_semigroup, | |
| mem_closed_ball_iff_norm''' β mem_closed_ball_iff_norm', | |
| submonoid.closure_eq_image_prod β add_submonoid.closure_eq_image_sum, | |
| submonoid.coe_centralizer β add_submonoid.coe_centralizer, | |
| free_group.red.length_le β free_add_group.red.length_le, | |
| is_cyclic.exists_monoid_generator β is_add_cyclic.exists_add_monoid_generator, | |
| function.injective.division_comm_monoid β function.injective.subtraction_comm_monoid, | |
| mem_own_left_coset β mem_own_left_add_coset, | |
| filter.one_mem_one β filter.zero_mem_zero, | |
| finprod_cond_eq_right β finsum_cond_eq_right, | |
| measure_theory.measure.haar.index_defined β measure_theory.measure.haar.add_index_defined, | |
| filter.pure_div_pure β filter.pure_sub_pure, | |
| equiv.mul_equiv_apply β equiv.add_equiv_apply, | |
| group_topology.to_topological_space_top β add_group_topology.to_topological_space_top, | |
| interior_smul β interior_vadd, | |
| function.mul_support_comp_subset β function.support_comp_subset, | |
| upper_closure_mul_distrib β upper_closure_add_distrib, | |
| mul_action.quotient_action β add_action.quotient_action, | |
| smul_comm_class.of_mul_smul_one β vadd_comm_class.of_add_vadd_zero, | |
| has_measurable_mulβ.to_has_measurable_mul β has_measurable_addβ.to_has_measurable_add, | |
| inv_monoid_hom β neg_add_monoid_hom, | |
| linear_ordered_comm_group.mul_le_mul_left β linear_ordered_add_comm_group.add_le_add_left, | |
| pi.norm_def' β pi.norm_def, | |
| lower_set.has_div β lower_set.has_sub, | |
| order_dual.right_cancel_semigroup β order_dual.right_cancel_add_semigroup, | |
| univ.is_submonoid β univ.is_add_submonoid, | |
| measure_theory.measure.quasi_measure_preserving.smul_ae_eq_of_ae_eq β measure_theory.measure.quasi_measure_preserving.vadd_ae_eq_of_ae_eq, | |
| set.mul_indicator_one_preimage β set.indicator_zero_preimage, | |
| eq_one_of_mul_le_one_right β eq_zero_of_add_nonpos_right, | |
| filter.germ.has_mul β filter.germ.has_add, | |
| submonoid.prod β add_submonoid.prod, | |
| right_cancel_monoid.mul β add_right_cancel_monoid.add, | |
| list.periodic_prod β list.periodic_sum, | |
| monoid_hom.eval_apply_apply β add_monoid_hom.eval_apply_apply, | |
| locally_constant.inv_apply β locally_constant.neg_apply, | |
| is_scalar_tower.op_left β vadd_assoc_class.op_left, | |
| measure_theory.measure.inv.is_mul_right_invariant β measure_theory.measure.neg.is_add_right_invariant, | |
| Semigroup β AddSemigroup, | |
| locally_constant.mul_one_class β locally_constant.add_zero_class, | |
| list.prod_append β list.sum_append, | |
| set.nonempty.of_div_right β set.nonempty.of_sub_right, | |
| finset.card_div_mul_le_card_mul_mul_card_mul β finset.card_sub_mul_le_card_add_mul_card_add, | |
| subgroup.coe_list_prod β add_subgroup.coe_list_sum, | |
| finset.image_smul β finset.image_vadd, | |
| subsemigroup.coe_prod β add_subsemigroup.coe_prod, | |
| con_gen β add_con_gen, | |
| CommMon.filtered_colimits.M β AddCommMon.filtered_colimits.M, | |
| monoid.not_is_torsion_free_iff β add_monoid.not_is_torsion_free_iff, | |
| filter.bot_div β filter.bot_sub, | |
| finset.image_one_hom_apply β finset.image_zero_hom_apply, | |
| mul_hom.restrict_apply β add_hom.restrict_apply, | |
| filter.has_basis.uniformity_of_nhds_one_inv_mul β filter.has_basis.uniformity_of_nhds_zero_neg_add, | |
| subgroup.relindex_inf_ne_zero β add_subgroup.relindex_inf_ne_zero, | |
| submonoid.localization_map.away_map β add_submonoid.localization_map.away_map, | |
| tendsto_inv β tendsto_neg, | |
| dist_prod_prod_le β dist_sum_sum_le, | |
| subsemigroup.comap_infi_map_of_injective β add_subsemigroup.comap_infi_map_of_injective, | |
| is_cyclic_of_order_of_eq_card β is_add_cyclic_of_order_of_eq_card, | |
| submonoid.mem_nhds_one β add_submonoid.mem_nhds_zero, | |
| mem_approx_order_of_iff β mem_approx_add_order_of_iff, | |
| commute.pow_self β add_commute.nsmul_self, | |
| quotient_group.quotient_ker_equiv_of_right_inverse_apply β quotient_add_group.quotient_ker_equiv_of_right_inverse_apply, | |
| function.injective.comm_group β function.injective.add_comm_group, | |
| set.image_mul_left β set.image_add_left, | |
| free_group.of β free_add_group.of, | |
| subgroup.has_measurable_smul β add_subgroup.has_measurable_vadd, | |
| quotient_group.range_ker_lift_surjective β quotient_add_group.range_ker_lift_surjective, | |
| Group.group.to_monoid.category_theory.bundled_hom.parent_projection β AddGroup.group.to_monoid.category_theory.bundled_hom.parent_projection, | |
| submonoid.localization_map.map_left_cancel β add_submonoid.localization_map.map_left_cancel, | |
| finset.noncomm_prod_mul_distrib β finset.noncomm_sum_add_distrib, | |
| cInf_div β cInf_sub, | |
| submonoid.coe_pow β add_submonoid.coe_nsmul, | |
| Semigroup.of_hom_apply β AddSemigroup.of_hom_apply, | |
| CommGroup.limit_comm_group β AddCommGroup.limit_add_comm_group, | |
| lattice_ordered_comm_group.m_le_pos β lattice_ordered_comm_group.le_pos, | |
| measure_theory.regular_inv_iff β measure_theory.regular_neg_iff, | |
| function.const_le_one_of_le_one β function.const_nonpos_of_nonpos, | |
| mul_action.sum_card_fixed_by_eq_card_orbits_mul_card_group β add_action.sum_card_fixed_by_eq_card_orbits_add_card_add_group, | |
| has_compact_mul_support.mul β has_compact_support.add, | |
| mem_sphere_iff_norm' β mem_sphere_iff_norm, | |
| has_mul.to_has_opposite_smul β has_add.to_has_opposite_vadd, | |
| is_open_map_div_right β is_open_map_sub_right, | |
| right_cancel_monoid.one_mul β add_right_cancel_monoid.zero_add, | |
| lt_of_inv_lt_inv β lt_of_neg_lt_neg, | |
| mul_inv_le_iff_le_mul β add_neg_le_iff_le_add, | |
| lt_mul_of_lt_of_one_lt' β lt_add_of_lt_of_pos', | |
| finprod β finsum, | |
| torsion.of_torsion β add_comm_monoid.torsion.of_torsion, | |
| lower_set.coe_mul β lower_set.coe_add, | |
| topological_group.continuous_conj' β topological_add_group.continuous_conj', | |
| pi.div_apply β pi.sub_apply, | |
| order_of_pos' β add_order_of_pos', | |
| mul_opposite.inhabited β add_opposite.inhabited, | |
| mul_inv_eq_iff_eq_mul β add_neg_eq_iff_eq_add, | |
| is_unit.coe_lift_right β is_add_unit.coe_lift_right, | |
| group_seminorm.semilattice_sup β add_group_seminorm.semilattice_sup, | |
| equiv.prod_comp β equiv.sum_comp, | |
| group_seminorm.lt_def β add_group_seminorm.lt_def, | |
| Mon.monoid β AddMon.add_monoid, | |
| fin.prod_Ioi_succ β fin.sum_Ioi_succ, | |
| mul_mem_class.has_mul β add_mem_class.has_add, | |
| measure_theory.measure.haar.chaar_sup_eq β measure_theory.measure.haar.add_chaar_sup_eq, | |
| continuous_monoid_hom.inv_to_monoid_hom β continuous_add_monoid_hom.neg_to_add_monoid_hom, | |
| mul_equiv.self_trans_symm β add_equiv.self_trans_symm, | |
| equiv.coe_mul_left β equiv.coe_add_left, | |
| left_cancel_monoid.one_mul β add_left_cancel_monoid.zero_add, | |
| filter.pure_one_hom β filter.pure_zero_hom, | |
| one_hom.with_top_map β zero_hom.with_top_map, | |
| is_group_hom.one_ker_inv' β is_add_group_hom.zero_ker_neg', | |
| commute.refl β add_commute.refl, | |
| monoid_hom_of_mem_closure_range_coe_apply β add_monoid_hom_of_mem_closure_range_coe_apply, | |
| filter.germ.coe_smul' β filter.germ.coe_vadd', | |
| free_monoid.of_list_to_list β free_add_monoid.of_list_to_list, | |
| finprod_mem_eq_one_of_infinite β finsum_mem_eq_zero_of_infinite, | |
| has_forget_to_Semigroup β has_forget_to_AddSemigroup, | |
| finset.le_prod_nonempty_of_submultiplicative β finset.le_sum_nonempty_of_subadditive, | |
| con.has_Inf β add_con.has_Inf, | |
| quotient_group.mk'_apply β quotient_add_group.mk'_apply, | |
| fintype.prod_bool β fintype.sum_bool, | |
| monoid_hom.div_apply β add_monoid_hom.sub_apply, | |
| freiman_hom.has_mul β add_freiman_hom.has_add, | |
| zpow_zero β zero_zsmul, | |
| continuous_at.norm' β continuous_at.norm, | |
| has_continuous_mul.has_measurable_mulβ β has_continuous_add.has_measurable_mulβ, | |
| subsemigroup.map_sup_comap_of_surjective β add_subsemigroup.map_sup_comap_of_surjective, | |
| right_cancel_monoid.to_monoid β add_right_cancel_monoid.to_add_monoid, | |
| continuous_monoid_hom.mul_to_monoid_hom β continuous_add_monoid_hom.add_to_add_monoid_hom, | |
| subgroup.is_complement'_bot_top β add_subgroup.is_complement'_bot_top, | |
| measure_theory.measure.haar.is_left_invariant_chaar β measure_theory.measure.haar.is_left_invariant_add_chaar, | |
| mul_le_cancellable.mul_le_mul_iff_right β add_le_cancellable.add_le_add_iff_right, | |
| set.nonempty.of_smul_right β set.nonempty.of_vadd_right, | |
| subgroup.map_top_of_surjective β add_subgroup.map_top_of_surjective, | |
| one_hom.with_bot_map β zero_hom.with_bot_map, | |
| measure_theory.integral_div_right_eq_self β measure_theory.integral_sub_right_eq_self, | |
| list.strongly_measurable_prod β list.strongly_measurable_sum, | |
| commute.mul_inv_cancel β add_commute.add_neg_cancel, | |
| group_norm.le_def β add_group_norm.le_def, | |
| subgroup.mem_right_transversals_iff_exists_unique_mul_inv_mem β add_subgroup.mem_right_transversals_iff_exists_unique_add_neg_mem, | |
| uniformity_eq_comap_nhds_one' β uniformity_eq_comap_nhds_zero', | |
| group_seminorm β add_group_seminorm, | |
| submonoid β add_submonoid, | |
| order_monoid_hom.copy β order_add_monoid_hom.copy, | |
| mul_hom.srange_restrict β add_hom.srange_restrict, | |
| submonoid.mrange_fst β add_submonoid.mrange_fst, | |
| subgroup.pi_bot β add_subgroup.pi_bot, | |
| con.inv β add_con.neg, | |
| finset.prod_inter_mul_prod_diff β finset.sum_inter_add_sum_diff, | |
| subgroup.quotient_infi_subgroup_of_embedding_apply β add_subgroup.quotient_infi_add_subgroup_of_embedding_apply, | |
| measurable_equiv.smul β measurable_equiv.vadd, | |
| cancel_comm_monoid.one_mul β add_cancel_comm_monoid.zero_add, | |
| subgroup.normal_of_comm β add_subgroup.normal_of_comm, | |
| mul_salem_spencer.of_image β add_salem_spencer.of_image, | |
| mul_comm_div β add_comm_sub, | |
| subgroup.zpowers_subset β add_subgroup.zmultiples_subset, | |
| finset.prod_ite_mem β finset.sum_ite_mem, | |
| subgroup.map_le_range β add_subgroup.map_le_range, | |
| monoid_hom.cancel_right β add_monoid_hom.cancel_right, | |
| set.coe_singleton_monoid_hom β set.coe_singleton_add_monoid_hom, | |
| ordered_comm_group.lt_of_mul_lt_mul_left β ordered_add_comm_group.lt_of_add_lt_add_left, | |
| mul_hom β add_hom, | |
| finset.prod_filter_mul_prod_filter_not β finset.sum_filter_add_sum_filter_not, | |
| norm_div_le_of_le β norm_sub_le_of_le, | |
| edist_div_right β edist_sub_right, | |
| monoid_hom.subgroup_map_apply_coe β add_monoid_hom.add_subgroup_map_apply_coe, | |
| set.pairwise_disjoint_smul_iff β set.pairwise_disjoint_vadd_iff, | |
| mul_equiv_class β add_equiv_class, | |
| pi.const_monoid_hom β pi.const_add_monoid_hom, | |
| localization.mul_equiv_of_quotient_symm_mk' β add_localization.add_equiv_of_quotient_symm_mk', | |
| submonoid.to_monoid β add_submonoid.to_add_monoid, | |
| measurable_embedding_mul_right β measurable_embedding_add_right, | |
| tendsto_iff_norm_tendsto_one β tendsto_iff_norm_tendsto_zero, | |
| locally_constant.has_inv β locally_constant.has_neg, | |
| submonoid.localization_map.ext_iff β add_submonoid.localization_map.ext_iff, | |
| monoid_hom.comp_left_continuous β add_monoid_hom.comp_left_continuous, | |
| norm_prod_le_of_le β norm_sum_le_of_le, | |
| smul_iterate β vadd_iterate, | |
| monoid_hom.map_list_prod β add_monoid_hom.map_list_sum, | |
| inv_mem_class β neg_mem_class, | |
| topological_group.ext_iff β topological_add_group.ext_iff, | |
| monoid_hom.coe_fn β add_monoid_hom.coe_fn, | |
| multiset.noncomm_prod_coe β multiset.noncomm_sum_coe, | |
| is_unit.div_mul_left β is_add_unit.sub_add_left, | |
| lex.has_involutive_inv β lex.has_involutive_neg, | |
| subgroup.one_mem' β add_subgroup.zero_mem', | |
| sum.elim_mul_mul β sum.elim_add_add, | |
| finprod_mem_eq_prod_filter β finsum_mem_eq_sum_filter, | |
| mul_hom.has_coe_to_fun β add_hom.has_coe_to_fun, | |
| inv_unique β neg_unique, | |
| multiset.prod_replicate β multiset.sum_replicate, | |
| subsemigroup.complete_lattice β add_subsemigroup.complete_lattice, | |
| subgroup.quotient_map_of_le_apply_mk β add_subgroup.quotient_map_of_le_apply_mk, | |
| comm_group.zpow_zero' β add_comm_group.zsmul_zero', | |
| smooth_within_at.mul β smooth_within_at.add, | |
| group_filter_basis.mem_nhds_one β add_group_filter_basis.mem_nhds_zero, | |
| mul_support_comp_inv_smul β support_comp_inv_smul, | |
| set.has_one β set.has_zero, | |
| mul_opposite.topological_space β add_opposite.topological_space, | |
| submonoid.to_linear_ordered_cancel_comm_monoid β add_submonoid.to_linear_ordered_cancel_add_comm_monoid, | |
| subgroup.mem_carrier β add_subgroup.mem_carrier, | |
| cancel_monoid.npow_succ' β add_cancel_monoid.nsmul_succ', | |
| free_group.red.append_append β free_add_group.red.append_append, | |
| lattice_ordered_comm_group.abs_inv_comm β lattice_ordered_comm_group.abs_neg_comm, | |
| subsemigroup.le_comap_map β add_subsemigroup.le_comap_map, | |
| lt_inv_mul_of_mul_lt β lt_neg_add_of_add_lt, | |
| subsemigroup.mem_carrier β add_subsemigroup.mem_carrier, | |
| finset.eq_prod_range_div β finset.eq_sum_range_sub, | |
| continuous_at.nnnorm' β continuous_at.nnnorm, | |
| finset.mem_div β finset.mem_sub, | |
| mul_equiv.subgroup_congr β add_equiv.add_subgroup_congr, | |
| one_lt_iff_ne_one β pos_iff_ne_zero, | |
| category_theory.iso.CommGroup_iso_to_mul_equiv β category_theory.iso.AddCommGroup_iso_to_add_equiv, | |
| subgroup_of_idempotent β add_subgroup_of_idempotent, | |
| order_of_one β order_of_zero, | |
| commute.inv_right_iff β add_commute.neg_right_iff, | |
| mul_div_cancel'_right β add_sub_cancel'_right, | |
| eq_empty_or_univ_of_smul_invariant_closed β eq_empty_or_univ_of_vadd_invariant_closed, | |
| measure_theory.measure.haar.chaar_mem_cl_prehaar β measure_theory.measure.haar.add_chaar_mem_cl_add_prehaar, | |
| one_hom.congr_arg β zero_hom.congr_arg, | |
| submonoid.mul_from_left_inv β add_submonoid.add_from_left_neg, | |
| div_div_cancel β sub_sub_cancel, | |
| topological_group.has_measurable_inv β topological_add_group.has_measurable_neg, | |
| filter.mul_mem_mul β filter.add_mem_add, | |
| prod.has_pow β prod.has_smul, | |
| submonoid.localization_map.mul_equiv_of_localizations_right_inv_apply β add_submonoid.localization_map.add_equiv_of_localizations_right_inv_apply, | |
| is_locally_constant.mul β is_locally_constant.add, | |
| order_dual.group β order_dual.add_group, | |
| subgroup.comap_id β add_subgroup.comap_id, | |
| has_faithful_smul.eq_of_smul_eq_smul β has_faithful_vadd.eq_of_vadd_eq_vadd, | |
| quotient_group.map_normal β quotient_add_group.map_normal, | |
| finset.one_nonempty β finset.zero_nonempty, | |
| commute.inv_inv β add_commute.neg_neg, | |
| Group.category_theory.limits.has_zero_object β AddGroup.has_zero_object, | |
| function.surjective.semigroup β function.surjective.add_semigroup, | |
| strict_mono.pow_right' β strict_mono.nsmul_left, | |
| npow_eq_pow β nsmul_eq_smul, | |
| upper_set.has_mul β upper_set.has_add, | |
| free_magma.monad β free_add_magma.monad, | |
| continuous_monoid_hom.to_continuous_map_injective β continuous_add_monoid_hom.to_continuous_map_injective, | |
| cont_mdiff_finset_prod β cont_mdiff_finset_sum, | |
| monoid_hom.map_exists_right_inv β add_monoid_hom.map_exists_right_neg, | |
| subgroup.pow_mem β add_subgroup.nsmul_mem, | |
| seminormed_comm_group.induced β seminormed_add_comm_group.induced, | |
| sym_alg.unsym_one β sym_alg.unsym_zero, | |
| mul_opposite.op_equiv_symm_apply β add_opposite.op_equiv_symm_apply, | |
| group_seminorm.comp_apply β add_group_seminorm.comp_apply, | |
| ulift.has_div β ulift.has_sub, | |
| units.eq_inv_of_mul_eq_one_left β add_units.eq_neg_of_add_eq_zero_left, | |
| le_one_iff_eq_one β nonpos_iff_eq_zero, | |
| part.left_dom_of_div_dom β part.left_dom_of_sub_dom, | |
| semiconj_by.inv_symm_left β add_semiconj_by.neg_symm_left, | |
| finset.prod_product_right' β finset.sum_product_right', | |
| filter.bot_mul β filter.bot_add, | |
| free_semigroup.mul_bind β free_add_semigroup.add_bind, | |
| finset.prod_cons β finset.sum_cons, | |
| category_theory.iso.Group_iso_to_mul_equiv_apply β category_theory.iso.AddGroup_iso_to_add_equiv_apply, | |
| set.inv_mem_centralizer β set.neg_mem_add_centralizer, | |
| uniform_space.completion.smul_comm_class β uniform_space.completion.vadd_comm_class, | |
| division_monoid.to_div_inv_one_monoid β subtraction_monoid.to_sub_neg_zero_monoid, | |
| mul_hom.map_mclosure β add_hom.map_mclosure, | |
| free_monoid.rec_on_of_mul β free_add_monoid.rec_on_of_add, | |
| quotient_group.fg β quotient_add_group.fg, | |
| units.simps.coe_inv β add_units.simps.coe_neg, | |
| eq_cosets_of_normal β eq_add_cosets_of_normal, | |
| CommGroup.forgetβ_Group_preserves_limits_of_size β AddCommGroup.forgetβ_AddGroup_preserves_limits, | |
| subgroup.map_eq_map_iff β add_subgroup.map_eq_map_iff, | |
| finset.prod_list_map_count β finset.sum_list_map_count, | |
| div_inv_monoid.to_has_div β sub_neg_monoid.to_has_sub, | |
| measure_theory.measure.regular_of_is_haar_measure β measure_theory.measure.regular_of_is_add_haar_measure, | |
| mul_action.supports.mono β add_action.supports.mono, | |
| monoid.closure_singleton β add_monoid.closure_singleton, | |
| quotient_group.coe_mk' β quotient_add_group.coe_mk', | |
| localization.monoid_of β add_localization.add_monoid_of, | |
| comm_semigroup.is_left_cancel_mul.to_is_right_cancel_mul β add_comm_semigroup.is_left_cancel_add.to_is_right_cancel_add, | |
| mul_eq_one_iff β add_eq_zero_iff, | |
| monoid_hom.decidable_mem_ker β add_monoid_hom.decidable_mem_ker, | |
| nonempty_interval.pure_div_pure β nonempty_interval.pure_sub_pure, | |
| card_dvd_exponent_pow_rank β card_dvd_exponent_nsmul_rank, | |
| measure_theory.measure_preimage_mul_right β measure_theory.measure_preimage_add_right, | |
| ordered_cancel_comm_monoid.to_cancel_comm_monoid β ordered_cancel_add_comm_monoid.to_cancel_add_comm_monoid, | |
| subgroup.pi_top β add_subgroup.pi_top, | |
| subsemigroup.map_supr_comap_of_surjective β add_subsemigroup.map_supr_comap_of_surjective, | |
| one_lt_pow' β nsmul_pos, | |
| quotient_group.equiv_quotient_subgroup_of_of_eq β quotient_add_group.equiv_quotient_add_subgroup_of_of_eq, | |
| finset.prod_update_of_mem β finset.sum_update_of_mem, | |
| set.mul_indicator_le_self β set.indicator_le_self, | |
| measure_theory.measure.inv.measure_theory.sigma_finite β measure_theory.measure.neg.measure_theory.sigma_finite, | |
| set.smul_set_range β set.vadd_set_range, | |
| finset.prod_induction_nonempty β finset.sum_induction_nonempty, | |
| tendsto_norm_div_self_punctured_nhds β tendsto_norm_sub_self_punctured_nhds, | |
| strict_mono_on.mul' β strict_mono_on.add, | |
| finset.card_mul_mul_le_card_mul_mul_card_div β finset.card_add_mul_le_card_add_mul_card_sub, | |
| hindman.FP.mul_two β hindman.FS.add_two, | |
| list.ae_measurable_prod' β list.ae_measurable_sum', | |
| list.prod_update_nth β list.sum_update_nth, | |
| mul_one_class.to_is_right_id β add_zero_class.to_is_right_id, | |
| free_group.prod.unique β free_add_group.sum.unique, | |
| freiman_hom.to_freiman_hom β add_freiman_hom.to_add_freiman_hom, | |
| norm_le_of_mem_closed_ball' β norm_le_of_mem_closed_ball, | |
| set.image_inv β set.image_neg, | |
| mul_opposite.op β add_opposite.op, | |
| commute.one_right β add_commute.zero_right, | |
| mul_salem_spencer.prod β add_salem_spencer.prod, | |
| submonoid.mem_supr β add_submonoid.mem_supr, | |
| finset.prod_range_add_div_prod_range β finset.sum_range_add_sub_sum_range, | |
| finprod_mem_eq_prod_of_inter_mul_support_eq β finsum_mem_eq_sum_of_inter_support_eq, | |
| subgroup_class.has_div β add_subgroup_class.has_sub, | |
| group.closure_subset_iff β add_group.closure_subset_iff, | |
| finprod_congr β finsum_congr, | |
| subgroup.index β add_subgroup.index, | |
| commute.order_of_dvd_lcm_mul β add_commute.order_of_dvd_lcm_add, | |
| nat.prod_proper_divisors_prime_pow β nat.sum_proper_divisors_prime_nsmul, | |
| smul_ball_one β vadd_ball_zero, | |
| with_one.coe_ne_one β with_zero.coe_ne_zero, | |
| group.mem_closure β add_group.mem_closure, | |
| tactic.norm_num.finset.eval_prod_of_list β tactic.norm_num.finset.eval_sum_of_list, | |
| monoid_hom_class.to_mul_hom_class β add_monoid_hom_class.to_add_hom_class, | |
| pow_le_pow' β nsmul_le_nsmul, | |
| interval.inv_bot β interval.neg_bot, | |
| measure_theory.disjoint_fundamental_interior_fundamental_frontier β measure_theory.disjoint_add_fundamental_interior_add_fundamental_frontier, | |
| controlled_prod_of_mem_closure β controlled_sum_of_mem_closure, | |
| measure_theory.integral_mul_left_eq_self β measure_theory.integral_add_left_eq_self, | |
| comm_monoid.npow_zero' β add_comm_monoid.nsmul_zero', | |
| lex.monoid β lex.add_monoid, | |
| submonoid.prod_eq_bot_iff β add_submonoid.sum_eq_bot_iff, | |
| uniform_continuous_monoid_hom_of_continuous β uniform_continuous_add_monoid_hom_of_continuous, | |
| antitone.inv β antitone.neg, | |
| comm_semigroup.is_right_cancel_mul.to_is_cancel_mul β add_comm_semigroup.is_right_cancel_add.to_is_cancel_add, | |
| subgroup.inf_subgroup_of_inf_normal_of_left β add_subgroup.inf_add_subgroup_of_inf_normal_of_left, | |
| subgroup.coe_set_mk β add_subgroup.coe_set_mk, | |
| quotient_group.right_rel_apply β quotient_add_group.right_rel_apply, | |
| subgroup.quotient_subgroup_of_embedding_of_le_apply_mk β add_subgroup.quotient_add_subgroup_of_embedding_of_le_apply_mk, | |
| fintype.prod_extend_by_one β fintype.sum_extend_by_zero, | |
| subgroup.coe_inf β add_subgroup.coe_inf, | |
| submonoid.subsingleton_iff β add_submonoid.subsingleton_iff, | |
| category_theory.discrete.monoidal_tensor_unit_as β discrete.add_monoidal_tensor_add_unit_as, | |
| subgroup.set_like β add_subgroup.set_like, | |
| filter.mul_top_of_one_le β filter.add_top_of_nonneg, | |
| set.multiset_prod_singleton β set.multiset_sum_singleton, | |
| mul_equiv.to_mul_hom β add_equiv.to_add_hom, | |
| filter.germ.comm_semigroup β filter.germ.add_comm_semigroup, | |
| con.sup_def β add_con.sup_def, | |
| measure_theory.quasi_measure_preserving_div_left β measure_theory.quasi_measure_preserving_sub_left, | |
| subgroup.to_group β add_subgroup.to_add_group, | |
| set.univ_pow β set.nsmul_univ, | |
| units.has_inv β add_units.has_neg, | |
| inv_mul_cancel_comm β neg_add_cancel_comm, | |
| one_hom.coe_coe β zero_hom.coe_coe, | |
| mul_right_comm β add_right_comm, | |
| normed_comm_group.of_mul_dist β normed_add_comm_group.of_add_dist, | |
| zpow_eq_zpow_iff' β zsmul_eq_zsmul_iff', | |
| lattice_ordered_comm_group.mabs_inf_div_inf_le_mabs β lattice_ordered_comm_group.abs_inf_sub_inf_le_abs, | |
| finset.smul_union β finset.vadd_union, | |
| lower_closure_one β lower_closure_zero, | |
| order_dual.monoid β order_dual.add_monoid, | |
| subgroup.coe_div β add_subgroup.coe_sub, | |
| monoid_hom.mk_coe β add_monoid_hom.mk_coe, | |
| monoid_hom.complβ β add_monoid_hom.complβ, | |
| to_dual_mul β to_dual_add, | |
| subgroup.closure_induction' β add_subgroup.closure_induction', | |
| mul_left_eq_self β add_left_eq_self, | |
| subgroup.mul_mem_cancel_left β add_subgroup.add_mem_cancel_left, | |
| con.lift_on_units β add_con.lift_on_add_units, | |
| comm_group.mul_assoc β add_comm_group.add_assoc, | |
| finset.singleton_mul_inter β finset.singleton_add_inter, | |
| group_seminorm.map_one' β add_group_seminorm.map_zero', | |
| submonoid.has_mul β add_submonoid.has_add, | |
| ordered_comm_group.le_of_mul_le_mul_left β ordered_add_comm_group.le_of_add_le_add_left, | |
| CommGroup.limit_cone β AddCommGroup.limit_cone, | |
| subsemigroup.coe_equiv_map_of_injective_apply β add_subsemigroup.coe_equiv_map_of_injective_apply, | |
| monoid_hom.coe_of_mclosure_eq_top_right β add_monoid_hom.coe_of_mclosure_eq_top_right, | |
| unique_mul.mul_hom_preimage β unique_add.add_hom_preimage, | |
| submonoid.map_inr β add_submonoid.map_inr, | |
| subsemigroup.map_le_map_iff_of_injective β add_subsemigroup.map_le_map_iff_of_injective, | |
| measure_theory.measure_smul β measure_theory.measure_vadd, | |
| topological_group_induced β topological_add_group_induced, | |
| subsemigroup.prod_equiv β add_subsemigroup.prod_equiv, | |
| finprod_mem_univ β finsum_mem_univ, | |
| quotient_group.quotient_right_rel_equiv_quotient_left_rel β quotient_add_group.quotient_right_rel_equiv_quotient_left_rel, | |
| nonempty_interval.has_div β nonempty_interval.has_sub, | |
| quotient_group.ker_mk β quotient_add_group.ker_mk, | |
| one_lt_mul_iff β add_pos_iff, | |
| con.con_gen_of_con β add_con.add_con_gen_of_add_con, | |
| mem_right_coset_right_coset β mem_right_add_coset_right_add_coset, | |
| strict_anti_on.inv β strict_anti_on.neg, | |
| subgroup.mem_top β add_subgroup.mem_top, | |
| units.coe_of_pow_eq_one β add_units.coe_of_nsmul_eq_zero, | |
| set.is_scalar_tower' β set.vadd_assoc_class', | |
| smooth.mul β smooth.add, | |
| finset.prod_const β finset.sum_const, | |
| subgroup.mem_left_transversals_iff_bijective β add_subgroup.mem_left_transversals_iff_bijective, | |
| nhds_one_symm β nhds_zero_symm, | |
| locally_constant.coe_mul β locally_constant.coe_add, | |
| filter.one_ne_bot β filter.zero_ne_bot, | |
| inv_ne_one β neg_ne_zero, | |
| left_cancel_monoid.to_has_faithful_opposite_scalar β add_left_cancel_monoid.to_has_faithful_opposite_scalar, | |
| submonoid_class.finsupp_prod_mem β add_submonoid_class.finsupp_sum_mem, | |
| mul_equiv.op_symm_apply_symm_apply β add_equiv.op_symm_apply_symm_apply, | |
| subsemigroup.mem_infi β add_subsemigroup.mem_infi, | |
| finset.prod_fin_eq_prod_range β finset.sum_fin_eq_sum_range, | |
| filter.ne_bot.of_div_left β filter.ne_bot.of_sub_left, | |
| CommGroup.ext β AddCommGroup.ext, | |
| adjoin_one_map β adjoin_zero_map, | |
| map_mul_eq_one β map_add_eq_zero, | |
| linear_ordered_comm_monoid.mul_one β linear_ordered_add_comm_monoid.add_zero, | |
| order_of_map_dvd β add_order_of_map_dvd, | |
| monoid_hom.map_finprod β add_monoid_hom.map_finsum, | |
| submonoid.mem_powers β add_submonoid.mem_multiples, | |
| inv_one_class.inv β neg_zero_class.neg, | |
| monoid_hom.map_finprod_plift β add_monoid_hom.map_finsum_plift, | |
| set.finite.inv β set.finite.neg, | |
| canonically_linear_ordered_monoid.exists_mul_of_le β canonically_linear_ordered_add_monoid.exists_add_of_le, | |
| pow_strict_mono_left β nsmul_strict_mono_right, | |
| lattice_ordered_comm_group.neg_eq_pos_inv β lattice_ordered_comm_group.neg_eq_pos_neg, | |
| function.has_smul β function.has_vadd, | |
| subgroup.coe_map β add_subgroup.coe_map, | |
| pow_add β add_nsmul, | |
| filter.le_mul_iff β filter.le_add_iff, | |
| right_coset β right_add_coset, | |
| uniform_group β uniform_add_group, | |
| finset.mem_one β finset.mem_zero, | |
| lower_closure_mul β lower_closure_add, | |
| units.coe_zpow β add_units.coe_zsmul, | |
| pi.pow_comp β pi.smul_comp, | |
| inv_sup_eq_inv_inf_inv β neg_sup_eq_neg_inf_neg, | |
| sum.smul_comm_class β sum.vadd_comm_class, | |
| measurable_equiv.div_right β measurable_equiv.sub_right, | |
| Mon.filtered_colimits.colimit_mul_aux_eq_of_rel_left β AddMon.filtered_colimits.colimit_add_aux_eq_of_rel_left, | |
| locally_constant.div_apply β locally_constant.sub_apply, | |
| multiset.prod_pair β multiset.sum_pair, | |
| submonoid.localization_map.mul_equiv_of_mul_equiv_eq β add_submonoid.localization_map.add_equiv_of_add_equiv_eq, | |
| measure_theory.null_measurable_set.fundamental_interior β measure_theory.null_measurable_set.add_fundamental_interior, | |
| le_nhds_mul β le_nhds_add, | |
| le_mul_self β le_add_self, | |
| mul_roth_number_spec β add_roth_number_spec, | |
| cancel_monoid.ext β add_cancel_monoid.ext, | |
| has_measurable_mul.measurable_const_mul β has_measurable_add.measurable_const_add, | |
| subgroup.is_cyclic β add_subgroup.is_add_cyclic, | |
| map_inv β map_neg, | |
| pow_eq_pow_iff_modeq β nsmul_eq_nsmul_iff_modeq, | |
| mul_equiv.to_Magma_iso β add_equiv.to_AddMagma_iso, | |
| is_torsion.quotient_iff β add_is_torsion.quotient_iff, | |
| mul_eq_of_eq_inv_mul β add_eq_of_eq_neg_add, | |
| has_compact_mul_support_def β has_compact_support_def, | |
| has_continuous_mul.to_has_continuous_smul β has_continuous_add.to_has_continuous_vadd, | |
| subgroup.finite_index_ker β add_subgroup.finite_index_ker, | |
| is_left_regular β is_add_left_regular, | |
| localization.rec β add_localization.rec, | |
| lattice_ordered_comm_group.neg_of_inv_le_one β lattice_ordered_comm_group.neg_of_neg_nonpos, | |
| mul_equiv.map_eq_one_iff β add_equiv.map_eq_zero_iff, | |
| subgroup.map_symm_eq_iff_map_eq β add_subgroup.map_symm_eq_iff_map_eq, | |
| set.mul_mem_mul β set.add_mem_add, | |
| pi.division_monoid β pi.subtraction_monoid, | |
| mul_equiv.coe_trans β add_equiv.coe_trans, | |
| Group.of_hom_apply β AddGroup.of_hom_apply, | |
| monoid.has_pow β add_monoid.has_smul_nat, | |
| measure_theory.fundamental_frontier β measure_theory.add_fundamental_frontier, | |
| seminormed_group.to_group β seminormed_add_group.to_add_group, | |
| metric.bounded.mul β metric.bounded.add, | |
| submonoid.closure_union β add_submonoid.closure_union, | |
| is_torsion.subgroup β is_torsion.add_subgroup, | |
| subgroup.is_complement'_top_left β add_subgroup.is_complement'_top_left, | |
| mul_hom.srange_eq_map β add_hom.srange_eq_map, | |
| finset.card_singleton_mul β finset.card_singleton_add, | |
| set.smul_empty β set.vadd_empty, | |
| open_subgroup.lattice β open_add_subgroup.lattice, | |
| pi.has_smul β pi.has_vadd, | |
| comm_monoid.mul_assoc β add_comm_monoid.add_assoc, | |
| mul_le_add_hom_class β subadditive_hom_class, | |
| freiman_hom.freiman_hom_class β add_freiman_hom.freiman_hom_class, | |
| eq_on_inv β eq_on_neg, | |
| part.has_div β part.has_sub, | |
| subgroup.mk_le_mk β add_subgroup.mk_le_mk, | |
| multiset.prod_hom β multiset.sum_hom, | |
| filter.pure_mul_hom_apply β filter.pure_add_hom_apply, | |
| prod.division_monoid β prod.subtraction_monoid, | |
| filter.smul_comm_class_filter β filter.vadd_comm_class_filter, | |
| subsemigroup.comap_map_eq_of_injective β add_subsemigroup.comap_map_eq_of_injective, | |
| units.group β add_units.add_group, | |
| set.comm_monoid β set.add_comm_monoid, | |
| freiman_hom.div_comp β add_freiman_hom.sub_comp, | |
| left_cancel_monoid.to_left_cancel_semigroup β add_left_cancel_monoid.to_add_left_cancel_semigroup, | |
| free_group.reduce.idem β free_add_group.reduce.idem, | |
| measure_theory.measure.haar.index_mono β measure_theory.measure.haar.add_index_mono, | |
| submonoid.closure_induction_left β add_submonoid.closure_induction_left, | |
| order_dual.seminormed_group β order_dual.seminormed_add_group, | |
| division_monoid.mul_assoc β subtraction_monoid.add_assoc, | |
| prod.pow_def β prod.smul_def, | |
| continuous_within_at_inv β continuous_within_at_neg, | |
| finset.prod_multiset_map_count β finset.sum_multiset_map_count, | |
| lt_inv_iff_mul_lt_one' β lt_neg_iff_add_neg', | |
| canonically_linear_ordered_monoid.one β canonically_linear_ordered_add_monoid.zero, | |
| finset.prod_prod_Ioi_mul_eq_prod_prod_off_diag β finset.sum_sum_Ioi_add_eq_sum_sum_off_diag, | |
| mul_ball_one β add_ball_zero, | |
| subsemigroup.mul_mem_class β add_subsemigroup.add_mem_class, | |
| function.nmem_mul_support β function.nmem_support, | |
| set.singleton_monoid_hom β set.singleton_add_monoid_hom, | |
| set.decidable_mem_pow β set.decidable_mem_nsmul, | |
| group_topology.to_topological_space_Inf β add_group_topology.to_topological_space_Inf, | |
| finset.prod_Ioc_consecutive β finset.sum_Ioc_consecutive, | |
| subsemigroup.supr_eq_closure β add_subsemigroup.supr_eq_closure, | |
| monoid_hom.coe_of_map_div β add_monoid_hom.coe_of_map_sub, | |
| is_submonoid.power_subset β is_add_submonoid.multiples_subset, | |
| group_topology.to_topological_space_bot β add_group_topology.to_topological_space_bot, | |
| lattice_ordered_comm_group.m_pos_abs β lattice_ordered_comm_group.pos_abs, | |
| is_unit.mul_right_inj β is_add_unit.add_right_inj, | |
| monoid_hom_class.map_one β add_monoid_hom_class.map_zero, | |
| hindman.FP.finset_prod β hindman.FS.finset_sum, | |
| rootable_by.root β divisible_by.div, | |
| powers_equiv_powers β multiples_equiv_multiples, | |
| subgroup.subgroup_of_is_commutative β add_subgroup.add_subgroup_of_is_commutative, | |
| mul_salem_spencer.mul_right β add_salem_spencer.add_right, | |
| finset.smul_subset_iff β finset.vadd_subset_iff, | |
| finset.prod_multiset_count β finset.sum_multiset_count, | |
| comm_group.mul β add_comm_group.add, | |
| equiv.zpow_mul_left β equiv.zpow_add_left, | |
| localization.mul_equiv_of_quotient_apply β add_localization.add_equiv_of_quotient_apply, | |
| CommGroup.has_limits_of_size β AddCommGroup.has_limits_of_size, | |
| set.image_mul_left' β set.image_add_left', | |
| tendsto_list_prod β tendsto_list_sum, | |
| div_mul_eq_div_div β sub_add_eq_sub_sub, | |
| is_cancel_mul β is_cancel_add, | |
| finset.prod_involution β finset.sum_involution, | |
| finset.prod_Ico_eq_div β finset.sum_Ico_eq_sub, | |
| has_pow.pow β has_smul.smul, | |
| category_theory.iso.Mon_iso_to_mul_equiv β category_theory.iso.AddMon_iso_to_add_equiv, | |
| finprod_mem_insert_one β finsum_mem_insert_zero, | |
| measure_theory.measure_preserving_prod_inv_mul_swap β measure_theory.measure_preserving_prod_neg_add_swap, | |
| subgroup.coe_eq_singleton β add_subgroup.coe_eq_singleton, | |
| fin.prod_univ_five β fin.sum_univ_five, | |
| open_subgroup.ext_iff β open_add_subgroup.ext_iff, | |
| magma.assoc_quotient.lift_comp_of β add_magma.free_add_semigroup.lift_comp_of, | |
| is_open_map_mul_right β is_open_map_add_right, | |
| freiman_hom.has_one β add_freiman_hom.has_zero, | |
| group_filter_basis.inhabited β add_group_filter_basis.inhabited, | |
| monoid_hom.comp_inv β add_monoid_hom.comp_neg, | |
| list.prod_range_succ β list.sum_range_succ, | |
| subgroup.apply_coe_mem_map β add_subgroup.apply_coe_mem_map, | |
| inv_lt_iff_one_lt_mul' β neg_lt_iff_pos_add', | |
| subgroup.closure_eq_of_le β add_subgroup.closure_eq_of_le, | |
| units.of_pow β add_units.of_nsmul, | |
| lipschitz_on_with.norm_div_le_of_le β lipschitz_on_with.norm_sub_le_of_le, | |
| semigroup.to_has_mul β add_semigroup.to_has_add, | |
| quotient_group.equiv_quotient_zpow_of_equiv_symm β quotient_add_group.equiv_quotient_zsmul_of_equiv_symm, | |
| subgroup.coe_zpow β add_subgroup.coe_zsmul, | |
| pi.mul_single_opβ β pi.single_opβ, | |
| mul_equiv.op_symm_apply_apply β add_equiv.op_symm_apply_apply, | |
| cauchy_seq_prod_of_eventually_eq β cauchy_seq_sum_of_eventually_eq, | |
| submonoid.to_comm_monoid β add_submonoid.to_add_comm_monoid, | |
| continuous.pow β continuous.nsmul, | |
| subgroup.relindex_ker β add_subgroup.relindex_ker, | |
| lower_set.comm_monoid β lower_set.add_comm_monoid, | |
| mul_action.orbit_smul β add_action.orbit_vadd, | |
| mul_eq_one_iff_eq_inv β add_eq_zero_iff_eq_neg, | |
| mul_hom.from_opposite_apply β add_hom.from_opposite_apply, | |
| subsemigroup.le_comap_of_map_le β add_subsemigroup.le_comap_of_map_le, | |
| free_group.map_one β free_add_group.map_zero, | |
| fin.prod_univ_zero β fin.sum_univ_zero, | |
| free_magma.length_to_free_semigroup β free_add_magma.length_to_free_add_semigroup, | |
| lt_mul_iff_one_lt_left' β lt_add_iff_pos_left, | |
| finset.prod_univ_pi β finset.sum_univ_pi, | |
| order_of_pow' β add_order_of_nsmul', | |
| mul_opposite.dist_op β add_opposite.dist_op, | |
| finset.singleton_div β finset.singleton_sub, | |
| is_left_regular_of_left_cancel_semigroup β is_add_left_regular_of_left_cancel_add_semigroup, | |
| subgroup.fintype_quotient_of_finite_index β add_subgroup.fintype_quotient_of_finite_index, | |
| subgroup.prod_subgroup_of_prod_normal β add_subgroup.sum_add_subgroup_of_sum_normal, | |
| le_iff_forall_one_lt_lt_mul β le_iff_forall_pos_lt_add, | |
| nonempty_interval.coe_inv_interval β nonempty_interval.coe_neg_interval, | |
| set_like.coe_smul β set_like.coe_vadd, | |
| quotient_group.right_rel_decidable β quotient_add_group.right_rel_decidable, | |
| locally_constant.mul_indicator_apply β locally_constant.indicator_apply, | |
| continuous_within_at.norm' β continuous_within_at.norm, | |
| nonempty_interval.inv_pure β nonempty_interval.neg_pure, | |
| set.mul_indicator_inv β set.indicator_neg, | |
| div_div_cancel_left β sub_sub_cancel_left, | |
| has_inv.inv β has_neg.neg, | |
| mul_hom.srange β add_hom.srange, | |
| multiset.le_prod_of_submultiplicative β multiset.le_sum_of_subadditive, | |
| is_left_regular.mul β is_add_left_regular.add, | |
| free_group.red.church_rosser β free_add_group.red.church_rosser, | |
| pi_norm_le_iff_of_nonempty' β pi_norm_le_iff_of_nonempty, | |
| continuous_map.mul_one_class β continuous_map.add_zero_class, | |
| units.inv β add_units.neg, | |
| order_dual.covariant_class_swap_mul_le β order_dual.covariant_class_swap_add_le, | |
| one_div_mul_one_div_rev β zero_sub_add_zero_sub_rev, | |
| continuous_monoid_hom.inducing_to_continuous_map β continuous_add_monoid_hom.inducing_to_continuous_map, | |
| one_div_one β zero_sub_zero, | |
| units.mk_semiconj_by β add_units.mk_semiconj_by, | |
| mul_action.self_equiv_sigma_orbits_quotient_stabilizer' β add_action.self_equiv_sigma_orbits_quotient_stabilizer', | |
| measure_theory.measure_preserving_prod_div β measure_theory.measure_preserving_prod_sub, | |
| measure_theory.absolutely_continuous_map_mul_right β measure_theory.absolutely_continuous_map_add_right, | |
| subgroup.disjoint_def' β add_subgroup.disjoint_def', | |
| set.mul_indicator_div' β set.indicator_sub', | |
| upper_set.has_div β upper_set.has_sub, | |
| filter.germ.coe_div β filter.germ.coe_sub, | |
| finset.has_smul β finset.has_vadd, | |
| subgroup.relindex_infi_le β add_subgroup.relindex_infi_le, | |
| mul_action.orbit_prod_stabilizer_equiv_group β add_action.orbit_sum_stabilizer_equiv_add_group, | |
| monoid_hom.coe_finsupp_prod β add_monoid_hom.coe_finsupp_sum, | |
| monoid_hom.transfer β add_monoid_hom.transfer, | |
| mul_equiv.coe_prod_comm_symm β add_equiv.coe_prod_comm_symm, | |
| submonoid.mk_mul_mk β add_submonoid.mk_add_mk, | |
| filter.germ.const_inv β filter.germ.const_neg, | |
| submonoid.disjoint_def β add_submonoid.disjoint_def, | |
| mul_hom.cod_restrict β add_hom.cod_restrict, | |
| CommGroup.CommMon.has_coe β AddCommGroup.CommMon.has_coe, | |
| free_semigroup.traverse_eq β free_add_semigroup.traverse_eq, | |
| le_iff_forall_one_lt_lt_mul' β le_iff_forall_pos_lt_add', | |
| filter.ne_bot.smul β filter.ne_bot.vadd, | |
| mul_opposite.rec β add_opposite.rec, | |
| finset.prod_insert_none β finset.sum_insert_none, | |
| group_filter_basis.N_one β add_group_filter_basis.N_zero, | |
| left_coset β left_add_coset, | |
| ulift.normed_group β ulift.normed_add_group, | |
| group_norm.lt_def β add_group_norm.lt_def, | |
| finset.multiplicative_energy_pos_iff β finset.additive_energy_pos_iff, | |
| subgroup.card_right_transversal β add_subgroup.card_right_transversal, | |
| mul_equiv.subsemigroup_map_apply_coe β add_equiv.subsemigroup_map_apply_coe, | |
| mul_opposite.unop_inv β add_opposite.unop_neg, | |
| subgroup.subsingleton_iff β add_subgroup.subsingleton_iff, | |
| finset.prod_ite_of_false β finset.sum_ite_of_false, | |
| subgroup.sup_subgroup_of_eq β add_subgroup.sup_add_subgroup_of_eq, | |
| freiman_hom.id β add_freiman_hom.id, | |
| measure_theory.is_mul_right_invariant.to_smul_invariant_measure_op β measure_theory.is_mul_right_invariant.to_vadd_invariant_measure_op, | |
| mul_action.dense_orbit β add_action.dense_orbit, | |
| subgroup.eq_bot_of_card_le β add_subgroup.eq_bot_of_card_le, | |
| monoid_hom.ker_eq_bot_of_cancel β add_monoid_hom.ker_eq_bot_of_cancel, | |
| continuous_map.coe_units_lift_symm_apply_apply β continuous_map.coe_add_units_lift_symm_apply_apply, | |
| canonically_ordered_monoid.one β canonically_ordered_add_monoid.zero, | |
| filter.inv_le_iff_le_inv β filter.neg_le_iff_le_neg, | |
| submonoid.powers β add_submonoid.multiples, | |
| set.image_mul_prod β set.add_image_prod, | |
| topological_space.positive_compacts.locally_compact_space_of_group β topological_space.positive_compacts.locally_compact_space_of_add_group, | |
| mem_left_coset β mem_left_add_coset, | |
| subgroup.subgroup_of_equiv_of_le_apply_coe β add_subgroup.add_subgroup_of_equiv_of_le_apply_coe, | |
| finset.nat.prod_antidiagonal_eq_prod_range_succ_mk β finset.nat.sum_antidiagonal_eq_sum_range_succ_mk, | |
| subgroup.characteristic_iff_le_comap β add_subgroup.characteristic_iff_le_comap, | |
| lt_max_of_sq_lt_mul β lt_max_of_two_nsmul_lt_add, | |
| upper_closure_mul β upper_closure_add, | |
| monoid.to_mul_action β add_monoid.to_add_action, | |
| mul_equiv.injective β add_equiv.injective, | |
| dist_mul_mul_le_of_le β dist_add_add_le_of_le, | |
| set.mem_mul β set.mem_add, | |
| prod.inv_mk β prod.neg_mk, | |
| norm_le_norm_add_norm_div' β norm_le_norm_add_norm_sub', | |
| mul_equiv.mk_coe' β add_equiv.mk_coe', | |
| tendsto_uniformly.div β tendsto_uniformly.sub, | |
| subgroup.map_subtype_le β add_subgroup.map_subtype_le, | |
| list.alternating_prod_cons β list.alternating_sum_cons, | |
| finprod_emb_domain' β finsum_emb_domain', | |
| subgroup.subset_closure β add_subgroup.subset_closure, | |
| commute.order_of_mul_dvd_mul_order_of β add_commute.add_order_of_add_dvd_mul_add_order_of, | |
| mul_opposite.unop_comp_op β add_opposite.unop_comp_op, | |
| set.mul_indicator_finset_bUnion_apply β set.indicator_finset_bUnion_apply, | |
| subgroup.index_inf_ne_zero β add_subgroup.index_inf_ne_zero, | |
| right.one_lt_mul_of_lt_of_le β right.add_pos_of_pos_of_nonneg, | |
| measure_theory.fundamental_interior_smul β measure_theory.add_fundamental_interior_vadd, | |
| multiset.prod_eq_one β multiset.sum_eq_zero, | |
| units.mul_right_symm β add_units.add_right_symm, | |
| continuous_monoid_hom_class.to_monoid_hom_class β continuous_add_monoid_hom_class.to_add_monoid_hom_class, | |
| uniform_continuous_of_continuous_at_one β uniform_continuous_of_continuous_at_zero, | |
| commute.inv_mul_cancel β add_commute.neg_add_cancel, | |
| measure_theory.is_fundamental_domain.set_lintegral_eq β measure_theory.is_add_fundamental_domain.set_lintegral_eq, | |
| submonoid.fg_iff β add_submonoid.fg_iff, | |
| prod.seminormed_comm_group β prod.seminormed_add_comm_group, | |
| subgroup.centralizer_le β add_subgroup.centralizer_le, | |
| subset_interior_smul_right β subset_interior_vadd_right, | |
| measurable.div_const β measurable.sub_const, | |
| free_monoid.lift_eval_of β free_add_monoid.lift_eval_of, | |
| subgroup.zpow_mem β add_subgroup.zsmul_mem, | |
| mul_opposite β add_opposite, | |
| units.ext β add_units.ext, | |
| measurable_equiv.smul_to_equiv β measurable_equiv.vadd_to_equiv, | |
| div_eq_div_mul_div β sub_eq_sub_add_sub, | |
| is_unit.eq_mul_inv_iff_mul_eq β is_add_unit.eq_add_neg_iff_add_eq, | |
| is_unit.div_eq_div_iff β is_add_unit.sub_eq_sub_iff, | |
| left_coset_right_coset β left_add_coset_right_add_coset, | |
| subgroup.index_ne_zero_of_finite β add_subgroup.index_ne_zero_of_finite, | |
| left.mul_eq_mul_iff_eq_and_eq β left.add_eq_add_iff_eq_and_eq, | |
| submonoid.left_inv_equiv_apply β add_submonoid.left_neg_equiv_apply, | |
| subgroup.normed_group β add_subgroup.normed_add_group, | |
| pi.has_continuous_mul β pi.has_continuous_add, | |
| is_compl.prod_mul_prod β is_compl.sum_add_sum, | |
| measure_theory.is_fundamental_domain.measure_eq_card_smul_of_smul_ae_eq_self β measure_theory.is_add_fundamental_domain.measure_eq_card_smul_of_vadd_ae_eq_self, | |
| submonoid.localization_map.mk'_mul_eq_mk'_of_mul β add_submonoid.localization_map.mk'_add_eq_mk'_of_add, | |
| ordered_comm_monoid.npow β ordered_add_comm_monoid.nsmul, | |
| set.image_mul_right β set.image_add_right, | |
| is_regular_of_cancel_monoid β is_add_regular_of_cancel_add_monoid, | |
| finset.mem_smul_finset β finset.mem_vadd_finset, | |
| finset.eq_one_of_prod_eq_one β finset.eq_zero_of_sum_eq_zero, | |
| mul_action.orbit β add_action.orbit, | |
| prod.ordered_cancel_comm_monoid β prod.ordered_cancel_add_comm_monoid, | |
| submonoid.top_closure_mul_self_subset β add_submonoid.top_closure_add_self_subset, | |
| pow_mono_right β nsmul_mono_left, | |
| measure_theory.measure_ne_zero_iff_nonempty_of_is_mul_left_invariant β measure_theory.measure_ne_zero_iff_nonempty_of_is_add_left_invariant, | |
| finset.singleton_monoid_hom β finset.singleton_add_monoid_hom, | |
| set.empty_div β set.empty_sub, | |
| pow_coprime_inv β nsmul_coprime_neg, | |
| mul_hom.comp β add_hom.comp, | |
| subgroup.to_submonoid_injective β add_subgroup.to_add_submonoid_injective, | |
| has_measurable_divβ β has_measurable_subβ, | |
| finset.strongly_measurable_prod β finset.strongly_measurable_sum, | |
| measure_theory.measure.is_haar_measure.has_no_atoms β measure_theory.measure.is_add_haar_measure.has_no_atoms, | |
| measure_theory.fundamental_frontier_union_fundamental_interior β measure_theory.add_fundamental_interior_union_add_fundamental_frontier, | |
| part.inv_some β part.neg_some, | |
| mul_action.orbit.mul_action β add_action.orbit.add_action, | |
| eq_inv_mul_iff_mul_eq β eq_neg_add_iff_add_eq, | |
| is_closed_map_div_left β is_closed_map_sub_left, | |
| finset.prod_le_prod_fiberwise_of_prod_fiber_le_one' β finset.sum_le_sum_fiberwise_of_sum_fiber_nonpos, | |
| filter.tendsto.units β filter.tendsto.add_units, | |
| mul_equiv.to_fun_eq_coe β add_equiv.to_fun_eq_coe, | |
| submonoid.left_inv_equiv_symm_eq_inv β add_submonoid.left_neg_equiv_symm_eq_neg, | |
| ulift.monoid β ulift.add_monoid, | |
| mul_hom.coe_coe β add_hom.coe_coe, | |
| subgroup.has_div β add_subgroup.has_sub, | |
| set.nonempty.subset_one_iff β set.nonempty.subset_zero_iff, | |
| monoid.mem_closure_union_iff β add_monoid.mem_closure_union_iff, | |
| CommGroup.has_forget_to_Group β AddCommGroup.has_forget_to_AddGroup, | |
| commute.zpow_self β add_commute.zsmul_self, | |
| subgroup.is_complement'_top_right β add_subgroup.is_complement'_top_right, | |
| subsemigroup.map_infi_comap_of_surjective β add_subsemigroup.map_infi_comap_of_surjective, | |
| units.mul_inv β add_units.add_neg, | |
| subgroup.nontrivial β add_subgroup.nontrivial, | |
| group.rank β add_group.rank, | |
| Group.filtered_colimits.colimit_cocone_is_colimit β AddGroup.filtered_colimits.colimit_cocone_is_colimit, | |
| lt_of_lt_mul_of_le_one_right β lt_of_lt_add_of_nonpos_right, | |
| set.mul_subset_mul_right β set.add_subset_add_right, | |
| equiv.one_def β equiv.zero_def, | |
| mul_equiv.to_Semigroup_iso β add_equiv.to_AddSemigroup_iso, | |
| right_cancel_monoid.to_has_faithful_smul β add_right_cancel_monoid.to_has_faithful_vadd, | |
| monoid.npow β add_monoid.nsmul, | |
| subgroup.center_characteristic β add_subgroup.center_characteristic, | |
| is_open.closure_mul β is_open.closure_add, | |
| uniform_cauchy_seq_on.div β uniform_cauchy_seq_on.sub, | |
| fintype.prod_sum_type β fintype.sum_sum_type, | |
| nonempty_interval.has_pow β nonempty_interval.has_nsmul, | |
| finsupp.on_finset_prod β finsupp.on_finset_sum, | |
| lattice_ordered_comm_group.neg_eq_one_iff β lattice_ordered_comm_group.neg_eq_zero_iff, | |
| comm_monoid.ext β add_comm_monoid.ext, | |
| pow_le_one' β nsmul_nonpos, | |
| subgroup.is_modular_lattice β add_subgroup.is_modular_lattice, | |
| quotient_group.hom_quotient_zpow_of_hom_comp β quotient_add_group.hom_quotient_zsmul_of_hom_comp, | |
| smooth_map.has_one β smooth_map.has_zero, | |
| monoid_hom_of_tendsto_apply β add_monoid_hom_of_tendsto_apply, | |
| exists_npow_eq_one_of_zpow_eq_one β exists_nsmul_eq_zero_of_zsmul_eq_zero, | |
| measure_theory.fundamental_interior β measure_theory.add_fundamental_interior, | |
| prod.left_cancel_monoid β prod.left_cancel_add_monoid, | |
| quotient_group.map_comp_map β quotient_add_group.map_comp_map, | |
| measure_theory.measure.haar.prehaar_self β measure_theory.measure.haar.add_prehaar_self, | |
| submonoid.closure_comm_monoid_of_comm β add_submonoid.closure_add_comm_monoid_of_comm, | |
| submonoid.localization_map.of_mul_equiv_of_localizations_comp β add_submonoid.localization_map.of_add_equiv_of_localizations_comp, | |
| set.div_mem_center β set.sub_mem_add_center, | |
| monoid.in_closure.one β add_monoid.in_closure.zero, | |
| finset.prod_hom_rel β finset.sum_hom_rel, | |
| right_cancel_semigroup.mul β add_right_cancel_semigroup.add, | |
| order_monoid_hom_class β order_add_monoid_hom_class, | |
| inv_injective β neg_injective, | |
| prod_mk_prod β prod_mk_sum, | |
| pow_injective_of_lt_order_of β nsmul_injective_of_lt_add_order_of, | |
| function.mul_support_along_fiber_subset β function.support_along_fiber_subset, | |
| set.finset_prod_mem_finset_prod β set.finset_sum_mem_finset_sum, | |
| mul_right_surjective β add_right_surjective, | |
| order_monoid_hom.to_order_hom_injective β order_add_monoid_hom.to_order_hom_injective, | |
| div_div_div_cancel_right' β sub_sub_sub_cancel_right, | |
| is_open_map_quotient_mk_mul β is_open_map_quotient_mk_add, | |
| continuous_monoid_hom.continuous_of_continuous_uncurry β continuous_add_monoid_hom.continuous_of_continuous_uncurry, | |
| localization.lift_on_mk' β add_localization.lift_on_mk', | |
| div_le_self_iff β sub_le_self_iff, | |
| image_eq_one_of_nmem_mul_tsupport β image_eq_zero_of_nmem_tsupport, | |
| mul_div_mul_comm β add_sub_add_comm, | |
| set.mul_indicator_eq_self β set.indicator_eq_self, | |
| subgroup.relindex_eq_one β add_subgroup.relindex_eq_one, | |
| smooth_map.coe_fn_monoid_hom β smooth_map.coe_fn_add_monoid_hom, | |
| group.mclosure_inv_subset β add_group.mclosure_neg_subset, | |
| zpow_lt_zpow_iff β zsmul_lt_zsmul_iff, | |
| is_unit.inv_mul_eq_iff_eq_mul β is_add_unit.neg_add_eq_iff_eq_add, | |
| mul_action.to_has_smul β add_action.to_has_vadd, | |
| mul_equiv.map_mul' β add_equiv.map_add', | |
| lattice_ordered_comm_group.abs_div_sup_mul_abs_div_inf β lattice_ordered_comm_group.abs_sub_sup_add_abs_sub_inf, | |
| approx_order_of β approx_add_order_of, | |
| quotient_group.quotient_mul_equiv_of_eq_mk β quotient_add_group.quotient_add_equiv_of_eq_mk, | |
| isometry_equiv.mul_right_symm β isometry_equiv.add_right_symm, | |
| smooth_monoid_morphism.to_monoid_hom β smooth_add_monoid_morphism.to_add_monoid_hom, | |
| pi.update_eq_div_mul_single β pi.update_eq_sub_add_single, | |
| con.semigroup β add_con.add_semigroup, | |
| uniform_fun.monoid β uniform_fun.add_monoid, | |
| normed_ordered_group.to_normed_comm_group β normed_ordered_add_group.to_normed_add_comm_group, | |
| units.coe_copy β add_units.coe_copy, | |
| finprod_mem_inter_mul_support_eq' β finsum_mem_inter_support_eq', | |
| right.one_le_pow_of_le β right.pow_nonneg, | |
| eq_mul_of_div_eq β eq_add_of_sub_eq, | |
| is_lower_set.mul_left β is_lower_set.add_left, | |
| finset.prod_eq_fold β finset.sum_eq_fold, | |
| con.mul_one_class β add_con.add_zero_class, | |
| right.mul_lt_one_of_le_of_lt β right.add_neg_of_nonpos_of_neg, | |
| smul_smul β vadd_vadd, | |
| subgroup.map_le_map_iff_of_injective β add_subgroup.map_le_map_iff_of_injective, | |
| div_inv_monoid.ext β sub_neg_monoid.ext, | |
| subgroup.ext β add_subgroup.ext, | |
| monoid_hom.inl β add_monoid_hom.inl, | |
| group_seminorm_class.map_one_eq_zero β add_group_seminorm_class.map_zero, | |
| one_le_mul β add_nonneg, | |
| ordered_comm_group.zpow β ordered_add_comm_group.zsmul, | |
| finite.to_properly_discontinuous_smul β finite.to_properly_discontinuous_vadd, | |
| fixing_subgroup β fixing_add_subgroup, | |
| subgroup.card_bot β add_subgroup.card_bot, | |
| prod.has_one β prod.has_zero, | |
| multiset.le_prod_of_submultiplicative_on_pred β multiset.le_sum_of_subadditive_on_pred, | |
| subsemigroup.map_equiv_eq_comap_symm β add_subsemigroup.map_equiv_eq_comap_symm, | |
| continuous_map.coe_pow β continuous_map.coe_nsmul, | |
| submonoid.complete_lattice β add_submonoid.complete_lattice, | |
| pi.lex.ordered_comm_group β pi.lex.ordered_add_comm_group, | |
| has_involutive_inv β has_involutive_neg, | |
| inv_one_class β neg_zero_class, | |
| monoid_hom_class.to_one_hom_class β add_monoid_hom_class.to_zero_hom_class, | |
| inv_mul_cancel_comm_assoc β neg_add_cancel_comm_assoc, | |
| norm_ne_zero_iff' β norm_ne_zero_iff, | |
| is_open.Union_preimage_smul β is_open.Union_preimage_vadd, | |
| with_top.top_ne_one β with_top.top_ne_zero, | |
| mul_equiv.to_Semigroup_iso_hom β add_equiv.to_AddSemigroup_iso_hom, | |
| freiman_hom.comp_apply β add_freiman_hom.comp_apply, | |
| set.has_involutive_inv β set.has_involutive_neg, | |
| zpow_group_hom β zsmul_add_group_hom, | |
| finset.has_inv β finset.has_neg, | |
| is_unit.mul_iff β is_add_unit.add_iff, | |
| finsupp.prod_map_domain_index_inj β finsupp.sum_map_domain_index_inj, | |
| upper_set.has_smul β upper_set.has_vadd, | |
| set.mul_indicator_preimage_of_not_mem β set.indicator_preimage_of_not_mem, | |
| min_mul_mul_left β min_add_add_left, | |
| mul_hom.has_coe_t β add_hom.has_coe_t, | |
| units.coe_mk β add_units.coe_mk, | |
| is_monoid_hom.map_mul β is_add_monoid_hom.map_add, | |
| measure_theory.measure.haar.index_union_le β measure_theory.measure.haar.add_index_union_le, | |
| le_mul_of_le_mul_right β le_add_of_le_add_right, | |
| set.div_subset_div β set.sub_subset_sub, | |
| subsemigroup.coe_set_mk β add_subsemigroup.coe_set_mk, | |
| cancel_monoid.mul_one β add_cancel_monoid.add_zero, | |
| group_filter_basis.conj' β add_group_filter_basis.conj', | |
| mul_equiv.with_one_congr_apply β add_equiv.with_zero_congr_apply, | |
| con.quotient.has_coe_t β add_con.quotient.has_coe_t, | |
| locally_finite.exists_finset_nhd_mul_support_subset β locally_finite.exists_finset_nhd_support_subset, | |
| multiset.prod_eq_pow_single β multiset.sum_eq_nsmul_single, | |
| measure_theory.fundamental_frontier_subset β measure_theory.add_fundamental_frontier_subset, | |
| submonoid.localization_map.mul_equiv_of_localizations_left_inv β add_submonoid.localization_map.add_equiv_of_localizations_left_neg, | |
| finset.singleton_smul β finset.singleton_vadd, | |
| filter.covariant_div β filter.covariant_sub, | |
| finset.prod_unique_nonempty β finset.sum_unique_nonempty, | |
| linear_ordered_comm_group.inv β linear_ordered_add_comm_group.neg, | |
| monoid.closure_mono β add_monoid.closure_mono, | |
| inv_le_iff_one_le_mul' β neg_le_iff_add_nonneg', | |
| finset.preimage_mul_right_one β finset.preimage_add_right_zero, | |
| mul_roth_number_singleton β add_roth_number_singleton, | |
| is_submonoid β is_add_submonoid, | |
| submonoid.localization_map.of_mul_equiv_of_mul_equiv β add_submonoid.localization_map.of_add_equiv_of_add_equiv, | |
| submonoid.center β add_submonoid.center, | |
| lex.cancel_comm_monoid β lex.cancel_add_comm_monoid, | |
| con.pi β add_con.pi, | |
| finset.prod_comp β finset.sum_comp, | |
| multiset.prod_eq_foldl β multiset.sum_eq_foldl, | |
| with_one.unone_coe β with_zero.unzero_coe, | |
| mem_right_coset_iff β mem_right_add_coset_iff, | |
| monoid_hom.ext_iffβ β add_monoid_hom.ext_iffβ, | |
| Mon.has_limits.limit_cone_is_limit β AddMon.has_limits.limit_cone_is_limit, | |
| mul_lt_of_lt_of_lt_one' β add_lt_of_lt_of_neg', | |
| subgroup.normal.comap β add_subgroup.normal.comap, | |
| mul_action.self_equiv_sigma_orbits_quotient_stabilizer β add_action.self_equiv_sigma_orbits_quotient_stabilizer, | |
| filter.is_unit_pure β filter.is_add_unit_pure, | |
| subgroup.opposite.encodable β add_subgroup.opposite.encodable, | |
| subgroup.mem_centralizer_iff_commutator_eq_one β add_subgroup.mem_centralizer_iff_commutator_eq_zero, | |
| smul_eq_iff_eq_inv_smul β vadd_eq_iff_eq_neg_vadd, | |
| le_mul_of_one_le_left' β le_add_of_nonneg_left, | |
| order_of_subgroup β order_of_add_subgroup, | |
| mul_action.one_smul β add_action.zero_vadd, | |
| pi.const_mul_hom_apply β pi.const_add_hom_apply, | |
| norm_pos_iff''' β norm_pos_iff', | |
| con.con_gen_le β add_con.add_con_gen_le, | |
| submonoid.inv_bot β add_submonoid.neg_bot, | |
| continuous_map.div_comp β continuous_map.sub_comp, | |
| pi.has_continuous_mul' β pi.has_continuous_add', | |
| lipschitz_on_with_iff_norm_div_le β lipschitz_on_with_iff_norm_sub_le, | |
| mul_opposite.unop_bijective β add_opposite.unop_bijective, | |
| finset.card_mul_pow_le β finset.card_add_nsmul_le, | |
| subsemigroup.srange_snd β add_subsemigroup.srange_snd, | |
| Mon.has_coe_to_sort β AddMon.has_coe_to_sort, | |
| set.monoid β set.add_monoid, | |
| normed_comm_group.to_seminormed_comm_group β normed_add_comm_group.to_seminormed_add_comm_group, | |
| monoid_hom.map_zpowers β add_monoid_hom.map_zmultiples, | |
| monoid_hom.ker_id β add_monoid_hom.ker_id, | |
| smul_mul_smul β vadd_add_vadd, | |
| uniformity_eq_comap_inv_mul_nhds_one_swapped β uniformity_eq_comap_neg_add_nhds_zero_swapped, | |
| seminormed_comm_group β seminormed_add_comm_group, | |
| order_dual.ordered_cancel_comm_monoid.to_contravariant_class β ordered_cancel_add_comm_monoid.to_contravariant_class, | |
| csupr_mul_csupr_le β csupr_add_csupr_le, | |
| free_semigroup.traverse_pure β free_add_semigroup.traverse_pure, | |
| set.center β set.add_center, | |
| multiset.measurable_prod β multiset.measurable_sum, | |
| lattice_ordered_comm_group.neg_one β lattice_ordered_comm_group.neg_zero, | |
| equiv.mul_right_symm β equiv.add_right_symm, | |
| quotient_group.is_open_map_coe β quotient_add_group.is_open_map_coe, | |
| measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_one β measure_theory.measure.pairwise_ae_disjoint_of_ae_disjoint_forall_ne_zero, | |
| measure_theory.measure.haar.haar_content_apply β measure_theory.measure.haar.add_haar_content_apply, | |
| monotone.mul' β monotone.add, | |
| Group.filtered_colimits.forget_preserves_filtered_colimits β AddGroup.filtered_colimits.forget_preserves_filtered_colimits, | |
| multiset.noncomm_prod_map β multiset.noncomm_sum_map, | |
| filter.has_smul_filter β filter.has_vadd_filter, | |
| with_one.cases_on β with_zero.cases_on, | |
| finset.preimage_mul_left_one β finset.preimage_add_left_zero, | |
| subsemigroup.mem_supr_of_directed β add_subsemigroup.mem_supr_of_directed, | |
| subgroup.connected_component_of_one β add_subgroup.connected_component_of_zero, | |
| finprod_mem_eq_to_finset_prod β finsum_mem_eq_to_finset_sum, | |
| monoid_hom.mem_mker β add_monoid_hom.mem_mker, | |
| mul_le_mul_left' β add_le_add_left, | |
| units.homeomorph.prod_units β add_units.homeomorph.sum_add_units, | |
| function.injective.linear_ordered_cancel_comm_monoid β function.injective.linear_ordered_cancel_add_comm_monoid, | |
| monoid_hom.iterate_map_zpow β add_monoid_hom.iterate_map_zsmul, | |
| is_compact.smul β is_compact.vadd, | |
| free_monoid.of_list β free_add_monoid.of_list, | |
| has_smooth_mul β has_smooth_add, | |
| is_add_cyclic.card_order_of_eq_totient β is_cyclic.card_order_of_eq_totient, | |
| mul_action.is_pretransitive β add_action.is_pretransitive, | |
| fin.prod_Ioi_zero β fin.sum_Ioi_zero, | |
| CommGroup.comm_group_instance β AddCommGroup.add_comm_group_instance, | |
| mem_right_coset β mem_right_add_coset, | |
| mul_roth_number_le β add_roth_number_le, | |
| free_monoid.comp_lift β free_add_monoid.comp_lift, | |
| finset.one_mem_div_iff β finset.zero_mem_sub_iff, | |
| subgroup.to_submonoid_mono β add_subgroup.to_add_submonoid_mono, | |
| submonoid.exists_list_of_mem_closure β add_submonoid.exists_list_of_mem_closure, | |
| subgroup.inclusion β add_subgroup.inclusion, | |
| CommMon.limit_cone_is_limit β AddCommMon.limit_cone_is_limit, | |
| monoid_hom.flip_apply β add_monoid_hom.flip_apply, | |
| left_coset_equivalence β left_add_coset_equivalence, | |
| set.Union_inv_smul β set.Union_neg_vadd, | |
| monoid.lcm_order_eq_exponent β add_monoid.lcm_add_order_eq_exponent, | |
| subsemigroup.comap β add_subsemigroup.comap, | |
| fintype.decidable_eq_mul_hom_fintype β fintype.decidable_eq_add_hom_fintype, | |
| semiconj_by.units_inv_right β add_semiconj_by.add_units_neg_right, | |
| set.Interβ_div_subset β set.Interβ_sub_subset, | |
| unique_mul.mul_hom_image_iff β unique_add.add_hom_image_iff, | |
| order_monoid_hom.mk'_to_monoid_hom β order_add_monoid_hom.mk'_to_add_monoid_hom, | |
| order_dual.contravariant_class_swap_mul_lt β order_dual.contravariant_class_swap_add_lt, | |
| monoid_hom.submonoid_comap_apply_coe β add_monoid_hom.add_submonoid_comap_apply_coe, | |
| adjoin_one β adjoin_zero, | |
| Mon.inhabited β AddMon.inhabited, | |
| normed_comm_group.nhds_one_basis_norm_lt β normed_add_comm_group.nhds_zero_basis_norm_lt, | |
| filter.pure_div β filter.pure_sub, | |
| set.smul_set_inter_subset β set.vadd_set_inter_subset, | |
| left_cancel_monoid.one β add_left_cancel_monoid.zero, | |
| linear_ordered_comm_monoid.mul_comm β linear_ordered_add_comm_monoid.add_comm, | |
| group.rootable_by_nat_of_rootable_by_int β add_group.divisible_by_nat_of_divisible_by_int, | |
| cont_mdiff_within_at.mul β cont_mdiff_within_at.add, | |
| left.one_le_mul β left.add_nonneg, | |
| subsemigroup.mem_centralizer_iff β add_subsemigroup.mem_centralizer_iff, | |
| finset.coe_zpow β finset.coe_zsmul, | |
| monoid_hom.op_symm_apply_apply β add_monoid_hom.op_symm_apply_apply, | |
| subgroup.closure_empty β add_subgroup.closure_empty, | |
| continuous_within_at.nnnorm' β continuous_within_at.nnnorm, | |
| inv_le_one_of_one_le β neg_nonpos_of_nonneg, | |
| dfinsupp.prod_zero_index β dfinsupp.sum_zero_index, | |
| path.mul_apply β path.add_apply, | |
| submonoid.supr_eq_closure β add_submonoid.supr_eq_closure, | |
| has_measurable_div β has_measurable_sub, | |
| finprod_true β finsum_true, | |
| filter.comm_monoid β filter.add_comm_monoid, | |
| is_unit_map_of_left_inverse β is_add_unit_map_of_left_inverse, | |
| even.is_square_pow β even.nsmul', | |
| free_group.group β free_add_group.add_group, | |
| dense_range.topological_closure_map_subgroup β dense_range.topological_closure_map_add_subgroup, | |
| le_inv_of_le_inv β le_neg_of_le_neg, | |
| inv_le_iff_one_le_mul β neg_le_iff_add_nonneg, | |
| group.fintype_of_ker_eq_range β add_group.fintype_of_ker_eq_range, | |
| of_dual_smul' β of_dual_vadd', | |
| quotient_group.range_ker_lift β quotient_add_group.range_ker_lift, | |
| finset.noncomm_prod_singleton β finset.noncomm_sum_singleton, | |
| division_monoid.npow_zero' β subtraction_monoid.nsmul_zero', | |
| ordered_cancel_comm_monoid.npow_succ' β ordered_cancel_add_comm_monoid.nsmul_succ', | |
| left_cancel_monoid.mul_left_cancel β add_left_cancel_monoid.add_left_cancel, | |
| one_min β zero_min, | |
| map_zpow' β map_zsmul', | |
| function.mul_support_one' β function.support_zero', | |
| order_dual.div_inv_monoid β order_dual.sub_neg_add_monoid, | |
| equiv.div_left_symm_apply β equiv.sub_left_symm_apply, | |
| order_dual.left_cancel_semigroup β order_dual.left_cancel_add_semigroup, | |
| tendsto_inv_nhds_within_Iio β tendsto_neg_nhds_within_Iio, | |
| order_embedding.mul_right β order_embedding.add_right, | |
| mul_equiv.symm_bijective β add_equiv.symm_bijective, | |
| submonoid.localization_map.lift_spec_mul β add_submonoid.localization_map.lift_spec_add, | |
| mul_action.orbit_zpowers_equiv_symm_apply β add_action.orbit_zmultiples_equiv_symm_apply, | |
| continuous_on.inv β continuous_on.neg, | |
| equiv.group β equiv.add_group, | |
| mul_lt_of_lt_of_lt_one β add_lt_of_lt_of_neg, | |
| is_subgroup.div_mem β is_add_subgroup.sub_mem, | |
| subgroup.index_comap_of_surjective β add_subgroup.index_comap_of_surjective, | |
| is_unit_one β is_add_unit_zero, | |
| finset.inv_insert β finset.neg_insert, | |
| monoid_hom.coe_inj β add_monoid_hom.coe_inj, | |
| tendsto_const_smul_iff β tendsto_const_vadd_iff, | |
| ulift.smul_down β ulift.vadd_down, | |
| free_group.reduce_to_word β free_add_group.reduce_to_word, | |
| ulift.mul_action β ulift.add_action, | |
| homeomorph.mul_right β homeomorph.add_right, | |
| con.ext β add_con.ext, | |
| powers.mul_mem β multiples.add_mem, | |
| measure_theory.measure.haar.prehaar_pos β measure_theory.measure.haar.add_prehaar_pos, | |
| free_group.red.step.cons_left_iff β free_add_group.red.step.cons_left_iff, | |
| div_le_iff_le_mul' β sub_le_iff_le_add', | |
| lattice_ordered_comm_group.neg_of_one_le β lattice_ordered_comm_group.neg_of_nonneg, | |
| fin.prod_univ_three β fin.sum_univ_three, | |
| free_semigroup.length_mul β free_add_semigroup.length_add, | |
| subgroup.div_mem β add_subgroup.sub_mem, | |
| finset.ae_measurable_prod' β finset.ae_measurable_sum', | |
| mul_action.orbit_rel.quotient β add_action.orbit_rel.quotient, | |
| smooth_on.mul β smooth_on.add, | |
| has_measurable_div_of_mul_inv β has_measurable_sub_of_add_neg, | |
| group_norm.has_add β add_group_norm.has_add, | |
| is_scalar_tower.of_mclosure_eq_top β vadd_assoc_class.of_mclosure_eq_top, | |
| finset.has_div β finset.has_sub, | |
| pow_lt_one_iff β nsmul_neg_iff, | |
| right_inverse_inv β right_inverse_neg, | |
| measure_theory.is_fundamental_domain.exists_ne_one_smul_eq β measure_theory.is_add_fundamental_domain.exists_ne_zero_vadd_eq, | |
| continuous_monoid_hom.has_coe_to_fun β continuous_add_monoid_hom.has_coe_to_fun, | |
| mul_action.orbit.is_pretransitive β add_action.orbit.is_pretransitive, | |
| vector.prod_update_nth β vector.sum_update_nth, | |
| topological_group.of_nhds_one β topological_add_group.of_nhds_zero, | |
| submonoid.induction_of_closure_eq_top_right β add_submonoid.induction_of_closure_eq_top_right, | |
| Mon.has_limits_of_size β AddMon.has_limits_of_size, | |
| units.continuous_iff β add_units.continuous_iff, | |
| free_group.mk β free_add_group.mk, | |
| mul_opposite.left_cancel_semigroup β add_opposite.left_cancel_add_semigroup, | |
| monoid_hom.subgroup_map β add_monoid_hom.add_subgroup_map, | |
| finprod_false β finsum_false, | |
| monoid_hom.map_mul β add_monoid_hom.map_add, | |
| filter.germ.monoid β filter.germ.add_monoid, | |
| mul_hom.comp_mul β add_hom.comp_add, | |
| function.mul_support_sup β function.support_sup, | |
| is_unit.mul_left_cancel β is_add_unit.add_left_cancel, | |
| set.mul_indicator_apply β set.indicator_apply, | |
| free_group.reduce.red β free_add_group.reduce.red, | |
| set.decidable_mem_mul β set.decidable_mem_add, | |
| decidable_powers β decidable_multiples, | |
| submonoid.map_comap_map β add_submonoid.map_comap_map, | |
| inv_eq_of_mul_eq_one_right β neg_eq_of_add_eq_zero_right, | |
| units.coe_op_equiv_symm β add_units.coe_op_equiv_symm, | |
| monoid_hom.fst β add_monoid_hom.fst, | |
| subset_lower_bounds_mul β subset_lower_bounds_add, | |
| mul_action.right_quotient_action' β add_action.right_quotient_action', | |
| dist_mul_self_right β dist_add_self_right, | |
| prod.topological_group β prod.topological_add_group, | |
| list.measurable_prod' β list.measurable_sum', | |
| submonoid.to_linear_ordered_comm_monoid β add_submonoid.to_linear_ordered_add_comm_monoid, | |
| injective_iff_map_eq_one' β injective_iff_map_eq_zero', | |
| mul_right_iterate_apply_one β add_right_iterate_apply_zero, | |
| is_unit.unit_of_coe_units β is_add_unit.add_unit_of_coe_add_units, | |
| unique_has_one β unique_has_zero, | |
| mul_equiv_iso_Semigroup_iso β add_equiv_iso_AddSemigroup_iso, | |
| division_monoid.zpow_zero' β subtraction_monoid.zsmul_zero', | |
| submonoid.mrange_snd β add_submonoid.mrange_snd, | |
| subgroup.simps.coe β add_subgroup.simps.coe, | |
| subgroup.normal_inf_normal β add_subgroup.normal_inf_normal, | |
| mul_mem_class.coe_subtype β add_mem_class.coe_subtype, | |
| bot_eq_one β bot_eq_zero, | |
| category_theory.discrete.monoidal_functor_to_lax_monoidal_functor_ΞΌ β discrete.add_monoidal_functor_to_lax_monoidal_functor_ΞΌ, | |
| monoid.fg_iff β add_monoid.fg_iff, | |
| set.mul_indicator_le' β set.indicator_le', | |
| subgroup.subgroup_of_normalizer_eq β add_subgroup.add_subgroup_of_normalizer_eq, | |
| subsemigroup.coe_comap β add_subsemigroup.coe_comap, | |
| quotient_group.quotient_ker_equiv_range β quotient_add_group.quotient_ker_equiv_range, | |
| mul_hom.op_symm_apply_apply β add_hom.op_symm_apply_apply, | |
| finset.union_smul β finset.union_vadd, | |
| fintype.prod_sum_elim β fintype.sum_sum_elim, | |
| submonoid.top_closure_mul_self_eq β add_submonoid.top_closure_add_self_eq, | |
| set.centralizer_univ β set.add_centralizer_univ, | |
| mul_opposite.commute_op β add_opposite.commute_op, | |
| subsingleton.pi_mul_single_eq β subsingleton.pi_single_eq, | |
| measure_theory.is_mul_right_invariant_smul β measure_theory.is_add_right_invariant_smul, | |
| pow_lt_pow_iff' β nsmul_lt_nsmul_iff, | |
| submonoid.localization_map.of_mul_equiv_of_mul_equiv_apply β add_submonoid.localization_map.of_add_equiv_of_add_equiv_apply, | |
| pow_eq_pow_mod β nsmul_eq_mod_nsmul, | |
| continuous_nnnorm' β continuous_nnnorm, | |
| set.piecewise_div β set.piecewise_sub, | |
| function.const_le_one β function.const_nonpos, | |
| lipschitz_with.mul' β lipschitz_with.add, | |
| free_group.map.unique β free_add_group.map.unique, | |
| localization.mk_self β add_localization.mk_self, | |
| set.univ_mul_of_one_mem β set.univ_add_of_zero_mem, | |
| pi.left_cancel_monoid β pi.add_left_cancel_monoid, | |
| free_group.quot_lift_mk β free_add_group.quot_lift_mk, | |
| set.fintype_mul β set.fintype_add, | |
| free_group.norm_eq_zero β free_add_group.norm_eq_zero, | |
| probability_theory.Indep_fun.indep_fun_prod_range_succ β probability_theory.Indep_fun.indep_fun_sum_range_succ, | |
| magma.assoc_rel β add_magma.assoc_rel, | |
| lattice_ordered_comm_group.m_le_iff_pos_le_neg_ge β lattice_ordered_comm_group.le_iff_pos_le_neg_ge, | |
| tendsto_inv_nhds_within_Ici β tendsto_neg_nhds_within_Ici, | |
| Inf_one β Inf_zero, | |
| group_seminorm.ext β add_group_seminorm.ext, | |
| freiman_hom.has_coe_to_fun β add_freiman_hom.has_coe_to_fun, | |
| measure_theory.pairwise_disjoint_fundamental_interior β measure_theory.pairwise_disjoint_add_fundamental_interior, | |
| measure_theory.simple_func.div_apply β measure_theory.simple_func.sub_apply, | |
| con.mk'_surjective β add_con.mk'_surjective, | |
| free_monoid.of_smul β free_add_monoid.of_vadd, | |
| monoid_hom.fst_comp_inl β add_monoid_hom.fst_comp_inl, | |
| pow_lt_pow' β nsmul_lt_nsmul, | |
| mul_action.to_fun_apply β add_action.to_fun_apply, | |
| mul_equiv.symm_apply_apply β add_equiv.symm_apply_apply, | |
| monoid_hom.op_apply_apply β add_monoid_hom.op_apply_apply, | |
| finset.multiplicative_energy_univ_left β finset.additive_energy_univ_left, | |
| normed_comm_group.to_normed_group β normed_add_comm_group.to_normed_add_group, | |
| submonoid.copy β add_submonoid.copy, | |
| is_open_map_smul β is_open_map_vadd, | |
| eq_and_eq_of_le_of_le_of_mul_le β eq_and_eq_of_le_of_le_of_add_le, | |
| Mon.large_category β AddMon.large_category, | |
| seminormed_group.uniform_cauchy_seq_on_iff_tendsto_uniformly_on_one β seminormed_add_group.uniform_cauchy_seq_on_iff_tendsto_uniformly_on_zero, | |
| commute.mul_left β add_commute.add_left, | |
| free_monoid.to_list_comp_of_list β free_add_monoid.to_list_comp_of_list, | |
| division_monoid.npow_succ' β subtraction_monoid.nsmul_succ', | |
| nnnorm_eq_zero' β nnnorm_eq_zero, | |
| mul_action.injective_of_quotient_stabilizer β add_action.injective_of_quotient_stabilizer, | |
| measure_theory.measure.map_div_left_ae β measure_theory.measure.map_sub_left_ae, | |
| monotone.mul_strict_mono' β monotone.add_strict_mono, | |
| subgroup.quotient_subgroup_of_map_of_le_apply_mk β add_subgroup.quotient_add_subgroup_of_map_of_le_apply_mk, | |
| eckmann_hilton.comm_group β eckmann_hilton.add_comm_group, | |
| subgroup.normal.mem_comm_iff β add_subgroup.normal.mem_comm_iff, | |
| monoid_hom.lift_of_surjective β add_monoid_hom.lift_of_surjective, | |
| inv_eq_iff_inv_eq β neg_eq_iff_neg_eq, | |
| Mon.filtered_colimits.forget_preserves_filtered_colimits β AddMon.filtered_colimits.forget_preserves_filtered_colimits, | |
| measure_theory.measure.haar.chaar_mono β measure_theory.measure.haar.add_chaar_mono, | |
| is_closed_set_of_map_mul β is_closed_set_of_map_add, | |
| is_closed_map_div_right β is_closed_map_sub_right, | |
| lt_inv_mul_iff_mul_lt β lt_neg_add_iff_add_lt, | |
| mul_equiv.prod_units β add_equiv.prod_add_units, | |
| semiconj_by.inv_right β add_semiconj_by.neg_right, | |
| subgroup.smul_def β add_subgroup.vadd_def, | |
| mul_opposite.op_comp_unop β add_opposite.op_comp_unop, | |
| free_group.red.step.inv_rev β free_add_group.red.step.neg_rev, | |
| free_monoid.of_list_smul β free_add_monoid.of_list_vadd, | |
| comm_monoid.to_comm_semigroup β add_comm_monoid.to_add_comm_semigroup, | |
| group.covariant_iff_contravariant β add_group.covariant_iff_contravariant, | |
| measure_theory.pi.is_mul_left_invariant_volume β measure_theory.pi.is_add_left_invariant_volume, | |
| set.preimage_smul β set.preimage_vadd, | |
| mul_equiv.monoid_hom_congr β add_equiv.add_monoid_hom_congr, | |
| equiv.mul_one_class β equiv.add_zero_class, | |
| mul_hom.restrict β add_hom.restrict, | |
| quotient_group.has_continuous_const_smul β quotient_add_group.has_continuous_const_vadd, | |
| units.inv_mul_cancel_left β add_units.neg_add_cancel_left, | |
| mul_equiv.Pi_subsingleton_apply β add_equiv.Pi_subsingleton_apply, | |
| pi.cancel_comm_monoid β pi.add_cancel_comm_monoid, | |
| ulift.comm_group β ulift.add_comm_group, | |
| equiv.div_right_apply β equiv.sub_right_apply, | |
| commute.all β add_commute.all, | |
| is_compact.closed_ball_div β is_compact.closed_ball_sub, | |
| list.prod_take_mul_prod_drop β list.sum_take_add_sum_drop, | |
| set.mul_indicator_self_mul_compl_apply β set.indicator_self_add_compl_apply, | |
| units.op_equiv β add_units.op_equiv, | |
| group_seminorm.has_smul β add_group_seminorm.has_smul, | |
| set.pow_subset_pow_of_one_mem β set.nsmul_subset_nsmul_of_zero_mem, | |
| submonoid.subtype β add_submonoid.subtype, | |
| monoid_hom.fst_comp_inr β add_monoid_hom.fst_comp_inr, | |
| measure_theory.inv_absolutely_continuous β measure_theory.neg_absolutely_continuous, | |
| continuous_mul β continuous_add, | |
| subgroup.coe_equiv_map_of_injective_apply β add_subgroup.coe_equiv_map_of_injective_apply, | |
| division_monoid.inv_inv β subtraction_monoid.neg_neg, | |
| ae_measurable.mul' β ae_measurable.add', | |
| set.mul_indicator_apply_le' β set.indicator_apply_le', | |
| open_subgroup.comap β open_add_subgroup.comap, | |
| submonoid.to_mul_one_class β add_submonoid.to_add_zero_class, | |
| lt_mul_of_one_le_of_lt β lt_add_of_nonneg_of_lt, | |
| monoid_hom.coe_range β add_monoid_hom.coe_range, | |
| submonoid.multiset_prod_mem β add_submonoid.multiset_sum_mem, | |
| eq_inv_iff_eq_inv β eq_neg_iff_eq_neg, | |
| mul_upper_closure β add_upper_closure, | |
| ordered_comm_group.inv β ordered_add_comm_group.neg, | |
| monoid_hom.decidable_mem_mker β add_monoid_hom.decidable_mem_mker, | |
| monoid_hom.id_apply β add_monoid_hom.id_apply, | |
| group_filter_basis.mul β add_group_filter_basis.add, | |
| submonoid.localization_map.mk'_eq_iff_eq' β add_submonoid.localization_map.mk'_eq_iff_eq', | |
| subgroup.subgroup_of_eq_bot β add_subgroup.add_subgroup_of_eq_bot, | |
| measure_theory.measure.is_mul_right_invariant.map_mul_right_eq_self β measure_theory.measure.is_add_right_invariant.map_add_right_eq_self, | |
| filter.map_mul β filter.map_add, | |
| subsemigroup.has_continuous_mul β add_subsemigroup.has_continuous_add, | |
| has_continuous_inv_infi β has_continuous_neg_infi, | |
| monoid_hom_class.map_mul β add_monoid_hom_class.map_add, | |
| measure_theory.eventually_mul_right_iff β measure_theory.eventually_add_right_iff, | |
| canonically_ordered_monoid.npow β canonically_ordered_add_monoid.nsmul, | |
| with_one.map_coe β with_zero.map_coe, | |
| function.surjective.comm_group β function.surjective.add_comm_group, | |
| has_continuous_inv.continuous_inv β has_continuous_neg.continuous_neg, | |
| CommGroup.filtered_colimits.colimit_cocone_is_colimit β AddCommGroup.filtered_colimits.colimit_cocone_is_colimit, | |
| set.mem_range_mul_indicator β set.mem_range_indicator, | |
| finset.prod_range_add β finset.sum_range_add, | |
| monoid_hom.restrict_mrange β add_monoid_hom.restrict_mrange, | |
| free_group.map β free_add_group.map, | |
| nnnorm_pow_le_mul_norm β nnnorm_nsmul_le, | |
| finset.image_div_prod β finset.add_image_prod, | |
| order_embedding.mul_left β order_embedding.add_left, | |
| measure_theory.is_mul_left_invariant_smul β measure_theory.is_add_left_invariant_smul, | |
| is_unit_iff_exists_inv β is_add_unit_iff_exists_neg, | |
| isometry_equiv.mul_right β isometry_equiv.add_right, | |
| continuous_monoid_hom.comp_left β continuous_add_monoid_hom.comp_left, | |
| smul_comm_class.opposite_mid β vadd_comm_class.opposite_mid, | |
| Mon.has_limits.limit_cone β AddMon.has_limits.limit_cone, | |
| subgroup.copy β add_subgroup.copy, | |
| finprod_eq_single β finsum_eq_single, | |
| finprod_mem_union_inter' β finsum_mem_union_inter', | |
| pi.comm_semigroup β pi.add_comm_semigroup, | |
| division_monoid.mul_one β subtraction_monoid.add_zero, | |
| continuous_monoid_hom β continuous_add_monoid_hom, | |
| measure_theory.is_mul_left_invariant_smul_nnreal β measure_theory.is_add_left_invariant_smul_nnreal, | |
| set.mul_indicator_mul_compl_eq_piecewise β set.indicator_add_compl_eq_piecewise, | |
| Mon.filtered_colimits.colimit_has_mul β AddMon.filtered_colimits.colimit_has_add, | |
| multiset.prod_eq_prod_coe β multiset.sum_eq_sum_coe, | |
| submonoid.eq_bot_iff_forall β add_submonoid.eq_bot_iff_forall, | |
| pi.comm_monoid β pi.add_comm_monoid, | |
| is_unit.lift_right β is_add_unit.lift_right, | |
| homeomorph.mul_left β homeomorph.add_left, | |
| submonoid.inv_supr β add_submonoid.neg_supr, | |
| subgroup.noncomm_pi_coprod_range β add_subgroup.noncomm_pi_coprod_range, | |
| subgroup.subgroup_of_self β add_subgroup.add_subgroup_of_self, | |
| is_unit.div β is_add_unit.sub, | |
| upper_set.has_one β upper_set.has_zero, | |
| is_subgroup.subset_normalizer β is_add_subgroup.subset_add_normalizer, | |
| lattice_ordered_comm_group.m_neg_abs β lattice_ordered_comm_group.neg_abs, | |
| continuous_map.has_continuous_smul β continuous_map.has_continuous_vadd, | |
| finset.prod_Ioc_succ_top β finset.sum_Ioc_succ_top, | |
| order_dual.normed_ordered_group β order_dual.normed_ordered_add_group, | |
| dist_self_mul_right β dist_self_add_right, | |
| finset.card_inv β finset.card_neg, | |
| mul_action.left_quotient_action β add_action.left_quotient_action, | |
| finsupp.prod_ite_eq β finsupp.sum_ite_eq, | |
| has_compact_mul_support.eq_one_or_finite_dimensional β has_compact_support.eq_zero_or_finite_dimensional, | |
| set.mul_subset_iff β set.add_subset_iff, | |
| edist_inv_inv β edist_neg_neg, | |
| subgroup.mul_mem β add_subgroup.add_mem, | |
| monoid_hom.mker_prod_map β add_monoid_hom.mker_sum_map, | |
| pow_mul_comm β nsmul_add_comm, | |
| linear_ordered_comm_group.to_ordered_comm_group β linear_ordered_add_comm_group.to_ordered_add_comm_group, | |
| filter.inv_pure β filter.neg_pure, | |
| subgroup.closure_singleton_one β add_subgroup.closure_singleton_zero, | |
| is_left_cancel_mul β is_left_cancel_add, | |
| finset.singleton_mul_singleton β finset.singleton_add_singleton, | |
| units.coe_hom_apply β add_units.coe_hom_apply, | |
| set.mul_indicator_le_self' β set.indicator_le_self', | |
| locally_constant.comm_monoid β locally_constant.add_comm_monoid, | |
| monoid_hom.of_injective β add_monoid_hom.of_injective, | |
| is_subgroup.eq_trivial_iff β is_add_subgroup.eq_trivial_iff, | |
| mul_equiv.inv'_apply β add_equiv.neg'_apply, | |
| finset.coe_mul β finset.coe_add, | |
| filter.ne_bot.mul β filter.ne_bot.add, | |
| CommGroup.mono_iff_ker_eq_bot β AddCommGroup.mono_iff_ker_eq_bot, | |
| is_unit.inv_mul_cancel β is_add_unit.neg_add_cancel, | |
| units.lift_right_inv_mul β add_units.lift_right_neg_add, | |
| set.image2_smul β set.image2_vadd, | |
| order_monoid_hom.one_apply β order_add_monoid_hom.zero_apply, | |
| mul_inv_lt_inv_mul_iff β add_neg_lt_neg_add_iff, | |
| finset.prod_range_div' β finset.sum_range_sub', | |
| monoid_hom.range_restrict β add_monoid_hom.range_restrict, | |
| quotient_group.complete_space β quotient_add_group.complete_space, | |
| multiset.pow_count β multiset.nsmul_count, | |
| list.one_le_prod_of_one_le β list.sum_nonneg, | |
| finsupp.prod_comm β finsupp.sum_comm, | |
| prod.div_inv_monoid β prod.sub_neg_monoid, | |
| finsupp.prod_emb_domain β finsupp.sum_emb_domain, | |
| continuous_map.has_continuous_const_smul β continuous_map.has_continuous_const_vadd, | |
| measurable_div_const' β measurable_sub_const', | |
| function.const_eq_one β function.const_eq_zero, | |
| with_top.map_one β with_top.map_zero, | |
| inv_div' β neg_sub', | |
| quotient_group.lift_mk β quotient_add_group.lift_mk, | |
| free_monoid.of_list_symm β free_add_monoid.of_list_symm, | |
| set.nonempty.smul β set.nonempty.vadd, | |
| set.mul_indicator_range_comp β set.indicator_range_comp, | |
| set.mul_antidiagonal.eq_of_fst_le_fst_of_snd_le_snd β set.add_antidiagonal.eq_of_fst_le_fst_of_snd_le_snd, | |
| is_locally_constant.div β is_locally_constant.sub, | |
| has_measurable_smulβ_of_mul β has_measurable_smulβ_of_add, | |
| continuous_map.coe_div β continuous_map.coe_sub, | |
| lex.has_inv β lex.has_neg, | |
| division_comm_monoid.npow_zero' β subtraction_comm_monoid.nsmul_zero', | |
| subsemigroup.mem_center_iff β add_subsemigroup.mem_center_iff, | |
| monoid_hom.injective_noncomm_pi_coprod_of_independent β add_monoid_hom.injective_noncomm_pi_coprod_of_independent, | |
| category_theory.iso.CommMon_iso_to_mul_equiv β category_theory.iso.CommMon_iso_to_add_equiv, | |
| cancel_monoid.mul_left_cancel β add_cancel_monoid.add_left_cancel, | |
| mul_action.mem_orbit_iff β add_action.mem_orbit_iff, | |
| finset.coe_list_prod β finset.coe_list_sum, | |
| mul_opposite.uniform_continuous_unop β add_opposite.uniform_continuous_unop, | |
| subgroup.exists_right_transversal β add_subgroup.exists_right_transversal, | |
| tendsto_inv_nhds_within_Iio_inv β tendsto_neg_nhds_within_Iio_neg, | |
| commute.on_is_refl β add_commute.on_is_refl, | |
| subgroup.le_normalizer_comap β add_subgroup.le_normalizer_comap, | |
| is_square_mul_self β even_add_self, | |
| subgroup.inf_subgroup_of_right β add_subgroup.inf_add_subgroup_of_right, | |
| mul_opposite.uniform_continuous_op β add_opposite.uniform_continuous_op, | |
| quotient_group.equiv_quotient_zpow_of_equiv_refl β quotient_add_group.equiv_quotient_zsmul_of_equiv_refl, | |
| finset.prod_ite β finset.sum_ite, | |
| set.mul_antidiagonal.eq_of_snd_eq_snd β set.add_antidiagonal.eq_of_snd_eq_snd, | |
| mul_lt_of_lt_one_of_le β add_lt_of_neg_of_le, | |
| mul_mem_class.to_comm_semigroup β add_mem_class.to_add_comm_semigroup, | |
| group_seminorm.has_sup β add_group_seminorm.has_sup, | |
| free_group.inv_bind β free_add_group.neg_bind, | |
| subsemigroup.map_inf_comap_of_surjective β add_subsemigroup.map_inf_comap_of_surjective, | |
| pow_coprime_apply β nsmul_coprime_apply, | |
| finset.prod_union β finset.sum_union, | |
| comp_mul_left β comp_add_left, | |
| finprod_mem_one β finsum_mem_zero, | |
| order_monoid_hom.cancel_left β order_add_monoid_hom.cancel_left, | |
| inv_mem_iff β neg_mem_iff, | |
| measure_theory.quasi_measure_preserving_mul_right β measure_theory.quasi_measure_preserving_add_right, | |
| monotone.pow_right β monotone.nsmul_left, | |
| measure_theory.map_smul β measure_theory.map_vadd, | |
| submonoid.mem_centralizer_iff β add_submonoid.mem_centralizer_iff, | |
| submonoid.localization_map.of_mul_equiv_of_localizations_id β add_submonoid.localization_map.of_add_equiv_of_localizations_id, | |
| subsemigroup.center_eq_top β add_subsemigroup.center_eq_top, | |
| monoid_hom.has_one β add_monoid_hom.has_zero, | |
| filter.germ.comm_monoid β filter.germ.add_comm_monoid, | |
| lipschitz_with_lipschitz_const_mul β lipschitz_with_lipschitz_const_add, | |
| nnnorm_zpow_le_mul_norm β nnnorm_zsmul_le, | |
| mul_left_comm β add_left_comm, | |
| quotient_group.map_id β quotient_add_group.map_id, | |
| homeomorph.mul_right_symm β homeomorph.add_right_symm, | |
| map_eq_zero_iff_eq_one β map_eq_zero_iff_eq_zero, | |
| mul_hom.coe_copy_eq β add_hom.coe_copy_eq, | |
| monoid.closure.is_submonoid β add_monoid.closure.is_add_submonoid, | |
| Semigroup.forget_reflects_isos β AddSemigroup.forget_reflects_isos, | |
| is_scalar_tower.opposite_mid β vadd_assoc_class.opposite_mid, | |
| subgroup.normal β add_subgroup.normal, | |
| equiv.inv_mul_left β equiv.inv_add_left, | |
| con.has_le β add_con.has_le, | |
| monoid_hom.coe_of_map_mul_inv β add_monoid_hom.coe_of_map_add_neg, | |
| subgroup.complete_lattice β add_subgroup.complete_lattice, | |
| ulift.semigroup β ulift.add_semigroup, | |
| measure_theory.ae_strongly_measurable.inv β measure_theory.ae_strongly_measurable.neg, | |
| inv_surjective β neg_surjective, | |
| probability_theory.Indep_fun.mul β probability_theory.Indep_fun.add, | |
| prod.fst_div β prod.fst_sub, | |
| group.rank_spec β add_group.rank_spec, | |
| sym_alg.sym_inv β sym_alg.sym_neg, | |
| group.covconv_swap β add_group.covconv_swap, | |
| set.mem_fintype_prod β set.mem_fintype_sum, | |
| mul_opposite.op_injective β add_opposite.op_injective, | |
| subsemigroup.mem_Inf β add_subsemigroup.mem_Inf, | |
| equiv.monoid β equiv.add_monoid, | |
| continuous_monoid_hom.topological_space β continuous_add_monoid_hom.topological_space, | |
| measure_theory.measure.haar.mem_prehaar_empty β measure_theory.measure.haar.mem_add_prehaar_empty, | |
| submultiplicative_hom_class β subadditive_hom_class, | |
| monoid_hom.ext_iff β add_monoid_hom.ext_iff, | |
| monoid_hom.coprod_comp_inr β add_monoid_hom.coprod_comp_inr, | |
| multiset.prod_singleton β multiset.sum_singleton, | |
| order_monoid_hom.comp_apply β order_add_monoid_hom.comp_apply, | |
| right_cancel_monoid.npow_zero' β add_right_cancel_monoid.nsmul_zero', | |
| is_closed.smul β is_closed.vadd, | |
| measure_theory.measure.is_haar_measure.smul β measure_theory.measure.is_add_haar_measure.smul, | |
| units.map_id β add_units.map_id, | |
| map_mul_inv β map_add_neg, | |
| strict_mono.mul' β strict_mono.add, | |
| set.mul_univ_of_one_mem β set.add_univ_of_zero_mem, | |
| tendsto_inv_nhds_within_Iic_inv β tendsto_neg_nhds_within_Iic_neg, | |
| monoid_hom.map_one' β add_monoid_hom.map_zero', | |
| free_group.reduce.self β free_add_group.reduce.self, | |
| finset.coe_coe_monoid_hom β finset.coe_coe_add_monoid_hom, | |
| quotient_group.quotient_ker_equiv_of_right_inverse β quotient_add_group.quotient_ker_equiv_of_right_inverse, | |
| zpow_lt_zpow_iff' β zsmul_lt_zsmul_iff', | |
| monoid.closure_finset_fg β add_monoid.closure_finset_fg, | |
| subgroup.to_submonoid_eq β add_subgroup.to_add_submonoid_eq, | |
| ordered_comm_group.mul β ordered_add_comm_group.add, | |
| finprod_mem_def β finsum_mem_def, | |
| monoid_hom.noncomm_pi_coprod_equiv β add_monoid_hom.noncomm_pi_coprod_equiv, | |
| multiplicative_of_symmetric_of_is_total β additive_of_symmetric_of_is_total, | |
| subgroup.normal_comap β add_subgroup.normal_comap, | |
| norm_pos_iff'' β norm_pos_iff, | |
| multiset.prod_le_pow_card β multiset.sum_le_card_nsmul, | |
| cancel_comm_monoid.one β add_cancel_comm_monoid.zero, | |
| continuous_monoid_hom.embedding_to_continuous_map β continuous_add_monoid_hom.embedding_to_continuous_map, | |
| subgroup.mem_closure β add_subgroup.mem_closure, | |
| mul_opposite.has_measurable_mul β add_opposite.has_measurable_add, | |
| is_subgroup.inter β is_add_subgroup.inter, | |
| submonoid.powers_one β add_submonoid.multiples_zero, | |
| free_group.red.sizeof_of_step β free_add_group.red.sizeof_of_step, | |
| mul_opposite.uniform_group β add_opposite.uniform_add_group, | |
| subsemigroup.mem_mk β add_subsemigroup.mem_mk, | |
| filter.has_basis.uniformity_of_nhds_one_swapped β filter.has_basis.uniformity_of_nhds_zero_swapped, | |
| subgroup.mem_closure_pair β add_subgroup.mem_closure_pair, | |
| is_cyclic.iff_exponent_eq_card β is_add_cyclic.iff_exponent_eq_card, | |
| CommGroup.one_apply β AddCommGroup.zero_apply, | |
| is_monoid_hom β is_add_monoid_hom, | |
| subgroup.closure_comm_group_of_comm β add_subgroup.closure_add_comm_group_of_comm, | |
| one_le_zpow β zsmul_nonneg, | |
| measure_theory.measure.haar_singleton β measure_theory.measure.add_haar_singleton, | |
| measurable_equiv.symm_mul_right β measurable_equiv.symm_add_right, | |
| cancel_monoid.npow_zero' β add_cancel_monoid.nsmul_zero', | |
| monoid_hom.ker_prod_map β add_monoid_hom.ker_sum_map, | |
| subgroup.coe_comap β add_subgroup.coe_comap, | |
| interval.bot_ne_one β interval.bot_ne_zero, | |
| submonoid.to_ordered_cancel_comm_monoid β add_submonoid.to_ordered_cancel_add_comm_monoid, | |
| commute β add_commute, | |
| submonoid.smul_def β add_submonoid.vadd_def, | |
| powers_equiv_powers_apply β multiples_equiv_multiples_apply, | |
| inv_lt_iff_one_lt_mul β neg_lt_iff_pos_add, | |
| upper_set.comm_monoid β upper_set.add_comm_monoid, | |
| part.right_dom_of_mul_dom β part.right_dom_of_add_dom, | |
| set.multiset_prod_subset_multiset_prod β set.multiset_sum_subset_multiset_sum, | |
| units.has_continuous_smul β add_units.has_continuous_vadd, | |
| inv_inf_eq_sup_inv β neg_inf_eq_sup_neg, | |
| subsemigroup.nontrivial β add_subsemigroup.nontrivial, | |
| subsemigroup.top_prod β add_subsemigroup.top_prod, | |
| has_continuous_mul_Inf β has_continuous_add_Inf, | |
| inv_lt_inv_iff β neg_lt_neg_iff, | |
| group.rank_congr β add_group.rank_congr, | |
| finset.multiplicative_energy_empty_left β finset.additive_energy_empty_left, | |
| dist_le_norm_mul_norm β dist_le_norm_add_norm, | |
| multiset.prod_map_le_prod β multiset.sum_map_le_sum, | |
| subgroup.map_le_map_iff' β add_subgroup.map_le_map_iff', | |
| finset.prod_apply_dite β finset.sum_apply_dite, | |
| submonoid.closure_induction_right β add_submonoid.closure_induction_right, | |
| finset.multiplicative_energy_pos β finset.additive_energy_pos, | |
| pi.has_continuous_const_smul β pi.has_continuous_const_vadd, | |
| finprod_mem_comm β finsum_mem_comm, | |
| is_group_hom.range_subgroup β is_add_group_hom.range_add_subgroup, | |
| canonically_linear_ordered_monoid.mul β canonically_linear_ordered_add_monoid.add, | |
| order_dual.comm_semigroup β order_dual.add_comm_semigroup, | |
| le_mul_inv_iff_mul_le β le_add_neg_iff_add_le, | |
| set.inv_singleton β set.neg_singleton, | |
| mul_equiv.symm_comp_self β add_equiv.symm_comp_self, | |
| is_locally_constant.one β is_locally_constant.zero, | |
| monoid_hom.range_one β add_monoid_hom.range_zero, | |
| finprod_set_coe_eq_finprod_mem β finsum_set_coe_eq_finsum_mem, | |
| prod.has_div β prod.has_sub, | |
| monoid_hom_class β add_monoid_hom_class, | |
| uniform_on_fun.has_basis_nhds_one_of_basis β uniform_on_fun.has_basis_nhds_zero_of_basis, | |
| linear_ordered_cancel_comm_monoid.one_mul β linear_ordered_cancel_add_comm_monoid.zero_add, | |
| CommGroup.large_category β AddCommGroup.large_category, | |
| finset.union_mul β finset.union_add, | |
| fin.prod_trunc β fin.sum_trunc, | |
| subgroup.independent_of_coprime_order β add_subgroup.independent_of_coprime_order, | |
| mul_mem_class.mul_mem β add_mem_class.add_mem, | |
| monoid_hom.comp_left_apply β add_monoid_hom.comp_left_apply, | |
| subgroup.normed_comm_group β add_subgroup.normed_add_comm_group, | |
| filter.tendsto.pow β filter.tendsto.nsmul, | |
| localization.lift_on β add_localization.lift_on, | |
| lattice_ordered_comm_group.pos_div_neg β lattice_ordered_comm_group.pos_sub_neg, | |
| list.pow_card_le_prod β list.card_nsmul_le_sum, | |
| subgroup.top_prod_top β add_subgroup.top_prod_top, | |
| monoid_hom.has_coe_t β add_monoid_hom.has_coe_t, | |
| ne_one_of_norm_ne_zero β ne_zero_of_norm_ne_zero, | |
| subgroup.is_complement β add_subgroup.is_complement, | |
| submonoid.equiv_map_of_injective β add_submonoid.equiv_map_of_injective, | |
| mul_action.supports.smul β add_action.supports.vadd, | |
| monoid_hom.mk'_apply β add_monoid_hom.mk'_apply, | |
| mul_action.smul_orbit_subset β add_action.vadd_orbit_subset, | |
| freiman_hom.id_comp β add_freiman_hom.id_comp, | |
| measure_theory.is_fundamental_domain.mono β measure_theory.is_add_fundamental_domain.mono, | |
| mul_equiv.of_left_inverse_symm_apply β add_equiv.of_left_inverse_symm_apply, | |
| group_seminorm.mul_bdd_below_range_add β add_group_seminorm.add_bdd_below_range_add, | |
| pi.inv_comp β pi.neg_comp, | |
| interval.mul_bot β interval.add_bot, | |
| rootable_by_of_pow_left_surj β divisible_by_of_smul_right_surj, | |
| comp_mul_right β comp_add_right, | |
| category_theory.iso.CommGroup_iso_to_mul_equiv_symm_apply β category_theory.iso.AddCommGroup_iso_to_add_equiv_symm_apply, | |
| prod.swap_mul β prod.swap_add, | |
| order_of_eq_one_iff β add_monoid.order_of_eq_one_iff, | |
| measure_theory.simple_func.coe_one β measure_theory.simple_func.coe_zero, | |
| is_unit.lift_right_inv_mul β is_add_unit.lift_right_neg_add, | |
| function.injective.linear_ordered_comm_monoid β function.injective.linear_ordered_add_comm_monoid, | |
| free_magma.traverse_eq β free_add_magma.traverse_eq, | |
| free_semigroup.rec_on_pure β free_add_semigroup.rec_on_pure, | |
| finprod_mem_union'' β finsum_mem_union'', | |
| filter.smul_filter_le_smul_filter β filter.vadd_filter_le_vadd_filter, | |
| eventually_ne_of_tendsto_norm_at_top' β eventually_ne_of_tendsto_norm_at_top, | |
| mul_inv_lt_iff_lt_mul β add_neg_lt_iff_lt_add, | |
| subgroup.mem_to_submonoid β add_subgroup.mem_to_add_submonoid, | |
| mul_ne_mul_left β add_ne_add_left, | |
| sum.elim_div_div β sum.elim_sub_sub, | |
| free_monoid.lift_restrict β free_add_monoid.lift_restrict, | |
| subgroup.subgroup_of_map_subtype β add_subgroup.add_subgroup_of_map_subtype, | |
| continuous_at_const_smul_iff β continuous_at_const_vadd_iff, | |
| one_hom.comp_assoc β zero_hom.comp_assoc, | |
| subsemigroup.mem_top β add_subsemigroup.mem_top, | |
| free_semigroup.length_of β free_add_semigroup.length_of, | |
| mul_hom.to_mul_equiv_symm_apply β add_hom.to_add_equiv_symm_apply, | |
| submonoid.inv_inf β add_submonoid.neg_inf, | |
| is_unit.mul_one_div_cancel β is_add_unit.add_zero_sub_cancel, | |
| ne_one_of_mem_unit_sphere β ne_zero_of_mem_unit_sphere, | |
| quotient_group.left_rel_apply β quotient_add_group.left_rel_apply, | |
| finset.inv_subset_inv β finset.neg_subset_neg, | |
| submonoid.comap β add_submonoid.comap, | |
| mul_opposite.monoid β add_opposite.add_monoid, | |
| subsemigroup.center β add_subsemigroup.center, | |
| free_group.lift.of_eq β free_add_group.lift.of_eq, | |
| has_measurable_smul.measurable_smul_const β has_measurable_vadd.measurable_vadd_const, | |
| commute.self_pow β add_commute.self_nsmul, | |
| lex.has_mul β lex.has_add, | |
| has_smul.comp β has_vadd.comp, | |
| Semigroup.coe_of β AddSemigroup.coe_of, | |
| division_comm_monoid.inv β subtraction_comm_monoid.neg, | |
| subsemigroup.mem_map_of_mem β add_subsemigroup.mem_map_of_mem, | |
| finprod_curryβ β finsum_curryβ, | |
| free_magma.mul β free_add_magma.add, | |
| mul_opposite.subsingleton β add_opposite.subsingleton, | |
| submonoid.map_sup β add_submonoid.map_sup, | |
| monoid.exponent_exists β add_monoid.exponent_exists, | |
| ultrafilter.eventually_mul β ultrafilter.eventually_add, | |
| lattice_ordered_comm_group.m_Birkhoff_inequalities β lattice_ordered_comm_group.Birkhoff_inequalities, | |
| subsemigroup.centralizer_univ β add_subsemigroup.centralizer_univ, | |
| lattice_ordered_comm_group.pos_eq_neg_inv β lattice_ordered_comm_group.pos_eq_neg_neg, | |
| con.has_smul β add_con.has_vadd, | |
| function.update_mul β function.update_add, | |
| canonically_ordered_monoid.npow_succ' β canonically_ordered_add_monoid.nsmul_succ', | |
| linear_ordered_comm_group.to_no_min_order β linear_ordered_add_comm_group.to_no_min_order, | |
| free_monoid.lift_of_comp_eq_map β free_add_monoid.lift_of_comp_eq_map, | |
| eventually_eq_prod β eventually_eq_sum, | |
| filter.map_one β filter.map_zero, | |
| free_group.to_word_mk β free_add_group.to_word_mk, | |
| nnnorm_mul_le' β nnnorm_add_le, | |
| prod.mul_one_class β prod.add_zero_class, | |
| quotient_group.lift β quotient_add_group.lift, | |
| group_norm.add_apply β add_group_norm.add_apply, | |
| subgroup.to_comm_group β add_subgroup.to_add_comm_group, | |
| mul_equiv_class.map_ne_one_iff β add_equiv_class.map_ne_zero_iff, | |
| group_filter_basis.topology β add_group_filter_basis.topology, | |
| pi_nnnorm_const' β pi_nnnorm_const, | |
| nonempty_interval.coe_pow_interval β nonempty_interval.coe_nsmul_interval, | |
| set.nonempty.of_smul_left β set.nonempty.of_vadd_left, | |
| mul_lt_mul_iff_right β add_lt_add_iff_right, | |
| div_inv_one_monoid.zpow_succ' β sub_neg_zero_monoid.zsmul_succ', | |
| subsemigroup.gi_map_comap β add_subsemigroup.gi_map_comap, | |
| sum.smul_swap β sum.vadd_swap, | |
| prod.smul_def β prod.vadd_def, | |
| fin.prod_univ_eight β fin.sum_univ_eight, | |
| is_unit.coe_inv_unit' β is_add_unit.coe_neg_add_unit', | |
| function.const_ne_one β function.const_ne_zero, | |
| submonoid.mem_bot β add_submonoid.mem_bot, | |
| continuous.inv β continuous.neg, | |
| subgroup.comap_injective_is_commutative β add_subgroup.comap_injective_is_commutative, | |
| continuous_monoid_hom.inl β continuous_add_monoid_hom.inl, | |
| is_group_hom.mk' β is_add_group_hom.mk', | |
| submonoid.induction_of_closure_eq_top_left β add_submonoid.induction_of_closure_eq_top_left, | |
| submonoid.centralizer_le β add_submonoid.centralizer_le, | |
| mul_opposite.unop_eq_one_iff β add_opposite.unop_eq_zero_iff, | |
| subgroup.map_one_eq_bot β add_subgroup.map_zero_eq_bot, | |
| con.quotient.decidable_eq β add_con.quotient.decidable_eq, | |
| contravariant.to_left_cancel_semigroup β contravariant.to_left_cancel_add_semigroup, | |
| mul_hom.coe_prod_map β add_hom.coe_prod_map, | |
| filter.tendsto.smul_const β filter.tendsto.vadd_const, | |
| set.op_smul_inter_ne_empty_iff β set.op_vadd_inter_ne_empty_iff, | |
| right.pow_lt_one_of_lt β right.pow_neg, | |
| is_unit.mul_lift_right_inv β is_add_unit.add_lift_right_neg, | |
| set.has_smul β set.has_vadd, | |
| con.quotient_ker_equiv_of_right_inverse_apply β add_con.quotient_ker_equiv_of_right_inverse_apply, | |
| bounded_continuous_function.forall_coe_one_iff_one β bounded_continuous_function.forall_coe_zero_iff_zero, | |
| monoid_hom.map_div β add_monoid_hom.map_sub, | |
| filter.smul_filter_eq_bot_iff β filter.vadd_filter_eq_bot_iff, | |
| set.smul_comm_class_set' β set.vadd_comm_class_set', | |
| subsemigroup.mem_supr_of_mem β add_subsemigroup.mem_supr_of_mem, | |
| fin.partial_prod_left_inv β fin.partial_sum_left_neg, | |
| fin.prod_univ_seven β fin.sum_univ_seven, | |
| not_is_of_fin_order_of_injective_pow β not_is_of_fin_add_order_of_injective_nsmul, | |
| arrow_action β arrow_add_action, | |
| mul_one_eq_id β add_zero_eq_id, | |
| measure_theory.measure.is_haar_measure_map β measure_theory.measure.is_add_haar_measure_map, | |
| CommMon.comm_monoid.to_monoid.category_theory.bundled_hom.parent_projection β AddCommMon.comm_monoid.to_monoid.category_theory.bundled_hom.parent_projection, | |
| CommGroup.forget_CommGroup_preserves_epi β AddCommGroup.forget_CommGroup_preserves_epi, | |
| monoid_hom.mker_inr β add_monoid_hom.mker_inr, | |
| measure_theory.measure.haar.chaar β measure_theory.measure.haar.add_chaar, | |
| commute.one_left β add_commute.zero_left, | |
| monoid_hom.to_mul_hom_injective β add_monoid_hom.to_add_hom_injective, | |
| submonoid.list_prod_mem β add_submonoid.list_sum_mem, | |
| set.ord_connected.smul β set.ord_connected.vadd, | |
| submonoid.supr_induction' β add_submonoid.supr_induction', | |
| free_semigroup.length_map β free_add_semigroup.length_map, | |
| interval.has_mul β interval.has_add, | |
| mul_action.stabilizer.submonoid β add_action.stabilizer.add_submonoid, | |
| mul_opposite.comm_group β add_opposite.add_comm_group, | |
| units.eq_inv_mul_iff_mul_eq β add_units.eq_neg_add_iff_add_eq, | |
| filter.pure_monoid_hom_apply β filter.pure_add_monoid_hom_apply, | |
| function.mul_support_pow β function.support_nsmul, | |
| finset.card_mul_iff β finset.card_add_iff, | |
| uniform_space.completion.has_smul β uniform_space.completion.has_vadd, | |
| exists_zpow_eq_one β exists_zsmul_eq_zero, | |
| submonoid.map_map β add_submonoid.map_map, | |
| submonoid.coe_infi β add_submonoid.coe_infi, | |
| set.smul_set_mono β set.vadd_set_mono, | |
| quotient_group.hom_quotient_zpow_of_hom β quotient_add_group.hom_quotient_zsmul_of_hom, | |
| lex.cancel_monoid β lex.cancel_add_monoid, | |
| order_monoid_hom.comp_assoc β order_add_monoid_hom.comp_assoc, | |
| set.le_mul_indicator β set.le_indicator, | |
| lex.right_cancel_monoid β lex.right_cancel_add_monoid, | |
| mul_hom.ext β add_hom.ext, | |
| submonoid_class.subtype β add_submonoid_class.subtype, | |
| is_unit.unit_spec β is_add_unit.add_unit_spec, | |
| free_group.inv_rev_inv_rev β free_add_group.neg_rev_neg_rev, | |
| list.prod_map_mul β list.sum_map_add, | |
| is_lower_set.smul β is_lower_set.vadd, | |
| one_hom.map_one' β zero_hom.map_zero', | |
| covariant_flip_mul_iff β covariant_flip_add_iff, | |
| mul_le_cancellable.mul_le_mul_iff_left β add_le_cancellable.add_le_add_iff_left, | |
| submonoid.map_comap_le β add_submonoid.map_comap_le, | |
| freiman_hom.mul_comp β add_freiman_hom.add_comp, | |
| is_square_of_exists_sq β even_of_exists_two_nsmul, | |
| group_topology.to_topological_space_inf β add_group_topology.to_topological_space_inf, | |
| order_monoid_hom.coe_comp_monoid_hom β order_add_monoid_hom.coe_comp_add_monoid_hom, | |
| submonoid_class.coe_pow β add_submonoid_class.coe_nsmul, | |
| submonoid.dense_induction β add_submonoid.dense_induction, | |
| set.mem_inv β set.mem_neg, | |
| finset.prod_product β finset.sum_product, | |
| lattice_ordered_comm_group.neg_eq_inv_inf_one β lattice_ordered_comm_group.neg_eq_neg_inf_zero, | |
| has_continuous_smul.continuous_smul β has_continuous_vadd.continuous_vadd, | |
| subgroup.has_top.top.finite_index β add_subgroup.has_top.top.finite_index, | |
| finsupp.mul_prod_erase β finsupp.add_sum_erase, | |
| finsupp.prod_inv β finsupp.sum_neg, | |
| self_le_mul_right β self_le_add_right, | |
| sym_alg.sym_one β sym_alg.sym_zero, | |
| one_mul β zero_add, | |
| category_theory.discrete.monoidal_functor_comp β discrete.add_monoidal_functor_comp, | |
| right.self_lt_inv β right.self_lt_neg, | |
| finset.mem_mul_antidiagonal β finset.mem_add_antidiagonal, | |
| submonoid.left_inv_eq_inv β add_submonoid.left_neg_eq_neg, | |
| bounded_continuous_function.add_comm_monoid β bounded_continuous_function.add_add_comm_monoid, | |
| free_group.quot_lift_on_mk β free_add_group.quot_lift_on_mk, | |
| free_group.red.inv_rev β free_add_group.red.neg_rev, | |
| mul_le_mul_iff_left β add_le_add_iff_left, | |
| pi.const_mul_hom β pi.const_add_hom, | |
| one_hom.one_comp β zero_hom.zero_comp, | |
| edist_eq_coe_nnnorm' β edist_eq_coe_nnnorm, | |
| mul_equiv.mk' β add_equiv.mk', | |
| finset.nat.prod_antidiagonal_eq_prod_range_succ β finset.nat.sum_antidiagonal_eq_sum_range_succ, | |
| measure_theory.is_fundamental_domain.sum_restrict β measure_theory.is_add_fundamental_domain.sum_restrict, | |
| measure_theory.is_fundamental_domain.measure_eq β measure_theory.is_add_fundamental_domain.measure_eq, | |
| submonoid.inclusion β add_submonoid.inclusion, | |
| subgroup.smul_comm_class_left β add_subgroup.vadd_comm_class_left, | |
| equiv.has_mul β equiv.has_add, | |
| finset.card_mul_mul_card_le_card_mul_mul_card_mul β finset.card_add_mul_card_le_card_add_mul_card_add, | |
| order_dual.has_div β order_dual.has_sub, | |
| units.left_of_mul β add_units.left_of_add, | |
| mul_hom.congr_arg β add_hom.congr_arg, | |
| singleton_div_ball_one β singleton_sub_ball_zero, | |
| mul_action.bijective β add_action.bijective, | |
| has_one.one β has_zero.zero, | |
| comm_group.to_cancel_comm_monoid β add_comm_group.to_cancel_add_comm_monoid, | |
| CommGroup.forgetβ_CommMon_preserves_limits_of_size β AddCommGroup.forgetβ_AddCommMon_preserves_limits, | |
| group.in_closure.inv β add_group.in_closure.neg, | |
| ae_measurable_inv_iff β ae_measurable_neg_iff, | |
| subset_mul_tsupport β subset_tsupport, | |
| order_dual.has_smul' β order_dual.has_vadd', | |
| one_hom.mk_coe β zero_hom.mk_coe, | |
| submonoid.le_comap_map β add_submonoid.le_comap_map, | |
| semiconj_by.unop β add_semiconj_by.unop, | |
| quotient_group.mk' β quotient_add_group.mk', | |
| monoid_hom.mem_mrange β add_monoid_hom.mem_mrange, | |
| one_lt_mul' β add_pos, | |
| finprod_mem_mul_support β finsum_mem_support, | |
| prod.monoid β prod.add_monoid, | |
| subgroup.relindex_eq_zero_of_le_right β add_subgroup.relindex_eq_zero_of_le_right, | |
| commute.semiconj_by β add_commute.semiconj_by, | |
| mul_equiv.surjective β add_equiv.surjective, | |
| finset.prod_Ico_div_bot β finset.sum_Ico_sub_bot, | |
| order_dual.normed_linear_ordered_group β order_dual.normed_linear_ordered_add_group, | |
| one_hom.single β zero_hom.single, | |
| linear_ordered_cancel_comm_monoid.mul_one β linear_ordered_cancel_add_comm_monoid.add_zero, | |
| set.prod_mul_indicator_subset β set.sum_indicator_subset, | |
| subgroup.le_topological_closure β add_subgroup.le_topological_closure, | |
| mul_hom.of_mdense β add_hom.of_mdense, | |
| filter.has_basis.uniformity_of_nhds_one β filter.has_basis.uniformity_of_nhds_zero, | |
| mul_action.orbit_rel.quotient.orbit_mk β add_action.orbit_rel.quotient.orbit_mk, | |
| to_units β to_add_units, | |
| finset.image_one β finset.image_zero, | |
| continuous_map.coe_inv_units_lift_symm_apply_apply β continuous_map.coe_neg_add_units_lift_symm_apply_apply, | |
| div_inv_monoid.to_monoid β sub_neg_monoid.to_add_monoid, | |
| mul_opposite.mul_one_class β add_opposite.add_zero_class, | |
| measure_theory.measure.haar.le_index_mul β measure_theory.measure.haar.le_add_index_mul, | |
| nnnorm_inv' β nnnorm_neg, | |
| comm_group.torsion β add_comm_group.torsion, | |
| submonoid.mem_infi β add_submonoid.mem_infi, | |
| sum.elim_one_mul_single β sum.elim_zero_single, | |
| normed_comm_group β normed_add_comm_group, | |
| is_cyclic.image_range_card β is_add_cyclic.image_range_card, | |
| finset.inv_empty β finset.neg_empty, | |
| Mon.filtered_colimits.colimit_cocone β AddMon.filtered_colimits.colimit_cocone, | |
| set.smul_set_nonempty β set.vadd_set_nonempty, | |
| monoid_hom_class.lipschitz_of_bound_nnnorm β add_monoid_hom_class.lipschitz_of_bound_nnnorm, | |
| zpow_mono_left β zsmul_mono_right, | |
| comm_semigroup.is_right_cancel_mul.to_is_left_cancel_mul β add_comm_semigroup.is_right_cancel_add.to_is_left_cancel_add, | |
| continuous_map.has_smul β continuous_map.has_vadd, | |
| category_theory.iso.Group_iso_to_mul_equiv β category_theory.iso.AddGroup_iso_to_add_equiv, | |
| with_top.has_one β with_top.has_zero, | |
| con.inhabited β add_con.inhabited, | |
| is_scalar_tower.left β vadd_assoc_class.left, | |
| mul_equiv.of_left_inverse β add_equiv.of_left_inverse, | |
| group_topology.has_Inf β add_group_topology.has_Inf, | |
| measure_theory.strongly_measurable.inv β measure_theory.strongly_measurable.neg, | |
| submonoid.localization_map.comp_eq_of_eq β add_submonoid.localization_map.comp_eq_of_eq, | |
| measure_theory.simple_func.const_one β measure_theory.simple_func.const_zero, | |
| continuous_monoid_hom.inr_to_monoid_hom β continuous_add_monoid_hom.inr_to_add_monoid_hom, | |
| submonoid_class.to_comm_monoid β add_submonoid_class.to_add_comm_monoid, | |
| subsemigroup.closure_eq β add_subsemigroup.closure_eq, | |
| open_subgroup.mem_nhds_one β open_add_subgroup.mem_nhds_zero, | |
| finset.prod_le_prod_of_ne_one' β finset.sum_le_sum_of_ne_zero, | |
| subgroup.exists_inv_mem_iff_exists_mem β add_subgroup.exists_neg_mem_iff_exists_mem, | |
| group_topology.inhabited β add_group_topology.inhabited, | |
| monoid_hom_class.continuous_of_bound β add_monoid_hom_class.continuous_of_bound, | |
| homeomorph.div_left β homeomorph.sub_left, | |
| pow_two β two_nsmul, | |
| continuous_on.mul β continuous_on.add, | |
| monoid_hom.of β add_monoid_hom.of, | |
| free_monoid.smul_def β free_add_monoid.vadd_def, | |
| pi.ordered_comm_group β pi.ordered_add_comm_group, | |
| inv_lt_of_inv_lt' β neg_lt_of_neg_lt, | |
| finset.exists_le_of_prod_le' β finset.exists_le_of_sum_le, | |
| subgroup.le_normalizer_map β add_subgroup.le_normalizer_map, | |
| free_group.red_inv_rev_iff β free_add_group.red_neg_rev_iff, | |
| continuous_subgroup β continuous_add_subgroup, | |
| submonoid.localization_map.surj β add_submonoid.localization_map.surj, | |
| fin.prod_congr' β fin.sum_congr', | |
| linear_ordered_comm_group.div_eq_mul_inv β linear_ordered_add_comm_group.sub_eq_add_neg, | |
| mul_equiv.coe_submonoid_map_apply β add_equiv.coe_add_submonoid_map_apply, | |
| free_group.inv_rev β free_add_group.neg_rev, | |
| mul_inv β neg_add, | |
| smooth.div β smooth.sub, | |
| subgroup.sup_eq_closure β add_subgroup.sup_eq_closure, | |
| set.prod_mul_indicator_subset_of_eq_one β set.sum_indicator_subset_of_eq_zero, | |
| mul_mem_lower_bounds_mul β add_mem_lower_bounds_add, | |
| order_dual.has_smul β order_dual.has_vadd, | |
| function.mul_support_div β function.support_sub, | |
| monoid.closure_finite_fg β add_monoid.closure_finite_fg, | |
| topological_group.ext β topological_add_group.ext, | |
| unique_mul.mul_hom_map_iff β unique_add.add_hom_map_iff, | |
| mul_action.mem_fixed_points β add_action.mem_fixed_points, | |
| inv_mul_eq_one β neg_add_eq_zero, | |
| con.le_def β add_con.le_def, | |
| div_inv_one_monoid.npow β sub_neg_zero_monoid.nsmul, | |
| topological_group_Inf β topological_add_group_Inf, | |
| set.subset_set_smul_iff β set.subset_set_vadd_iff, | |
| measure_theory.measure_preserving_div_prod β measure_theory.measure_preserving_sub_prod, | |
| is_compact.exists_bound_of_continuous_on' β is_compact.exists_bound_of_continuous_on, | |
| finset.prod_disj_Union β finset.sum_disj_Union, | |
| order_dual.normed_comm_group β order_dual.normed_add_comm_group, | |
| free_group.quot_map_mk β free_add_group.quot_map_mk, | |
| canonically_linear_ordered_monoid.npow_zero' β canonically_linear_ordered_add_monoid.nsmul_zero', | |
| monoid_hom.ext β add_monoid_hom.ext, | |
| prod.one_mk_mul_one_mk β prod.zero_mk_add_zero_mk, | |
| filter.inv_le_self β filter.neg_le_self, | |
| list.prod_eq_pow_single β list.sum_eq_nsmul_single, | |
| linear_ordered_comm_group.to_covariant_class β linear_ordered_add_comm_group.to_covariant_class, | |
| measure_theory.is_fundamental_domain.set_lintegral_eq_tsum' β measure_theory.is_add_fundamental_domain.set_lintegral_eq_tsum', | |
| submonoid.map_le_iff_le_comap β add_submonoid.map_le_iff_le_comap, | |
| monoid_hom.coe_of β add_monoid_hom.coe_of, | |
| self_eq_mul_left β self_eq_add_left, | |
| measure_theory.eventually_mul_left_iff β measure_theory.eventually_add_left_iff, | |
| continuous_map.comm_semigroup β continuous_map.add_comm_semigroup, | |
| group.fg β add_group.fg, | |
| free_semigroup.is_lawful_monad β free_add_semigroup.is_lawful_monad, | |
| finset.prod_le_prod'' β finset.sum_le_sum, | |
| con.has_mul β add_con.has_add, | |
| group.mclosure_subset β add_group.mclosure_subset, | |
| monoid.exponent_ne_zero_iff_range_order_of_finite β add_monoid.exponent_ne_zero_iff_range_order_of_finite, | |
| filter.mapβ_smul β filter.mapβ_vadd, | |
| mul_equiv.to_CommMon_iso_inv β add_equiv.to_AddCommMon_iso_neg, | |
| group_seminorm.lattice β add_group_seminorm.lattice, | |
| with_one.ne_one_iff_exists β with_zero.ne_zero_iff_exists, | |
| free_monoid.to_list_of_list β free_add_monoid.to_list_of_list, | |
| set.inv_mem_center β set.neg_mem_add_center, | |
| continuous_within_at.smul β continuous_within_at.vadd, | |
| free_magma.traverse_pure' β free_add_magma.traverse_pure', | |
| submonoid.prod_eq_top_iff β add_submonoid.sum_eq_top_iff, | |
| function.surjective.group β function.surjective.add_group, | |
| pi.has_measurable_inv β pi.has_measurable_neg, | |
| div_mul_div_cancel' β sub_add_sub_cancel, | |
| filter.ne_bot.div β filter.ne_bot.sub, | |
| CommMon.forgetβ_Mon_preserves_limits_of_size β AddCommMon.forgetβ_AddMon_preserves_limits, | |
| with_one.monoid β with_zero.add_monoid, | |
| ulift.smul_def β ulift.vadd_def, | |
| subgroup.topological_closure β add_subgroup.topological_closure, | |
| mul_equiv.comp_symm_eq β add_equiv.comp_symm_eq, | |
| subsemigroup.mem_prod β add_subsemigroup.mem_prod, | |
| continuous_map.comp_monoid_hom'_apply β continuous_map.comp_add_monoid_hom'_apply, | |
| units.coe_inv_of_pow_eq_one β add_units.coe_neg_of_nsmul_eq_zero, | |
| order_monoid_hom.to_fun_eq_coe β order_add_monoid_hom.to_fun_eq_coe, | |
| mul_hom.prod β add_hom.prod, | |
| measure_theory.measure_preserving_prod_mul_swap_right β measure_theory.measure_preserving_prod_add_swap_right, | |
| free_magma.rec_on_pure β free_add_magma.rec_on_pure, | |
| finset.mul_support_of_fiberwise_prod_subset_image β finset.support_of_fiberwise_sum_subset_image, | |
| pow_order_of_eq_one β add_order_of_nsmul_eq_zero, | |
| sum.elim_mul_single_one β sum.elim_single_zero, | |
| monoid_hom_class.lipschitz_of_bound β add_monoid_hom_class.lipschitz_of_bound, | |
| set.mul_indicator_comp_of_one β set.indicator_comp_of_zero, | |
| set.mul_indicator_ae_eq_one β set.indicator_ae_eq_zero, | |
| sym_alg.has_inv β sym_alg.has_neg, | |
| lattice_ordered_comm_group.mabs_mabs β lattice_ordered_comm_group.abs_abs, | |
| list.prod_lt_prod' β list.sum_lt_sum, | |
| dist_one_left β dist_zero_left, | |
| finset.prod_mk β finset.sum_mk, | |
| finset.monoid β finset.add_monoid, | |
| prod.has_continuous_smul β prod.has_continuous_vadd, | |
| uniform_group_infi β uniform_add_group_infi, | |
| monoid_hom.transfer_def β add_monoid_hom.transfer_def, | |
| submonoid.localization_map.eq_iff_eq β add_submonoid.localization_map.eq_iff_eq, | |
| free_group.join_red_of_step β free_add_group.join_red_of_step, | |
| uniform_continuous_of_tendsto_one β uniform_continuous_of_tendsto_zero, | |
| mem_own_right_coset β mem_own_right_add_coset, | |
| submonoid.mul_left_inv_equiv_symm β add_submonoid.add_left_neg_equiv_symm, | |
| mul_action.fixed_eq_Inter_fixed_by β add_action.fixed_eq_Inter_fixed_by, | |
| submonoid.from_left_inv_eq_iff β add_submonoid.from_left_neg_eq_iff, | |
| function.mul_support_mul_inv β function.support_add_neg, | |
| measure_theory.adapted.div β measure_theory.adapted.sub, | |
| metric.bounded.inv β metric.bounded.neg, | |
| order_of_pow β add_order_of_nsmul, | |
| inv_lt_div_iff_lt_mul' β neg_lt_sub_iff_lt_add', | |
| cancel_comm_monoid.npow_zero' β add_cancel_comm_monoid.nsmul_zero', | |
| is_group_hom.mul β is_add_group_hom.add, | |
| submonoid.fg.map β add_submonoid.fg.map, | |
| locally_constant.monoid β locally_constant.add_monoid, | |
| units.measurable_space β add_units.measurable_space, | |
| left.self_lt_inv β left.self_lt_neg, | |
| monoid_hom.map_finprod_mem' β add_monoid_hom.map_finsum_mem', | |
| commute.units_coe_iff β add_commute.add_units_coe_iff, | |
| finset.prod_range_succ_div_top β finset.sum_range_succ_sub_top, | |
| closed_ball_div_singleton β closed_ball_sub_singleton, | |
| subgroup.has_inf β add_subgroup.has_inf, | |
| seminormed_group.to_has_nnnorm β seminormed_add_group.to_has_nnnorm, | |
| mul_le_mul_iff_right β add_le_add_iff_right, | |
| topological_group.continuous_conj_prod β topological_add_group.continuous_conj_sum, | |
| con.lift β add_con.lift, | |
| continuous_monoid_hom.fst β continuous_add_monoid_hom.fst, | |
| pi_norm_lt_iff' β pi_norm_lt_iff, | |
| units.coe_inv β add_units.coe_neg, | |
| finset.card_pow_div_pow_le' β finset.card_nsmul_sub_nsmul_le', | |
| measure_theory.measure.regular_haar_measure β measure_theory.measure.regular_add_haar_measure, | |
| subgroup.comap_injective β add_subgroup.comap_injective, | |
| free_magma.mul_eq β free_add_magma.add_eq, | |
| finset.prod_insert β finset.sum_insert, | |
| subgroup.closure_induction β add_subgroup.closure_induction, | |
| has_continuous_mul_of_discrete_topology β has_continuous_add_of_discrete_topology, | |
| sum.has_faithful_smul_left β sum.has_faithful_vadd_left, | |
| pow_mem β nsmul_mem, | |
| subgroup_class.to_submonoid_class β add_subgroup_class.to_add_submonoid_class, | |
| linear_ordered_cancel_comm_monoid.one β linear_ordered_cancel_add_comm_monoid.zero, | |
| monoid_hom.comprβ_apply β add_monoid_hom.comprβ_apply, | |
| right_mul β right_add, | |
| subgroup.coe_subtype β add_subgroup.coe_subtype, | |
| subset_interior_mul_left β subset_interior_add_left, | |
| freiman_hom.id_apply β add_freiman_hom.id_apply, | |
| zpow_le_zpow' β zsmul_le_zsmul', | |
| multiset.prod_to_enum_finset β multiset.sum_to_enum_finset, | |
| le_map_div_add_map_div β le_map_sub_add_map_sub, | |
| canonically_ordered_monoid.to_order_bot β canonically_ordered_add_monoid.to_order_bot, | |
| has_continuous_mul.continuous_mul β has_continuous_add.continuous_add, | |
| subgroup.is_complement'_bot_left β add_subgroup.is_complement'_bot_left, | |
| set.division_monoid β set.subtraction_monoid, | |
| lower_set.mul_action β lower_set.add_action, | |
| submonoid.inv_sup β add_submonoid.neg_sup, | |
| set.mul_antidiagonal_mono_left β set.add_antidiagonal_mono_left, | |
| has_measurable_div.measurable_div_const β has_measurable_sub.measurable_sub_const, | |
| linear_ordered_comm_group.npow_succ' β linear_ordered_add_comm_group.nsmul_succ', | |
| division_comm_monoid.one β subtraction_comm_monoid.zero, | |
| monoid_hom.copy_eq β add_monoid_hom.copy_eq, | |
| left.one_lt_mul β left.add_pos, | |
| subgroup.right_transversals.inhabited β add_subgroup.right_transversals.inhabited, | |
| function.mul_support_const β function.support_const, | |
| set.mul_indicator_mul_indicator β set.indicator_indicator, | |
| is_unit.div_mul_cancel β is_add_unit.sub_add_cancel, | |
| free_monoid.to_list_map β free_add_monoid.to_list_map, | |
| free_monoid.cases_on_one β free_add_monoid.cases_on_zero, | |
| measure_theory.measure.is_haar_measure.is_inv_invariant β measure_theory.measure.is_add_haar_measure.is_neg_invariant, | |
| cancel_comm_monoid.npow β add_cancel_comm_monoid.nsmul, | |
| semiconj_by.eq β add_semiconj_by.eq, | |
| one_hom.inhabited β zero_hom.inhabited, | |
| dfinsupp.prod_single_index β dfinsupp.sum_single_index, | |
| prod.smul_comm_class_both β prod.vadd_comm_class_both, | |
| subgroup.mem_infi β add_subgroup.mem_infi, | |
| topological_group.to_has_continuous_inv β topological_add_group.to_has_continuous_neg, | |
| units.has_measurable_smul β add_units.has_measurable_vadd, | |
| function.injective.linear_ordered_comm_group β function.injective.linear_ordered_add_comm_group, | |
| measure_theory.is_fundamental_domain.set_lintegral_eq_tsum β measure_theory.is_add_fundamental_domain.set_lintegral_eq_tsum, | |
| tactic.group.zpow_trick_one' β tactic.group.zsmul_trick_zero', | |
| Magma.of_hom β AddMagma.of_hom, | |
| order_monoid_hom.has_coe_t β order_add_monoid_hom.has_coe_t, | |
| submonoid.has_continuous_mul β add_submonoid.has_continuous_add, | |
| free_group.is_lawful_monad β free_add_group.is_lawful_monad, | |
| div_eq_of_eq_mul'' β sub_eq_of_eq_add, | |
| has_exists_mul_of_le β has_exists_add_of_le, | |
| subgroup.not_mem_of_not_mem_closure β add_subgroup.not_mem_of_not_mem_closure, | |
| squeeze_one_norm' β squeeze_zero_norm', | |
| mul_equiv_iso_Group_iso β add_equiv_iso_AddGroup_iso, | |
| interval.coe_one β interval.coe_zero, | |
| open_subgroup.has_coe_set β open_add_subgroup.has_coe_set, | |
| finprod_cond_eq_left β finsum_cond_eq_left, | |
| measure_theory.measure.haar.index β measure_theory.measure.haar.add_index, | |
| nnnorm_one' β nnnorm_zero, | |
| filter.smul_comm_class β filter.vadd_comm_class, | |
| quotient_group.quotient_quotient_equiv_quotient β quotient_add_group.quotient_quotient_equiv_quotient, | |
| finset.preimage_mul_right_singleton β finset.preimage_add_right_singleton, | |
| free_magma.to_free_semigroup_comp_map β free_add_magma.to_free_add_semigroup_comp_map, | |
| is_torsion.extension_closed β add_is_torsion.extension_closed, | |
| measure_theory.smul_invariant_measure.add β measure_theory.vadd_invariant_measure.add, | |
| units.inhabited β add_units.inhabited, | |
| monoid.mul_assoc β add_monoid.add_assoc, | |
| multiset.prod_map_inv β multiset.sum_map_neg, | |
| smul_one_hom_apply β vadd_zero_hom_apply, | |
| finprod_curry β finsum_curry, | |
| subsemigroup.map_le_iff_le_comap β add_subsemigroup.map_le_iff_le_comap, | |
| order_of β add_order_of, | |
| mul_le_of_mul_le_left β add_le_of_add_le_left, | |
| submonoid.localization_map.lift_injective_iff β add_submonoid.localization_map.lift_injective_iff, | |
| monoid.image_closure β add_monoid.image_closure, | |
| subgroup.has_inv β add_subgroup.has_neg, | |
| mul_div_cancel'' β add_sub_cancel, | |
| subgroup.mem_right_transversals.to_fun β add_subgroup.mem_right_transversals.to_fun, | |
| submonoid.is_unit.submonoid.comm_group β add_submonoid.is_unit.submonoid.add_comm_group, | |
| subgroup_class.coe_div β add_subgroup_class.coe_sub, | |
| uniform_on_fun.comm_group β uniform_on_fun.add_comm_group, | |
| max_div_div_left' β max_sub_sub_left, | |
| sigma.has_faithful_smul β sigma.has_faithful_vadd, | |
| prod_finprod_comm β sum_finsum_comm, | |
| le_of_mul_le_mul_left' β le_of_add_le_add_left, | |
| subgroup.mul_single_mem_pi β add_subgroup.single_mem_pi, | |
| is_lower_set.div_left β is_lower_set.sub_left, | |
| div_inv_monoid.has_pow β sub_neg_monoid.has_smul_int, | |
| units.mul_left_inj β add_units.add_left_inj, | |
| min_div_div_right' β min_sub_sub_right, | |
| measurable.inv β measurable.neg, | |
| subsemigroup.map_map β add_subsemigroup.map_map, | |
| filter.germ.const_pow β filter.germ.const_smul, | |
| monoid_hom.is_group_hom β add_monoid_hom.is_add_group_hom, | |
| left_cancel_monoid β add_left_cancel_monoid, | |
| left_cancel_monoid.npow_succ' β add_left_cancel_monoid.nsmul_succ', | |
| ulift.has_smul_left β ulift.has_vadd_left, | |
| is_subgroup.of_div β is_add_subgroup.of_add_neg, | |
| option.smul_def β option.vadd_def, | |
| locally_constant.mul_apply β locally_constant.add_apply, | |
| antitone_on.mul' β antitone_on.add, | |
| set.Union_smul_right_image β set.Union_vadd_right_image, | |
| subgroup.mul_mem_sup β add_subgroup.add_mem_sup, | |
| continuous_within_at.inv β continuous_within_at.neg, | |
| list.alternating_prod_reverse β list.alternating_sum_reverse, | |
| localization.mk_eq_monoid_of_mk' β add_localization.mk_eq_add_monoid_of_mk', | |
| submonoid.localization_map.lift_mk' β add_submonoid.localization_map.lift_mk', | |
| normal_of_eq_cosets β normal_of_eq_add_cosets, | |
| list.prod_eq_pow_card β list.sum_eq_card_nsmul, | |
| freiman_hom.div_apply β add_freiman_hom.sub_apply, | |
| con.mem_coe β add_con.mem_coe, | |
| one_eq_inv β zero_eq_neg, | |
| sum.smul_def β sum.vadd_def, | |
| subgroup.characteristic_iff_map_le β add_subgroup.characteristic_iff_map_le, | |
| has_measurable_smulβ.to_has_measurable_smul β has_measurable_vaddβ.to_has_measurable_vadd, | |
| monoid.npow_zero' β add_monoid.nsmul_zero', | |
| quotient_group.quotient.topological_space β quotient_add_group.quotient.topological_space, | |
| set.div_nonempty β set.sub_nonempty, | |
| locally_constant.semigroup β locally_constant.add_semigroup, | |
| monoid.to_opposite_mul_action β add_monoid.to_opposite_add_action, | |
| monoid_hom.coe_range_restrict β add_monoid_hom.coe_range_restrict, | |
| cauchy_seq.inv β cauchy_seq.neg, | |
| CommGroup.has_limits β AddCommGroup.has_limits, | |
| function.mul_support_inv' β function.support_neg', | |
| left_cancel_semigroup.contravariant_mul_le_of_contravariant_mul_lt β add_left_cancel_semigroup.contravariant_add_le_of_contravariant_add_lt, | |
| filter.germ.coe_smul β filter.germ.coe_vadd, | |
| ball_one_div_singleton β ball_zero_sub_singleton, | |
| continuous_monoid_hom.id_to_monoid_hom β continuous_add_monoid_hom.id_to_add_monoid_hom, | |
| continuous_map.coe_fn_monoid_hom β continuous_map.coe_fn_add_monoid_hom, | |
| is_closed.left_coset β is_closed.left_add_coset, | |
| prod.has_mul β prod.has_add, | |
| is_of_fin_order.inv β is_of_fin_add_order.neg, | |
| function.injective.division_monoid β function.injective.subtraction_monoid, | |
| function.mul_support β function.support, | |
| freiman_hom.has_inv β add_freiman_hom.has_neg, | |
| div_mem β sub_mem, | |
| mul_opposite.map_unop_nhds β add_opposite.map_unop_nhds, | |
| set.is_unit_iff β set.is_add_unit_iff, | |
| norm_group_norm β norm_add_group_norm, | |
| monoid_hom.op β add_monoid_hom.op, | |
| continuous_monoid_hom.comp_right β continuous_add_monoid_hom.comp_right, | |
| commute.list_prod_right β add_commute.list_sum_right, | |
| eq_div_of_mul_eq'' β eq_sub_of_add_eq', | |
| mul_mem_closed_ball_iff_norm β add_mem_closed_ball_iff_norm, | |
| multiset.prod_map_le_prod_map β multiset.sum_map_le_sum_map, | |
| submonoid.mem_Sup_of_directed_on β add_submonoid.mem_Sup_of_directed_on, | |
| con.lift_on_coe β add_con.lift_on_coe, | |
| filter.smul_eq_bot_iff β filter.vadd_eq_bot_iff, | |
| measure_theory.measure.inv β measure_theory.measure.neg, | |
| monoid_hom.comm_group β add_monoid_hom.add_comm_group, | |
| subgroup.is_complement'.symm β add_subgroup.is_complement'.symm, | |
| measure_theory.measure.pi.is_inv_invariant β measure_theory.measure.pi.is_neg_invariant, | |
| linear_ordered_comm_group.div β linear_ordered_add_comm_group.sub, | |
| group.npow_zero' β add_group.nsmul_zero', | |
| measure_theory.is_fundamental_domain.pairwise_ae_disjoint_of_ac β measure_theory.is_add_fundamental_domain.pairwise_ae_disjoint_of_ac, | |
| measure_theory.measure.is_haar_measure.to_is_mul_left_invariant β measure_theory.measure.is_add_haar_measure.to_is_add_left_invariant, | |
| one_div_mul_one_div β zero_sub_add_zero_sub, | |
| set.preimage_one β set.preimage_zero, | |
| filter.mul_ne_bot_iff β filter.add_ne_bot_iff, | |
| finset.prod_pair β finset.sum_pair, | |
| lattice_ordered_comm_group.le_mabs β lattice_ordered_comm_group.le_abs, | |
| list.prod_mul_prod_eq_prod_zip_with_of_length_eq β list.sum_add_sum_eq_sum_zip_with_of_length_eq, | |
| set.mul_indicator_comp_right β set.indicator_comp_right, | |
| measure_theory.sdiff_fundamental_interior β measure_theory.sdiff_add_fundamental_interior, | |
| measure_theory.measure.haar_measure β measure_theory.measure.add_haar_measure, | |
| finset.prod_erase β finset.sum_erase, | |
| mul_hom.coe_fn β add_hom.coe_fn, | |
| div_lt_div_iff_left β sub_lt_sub_iff_left, | |
| set.image_smul β set.image_vadd, | |
| subsemigroup.closure_univ β add_subsemigroup.closure_univ, | |
| measure_theory.measure.haar.haar_product β measure_theory.measure.haar.add_haar_product, | |
| pow_ne_one_of_lt_order_of' β nsmul_ne_zero_of_lt_add_order_of', | |
| div_inv_one_monoid.npow_succ' β sub_neg_zero_monoid.nsmul_succ', | |
| group.to_div_inv_monoid_injective β add_group.to_sub_neg_add_monoid_injective, | |
| is_unit.div_eq_one_iff_eq β is_add_unit.sub_eq_zero_iff_eq, | |
| function.extend_inv β function.extend_neg, | |
| mul_assoc β add_assoc, | |
| zpow_group_hom_apply β zsmul_add_group_hom_apply, | |
| measure_theory.is_fundamental_domain.null_measurable_set_smul β measure_theory.is_add_fundamental_domain.null_measurable_set_vadd, | |
| free_semigroup.semigroup β free_add_semigroup.add_semigroup, | |
| finset.coe_inv β finset.coe_neg, | |
| free_monoid.of β free_add_monoid.of, | |
| ulift.inv_down β ulift.neg_down, | |
| measure_theory.measure.haar_measure_self β measure_theory.measure.add_haar_measure_self, | |
| set.mul_univ β set.add_univ, | |
| pow_bit0' β bit0_nsmul', | |
| cont_mdiff_on_finset_prod' β cont_mdiff_on_finset_sum', | |
| with_one.one_ne_coe β with_zero.zero_ne_coe, | |
| dist_inv_inv β dist_neg_neg, | |
| subgroup.mul_inf_assoc β add_subgroup.add_inf_assoc, | |
| subsemigroup.comap_top β add_subsemigroup.comap_top, | |
| mul_action.to_perm β add_action.to_perm, | |
| units.inv_eq_of_mul_eq_one_left β add_units.neg_eq_of_add_eq_zero_left, | |
| ae_measurable.const_smul β ae_measurable.const_vadd, | |
| subgroup.eq_top_of_le_card β add_subgroup.eq_top_of_le_card, | |
| subgroup.mem_Sup_of_mem β add_subgroup.mem_Sup_of_mem, | |
| submonoid.coe_map β add_submonoid.coe_map, | |
| bdd_below.inv β bdd_below.neg, | |
| pi.mul_support_mul_single_disjoint β pi.support_single_disjoint, | |
| one_hom.map_one β zero_hom.map_zero, | |
| mul_action.orbit_nonempty β add_action.orbit_nonempty, | |
| list.length_pos_of_prod_lt_one β list.length_pos_of_sum_neg, | |
| continuous_monoid_hom.swap β continuous_add_monoid_hom.swap, | |
| order_iso.mul_left_symm β order_iso.add_left_symm, | |
| set.empty_mul β set.empty_add, | |
| group_seminorm.comp_mul_le β add_group_seminorm.comp_add_le, | |
| submonoid.pow_mem β add_submonoid.nsmul_mem, | |
| bounded_continuous_function.mk_of_compact_one β bounded_continuous_function.mk_of_compact_zero, | |
| set.Union_mul_left_image β set.Union_add_left_image, | |
| mul_hom.coe_mk β add_hom.coe_mk, | |
| finset.smul_def β finset.vadd_def, | |
| monoid.exponent_exists_iff_ne_zero β add_monoid.exponent_exists_iff_ne_zero, | |
| free_group.norm_one β free_add_group.norm_zero, | |
| units.coe_map β add_units.coe_map, | |
| measure_theory.is_fundamental_domain.preimage_of_equiv β measure_theory.is_add_fundamental_domain.preimage_of_equiv, | |
| le_mul_of_one_le_of_le β le_add_of_nonneg_of_le, | |
| topological_group_inf β topological_add_group_inf, | |
| subgroup.relindex_dvd_index_of_le β add_subgroup.relindex_dvd_index_of_le, | |
| units.order_embedding_coe_apply β add_units.order_embedding_coe_apply, | |
| mul_hom.map_mul β add_hom.map_add, | |
| group_norm.coe_sup β add_group_norm.coe_sup, | |
| quotient_group.preimage_mk_equiv_subgroup_times_set β quotient_add_group.preimage_mk_equiv_add_subgroup_times_set, | |
| lower_closure_mul_distrib β lower_closure_add_distrib, | |
| linear_ordered_comm_group.zpow β linear_ordered_add_comm_group.zsmul, | |
| subsemigroup.top_prod_top β add_subsemigroup.top_prod_top, | |
| lower_set.coe_smul β lower_set.coe_vadd, | |
| measure_theory.ae_eq_fun.group β measure_theory.ae_eq_fun.add_group, | |
| function.injective.mul_action β function.injective.add_action, | |
| subsemigroup.comap_surjective_of_injective β add_subsemigroup.comap_surjective_of_injective, | |
| lt_mul_inv_iff_lt β lt_add_neg_iff_lt, | |
| mul_action.of_quotient_stabilizer_smul β add_action.of_quotient_stabilizer_vadd, | |
| monoid_hom.single β add_monoid_hom.single, | |
| continuous_monoid_hom.snd β continuous_add_monoid_hom.snd, | |
| list.exists_mem_ne_one_of_prod_ne_one β list.exists_mem_ne_zero_of_sum_ne_zero, | |
| has_continuous_mul_induced β has_continuous_add_induced, | |
| CommMon.limit_cone β AddCommMon.limit_cone, | |
| open_subgroup.inhabited β open_add_subgroup.inhabited, | |
| homeomorph.div_right_symm_apply β homeomorph.sub_right_symm_apply, | |
| subgroup.closure_closure_coe_preimage β add_subgroup.closure_closure_coe_preimage, | |
| localization.mk_eq_monoid_of_mk'_apply β add_localization.mk_eq_add_monoid_of_mk'_apply, | |
| function.injective.has_involutive_inv β function.injective.has_involutive_neg, | |
| monoid.in_closure β add_monoid.in_closure, | |
| linear_ordered_cancel_comm_monoid.mul_assoc β linear_ordered_cancel_add_comm_monoid.add_assoc, | |
| submonoid.localization_map.map_eq β add_submonoid.localization_map.map_eq, | |
| bounded_iff_forall_norm_le' β bounded_iff_forall_norm_le, | |
| sum.elim_inv_inv β sum.elim_neg_neg, | |
| set.mul_indicator_inter_mul_support β set.indicator_inter_support, | |
| free_group.map_mul β free_add_group.map_add, | |
| mul_opposite.has_involutive_inv β add_opposite.has_involutive_neg, | |
| mul_opposite.unop_op β add_opposite.unop_op, | |
| mul_equiv_class.mul_hom_class β add_equiv_class.add_hom_class, | |
| comm_group.primary_component β add_comm_group.primary_component, | |
| measure_theory.measure.measure_preserving_inv β measure_theory.measure.measure_preserving_neg, | |
| con.ker_rel β add_con.ker_rel, | |
| finset.prod_finset_product_right' β finset.sum_finset_product_right', | |
| semiconj_by_iff_eq β add_semiconj_by_iff_eq, | |
| mul_opposite.unop_one β add_opposite.unop_zero, | |
| mem_closed_ball_iff_norm'' β mem_closed_ball_iff_norm, | |
| is_compact.closed_ball_one_mul β is_compact.closed_ball_zero_add, | |
| sum.smul_inl β sum.vadd_inl, | |
| submonoid.localization_map.lift_left_inverse β add_submonoid.localization_map.lift_left_inverse, | |
| ulift.has_pow β ulift.has_smul, | |
| order_dual.has_pow β order_dual.has_smul, | |
| mul_hom.inverse β add_hom.inverse, | |
| subgroup.topological_closure_coe β add_subgroup.topological_closure_coe, | |
| smooth_on_one β smooth_on_zero, | |
| localization.mk_one β add_localization.mk_zero, | |
| div_inv_one_monoid.mul_one β sub_neg_zero_monoid.add_zero, | |
| finset.mul_antidiagonal β finset.add_antidiagonal, | |
| subgroup.relindex_dvd_index_of_normal β add_subgroup.relindex_dvd_index_of_normal, | |
| right_cancel_monoid.to_monoid_injective β add_right_cancel_monoid.to_add_monoid_injective, | |
| set.image2_mul β set.image2_add, | |
| eq_one_of_mul_le_one_left β eq_zero_of_add_nonpos_left, | |
| is_submonoid.image β is_add_submonoid.image, | |
| measure_theory.measure.map_div_left_eq_self β measure_theory.measure.map_sub_left_eq_self, | |
| smooth_map.comm_group β smooth_map.add_comm_group, | |
| localization.r_iff_exists β add_localization.r_iff_exists, | |
| mul_action.surjective_smul β add_action.surjective_vadd, | |
| con.quot_mk_eq_coe β add_con.quot_mk_eq_coe, | |
| fintype.prod_congr β fintype.sum_congr, | |
| subgroup.is_complement'_def β add_subgroup.is_complement'_def, | |
| subgroup.is_open_of_mem_nhds β add_subgroup.is_open_of_mem_nhds, | |
| free_group.prod_mk β free_add_group.sum_mk, | |
| is_unit.mul_div_cancel β is_add_unit.add_sub_cancel, | |
| submonoid.comap_supr_map_of_injective β add_submonoid.comap_supr_map_of_injective, | |
| subgroup.relindex_bot_right β add_subgroup.relindex_bot_right, | |
| subgroup.inv_subset_closure β add_subgroup.neg_subset_closure, | |
| order_monoid_hom.id_comp β order_add_monoid_hom.id_comp, | |
| group.rank_range_le β add_group.rank_range_le, | |
| multiset.prod_cons β multiset.sum_cons, | |
| pi.ordered_comm_monoid β pi.ordered_add_comm_monoid, | |
| lex.has_smul β lex.has_vadd, | |
| submonoid.mem_sup_right β add_submonoid.mem_sup_right, | |
| filter.map_one' β filter.map_zero', | |
| mul_one β add_zero, | |
| has_measurable_smulβ_opposite_of_mul β has_measurable_smulβ_opposite_of_add, | |
| comm_group_of_cycle_center_quotient β commutative_of_add_cycle_center_quotient, | |
| one_hom.has_one β zero_hom.has_zero, | |
| le_of_forall_lt_one_mul_le β le_of_forall_neg_add_le, | |
| group_norm.coe_lt_coe β add_group_norm.coe_lt_coe, | |
| measure_theory.integrable.comp_mul_right β measure_theory.integrable.comp_add_right, | |
| con.ker_eq_lift_of_injective β add_con.ker_eq_lift_of_injective, | |
| ulift.mul_action' β ulift.add_action', | |
| subsemigroup.le_prod_iff β add_subsemigroup.le_prod_iff, | |
| localization β add_localization, | |
| subsemigroup.mem_Sup_of_directed_on β add_subsemigroup.mem_Sup_of_directed_on, | |
| is_glb_inv β is_glb_neg, | |
| monoid_hom.range_eq_top_of_cancel β add_monoid_hom.range_eq_top_of_cancel, | |
| order_monoid_hom.to_monoid_hom_eq_coe β order_add_monoid_hom.to_add_monoid_hom_eq_coe, | |
| set.mul_indicator_diff β set.indicator_diff', | |
| div_lt_div'' β sub_lt_sub, | |
| set.mul_indicator_union_of_disjoint β set.indicator_union_of_disjoint, | |
| is_square.div β even.sub, | |
| measure_theory.integrable.comp_div_left β measure_theory.integrable.comp_sub_left, | |
| range.is_submonoid β range.is_add_submonoid, | |
| fintype.prod_mono' β fintype.sum_mono, | |
| quotient_group.coe_div β quotient_add_group.coe_sub, | |
| uniform_group.uniform_continuous_div β uniform_add_group.uniform_continuous_sub, | |
| exists_one_lt_mul_of_lt' β exists_pos_add_of_lt', | |
| Mon.has_limits β AddMon.has_limits, | |
| submonoid.map_le_map_iff_of_injective β add_submonoid.map_le_map_iff_of_injective, | |
| uniformity_eq_comap_inv_mul_nhds_one β uniformity_eq_comap_neg_add_nhds_zero, | |
| cancel_monoid.mul_right_cancel β add_cancel_monoid.add_right_cancel, | |
| set.singleton_one β set.singleton_zero, | |
| set.coe_singleton_one_hom β set.coe_singleton_zero_hom, | |
| div_lt_comm β sub_lt_comm, | |
| measurable.mul β measurable.add, | |
| contravariant_flip_mul_iff β contravariant_flip_add_iff, | |
| measure_theory.measure.map_mul_right_inv_eq_self β measure_theory.measure.map_add_right_neg_eq_self, | |
| quotient_group.map_mk' β quotient_add_group.map_mk', | |
| fin.prod_univ_succ_above β fin.sum_univ_succ_above, | |
| max_div_div_right' β max_sub_sub_right, | |
| finsupp.prod_congr β finsupp.sum_congr, | |
| nonempty_interval.fst_inv β nonempty_interval.fst_neg, | |
| mul_eq_one_iff' β add_eq_zero_iff', | |
| measure_theory.is_fundamental_domain.smul β measure_theory.is_add_fundamental_domain.vadd, | |
| units.coe_mk_of_mul_eq_one β add_units.coe_mk_of_add_eq_zero, | |
| inv_div_inv β neg_sub_neg, | |
| exists_one_lt' β exists_zero_lt, | |
| fin.prod_univ_one β fin.sum_univ_one, | |
| mul_div_left_comm β add_sub_left_comm, | |
| list.measurable_prod β list.measurable_sum, | |
| div_mul_eq_mul_div β sub_add_eq_add_sub, | |
| Group.forget_preserves_limits β AddGroup.forget_preserves_limits, | |
| mul_action.quotient.coe_smul_out' β add_action.quotient.coe_vadd_out', | |
| norm_le_zero_iff'' β norm_le_zero_iff, | |
| mul_hom.to_opposite_apply β add_hom.to_opposite_apply, | |
| subgroup.relindex_le_of_le_left β add_subgroup.relindex_le_of_le_left, | |
| finset.prod_preimage_of_bij β finset.sum_preimage_of_bij, | |
| set.Inter_inv β set.Inter_neg, | |
| freiman_hom.comp β add_freiman_hom.comp, | |
| subgroup.pi_eq_bot_iff β add_subgroup.pi_eq_bot_iff, | |
| units.mul_inv_eq_iff_eq_mul β add_units.add_neg_eq_iff_eq_add, | |
| finset.eq_prod_range_div' β finset.eq_sum_range_sub', | |
| mul_equiv.of_left_inverse' β add_equiv.of_left_inverse', | |
| interval.bot_div β interval.bot_sub, | |
| mul_action.mem_stabilizer_submonoid_iff β add_action.mem_stabilizer_add_submonoid_iff, | |
| interval.comm_monoid β interval.add_comm_monoid, | |
| monoid_hom.of_map_div β add_monoid_hom.of_map_sub, | |
| is_submonoid.one_mem β is_add_submonoid.zero_mem, | |
| finset.multiplicative_energy_eq_zero_iff β finset.additive_energy_eq_zero_iff, | |
| is_mul_hom.map_mul β is_add_hom.map_add, | |
| freiman_hom.const β add_freiman_hom.const, | |
| set.division_comm_monoid β set.subtraction_comm_monoid, | |
| linear_ordered_comm_monoid β linear_ordered_add_comm_monoid, | |
| con.monoid β add_con.add_monoid, | |
| equicontinuous_of_equicontinuous_at_one β equicontinuous_of_equicontinuous_at_zero, | |
| powers.one_mem β multiples.zero_mem, | |
| continuous_map.has_pow β continuous_map.has_nsmul, | |
| group.zpow β add_group.zsmul, | |
| free_group.equivalence_join_red β free_add_group.equivalence_join_red, | |
| free_group.lift.of β free_add_group.lift.of, | |
| tendsto_div_nhds_one_iff β tendsto_sub_nhds_zero_iff, | |
| measure_theory.measure.prod.is_haar_measure β measure_theory.measure.prod.is_add_haar_measure, | |
| submonoid.mrange_inr β add_submonoid.mrange_inr, | |
| sigma.is_central_scalar β sigma.is_central_vadd, | |
| localization.mul β add_localization.add, | |
| finset.smul_finset_inter_subset β finset.vadd_finset_inter_subset, | |
| measure_theory.prog_measurable.mul β measure_theory.prog_measurable.add, | |
| finsupp.prod_fintype β finsupp.sum_fintype, | |
| comm_group.one_mul β add_comm_group.zero_add, | |
| monoid_hom.coe_comp_range_restrict β add_monoid_hom.coe_comp_range_restrict, | |
| finset.le_prod_of_submultiplicative β finset.le_sum_of_subadditive, | |
| div_lt_div_iff' β sub_lt_sub_iff, | |
| div_lt_div_right' β sub_lt_sub_right, | |
| set.mul_nonempty β set.add_nonempty, | |
| free_magma.lift_symm_apply β free_add_magma.lift_symm_apply, | |
| subgroup.le_centralizer_iff β add_subgroup.le_centralizer_iff, | |
| lattice_ordered_comm_group.one_le_pos β lattice_ordered_comm_group.pos_nonneg, | |
| monoid_hom.lift_of_right_inverse_comp_apply β add_monoid_hom.lift_of_right_inverse_comp_apply, | |
| lex.comm_monoid β lex.add_comm_monoid, | |
| free_group.reduce.sound β free_add_group.reduce.sound, | |
| finset.empty_smul β finset.empty_vadd, | |
| set.smul_mem_smul_set β set.vadd_mem_vadd_set, | |
| filter.division_monoid β filter.subtraction_monoid, | |
| finset.prod_range_induction β finset.sum_range_induction, | |
| mul_right_inj β add_right_inj, | |
| quotient_group.comap_comap_center β quotient_add_group.comap_comap_center, | |
| is_subgroup.Inter β is_add_subgroup.Inter, | |
| zpow_add_one β add_one_zsmul, | |
| submonoid.left_inv_equiv_symm_mul β add_submonoid.left_neg_equiv_symm_add, | |
| set.mul_indicator_hom β set.indicator_hom, | |
| left.mul_lt_one_of_lt_of_le β left.add_neg_of_neg_of_nonpos, | |
| has_mul β has_add, | |
| has_div β has_sub, | |
| finsupp.prod_neg_index β finsupp.sum_neg_index, | |
| map_pow β map_nsmul, | |
| mul_le_of_mul_le_right β add_le_of_add_le_right, | |
| comm_monoid.mul_comm β add_comm_monoid.add_comm, | |
| measure_theory.quasi_measure_preserving_mul_left β measure_theory.quasi_measure_preserving_add_left, | |
| free_monoid.rec_on β free_add_monoid.rec_on, | |
| smul_mem_class.smul_mem β vadd_mem_class.vadd_mem, | |
| div_inv_monoid.zpow β sub_neg_monoid.zsmul, | |
| units.lift_right β add_units.lift_right, | |
| finset.card_le_card_mul_right β finset.card_le_card_add_right, | |
| normed_group.to_seminormed_group β normed_add_group.to_seminormed_add_group, | |
| submonoid.comap_infi_map_of_injective β add_submonoid.comap_infi_map_of_injective, | |
| le_div_iff_mul_le β le_sub_iff_add_le, | |
| subsemigroup.centralizer_le β add_subsemigroup.centralizer_le, | |
| set.mem_finset_prod β set.mem_finset_sum, | |
| filter.tendsto.zpow β filter.tendsto.zsmul, | |
| mul_opposite.dist_unop β add_opposite.dist_unop, | |
| group_filter_basis.has_mem β add_group_filter_basis.has_mem, | |
| monoid.exponent_ne_zero_of_finite β add_monoid.exponent_ne_zero_of_finite, | |
| division_monoid.inv_eq_of_mul β subtraction_monoid.neg_eq_of_add, | |
| units.embed_product β add_units.embed_product, | |
| open_subgroup.partial_order β open_add_subgroup.partial_order, | |
| lattice_ordered_comm_group.pos_inf_neg_eq_one β lattice_ordered_comm_group.pos_inf_neg_eq_zero, | |
| monoid_hom.map_dfinsupp_prod β add_monoid_hom.map_dfinsupp_sum, | |
| comm_group β add_comm_group, | |
| measure_theory.strongly_measurable.div β measure_theory.strongly_measurable.sub, | |
| normed_comm_group.tendsto_nhds_one β normed_add_comm_group.tendsto_nhds_zero, | |
| mul_hom.srange_top_of_surjective β add_hom.srange_top_of_surjective, | |
| finset.prod_partition β finset.sum_partition, | |
| filter.tendsto.mul_const β filter.tendsto.add_const, | |
| closure_one_eq β closure_zero_eq, | |
| uniform_equicontinuous_of_equicontinuous_at_one β uniform_equicontinuous_of_equicontinuous_at_zero, | |
| has_uniform_continuous_const_smul.op β has_uniform_continuous_const_vadd.op, | |
| measurable_equiv.symm_smul β measurable_equiv.symm_vadd, | |
| Group.forget_Group_preserves_mono β AddGroup.forget_Group_preserves_mono, | |
| con.mul_action β add_con.add_action, | |
| is_cyclic_of_subsingleton β is_add_cyclic_of_subsingleton, | |
| filter.mem_smul_filter β filter.mem_vadd_filter, | |
| is_open.div_left β is_open.sub_left, | |
| subgroup.left_transversals.smul_diff_smul β add_subgroup.left_transversals.vadd_diff_vadd, | |
| lex.has_one β lex.has_zero, | |
| mul_equiv.coe_to_monoid_hom β add_equiv.coe_to_add_monoid_hom, | |
| is_unit.one_div_mul_cancel β is_add_unit.zero_sub_add_cancel, | |
| submonoid.gc_map_comap β add_submonoid.gc_map_comap, | |
| finset.le_multiplicative_energy β finset.le_additive_energy, | |
| is_closed_map_mul_right β is_closed_map_add_right, | |
| prod.fst_mul β prod.fst_add, | |
| monoid_hom.coe_mrange β add_monoid_hom.coe_mrange, | |
| div_inv_monoid.npow β sub_neg_monoid.nsmul, | |
| measure_theory.measure_preserving_mul_prod_inv β measure_theory.measure_preserving_add_prod_neg, | |
| division_comm_monoid.div_eq_mul_inv β subtraction_comm_monoid.sub_eq_add_neg, | |
| mul_hom.coe_fst β add_hom.coe_fst, | |
| subgroup.eq_bot_of_subsingleton β add_subgroup.eq_bot_of_subsingleton, | |
| subgroup.of_normal β add_subgroup.of_normal, | |
| function.mul_support_eq_empty_iff β function.support_eq_empty_iff, | |
| con.rel_mk β add_con.rel_mk, | |
| is_unit_of_subsingleton β is_add_unit_of_subsingleton, | |
| submonoid.simps.coe β add_submonoid.simps.coe, | |
| submonoid.to_ordered_comm_monoid β add_submonoid.to_ordered_add_comm_monoid, | |
| finprod_comp_equiv β finsum_comp_equiv, | |
| filter.mul_eq_one_iff β filter.add_eq_zero_iff, | |
| filter.has_inv β filter.has_neg, | |
| ordered_comm_group.zpow_succ' β ordered_add_comm_group.zsmul_succ', | |
| list.alternating_prod_cons' β list.alternating_sum_cons', | |
| set.mul_antidiagonal.fst_eq_fst_iff_snd_eq_snd β set.add_antidiagonal.fst_eq_fst_iff_snd_eq_snd, | |
| mul_opposite.op_homeomorph_apply β add_opposite.op_homeomorph_apply, | |
| set.div_inter_subset β set.sub_inter_subset, | |
| quotient_group.second_countable_topology β quotient_add_group.second_countable_topology, | |
| finset.card_mul_mul_le_card_div_mul_card_mul β finset.card_add_mul_le_card_sub_mul_card_add, | |
| linear_ordered_comm_group.one_mul β linear_ordered_add_comm_group.zero_add, | |
| ae_measurable.smul β ae_measurable.vadd, | |
| comm_group.ext β add_comm_group.ext, | |
| Mon.of_hom β AddMon.of_hom, | |
| monoid_hom.coe_of_mclosure_eq_top_left β add_monoid_hom.coe_of_mclosure_eq_top_left, | |
| div_inv_monoid.npow_zero' β sub_neg_monoid.nsmul_zero', | |
| continuous_at.smul β continuous_at.vadd, | |
| submonoid.supr_induction β add_submonoid.supr_induction, | |
| div_mul β sub_add, | |
| pi.pow_apply β pi.smul_apply, | |
| pi.mul_support_mul_single β pi.support_single, | |
| continuous_const_smul_iff β continuous_const_vadd_iff, | |
| order_monoid_hom β order_add_monoid_hom, | |
| subgroup.zpowers_is_commutative β add_subgroup.zmultiples_is_commutative, | |
| normed_group.of_mul_dist β normed_add_group.of_add_dist, | |
| set.mem_inv_smul_set_iff β set.mem_neg_vadd_set_iff, | |
| group.mul_left_bijective β add_group.add_left_bijective, | |
| function.one_le_const β function.const_nonneg, | |
| localization.lift_onβ_mk β add_localization.lift_onβ_mk, | |
| pi.monoid_hom_injective β pi.add_monoid_hom_injective, | |
| mul_equiv.coe_to_equiv β add_equiv.coe_to_equiv, | |
| continuous_submonoid β continuous_add_submonoid, | |
| is_group_hom.map_inv β is_add_group_hom.map_neg, | |
| subgroup.relindex_bot_left_eq_card β add_subgroup.relindex_bot_left_eq_card, | |
| monoid_hom.map_multiset_prod β add_monoid_hom.map_multiset_sum, | |
| pi.has_measurable_smul β pi.has_measurable_vadd, | |
| div_eq_of_eq_mul' β sub_eq_of_eq_add', | |
| left_cancel_semigroup.to_is_left_cancel_mul β add_left_cancel_semigroup.to_is_left_cancel_add, | |
| submonoid.localization_map.mul_inv_right β add_submonoid.localization_map.add_neg_right, | |
| pow_mul' β mul_nsmul, | |
| finset.has_one β finset.has_zero, | |
| nhds_mul_nhds_one β nhds_add_nhds_zero, | |
| multiset.prod_erase β multiset.sum_erase, | |
| subgroup.closure_eq_bot_iff β add_subgroup.closure_eq_bot_iff, | |
| mul_right_cancel β add_right_cancel, | |
| mul_one_class.to_is_left_id β add_zero_class.to_is_left_id, | |
| set.mul_indicator_le β set.indicator_le, | |
| lex.mul_one_class β lex.add_zero_class, | |
| multiplicative_of_is_total β additive_of_is_total, | |
| set.mul_antidiagonal β set.add_antidiagonal, | |
| bot_eq_one' β bot_eq_zero', | |
| finset.nonempty.mul β finset.nonempty.add, | |
| free_semigroup.length β free_add_semigroup.length, | |
| comm_monoid.torsion.is_torsion β add_comm_monoid.add_torsion.is_torsion, | |
| finset.prod_singleton β finset.sum_singleton, | |
| to_lex_pow β to_lex_smul, | |
| set.Union_div_right_image β set.Union_sub_right_image, | |
| measurable_inv_iff β measurable_neg_iff, | |
| measure_theory.measure.haar.prehaar_empty β measure_theory.measure.haar.add_prehaar_empty, | |
| ordered_comm_monoid.one_mul β ordered_add_comm_monoid.zero_add, | |
| mul_opposite.unop_surjective β add_opposite.unop_surjective, | |
| CommGroup.category_theory.limits.has_zero_object β AddCommGroup.has_zero_object, | |
| group_norm.apply_one β add_group_norm.apply_one, | |
| submonoid.left_inv_left_inv_le β add_submonoid.left_neg_left_neg_le, | |
| units.mul_left_symm β add_units.add_left_symm, | |
| prod.snd_mul β prod.snd_add, | |
| ordered_cancel_comm_monoid.mul_one β ordered_cancel_add_comm_monoid.add_zero, | |
| continuous_map.coe_smul β continuous_map.coe_vadd, | |
| monoid_hom.subtype_comp_range_restrict β add_monoid_hom.subtype_comp_range_restrict, | |
| CommMon.inhabited β AddCommMon.inhabited, | |
| canonically_linear_ordered_monoid.mul_comm β canonically_linear_ordered_add_monoid.add_comm, | |
| multiset.le_prod_nonempty_of_submultiplicative_on_pred β multiset.le_sum_nonempty_of_subadditive_on_pred, | |
| free_group.red.step.append_left β free_add_group.red.step.append_left, | |
| punit.mul_eq β punit.add_eq, | |
| measure_theory.pi.is_inv_invariant_volume β measure_theory.pi.is_neg_invariant_volume, | |
| pi.canonically_ordered_monoid β pi.canonically_ordered_add_monoid, | |
| function.surjective.rootable_by β function.surjective.divisible_by, | |
| localization.mk_mul β add_localization.mk_add, | |
| mul_equiv.trans_apply β add_equiv.trans_apply, | |
| continuous_monoid_hom.continuous_monoid_hom_class β continuous_add_monoid_hom.continuous_add_monoid_hom_class, | |
| multiset.measurable_prod' β multiset.measurable_sum', | |
| zpow_neg_one β neg_one_zsmul, | |
| subgroup.index_top β add_subgroup.index_top, | |
| subgroup.quotient_infi_embedding_apply β add_subgroup.quotient_infi_embedding_apply, | |
| subgroup.mem_sup_right β add_subgroup.mem_sup_right, | |
| right.pow_lt_one_iff β right.nsmul_neg_iff, | |
| mul_opposite.has_inv β add_opposite.has_neg, | |
| uniform_group.to_has_uniform_continuous_const_smul β uniform_add_group.to_has_uniform_continuous_const_vadd, | |
| finset.prod_erase_none β finset.sum_erase_none, | |
| fintype.prod_eq_mul_prod_compl β fintype.sum_eq_add_sum_compl, | |
| monoid_hom.ker β add_monoid_hom.ker, | |
| pi.mul_single_apply_commute β pi.single_apply_commute, | |
| list.prod_hom_rel β list.sum_hom_rel, | |
| measure_theory.ae_strongly_measurable.div β measure_theory.ae_strongly_measurable.sub, | |
| measure_theory.ae_eq_fun.mk_mul_mk β measure_theory.ae_eq_fun.mk_add_mk, | |
| lt_one_of_mul_lt_right β neg_of_add_lt_right, | |
| quotient_group.equiv_quotient_zpow_of_equiv_trans β quotient_add_group.equiv_quotient_zsmul_of_equiv_trans, | |
| finset.semigroup β finset.add_semigroup, | |
| filter.tendsto.div_const' β filter.tendsto.sub_const, | |
| set.smul_comm_class β set.vadd_comm_class, | |
| mul_le_of_le_of_le_one β add_le_of_le_of_nonpos, | |
| free_group.reduce_inv_rev β free_add_group.reduce_neg_rev, | |
| with_one.has_involutive_inv β with_zero.has_involutive_neg, | |
| norm_multiset_prod_le β norm_multiset_sum_le, | |
| filter.tendsto.div' β filter.tendsto.sub, | |
| mul_equiv.inv_fun_eq_symm β add_equiv.neg_fun_eq_symm, | |
| Group.filtered_colimits.G.mk β AddGroup.filtered_colimits.G.mk, | |
| quotient_group.coe_zpow β quotient_add_group.coe_zsmul, | |
| finsupp.prod β finsupp.sum, | |
| mul_hom.coe_mul β add_hom.coe_add, | |
| subgroup.map_normalizer_eq_of_bijective β add_subgroup.map_normalizer_eq_of_bijective, | |
| pi.has_pow β pi.has_smul, | |
| normed_linear_ordered_group.to_normed_ordered_group β normed_linear_ordered_add_group.to_normed_ordered_add_group, | |
| min_le_max_of_mul_le_mul β min_le_max_of_add_le_add, | |
| subgroup.index_eq_card β add_subgroup.index_eq_card, | |
| dist_inv β dist_neg, | |
| units.simps.coe β add_units.simps.coe, | |
| free_group.mul_bind β free_add_group.add_bind, | |
| commute.zpow_left β add_commute.zsmul_left, | |
| pi.sum_norm_apply_le_norm' β pi.sum_norm_apply_le_norm, | |
| is_unit.mul_div_cancel_left β is_add_unit.add_sub_cancel_left, | |
| smul_smul_smul_comm β vadd_vadd_vadd_comm, | |
| set.inv_range β set.neg_range, | |
| con.lift_on β add_con.lift_on, | |
| finset.prod_range_succ β finset.sum_range_succ, | |
| uniform_fun.uniform_group β uniform_fun.uniform_add_group, | |
| group_norm.inv' β add_group_norm.neg', | |
| has_continuous_smul.op β has_continuous_vadd.op, | |
| free_semigroup.lift_comp_of' β free_add_semigroup.lift_comp_of', | |
| mul_inv_cancel_comm_assoc β add_neg_cancel_comm_assoc, | |
| quotient_group.preimage_image_coe β quotient_add_group.preimage_image_coe, | |
| finset.image_inv β finset.image_neg, | |
| Group.has_forget_to_Mon β AddGroup.has_forget_to_AddMon, | |
| units.has_faithful_smul β add_units.has_faithful_vadd, | |
| comm_group.to_group β add_comm_group.to_add_group, | |
| monoid_hom_class.isometry_iff_norm β add_monoid_hom_class.isometry_iff_norm, | |
| submonoid.is_unit.submonoid.coe_inv β add_submonoid.is_unit.submonoid.coe_neg, | |
| mul_opposite.left_cancel_monoid β add_opposite.left_cancel_add_monoid, | |
| lattice_ordered_comm_group.abs_abs_div_abs_le β lattice_ordered_comm_group.abs_abs_sub_abs_le, | |
| free_group.has_one β free_add_group.has_zero, | |
| min_lt_of_mul_lt_sq β min_lt_of_add_lt_two_nsmul, | |
| measure_theory.smul_invariant_measure β measure_theory.vadd_invariant_measure, | |
| linear_ordered_comm_group β linear_ordered_add_comm_group, | |
| open_subgroup.prod β open_add_subgroup.sum, | |
| submonoid.localization_map.of_mul_equiv_of_dom_eq β add_submonoid.localization_map.of_add_equiv_of_dom_eq, | |
| continuous_monoid_hom.comp β continuous_add_monoid_hom.comp, | |
| continuous_map.comp_monoid_hom' β continuous_map.comp_add_monoid_hom', | |
| filter.smul_pure β filter.vadd_pure, | |
| filter.division_comm_monoid β filter.subtraction_comm_monoid, | |
| subgroup.supr_eq_closure β add_subgroup.supr_eq_closure, | |
| has_pow β has_smul, | |
| subsemigroup.mem_supr β add_subsemigroup.mem_supr, | |
| quotient_group.mk β quotient_add_group.mk, | |
| order_dual.seminormed_comm_group β order_dual.seminormed_add_comm_group, | |
| subsemigroup.copy_eq β add_subsemigroup.copy_eq, | |
| subsemigroup.coe_centralizer β add_subsemigroup.coe_centralizer, | |
| rootable_by.root_cancel β divisible_by.div_cancel, | |
| dfinsupp.prod_finset_sum_index β dfinsupp.sum_finset_sum_index, | |
| list.alternating_prod_append β list.alternating_sum_append, | |
| multiset.noncomm_prod_eq_pow_card β multiset.noncomm_sum_eq_card_nsmul, | |
| filter.germ.ordered_comm_monoid β filter.germ.ordered_add_comm_monoid, | |
| one_le_of_le_mul_right β nonneg_of_le_add_right, | |
| pi.mul_def β pi.add_def, | |
| is_scalar_tower.smul_assoc β vadd_assoc_class.vadd_assoc, | |
| zpow_two β two_zsmul, | |
| part.mul_get_eq β part.add_get_eq, | |
| submonoid.comm_monoid_topological_closure β add_submonoid.add_comm_monoid_topological_closure, | |
| is_unit.div_div_cancel β is_add_unit.sub_sub_cancel, | |
| group.card_pow_eq_card_pow_card_univ β add_group.card_nsmul_eq_card_nsmul_card_univ, | |
| left_coset_mem_left_coset β left_add_coset_mem_left_add_coset, | |
| finprod_mem_inv_distrib β finsum_mem_neg_distrib, | |
| subgroup.coe_infi β add_subgroup.coe_infi, | |
| subgroup.seminormed_group β add_subgroup.seminormed_add_group, | |
| units.topological_space β add_units.topological_space, | |
| free_group.reduce.rev β free_add_group.reduce.rev, | |
| set.mul_indicator_div β set.indicator_sub, | |
| smul_comm_class.op_left β vadd_comm_class.op_left, | |
| finset.singleton_one β finset.singleton_zero, | |
| finset.mem_inv β finset.mem_neg, | |
| submonoid.localization_map.lift β add_submonoid.localization_map.lift, | |
| set.smul_inter_ne_empty_iff' β set.vadd_inter_ne_empty_iff', | |
| ordered_cancel_comm_monoid.mul_comm β ordered_cancel_add_comm_monoid.add_comm, | |
| nhds_translation_div β nhds_translation_sub, | |
| multiset.noncomm_prod_map_aux β multiset.noncomm_sum_map_aux, | |
| part.has_inv β part.has_neg, | |
| localization.comm_monoid β add_localization.add_comm_monoid, | |
| left.one_lt_inv_iff β left.neg_pos_iff, | |
| subgroup.card_quotient_dvd_card β add_subgroup.card_quotient_dvd_card, | |
| uniform_space.completion.is_scalar_tower β uniform_space.completion.vadd_assoc_class, | |
| finset.mul_antidiagonal_min_mul_min β finset.add_antidiagonal_min_add_min, | |
| linear_ordered_cancel_comm_monoid.le_of_mul_le_mul_left β linear_ordered_cancel_add_comm_monoid.le_of_add_le_add_left, | |
| vector.prod_mul_prod_eq_prod_zip_with β vector.sum_add_sum_eq_sum_zip_with, | |
| units.mul_action β add_units.add_action, | |
| con.ker β add_con.ker, | |
| quotient_group.complete_space' β quotient_add_group.complete_space', | |
| division_monoid.one_mul β subtraction_monoid.zero_add, | |
| commute.units_zpow_left β add_commute.add_units_zsmul_left, | |
| mul_one_class.mul_one β add_zero_class.add_zero, | |
| mul_eq_of_eq_div β add_eq_of_eq_sub, | |
| mul_action.quotient_preimage_image_eq_union_mul β add_action.quotient_preimage_image_eq_union_add, | |
| mul_equiv.inv'_symm_apply β add_equiv.neg'_symm_apply, | |
| mul_eq_one_iff_inv_eq β add_eq_zero_iff_neg_eq, | |
| mul_opposite.is_scalar_tower β add_opposite.vadd_assoc_class, | |
| normed_group.of_separation β normed_add_group.of_separation, | |
| has_continuous_const_smul.op β has_continuous_const_vadd.op, | |
| is_unit.mul_inv_eq_iff_eq_mul β is_add_unit.add_neg_eq_iff_eq_add, | |
| comm_group.npow β add_comm_group.nsmul, | |
| finset.has_npow β finset.has_nsmul, | |
| mul_action.mem_orbit β add_action.mem_orbit, | |
| monoid_hom.map_pow β add_monoid_hom.map_nsmul, | |
| div_inv_one_monoid.mul_assoc β sub_neg_zero_monoid.add_assoc, | |
| magma.assoc_quotient β add_magma.free_add_semigroup, | |
| nonempty_interval.pure_one β nonempty_interval.pure_zero, | |
| is_torsion.not_torsion_free β add_monoid.is_torsion.not_torsion_free, | |
| mul_monoid_hom_apply β add_add_monoid_hom_apply, | |
| measure_theory.ae_eq_fun.to_germ_monoid_hom_apply β measure_theory.ae_eq_fun.to_germ_add_monoid_hom_apply, | |
| submonoid.localization_map.mul_equiv_of_localizations_left_inv_apply β add_submonoid.localization_map.add_equiv_of_localizations_left_neg_apply, | |
| measure_theory.fundamental_interior_subset β measure_theory.add_fundamental_interior_subset, | |
| set.subset_center_units β set.subset_add_center_add_units, | |
| le_of_forall_one_lt_lt_mul β le_of_forall_pos_lt_add, | |
| pi.mul_single_eq_of_ne' β pi.single_eq_of_ne', | |
| one_mem_class.has_one β zero_mem_class.has_zero, | |
| div_inv_monoid.zpow_neg' β sub_neg_monoid.zsmul_neg', | |
| is_cancel_mul.mul_left_cancel β is_cancel_add.add_left_cancel, | |
| div_mul_div_comm β sub_add_sub_comm, | |
| subgroup.right_coset_equiv_subgroup β add_subgroup.right_coset_equiv_add_subgroup, | |
| with_bot.coe_one β with_bot.coe_zero, | |
| submonoid.comap_id β add_submonoid.comap_id, | |
| has_measurable_divβ.to_has_measurable_div β has_measurable_subβ.to_has_measurable_sub, | |
| is_unit.inv β is_add_unit.neg, | |
| div_inv_monoid.mul_one β sub_neg_monoid.add_zero, | |
| tendsto_uniformly.mul β tendsto_uniformly.add, | |
| is_mul_hom.mul β is_add_hom.add, | |
| finset.equiv.prod_comp_finset β finset.equiv.sum_comp_finset, | |
| measure_theory.measure.haar.is_left_invariant_prehaar β measure_theory.measure.haar.is_left_invariant_add_prehaar, | |
| mul_hom.coe_snd β add_hom.coe_snd, | |
| mul_equiv.Pi_congr_right_refl β add_equiv.Pi_congr_right_refl, | |
| freiman_hom.coe_comp β add_freiman_hom.coe_comp, | |
| mul_opposite.right_cancel_semigroup β add_opposite.right_cancel_add_semigroup, | |
| is_unit.is_regular β is_add_unit.is_add_regular, | |
| sym_alg.sym_eq_one_iff β sym_alg.sym_eq_zero_iff, | |
| free_magma.to_free_semigroup_map β free_add_magma.to_free_add_semigroup_map, | |
| is_left_regular_of_mul_eq_one β is_add_left_regular_of_add_eq_zero, | |
| is_unit.div_eq_of_eq_mul β is_add_unit.sub_eq_of_eq_add, | |
| submonoid.mk_le_mk β add_submonoid.mk_le_mk, | |
| submonoid.from_left_inv_mul β add_submonoid.from_left_neg_add, | |
| set.mul_indicator_finset_bUnion β set.indicator_finset_bUnion, | |
| quotient_group.right_rel β quotient_add_group.right_rel, | |
| mem_left_coset_iff β mem_left_add_coset_iff, | |
| is_unit.exists_left_inv β is_add_unit.exists_neg', | |
| finset.is_scalar_tower' β finset.vadd_assoc_class', | |
| group_norm.sup_apply β add_group_norm.sup_apply, | |
| nnnorm_le_mul_nnnorm_add β nnnorm_le_add_nnnorm_add, | |
| subgroup.inf_subgroup_of_inf_normal_of_right β add_subgroup.inf_add_subgroup_of_inf_normal_of_right, | |
| finset.card_div_mul_le_card_div_mul_card_div β finset.card_sub_mul_le_card_sub_mul_card_sub, | |
| measure_theory.strongly_measurable_one β measure_theory.strongly_measurable_zero, | |
| filter.div_bot β filter.sub_bot, | |
| subsemigroup.prod_eq_top_iff β add_subsemigroup.sum_eq_top_iff, | |
| finsupp.prod_of_support_subset β finsupp.sum_of_support_subset, | |
| monoid_hom β add_monoid_hom, | |
| inv_cthickening β neg_cthickening, | |
| div_inv_monoid.mul_assoc β sub_neg_monoid.add_assoc, | |
| multiset.all_one_of_le_one_le_of_prod_eq_one β multiset.all_zero_of_le_zero_le_of_sum_eq_zero, | |
| monoid_hom.dfinsupp_prod_apply β add_monoid_hom.dfinsupp_sum_apply, | |
| units.inv_mul β add_units.neg_add, | |
| prod.semigroup β prod.add_semigroup, | |
| set.mem_prod_list_of_fn β set.mem_sum_list_of_fn, | |
| mul_action.quotient.mk_smul_out' β add_action.quotient.mk_vadd_out', | |
| is_unit.mul_div_mul_right β is_add_unit.add_sub_add_right, | |
| set.div_subset_iff β set.sub_subset_iff, | |
| units.has_repr β add_units.has_repr, | |
| con.mul' β add_con.add', | |
| dfinsupp.prod_neg_index β dfinsupp.sum_neg_index, | |
| submonoid.comap_equiv_eq_map_symm β add_submonoid.comap_equiv_eq_map_symm, | |
| pi.single_div β pi.single_sub, | |
| finset.smul_finset_def β finset.vadd_finset_def, | |
| uniformity_eq_comap_nhds_one β uniformity_eq_comap_nhds_zero, | |
| canonically_ordered_monoid.one_mul β canonically_ordered_add_monoid.zero_add, | |
| has_measurable_divβ_of_mul_inv β has_measurable_divβ_of_add_neg, | |
| set.mul_indicator β set.indicator, | |
| open_subgroup.mem_coe β open_add_subgroup.mem_coe, | |
| submonoid.prod_equiv β add_submonoid.prod_equiv, | |
| monoid_hom.flip β add_monoid_hom.flip, | |
| submonoid.comap_inf β add_submonoid.comap_inf, | |
| Mon.filtered_colimits.cocone_naturality β AddMon.filtered_colimits.cocone_naturality, | |
| semiconj_by.units_coe β add_semiconj_by.add_units_coe, | |
| mul_inv_lt_iff_le_mul' β add_neg_lt_iff_le_add', | |
| dist_div_div_le β dist_sub_sub_le, | |
| units.embed_product_apply β add_units.embed_product_apply, | |
| quotient_group.rootable_by β quotient_add_group.divisible_by, | |
| pi.mul_hom β pi.add_hom, | |
| mul_hom.cancel_left β add_hom.cancel_left, | |
| sum.mul_action β sum.add_action, | |
| subgroup.mem_normalizer_iff' β add_subgroup.mem_normalizer_iff', | |
| filter.smul_le_smul β filter.vadd_le_vadd, | |
| monoid_hom.mrange_eq_map β add_monoid_hom.mrange_eq_map, | |
| subgroup.comap_normalizer_eq_of_injective_of_le_range β add_subgroup.comap_normalizer_eq_of_injective_of_le_range, | |
| set.centralizer β set.add_centralizer, | |
| normed_comm_group.of_mul_dist' β normed_add_comm_group.of_add_dist', | |
| group.closure_finite_fg β add_group.closure_finite_fg, | |
| subgroup.left_transversals.diff β add_subgroup.left_transversals.diff, | |
| pow_card_eq_one' β card_nsmul_eq_zero', | |
| subgroup.saturated_iff_npow β add_subgroup.saturated_iff_nsmul, | |
| subgroup.left_transversals.diff_inv β add_subgroup.left_transversals.diff_neg, | |
| is_open.right_coset β is_open.right_add_coset, | |
| function.extend_smul β function.extend_vadd, | |
| finset.prod_finset_product_right β finset.sum_finset_product_right, | |
| finset.subset_mul_right β finset.subset_add_right, | |
| pi.right_cancel_semigroup β pi.add_right_cancel_semigroup, | |
| inv_le_div_iff_le_mul' β neg_le_sub_iff_le_add', | |
| ordered_comm_group.mul_le_mul_left β ordered_add_comm_group.add_le_add_left, | |
| freiman_hom.const_apply β add_freiman_hom.const_apply, | |
| pow_left_surj_of_rootable_by β smul_right_surj_of_divisible_by, | |
| free_magma.length β free_add_magma.length, | |
| pi.one_def β pi.zero_def, | |
| subgroup.le_centralizer_iff_is_commutative β add_subgroup.le_centralizer_iff_is_commutative, | |
| freiman_hom.mul_apply β add_freiman_hom.add_apply, | |
| is_glb.inv β is_glb.neg, | |
| function.mul_support_comp_eq β function.support_comp_eq, | |
| order_dual.has_lipschitz_mul β order_dual.has_lipschitz_add, | |
| set.smul_set_univ β set.vadd_set_univ, | |
| nonempty_interval.fst_one β nonempty_interval.fst_zero, | |
| fin.prod_of_fn β fin.sum_of_fn, | |
| free_semigroup.monad β free_add_semigroup.monad, | |
| prod.snd_div β prod.snd_sub, | |
| mul_right_iterate β add_right_iterate, | |
| mul_le_mul_iff_of_ge β add_le_add_iff_of_ge, | |
| subgroup.coe_top β add_subgroup.coe_top, | |
| set.mul_antidiagonal_mono_right β set.add_antidiagonal_mono_right, | |
| group_norm.eq_one_of_map_eq_zero' β add_group_norm.eq_zero_of_map_eq_zero', | |
| is_torsion_of_finite β is_add_torsion_of_finite, | |
| subgroup.top_to_submonoid β add_subgroup.top_to_add_submonoid, | |
| with_one.rec_one_coe β with_zero.rec_zero_coe, | |
| open_subgroup.is_closed β open_add_subgroup.is_closed, | |
| is_cyclic_of_prime_card β is_add_cyclic_of_prime_card, | |
| csupr_mul β csupr_add, | |
| is_torsion.of_surjective β add_is_torsion.of_surjective, | |
| continuous_map.coe_units_lift_apply_apply β continuous_map.coe_add_units_lift_apply_apply, | |
| measure_theory.integral_div_left_eq_self β measure_theory.integral_sub_left_eq_self, | |
| open_subgroup.coe_injective β open_add_subgroup.coe_injective, | |
| free_group.red.step.diamond_aux β free_add_group.red.step.diamond_aux, | |
| ordered_comm_monoid.to_comm_monoid β ordered_add_comm_monoid.to_add_comm_monoid, | |
| measure_theory.measure.is_locally_finite_measure_of_is_haar_measure β measure_theory.measure.is_locally_finite_measure_of_is_add_haar_measure, | |
| lt_of_mul_lt_of_one_le_right β lt_of_add_lt_of_nonneg_right, | |
| open_subgroup.has_mem β open_add_subgroup.has_mem, | |
| submonoid.localization_map.mk'_self' β add_submonoid.localization_map.mk'_self', | |
| sum.is_central_scalar β sum.is_central_vadd, | |
| mul_csupr_le β add_csupr_le, | |
| con.gi β add_con.gi, | |
| set.smul_set_subset_iff β set.vadd_set_subset_iff, | |
| is_square β even, | |
| order_of_submonoid β order_of_add_submonoid, | |
| finset.prod_apply_ite β finset.sum_apply_ite, | |
| mul_opposite.smul_eq_mul_unop β add_opposite.vadd_eq_add_unop, | |
| set.set_smul_subset_iff β set.set_vadd_subset_iff, | |
| localization.one β add_localization.zero, | |
| quotient_group.quotient_bot_symm_apply β quotient_add_group.quotient_bot_symm_apply, | |
| nat.prod_divisors_antidiagonal' β nat.sum_divisors_antidiagonal', | |
| sigma.smul_comm_class β sigma.vadd_comm_class, | |
| subgroup.center_le_normalizer β add_subgroup.center_le_normalizer, | |
| continuous_map.one_comp β continuous_map.zero_comp, | |
| finprod_eq_of_bijective β finsum_eq_of_bijective, | |
| mul_opposite.op_bijective β add_opposite.op_bijective, | |
| group_seminorm.inf_apply β add_group_seminorm.inf_apply, | |
| subgroup.equiv_map_of_injective β add_subgroup.equiv_map_of_injective, | |
| monoid.to_mul_one_class β add_monoid.to_add_zero_class, | |
| monoid_hom.map_finprod_of_preimage_one β add_monoid_hom.map_finsum_of_preimage_zero, | |
| filter.has_zpow β filter.has_zsmul, | |
| order_monoid_hom.mk_coe β order_add_monoid_hom.mk_coe, | |
| submonoid_of_idempotent β add_submonoid_of_idempotent, | |
| pi.has_faithful_smul_at β pi.has_faithful_vadd_at, | |
| order_of_eq_order_of_iff β add_order_of_eq_add_order_of_iff, | |
| CommMon.forget_preserves_limits_of_size β AddCommMon.forget_preserves_limits_of_size, | |
| measure_theory.content.is_mul_left_invariant_outer_measure β measure_theory.content.is_add_left_invariant_outer_measure, | |
| subgroup.coe_inclusion β add_subgroup.coe_inclusion, | |
| subgroup.finite_index_of_le β add_subgroup.finite_index_of_le, | |
| finset.smul_inter_subset β finset.vadd_inter_subset, | |
| units.mul_right_apply β add_units.add_right_apply, | |
| isometry_equiv.mul_right_to_equiv β isometry_equiv.add_right_to_equiv, | |
| inv_lt_one_iff_one_lt β neg_neg_iff_pos, | |
| semiconj_by.units_zpow_right β add_semiconj_by.add_units_zsmul_right, | |
| mul_salem_spencer_insert β add_salem_spencer_insert, | |
| finset.prod_dite_of_false β finset.sum_dite_of_false, | |
| submonoid.one_def β add_submonoid.zero_def, | |
| list.prod_is_unit_iff β list.sum_is_add_unit_iff, | |
| finprod_mem_congr β finsum_mem_congr, | |
| min_inv_inv' β min_neg_neg, | |
| free_group.red.step.cons β free_add_group.red.step.cons, | |
| prod.cancel_comm_monoid β prod.cancel_add_comm_monoid, | |
| group_seminorm.comp_assoc β add_group_seminorm.comp_assoc, | |
| monoid_hom.comp_id β add_monoid_hom.comp_id, | |
| monoid_hom_of_mem_closure_range_coe β add_monoid_hom_of_mem_closure_range_coe, | |
| finset.image_mul_product β finset.image_add_product, | |
| units.mul_eq_one_iff_inv_eq β add_units.add_eq_zero_iff_neg_eq, | |
| mul_lt_mul_iff_of_le_of_le β add_lt_add_iff_of_le_of_le, | |
| filter.germ.left_cancel_semigroup β filter.germ.add_left_cancel_semigroup, | |
| free_group.map.comp β free_add_group.map.comp, | |
| units.coe_eq_one β add_units.coe_eq_zero, | |
| measurable_equiv.shear_mul_right β measurable_equiv.shear_add_right, | |
| of_dual_mul β of_dual_add, | |
| continuous_list_prod β continuous_list_sum, | |
| finset.nonempty.of_div_right β finset.nonempty.of_sub_right, | |
| subgroup.is_complement.exists_unique β add_subgroup.is_complement.exists_unique, | |
| is_left_regular.of_mul β is_add_left_regular.of_add, | |
| monoid_hom.noncomm_pi_coprod β add_monoid_hom.noncomm_pi_coprod, | |
| set.smul_union β set.vadd_union, | |
| finprod_mem_pair β finsum_mem_pair, | |
| subgroup.zpowers β add_subgroup.zmultiples, | |
| monotone_on.inv β monotone_on.neg, | |
| left_cancel_monoid.ext β add_left_cancel_monoid.ext, | |
| submonoid.localization_map.eq β add_submonoid.localization_map.eq, | |
| finset.subset_mul β finset.subset_add, | |
| subgroup.mem_right_transversals.to_fun_mul_inv_mem β add_subgroup.mem_right_transversals.to_fun_add_neg_mem, | |
| group_topology.to_topological_space_infi β add_group_topology.to_topological_space_infi, | |
| monoid_hom.of_injective_apply β add_monoid_hom.of_injective_apply, | |
| list.ae_strongly_measurable_prod β list.ae_strongly_measurable_sum, | |
| finset.prod_eq_single_of_mem β finset.sum_eq_single_of_mem, | |
| left.mul_lt_one' β left.add_neg', | |
| punit.smul_eq β punit.vadd_eq, | |
| set.smul_nonempty β set.vadd_nonempty, | |
| lattice_ordered_comm_group.neg_eq_one_iff' β lattice_ordered_comm_group.neg_eq_zero_iff', | |
| is_unit.div_left_inj β is_add_unit.sub_left_inj, | |
| free_semigroup.lift_symm_apply β free_add_semigroup.lift_symm_apply, | |
| hindman.FP_drop_subset_FP β hindman.FS_iter_tail_sub_FS, | |
| units.order_embedding_coe β add_units.order_embedding_coe, | |
| subgroup.mem_right_transversals_iff_exists_unique_quotient_mk'_eq β add_subgroup.mem_right_transversals_iff_exists_unique_quotient_mk'_eq, | |
| uniform_continuous_zpow_const β uniform_continuous_const_zsmul, | |
| measure_theory.simple_func.coe_inv β measure_theory.simple_func.coe_neg, | |
| subgroup.index_bot β add_subgroup.index_bot, | |
| is_unit.finset β is_add_unit.finset, | |
| subgroup.fg_iff_submonoid_fg β add_subgroup.fg_iff_add_submonoid.fg, | |
| has_continuous_const_smul β has_continuous_const_vadd, | |
| Group.filtered_colimits.colimit β AddGroup.filtered_colimits.colimit, | |
| normed_ordered_group.to_ordered_comm_group β normed_ordered_add_group.to_ordered_add_comm_group, | |
| category_theory.discrete.monoidal_functor β discrete.add_monoidal_functor, | |
| prod.normed_comm_group β prod.normed_add_comm_group, | |
| semiconj_by.conj_mk β add_semiconj_by.conj_mk, | |
| mul_inv_rev β neg_add_rev, | |
| measurable_equiv.inv β measurable_equiv.neg, | |
| finset.prod_preimage' β finset.sum_preimage', | |
| one_pow β nsmul_zero, | |
| div_eq_one β sub_eq_zero, | |
| units.inducing_embed_product β add_units.inducing_embed_product, | |
| subgroup.normalizer β add_subgroup.normalizer, | |
| left_coset_eq_iff β left_add_coset_eq_iff, | |
| order_embedding.mul_right_apply β order_embedding.add_right_apply, | |
| has_continuous_smul β has_continuous_vadd, | |
| monoid.ext β add_monoid.ext, | |
| order_monoid_hom.mul_comp β order_add_monoid_hom.add_comp, | |
| set.mul_indicator_compl_mul_self β set.indicator_compl_add_self, | |
| monoid_hom_class.uniform_continuous_of_bound β add_monoid_hom_class.uniform_continuous_of_bound, | |
| set.Interβ_mul_subset β set.Interβ_add_subset, | |
| le_of_forall_one_lt_le_mul β le_of_forall_pos_le_add, | |
| finset.image_smul_product β finset.image_vadd_product, | |
| finset.noncomm_prod β finset.noncomm_sum, | |
| upper_closure_one β upper_closure_zero, | |
| has_continuous_smul.has_continuous_const_smul β has_continuous_vadd.has_continuous_const_vadd, | |
| monoid_hom.congr_arg β add_monoid_hom.congr_arg, | |
| mul_action.mem_orbit_self β add_action.mem_orbit_self, | |
| lie_group.smooth_inv β lie_add_group.smooth_neg, | |
| multiset.prod_map_pow β multiset.sum_map_nsmul, | |
| free_magma.hom_ext β free_add_magma.hom_ext, | |
| group_norm_class.map_mul_le_add β add_group_norm_class.map_add_le_add, | |
| finset.nat.prod_antidiagonal_swap β finset.nat.sum_antidiagonal_swap, | |
| set.inv_insert β set.neg_insert, | |
| submonoid.localization_map.lift_mul_right β add_submonoid.localization_map.lift_add_right, | |
| nndist_nnnorm_nnnorm_le' β nndist_nnnorm_nnnorm_le, | |
| measure_theory.is_fundamental_domain.integrable_on_iff β measure_theory.is_add_fundamental_domain.integrable_on_iff, | |
| smul_comm_class.has_continuous_const_smul β vadd_comm_class.has_continuous_const_vadd, | |
| fintype.decidable_eq_one_hom_fintype β fintype.decidable_eq_zero_hom_fintype, | |
| le_inv_mul_of_mul_le β le_neg_add_of_add_le, | |
| mul_is_left_regular_iff β add_is_add_left_regular_iff, | |
| submonoid.localization_map.mk'_eq_iff_mk'_eq β add_submonoid.localization_map.mk'_eq_iff_mk'_eq, | |
| subsemigroup.map β add_subsemigroup.map, | |
| free_group.red.step.length β free_add_group.red.step.length, | |
| finset.prod_cancels_of_partition_cancels β finset.sum_cancels_of_partition_cancels, | |
| subgroup.comap β add_subgroup.comap, | |
| subsemigroup.closure_le β add_subsemigroup.closure_le, | |
| multiset.ae_strongly_measurable_prod' β multiset.ae_strongly_measurable_sum', | |
| finsupp.prod_zero_index β finsupp.sum_zero_index, | |
| list.prod_map_eq_pow_single β list.sum_map_eq_nsmul_single, | |
| order_dual.left_cancel_monoid β order_dual.left_cancel_add_monoid, | |
| multiset.ae_measurable_prod' β multiset.ae_measurable_sum', | |
| mul_equiv.unop β add_equiv.unop, | |
| punit.has_smul β punit.has_vadd, | |
| finprod_emb_domain β finsum_emb_domain, | |
| list.prod_homβ β list.sum_homβ, | |
| order_of_dvd_iff_zpow_eq_one β add_order_of_dvd_iff_zsmul_eq_zero, | |
| filter.smul_le_smul_right β filter.vadd_le_vadd_right, | |
| subgroup.is_commutative β add_subgroup.is_commutative, | |
| right.mul_le_one β right.add_nonpos, | |
| measure_theory.measure.is_mul_right_invariant β measure_theory.measure.is_add_right_invariant, | |
| monoid.npow_succ' β add_monoid.nsmul_succ', | |
| le_of_pow_le_pow' β le_of_nsmul_le_nsmul, | |
| nonempty_interval.inv_mem_inv β nonempty_interval.neg_mem_neg, | |
| order_monoid_hom.has_one β order_add_monoid_hom.has_zero, | |
| mul_opposite.emetric_space β add_opposite.emetric_space, | |
| subgroup.comap_lt_comap_of_surjective β add_subgroup.comap_lt_comap_of_surjective, | |
| div_right_comm β sub_right_comm, | |
| lattice_ordered_comm_group.sup_div_inf_eq_abs_div β lattice_ordered_comm_group.sup_sub_inf_eq_abs_sub, | |
| subgroup.inf_mul_assoc β add_subgroup.inf_add_assoc, | |
| submonoid.decidable_mem_centralizer β add_submonoid.decidable_mem_centralizer, | |
| mul_equiv.has_coe_t β add_equiv.has_coe_t, | |
| singleton_div_closed_ball_one β singleton_sub_closed_ball_zero, | |
| subgroup.closure_mul_le β add_subgroup.closure_add_le, | |
| nhds_translation_mul_inv β nhds_translation_add_neg, | |
| mul_action.mul_left_cosets_comp_subtype_val β add_action.add_left_cosets_comp_subtype_val, | |
| semiconj_by.mul_right β add_semiconj_by.add_right, | |
| probability_theory.ident_distrib.mul_const β probability_theory.ident_distrib.add_const, | |
| set.inv_preimage β set.neg_preimage, | |
| measure_theory.simple_func.has_inv β measure_theory.simple_func.has_neg, | |
| smul_closure_subset β vadd_closure_subset, | |
| measure_theory.measure_preserving_prod_mul_right β measure_theory.measure_preserving_prod_add_right, | |
| div_le_div_iff_right β sub_le_sub_iff_right, | |
| con.to_setoid_inj β add_con.to_setoid_inj, | |
| measure_theory.ae_eq_fun.has_mul β measure_theory.ae_eq_fun.has_add, | |
| comap_uniformity_mul_opposite β comap_uniformity_add_opposite, | |
| subgroup.relindex_top_right β add_subgroup.relindex_top_right, | |
| exists_one_lt_mul_of_lt β exists_pos_add_of_lt, | |
| locally_finite.exists_finset_mul_support β locally_finite.exists_finset_support, | |
| units.linear_order β add_units.linear_order, | |
| map_ne_zero_iff_ne_one β map_ne_zero_iff_ne_zero, | |
| has_compact_mul_support.compβ_left β has_compact_support.compβ_left, | |
| open_subgroup.comap_comap β open_add_subgroup.comap_comap, | |
| subgroup.comap_equiv_eq_map_symm β add_subgroup.comap_equiv_eq_map_symm, | |
| apply_abs_le_mul_of_one_le' β apply_abs_le_add_of_nonneg', | |
| approx_order_of.smul_eq_of_mul_dvd β approx_add_order_of.vadd_eq_of_mul_dvd, | |
| set.piecewise_inv β set.piecewise_neg, | |
| submonoid.is_unit.submonoid.group β add_submonoid.is_unit.submonoid.add_group, | |
| submonoid.localization_map.map_units β add_submonoid.localization_map.map_add_units, | |
| set_like.mk_smul_mk β set_like.mk_vadd_mk, | |
| measure_theory.is_fundamental_domain β measure_theory.is_add_fundamental_domain, | |
| measure_theory.map_mul_left_ae β measure_theory.map_add_left_ae, | |
| le_cinfi_mul_cinfi β le_cinfi_add_cinfi, | |
| equiv.has_one β equiv.has_zero, | |
| mul_equiv.eq_symm_apply β add_equiv.eq_symm_apply, | |
| quotient_group.quotient_quotient_equiv_quotient_aux_coe_coe β quotient_add_group.quotient_quotient_equiv_quotient_aux_coe_coe, | |
| sigma.has_smul β sigma.has_vadd, | |
| free_semigroup.of β free_add_semigroup.of, | |
| con.prod β add_con.prod, | |
| lt_inv_iff_mul_lt_one β lt_neg_iff_add_neg, | |
| Inf_div β Inf_sub, | |
| filter.covariant_smul_filter β filter.covariant_vadd_filter, | |
| right.mul_lt_one_of_lt_of_le β right.add_neg_of_neg_of_nonpos, | |
| mul_opposite.comm_semigroup β add_opposite.add_comm_semigroup, | |
| eq_mul_inv_iff_mul_eq β eq_add_neg_iff_add_eq, | |
| monoid.is_torsion_free β add_monoid.is_torsion_free, | |
| submonoid.localization_map.of_mul_equiv_of_dom_id β add_submonoid.localization_map.of_add_equiv_of_dom_id, | |
| set.image_inter_mul_support_eq β set.image_inter_support_eq, | |
| monoid_hom.iterate_map_one β add_monoid_hom.iterate_map_zero, | |
| order_iso.mul_right_apply β order_iso.add_right_apply, | |
| pow_coprime β nsmul_coprime, | |
| continuous.bdd_below_range_of_has_compact_mul_support β continuous.bdd_below_range_of_has_compact_support, | |
| submonoid.powers_fg β add_submonoid.multiples_fg, | |
| nonempty_interval.coe_one_interval β nonempty_interval.coe_zero_interval, | |
| function.surjective.mul_action_left β function.surjective.add_action_left, | |
| measure_theory.absolutely_continuous_map_div_left β measure_theory.absolutely_continuous_map_sub_left, | |
| dfinsupp.prod β dfinsupp.sum, | |
| topological_group.t2_space β topological_add_group.t2_space, | |
| subgroup.quotient_equiv_prod_of_le_symm_apply β add_subgroup.quotient_equiv_sum_of_le_symm_apply, | |
| mul_right_eq_self β add_right_eq_self, | |
| subgroup.uniform_group β add_subgroup.uniform_add_group, | |
| of_dual_pow β of_dual_smul, | |
| set.inv_mem_Ioo_iff β set.neg_mem_Ioo_iff, | |
| subgroup.closure_eq β add_subgroup.closure_eq, | |
| finprod_eq_one_of_forall_eq_one β finsum_eq_zero_of_forall_eq_zero, | |
| one_le β zero_le, | |
| mul_opposite.has_continuous_mul β add_opposite.has_continuous_add, | |
| filter.germ.coe_mul_hom β filter.germ.coe_add_hom, | |
| list.length_pos_of_prod_ne_one β list.length_pos_of_sum_ne_zero, | |
| monoid_hom.coe_eq_to_mul_hom β add_monoid_hom.coe_eq_to_add_hom, | |
| nonempty_of_finprod_mem_ne_one β nonempty_of_finsum_mem_ne_zero, | |
| tendsto_inv_nhds_within_Ioi β tendsto_neg_nhds_within_Ioi, | |
| le_of_le_mul_of_le_one_right β le_of_le_add_of_nonpos_right, | |
| mul_equiv.eq_symm_comp β add_equiv.eq_symm_comp, | |
| quotient_group.left_rel_decidable β quotient_add_group.left_rel_decidable, | |
| free_group.inv_rev_injective β free_add_group.neg_rev_injective, | |
| probability_theory.ident_distrib.const_div β probability_theory.ident_distrib.const_sub, | |
| monoid_hom.coe_mker β add_monoid_hom.coe_mker, | |
| fin.prod_univ_succ β fin.sum_univ_succ, | |
| ulift.left_cancel_semigroup β ulift.add_left_cancel_semigroup, | |
| set.mul_indicator_union_of_not_mem_inter β set.indicator_union_of_not_mem_inter, | |
| dist_prod_prod_le_of_le β dist_sum_sum_le_of_le, | |
| pi_nnnorm_const_le' β pi_nnnorm_const_le, | |
| subgroup.set_normalizer β add_subgroup.set_normalizer, | |
| function.surjective.has_involutive_inv β function.surjective.has_involutive_neg, | |
| mul_action.supports_of_mem β add_action.supports_of_mem, | |
| measure_theory.simple_func.group β measure_theory.simple_func.add_group, | |
| mul_div_mul_right_eq_div β add_sub_add_right_eq_sub, | |
| mul_lt_of_lt_one_of_lt' β add_lt_of_neg_of_lt', | |
| has_lipschitz_mul β has_lipschitz_add, | |
| is_mul_hom.to_is_monoid_hom β is_add_hom.to_is_add_monoid_hom, | |
| finset.prod_eq_prod_diff_singleton_mul β finset.sum_eq_sum_diff_singleton_add, | |
| quotient_group.coe_mul β quotient_add_group.coe_add, | |
| div_eq_div_iff_div_eq_div β sub_eq_sub_iff_sub_eq_sub, | |
| zpowers_hom_apply β zmultiples_hom_apply, | |
| ordered_cancel_comm_monoid.to_contravariant_class_right β ordered_cancel_add_comm_monoid.to_contravariant_class_right, | |
| is_lower_set.div_right β is_lower_set.sub_right, | |
| free_monoid.lift_apply β free_add_monoid.lift_apply, | |
| quotient_group.quotient_map_subgroup_of_of_le_coe β quotient_add_group.quotient_map_add_subgroup_of_of_le_coe, | |
| set.one_mem_div_iff β set.zero_mem_sub_iff, | |
| submonoid.nontrivial_iff_exists_ne_one β add_submonoid.nontrivial_iff_exists_ne_zero, | |
| mul_action.stabilizer β add_action.stabilizer, | |
| monoid_hom.ker_one β add_monoid_hom.ker_zero, | |
| continuous_on_list_prod β continuous_on_list_sum, | |
| mul_action.orbit_smul_subset β add_action.orbit_vadd_subset, | |
| order_monoid_hom.mul_apply β order_add_monoid_hom.add_apply, | |
| subgroup.mem_center_iff β add_subgroup.mem_center_iff, | |
| CommMon.comm_monoid β AddCommMon.add_comm_monoid, | |
| finset.prod_update_of_not_mem β finset.sum_update_of_not_mem, | |
| smooth_one β smooth_zero, | |
| measure_theory.measure.haar.prehaar_le_index β measure_theory.measure.haar.add_prehaar_le_add_index, | |
| mul_equiv.symm_symm β add_equiv.symm_symm, | |
| quotient_group.card_quotient_right_rel β quotient_add_group.card_quotient_right_rel, | |
| div_left_inj β sub_left_inj, | |
| measure_theory.ae_measure_preimage_mul_right_lt_top_of_ne_zero β measure_theory.ae_measure_preimage_add_right_lt_top_of_ne_zero, | |
| set.is_scalar_tower β set.vadd_assoc_class, | |
| submonoid.localization_map.to_monoid_hom β add_submonoid.localization_map.to_add_monoid_hom, | |
| mul_lt_one_of_le_of_lt β add_neg_of_nonpos_of_neg, | |
| inducing.topological_group β inducing.topological_add_group, | |
| quotient_group.exists_coe β quotient_add_group.exists_coe, | |
| filter.germ.group β filter.germ.add_group, | |
| mul_equiv_class.monoid_hom_class β add_equiv_class.add_monoid_hom_class, | |
| has_continuous_mul_inf β has_continuous_add_inf, | |
| list.prod_drop_succ β list.sum_drop_succ, | |
| hindman.exists_idempotent_ultrafilter_le_FP β hindman.exists_idempotent_ultrafilter_le_FS, | |
| list.length_pos_of_one_lt_prod β list.length_pos_of_sum_pos, | |
| mul_lt_of_mul_lt_right β add_lt_of_add_lt_right, | |
| Magma.of_hom_apply β AddMagma.of_hom_apply, | |
| submonoid.left_inv_equiv β add_submonoid.left_neg_equiv, | |
| Semigroup.has_coe_to_sort β AddSemigroup.has_coe_to_sort, | |
| inv_lt_div_iff_lt_mul β neg_lt_sub_iff_lt_add, | |
| smooth_finset_prod β smooth_finset_sum, | |
| strict_anti.mul_antitone' β strict_anti.add_antitone, | |
| filter.tendsto.norm' β filter.tendsto.norm, | |
| units.mul_one_class β add_units.add_zero_class, | |
| filter.div_le_div β filter.sub_le_sub, | |
| submonoid.sup_eq_range β add_submonoid.sup_eq_range, | |
| measurable_equiv.coe_mul_right β measurable_equiv.coe_add_right, | |
| submonoid.localization_map.is_unit_comp β add_submonoid.localization_map.is_add_unit_comp, | |
| monoid_hom.restrict β add_monoid_hom.restrict, | |
| finset.ae_measurable_prod β finset.ae_measurable_sum, | |
| monoid.closure_subset β add_monoid.closure_subset, | |
| submonoid.closure_induction β add_submonoid.closure_induction, | |
| lattice_ordered_comm_group.lattice_ordered_comm_group_to_distrib_lattice β lattice_ordered_comm_group.lattice_ordered_add_comm_group_to_distrib_lattice, | |
| measure_theory.measure_lt_top_of_is_compact_of_is_mul_left_invariant' β measure_theory.measure_lt_top_of_is_compact_of_is_add_left_invariant', | |
| commute.units_inv_left β add_commute.add_units_neg_left, | |
| subset_interior_smul β subset_interior_vadd, | |
| div_lt_one' β sub_neg, | |
| submonoid.mul_def β add_submonoid.add_def, | |
| is_unit.eq_inv_mul_iff_mul_eq β is_add_unit.eq_neg_add_iff_add_eq, | |
| mul_action.minimal_period_pos β add_action.minimal_period_pos, | |
| open_subgroup.coe_subset β open_add_subgroup.coe_subset, | |
| subgroup.is_closed_topological_closure β add_subgroup.is_closed_topological_closure, | |
| rootable_by.surjective_pow β divisible_by.surjective_smul, | |
| monoid_hom.mker β add_monoid_hom.mker, | |
| Magma.inhabited β AddMagma.inhabited, | |
| localization.mul_equiv_of_quotient_symm_monoid_of β add_localization.add_equiv_of_quotient_symm_add_monoid_of, | |
| subgroup.mul_injective_of_disjoint β add_subgroup.add_injective_of_disjoint, | |
| uniform_on_fun.has_basis_nhds_one β uniform_on_fun.has_basis_nhds_zero, | |
| norm_mul_le_of_le β norm_add_le_of_le, | |
| filter.mapβ_mul β filter.mapβ_add, | |
| set.mul_indicator_Union_apply β set.indicator_Union_apply, | |
| subgroup.mem_left_transversals.mk'_to_equiv β add_subgroup.mem_left_transversals.mk'_to_equiv, | |
| npow_rec β nsmul_rec, | |
| subgroup.finite β add_subgroup.finite, | |
| lower_set.Iic_one β lower_set.Iic_zero, | |
| quotient_group.quotient_inf_equiv_prod_normal_quotient β quotient_add_group.quotient_inf_equiv_sum_normal_quotient, | |
| group.zpow_succ' β add_group.zsmul_succ', | |
| smooth_at.mul β smooth_at.add, | |
| prod.one_eq_mk β prod.zero_eq_mk, | |
| monoid_hom.prod_apply β add_monoid_hom.prod_apply, | |
| zpow_bit1 β bit1_zsmul, | |
| le_self_mul β le_self_add, | |
| function.extend_by_one.hom_apply β function.extend_by_zero.hom_apply, | |
| is_group_hom.injective_iff β is_add_group_hom.injective_iff, | |
| subsemigroup.map_strict_mono_of_injective β add_subsemigroup.map_strict_mono_of_injective, | |
| group_topology.to_topological_space_le β add_group_topology.to_topological_space_le, | |
| CommGroup.of_hom β AddCommGroup.of_hom, | |
| tendsto_inv_nhds_within_Ioi_inv β tendsto_neg_nhds_within_Ioi_neg, | |
| mul_opposite.op_equiv β add_opposite.op_equiv, | |
| order_dual.covariant_class_swap_mul_lt β order_dual.covariant_class_swap_add_lt, | |
| open_subgroup.semilattice_sup β open_add_subgroup.semilattice_sup, | |
| comm_monoid.one_mul β add_comm_monoid.zero_add, | |
| uniform_group.uniform_continuous_iff_open_ker β uniform_add_group.uniform_continuous_iff_open_ker, | |
| submonoid.localization_map.sec_spec β add_submonoid.localization_map.sec_spec, | |
| order_dual.normed_group β order_dual.normed_add_group, | |
| dfinsupp.prod_one β dfinsupp.sum_zero, | |
| measure_theory.fundamental_frontier_smul β measure_theory.add_fundamental_frontier_vadd, | |
| open_subgroup.coe_inf β open_add_subgroup.coe_inf, | |
| inv_ball β neg_ball, | |
| measure_theory.ae_eq_fun.one_def β measure_theory.ae_eq_fun.zero_def, | |
| inv_eq_of_mul_eq_one_left β neg_eq_of_add_eq_zero_left, | |
| submonoid.comap_infi β add_submonoid.comap_infi, | |
| set.div_union β set.sub_union, | |
| mul_lt_one_of_lt_of_le β add_neg_of_neg_of_nonpos, | |
| set.Union_inv β set.Union_neg, | |
| localization.has_mul β add_localization.has_add, | |
| upper_set.coe_mul β upper_set.coe_add, | |
| filter.eventually_one β filter.eventually_zero, | |
| inv_lt_one' β neg_lt_zero, | |
| dist_div_left β dist_sub_left, | |
| right.mul_eq_mul_iff_eq_and_eq β right.add_eq_add_iff_eq_and_eq, | |
| linear_ordered_comm_group.mul_lt_mul_left' β linear_ordered_add_comm_group.add_lt_add_left, | |
| con.coe_one β add_con.coe_zero, | |
| infinite.order_of_eq_zero_of_forall_mem_zpowers β infinite.add_order_of_eq_zero_of_forall_mem_zmultiples, | |
| of_lex_smul β of_lex_vadd, | |
| interval.bot_mul β interval.bot_add, | |
| subsemigroup.bot_prod_bot β add_subsemigroup.bot_sum_bot, | |
| submonoid_class.to_monoid β add_submonoid_class.to_add_monoid, | |
| group_norm β add_group_norm, | |
| measure_theory.ae_strongly_measurable.smul β measure_theory.ae_strongly_measurable.vadd, | |
| mul_le_mul_three β add_le_add_three, | |
| sym_alg.sym_ne_one_iff β sym_alg.sym_ne_zero_iff, | |
| measure_theory.measure_preserving.mul_left β measure_theory.measure_preserving.add_left, | |
| is_group_hom.mem_ker β is_add_group_hom.mem_ker, | |
| pi.smul_comm_class' β pi.vadd_comm_class', | |
| lex.has_smul' β lex.has_vadd', | |
| fn_min_mul_fn_max β fn_min_add_fn_max, | |
| normed_comm_group.nhds_basis_norm_lt β normed_add_comm_group.nhds_basis_norm_lt, | |
| finset.mul_mem_mul β finset.add_mem_add, | |
| continuous_map.has_mul β continuous_map.has_add, | |
| group_norm.to_group_seminorm β add_group_norm.to_add_group_seminorm, | |
| subgroup.opposite_equiv β add_subgroup.opposite_equiv, | |
| finset.prod_flip β finset.sum_flip, | |
| mul_equiv.submonoid_map_symm_apply β add_equiv.add_submonoid_map_symm_apply, | |
| nndist_mul_mul_le β nndist_add_add_le, | |
| CommMon.has_limits β AddCommMon.has_limits, | |
| measure_theory.ae_eq_fun.coe_fn_inv β measure_theory.ae_eq_fun.coe_fn_neg, | |
| Group.forgetβ_Mon_preserves_limits_of_size β AddGroup.forgetβ_AddMon_preserves_limits, | |
| finset.prod_filter_of_ne β finset.sum_filter_of_ne, | |
| norm_le_norm_add_norm_div β norm_le_norm_add_norm_sub, | |
| free_group.inv_rev_length β free_add_group.neg_rev_length, | |
| upper_set.mul_action β upper_set.add_action, | |
| locally_constant.group β locally_constant.add_group, | |
| subgroup.inv_mem' β add_subgroup.neg_mem', | |
| unique_prods β unique_sums, | |
| smooth_within_at_finset_prod' β smooth_within_at_finset_sum', | |
| con.complete_lattice β add_con.complete_lattice, | |
| uniformity_mul_opposite β uniformity_add_opposite, | |
| localization.away.monoid_of β add_localization.away.add_monoid_of, | |
| is_group_hom.one_iff_ker_inv β is_add_group_hom.zero_iff_ker_neg, | |
| comm_monoid.to_monoid_injective β add_comm_monoid.to_add_monoid_injective, | |
| mul_equiv.coe_to_mul_hom β add_equiv.coe_to_add_hom, | |
| submonoid.mul_subset β add_submonoid.add_subset, | |
| monoid_hom.cod_restrict_apply β add_monoid_hom.cod_restrict_apply, | |
| finset.prod_fiberwise β finset.sum_fiberwise, | |
| continuous_at.pow β continuous_at.nsmul, | |
| mul_hom.mclosure_preimage_le β add_hom.mclosure_preimage_le, | |
| subgroup.sq_mem_of_index_two β add_subgroup.two_smul_mem_of_index_two, | |
| subgroup.mem_right_transversals.to_equiv β add_subgroup.mem_right_transversals.to_equiv, | |
| linear_ordered_comm_group.npow_zero' β linear_ordered_add_comm_group.nsmul_zero', | |
| free_monoid.closure_range_of β free_add_monoid.closure_range_of, | |
| continuous_on.pow β continuous_on.nsmul, | |
| eq_inv_iff_mul_eq_one β eq_neg_iff_add_eq_zero, | |
| submonoid.localization_map.mk'_mul β add_submonoid.localization_map.mk'_add, | |
| finset.div_eq_empty β finset.sub_eq_empty, | |
| dist_div_right β dist_sub_right, | |
| mul_lt_one' β add_neg', | |
| fintype.prod_equiv β fintype.sum_equiv, | |
| con.coe_smul β add_con.coe_vadd, | |
| measure_theory.integral_smul_eq_self β measure_theory.integral_vadd_eq_self, | |
| magma.assoc_quotient.hom_ext β add_magma.free_add_semigroup.hom_ext, | |
| subgroup.multiset_noncomm_prod_mem β add_subgroup.multiset_noncomm_sum_mem, | |
| map_div_le_add β map_sub_le_add, | |
| nnnorm_ne_zero_iff' β nnnorm_ne_zero_iff, | |
| mul_action.smul_mem_orbit_smul β add_action.vadd_mem_orbit_vadd, | |
| linear_ordered_comm_monoid.mul_le_mul_left β linear_ordered_add_comm_monoid.add_le_add_left, | |
| fin_equiv_zpowers_apply β fin_equiv_zmultiples_apply, | |
| semigroup.opposite_smul_comm_class' β add_semigroup.opposite_vadd_comm_class', | |
| is_scalar_tower.has_continuous_const_smul β vadd_assoc_class.has_continuous_const_vadd, | |
| with_one.has_coe_t β with_zero.has_coe_t, | |
| filter.germ.ordered_cancel_comm_monoid β filter.germ.ordered_cancel_add_comm_monoid, | |
| measure_theory.measure.inv_inv β measure_theory.measure.neg_neg, | |
| free_group.inv_rev_surjective β free_add_group.neg_rev_surjective, | |
| ball_div_one β ball_sub_zero, | |
| subsemigroup.map_comap_le β add_subsemigroup.map_comap_le, | |
| filter.tendsto.const_smul β filter.tendsto.const_vadd, | |
| finset.singleton_mul_hom_apply β finset.singleton_add_hom_apply, | |
| mul_equiv.to_CommGroup_iso_hom β add_equiv.to_AddCommGroup_iso_hom, | |
| is_cyclic.of_exponent_eq_card β is_add_cyclic.of_exponent_eq_card, | |
| mul_hom.prod_comp_prod_map β add_hom.prod_comp_prod_map, | |
| submonoid.inv_le_inv β add_submonoid.neg_le_neg, | |
| equiv.mul_equiv β equiv.add_equiv, | |
| submonoid.has_Inf β add_submonoid.has_Inf, | |
| con.comap β add_con.comap, | |
| group_filter_basis.prod_subset_self β add_group_filter_basis.sum_subset_self, | |
| con.pow β add_con.nsmul, | |
| left.mul_lt_one β left.add_neg, | |
| measure_theory.measure_mul_measure_eq β measure_theory.measure_add_measure_eq, | |
| subsemigroup.mem_sup_left β add_subsemigroup.mem_sup_left, | |
| group_filter_basis.mul' β add_group_filter_basis.add', | |
| monoid_hom_class.bound_of_antilipschitz β add_monoid_hom_class.bound_of_antilipschitz, | |
| finset.preimage_mul_left_singleton β finset.preimage_add_left_singleton, | |
| left.inv_lt_self β left.neg_lt_self, | |
| continuous_monoid_hom.coprod β continuous_add_monoid_hom.coprod, | |
| mul_equiv.to_Group_iso β add_equiv.to_AddGroup_iso, | |
| le_of_forall_one_lt_div_le β le_of_forall_pos_sub_le, | |
| is_subgroup.inv_mem β is_add_subgroup.neg_mem, | |
| exists_idempotent_of_compact_t2_of_continuous_mul_left β exists_idempotent_of_compact_t2_of_continuous_add_left, | |
| is_cyclic.exponent_eq_zero_of_infinite β is_add_cyclic.exponent_eq_zero_of_infinite, | |
| subgroup.is_complement'_top_bot β add_subgroup.is_complement'_top_bot, | |
| free_group.to_word_inj β free_add_group.to_word_inj, | |
| with_one β with_zero, | |
| fin.prod_univ_two β fin.sum_univ_two, | |
| finset.not_one_mem_div_iff β finset.not_zero_mem_sub_iff, | |
| measure_theory.integrable.comp_mul_left β measure_theory.integrable.comp_add_left, | |
| hindman.exists_FP_of_large β hindman.exists_FS_of_large, | |
| subgroup.prod_eq_bot_iff β add_subgroup.prod_eq_bot_iff, | |
| function.embedding.coe_smul β function.embedding.coe_vadd, | |
| inv_one_class.one β neg_zero_class.zero, | |
| set.mul_indicator_mul_support β set.indicator_support, | |
| mul_opposite.unop_mul β add_opposite.unop_add, | |
| set.nonempty.inv β set.nonempty.neg, | |
| quotient_group.eq_class_eq_left_coset β quotient_add_group.eq_class_eq_left_coset, | |
| subgroup.bot_or_exists_ne_one β add_subgroup.bot_or_exists_ne_zero, | |
| group_filter_basis.inv' β add_group_filter_basis.neg', | |
| filter.ne_bot.le_one_iff β filter.ne_bot.nonpos_iff, | |
| monoid_hom.coprod_unique β add_monoid_hom.coprod_unique, | |
| con.ker_lift_injective β add_con.ker_lift_injective, | |
| subgroup.comap_infi β add_subgroup.comap_infi, | |
| antitone.mul_const' β antitone.add_const, | |
| submonoid.has_lipschitz_mul β add_submonoid.has_lipschitz_add, | |
| submonoid.copy_eq β add_submonoid.copy_eq, | |
| mul_hom.mul_apply β add_hom.add_apply, | |
| pi.const_pow β pi.smul_const, | |
| filter.has_smul β filter.has_vadd, | |
| set.comp_mul_indicator β set.comp_indicator, | |
| mul_lt_of_le_one_of_lt β add_lt_of_nonpos_of_lt, | |
| prod.smul_mk β prod.vadd_mk, | |
| continuous_within_at_const_smul_iff β continuous_within_at_const_vadd_iff, | |
| filter.top_mul_top β filter.top_add_top, | |
| CommMon.forget_preserves_limits β AddCommMon.forget_preserves_limits, | |
| mul_equiv.prod_congr β add_equiv.prod_congr, | |
| finprod_mem_of_eq_on_one β finsum_mem_of_eq_on_zero, | |
| subgroup.pi_le_iff β add_subgroup.pi_le_iff, | |
| is_regular_mul_iff β is_add_regular_add_iff, | |
| mul_le_add_hom_class.map_mul_le_add β subadditive_hom_class.map_add_le_add, | |
| submonoid.centralizer_univ β add_submonoid.centralizer_univ, | |
| equiv.comm_monoid β equiv.add_comm_monoid, | |
| uniform_continuous_pow_const β uniform_continuous_const_nsmul, | |
| mul_equiv.is_haar_measure_map β add_equiv.is_add_haar_measure_map, | |
| finset.swap_mem_mul_antidiagonal β finset.swap_mem_add_antidiagonal, | |
| finset.card_pow_le β finset.card_nsmul_le, | |
| finset.div_def β finset.sub_def, | |
| con.comap_eq β add_con.comap_eq, | |
| finset.prod_le_prod_of_subset_of_one_le' β finset.sum_le_sum_of_subset_of_nonneg, | |
| measure_theory.simple_func.monoid β measure_theory.simple_func.add_monoid, | |
| op_smul_eq_mul β op_vadd_eq_add, | |
| comm_group.zpow β add_comm_group.zsmul, | |
| finset.ae_strongly_measurable_prod' β finset.ae_strongly_measurable_sum', | |
| is_open.inv β is_open.neg, | |
| measure_theory.lintegral_lintegral_mul_inv β measure_theory.lintegral_lintegral_add_neg, | |
| finprod_mem_eq_finite_to_finset_prod β finsum_mem_eq_finite_to_finset_sum, | |
| free_group.mul_mk β free_add_group.add_mk, | |
| ulift.one_down β ulift.zero_down, | |
| commute.zpow_zpow β add_commute.zsmul_zsmul, | |
| submonoid.closure_eq_mrange β add_submonoid.closure_eq_mrange, | |
| filter.tendsto_inv_cobounded β filter.tendsto_neg_cobounded, | |
| submonoid.localization_map.mk'_surjective β add_submonoid.localization_map.mk'_surjective, | |
| pow_coprime_symm_apply β nsmul_coprime_symm_apply, | |
| fintype.prod_eq_prod_compl_mul β fintype.sum_eq_sum_compl_add, | |
| smooth_mul_right β smooth_add_right, | |
| finset.multiplicative_energy_mono_right β finset.additive_energy_mono_right, | |
| to_lex_inv β to_lex_neg, | |
| commute.right_comm β add_commute.right_comm, | |
| filter.map_at_top_finset_prod_le_of_prod_eq β filter.map_at_top_finset_sum_le_of_sum_eq, | |
| subgroup.codisjoint_subgroup_of_sup β add_subgroup.codisjoint_add_subgroup_of_sup, | |
| measure_theory.measure.map_inv_eq_self β measure_theory.measure.map_neg_eq_self, | |
| left.pow_le_one_of_le β left.pow_nonpos, | |
| continuous_map.coe_fn_monoid_hom_apply β continuous_map.coe_fn_add_monoid_hom_apply, | |
| pi.has_measurable_mul β pi.has_measurable_add, | |
| mul_hom.id_comp β add_hom.id_comp, | |
| commute.smul_left β add_commute.vadd_left, | |
| option.is_central_scalar β option.is_central_vadd, | |
| subgroup.has_one β add_subgroup.has_zero, | |
| subgroup.subtype β add_subgroup.subtype, | |
| magma.assoc_quotient.map β add_magma.free_add_semigroup.map, | |
| monoid_hom.ker_restrict β add_monoid_hom.ker_restrict, | |
| subgroup.group_equiv_quotient_times_subgroup β add_subgroup.add_group_equiv_quotient_times_add_subgroup, | |
| mul_equiv.to_monoid_hom_injective β add_equiv.to_add_monoid_hom_injective, | |
| finset.prod_sdiff_div_prod_sdiff β finset.sum_sdiff_sub_sum_sdiff, | |
| subgroup.quotient_equiv_prod_of_le' β add_subgroup.quotient_equiv_sum_of_le', | |
| subgroup.smul_comm_class_right β add_subgroup.vadd_comm_class_right, | |
| is_unit.set β is_add_unit.set, | |
| subgroup.closure_induction'' β add_subgroup.closure_induction'', | |
| mul_equiv.map_finsupp_prod β add_equiv.map_finsupp_sum, | |
| exists_nhds_one_split4 β exists_nhds_zero_quarter, | |
| set.nonempty.one_mem_div β set.nonempty.zero_mem_sub, | |
| div_ne_one_of_ne β sub_ne_zero_of_ne, | |
| monotone_on.mul_const' β monotone_on.add_const, | |
| free_magma.to_free_semigroup_of β free_add_magma.to_free_add_semigroup_of, | |
| submonoid.closure β add_submonoid.closure, | |
| free_monoid.mk_mul_action β free_add_monoid.mk_add_action, | |
| submonoid.has_top β add_submonoid.has_top, | |
| function.mul_support_max β function.support_max, | |
| filter.is_unit_iff β filter.is_add_unit_iff, | |
| min_le_of_mul_le_sq β min_le_of_add_le_two_nsmul, | |
| finset.prod_sdiff β finset.sum_sdiff, | |
| free_magma.is_lawful_traversable β free_add_magma.is_lawful_traversable, | |
| left.one_le_pow_of_le β left.pow_nonneg, | |
| group.is_unit β add_group.is_add_unit, | |
| group_seminorm.apply_one β add_group_seminorm.apply_one, | |
| lie_group.to_has_smooth_mul β lie_add_group.to_has_smooth_add, | |
| subgroup.closure_Union β add_subgroup.closure_Union, | |
| normed_ordered_group β normed_ordered_add_group, | |
| CommMon.Mon.has_coe β AddCommMon.Mon.has_coe, | |
| to_lex_smul β to_lex_vadd, | |
| monoid_hom.coe_fst β add_monoid_hom.coe_fst, | |
| is_right_regular β is_add_right_regular, | |
| uniform_space.completion.is_central_scalar β uniform_space.completion.is_central_vadd, | |
| set.Union_div β set.Union_sub, | |
| finset.preimage_mul_right_one' β finset.preimage_add_right_zero', | |
| submonoid.closure_eq β add_submonoid.closure_eq, | |
| is_unit β is_add_unit, | |
| magma.assoc_quotient.lift_of β add_magma.free_add_semigroup.lift_of, | |
| filter.bot_smul β filter.bot_vadd, | |
| lex.has_pow' β lex.has_smul', | |
| canonically_ordered_monoid.le_self_mul β canonically_ordered_add_monoid.le_self_add, | |
| subgroup.pi_mem_of_mul_single_mem_aux β add_subgroup.pi_mem_of_single_mem_aux, | |
| one_hom.cancel_left β zero_hom.cancel_left, | |
| pi.ordered_cancel_comm_monoid β pi.ordered_cancel_add_comm_monoid, | |
| set.singleton_mul_singleton β set.singleton_add_singleton, | |
| locally_constant.has_div β locally_constant.has_sub, | |
| Mon.filtered_colimits.colimit_mul_aux_eq_of_rel_right β AddMon.filtered_colimits.colimit_add_aux_eq_of_rel_right, | |
| is_unit_of_mul_eq_one β is_add_unit_of_add_eq_zero, | |
| mul_salem_spencer.roth_number_eq β add_salem_spencer.roth_number_eq, | |
| continuous.div' β continuous.sub, | |
| nonempty_interval.coe_one β nonempty_interval.coe_zero, | |
| set.eq_on_mul_indicator β set.eq_on_indicator, | |
| subsemigroup.mem_closure β add_subsemigroup.mem_closure, | |
| monoid.exponent β add_monoid.exponent, | |
| group_seminorm.to_seminormed_comm_group β add_group_seminorm.to_seminormed_add_comm_group, | |
| monoid_hom.map_finprod_of_injective β add_monoid_hom.map_finsum_of_injective, | |
| set.smul_subset_smul_left β set.vadd_subset_vadd_left, | |
| order_monoid_hom.coe_id β order_add_monoid_hom.coe_id, | |
| subsemigroup.map_injective_of_injective β add_subsemigroup.map_injective_of_injective, | |
| linear_ordered_comm_group.npow β linear_ordered_add_comm_group.nsmul, | |
| submonoid.prod_le_iff β add_submonoid.prod_le_iff, | |
| group.rootable_by_int_of_rootable_by_nat β add_group.divisible_by_int_of_divisible_by_nat, | |
| monoid_hom.freiman_hom_class β add_monoid_hom.freiman_hom_class, | |
| tactic.group.zpow_trick_one β tactic.group.zsmul_trick_zero, | |
| mul_opposite.unop_injective β add_opposite.unop_injective, | |
| finset.empty_pow β finset.empty_nsmul, | |
| with_one.has_inv β with_zero.has_neg, | |
| measure_theory.ae_strongly_measurable.const_mul β measure_theory.ae_strongly_measurable.const_add, | |
| lipschitz_on_with.norm_div_le β lipschitz_on_with.norm_sub_le, | |
| commute.mul_zpow β add_commute.zsmul_add, | |
| units.mul_left β add_units.add_left, | |
| lt_inv_mul_iff_lt β lt_neg_add_iff_lt, | |
| group_topology.bounded_order β add_group_topology.bounded_order, | |
| set.mul_indicator_le_mul_indicator β set.indicator_le_indicator, | |
| monoid_hom.cancel_left β add_monoid_hom.cancel_left, | |
| subgroup.mem_map_equiv β add_subgroup.mem_map_equiv, | |
| subgroup.of β add_subgroup.of, | |
| div_inv_one_monoid.zpow β sub_neg_zero_monoid.zsmul, | |
| submonoid.map_injective_of_injective β add_submonoid.map_injective_of_injective, | |
| pow_eq_one_iff β nsmul_eq_zero_iff, | |
| order_of_eq_zero β add_order_of_eq_zero, | |
| subsemigroup.mem_comap β add_subsemigroup.mem_comap, | |
| group_seminorm_class.map_inv_eq_map β add_group_seminorm_class.map_neg_eq_map, | |
| semiconj_by.mul_left β add_semiconj_by.add_left, | |
| group_norm_class.map_inv_eq_map β add_group_norm_class.map_neg_eq_map, | |
| one_lt_zpow' β zsmul_pos, | |
| has_smul.comp.smul β has_vadd.comp.vadd, | |
| free_group.free_group_congr_trans β free_add_group.free_add_group_congr_trans, | |
| ne_one_of_nnnorm_ne_zero β ne_zero_of_nnnorm_ne_zero, | |
| CommGroup.filtered_colimits.colimit_comm_group β AddCommGroup.filtered_colimits.colimit_add_comm_group, | |
| category_theory.types β category_theory.types, | |
| group.to_division_monoid β add_group.to_subtraction_monoid, | |
| subgroup.quotient_equiv_prod_of_le'_symm_apply β add_subgroup.quotient_equiv_sum_of_le'_symm_apply, | |
| monoid_hom.range_restrict_mker β add_monoid_hom.range_restrict_mker, | |
| subgroup.mem_right_transversals.to_equiv_apply β add_subgroup.mem_right_transversals.to_equiv_apply, | |
| measure_theory.measure.div_mem_nhds_one_of_haar_pos β measure_theory.measure.sub_mem_nhds_zero_of_add_haar_pos, | |
| fin.partial_prod β fin.partial_sum, | |
| order_iso.mul_left_to_equiv β order_iso.add_left_to_equiv, | |
| subgroup.mem_left_transversals.to_fun β add_subgroup.mem_left_transversals.to_fun, | |
| multiset.prod_bind β multiset.sum_bind, | |
| finprod_mem_div_distrib β finsum_mem_sub_distrib, | |
| with_one.coe_mul β with_zero.coe_add, | |
| con.has_mem β add_con.has_mem, | |
| filter.tendsto.coe_inv_units β filter.tendsto.coe_neg_add_units, | |
| mul_equiv.mk_coe β add_equiv.mk_coe, | |
| subgroup.to_submonoid_strict_mono β add_subgroup.to_add_submonoid_strict_mono, | |
| inv_coe_set β neg_coe_set, | |
| left_cancel_semigroup.mul β add_left_cancel_semigroup.add, | |
| mul_lt_one β add_neg, | |
| measure_theory.smul_invariant_measure_tfae β measure_theory.vadd_invariant_measure_tfae, | |
| finset.nonempty.subset_one_iff β finset.nonempty.subset_zero_iff, | |
| metric.bounded.div β metric.bounded.sub, | |
| closed_ball_one_mul_singleton β closed_ball_zero_add_singleton, | |
| finset.prod_comm β finset.sum_comm, | |
| ordered_cancel_comm_monoid.mul_le_mul_left β ordered_cancel_add_comm_monoid.add_le_add_left, | |
| finprod_mem_coe_finset β finsum_mem_coe_finset, | |
| ordered_comm_group.mul_lt_mul_left' β ordered_add_comm_group.add_lt_add_left, | |
| singleton_div_closed_ball β singleton_sub_closed_ball, | |
| order_dual.linear_ordered_comm_group β order_dual.linear_ordered_add_comm_group, | |
| continuous.norm' β continuous.norm, | |
| finset.prod_eq_one_iff' β finset.sum_eq_zero_iff, | |
| monoid_hom.restrict_range β add_monoid_hom.restrict_range, | |
| order_monoid_hom.coe_mul β order_add_monoid_hom.coe_add, | |
| measure_theory.is_fundamental_domain.smul_of_comm β measure_theory.is_add_fundamental_domain.vadd_of_comm, | |
| monoid.fg_of_finite β add_monoid.fg_of_finite, | |
| set.mul_mem_center β set.add_mem_add_center, | |
| has_continuous_mul_of_comm_of_nhds_one β has_continuous_add_of_comm_of_nhds_zero, | |
| norm_mulβ_le β norm_addβ_le, | |
| function.injective.ordered_comm_monoid β function.injective.ordered_add_comm_monoid, | |
| uniform_continuous_inv β uniform_continuous_neg, | |
| mul_action.maps_to_smul_orbit β add_action.maps_to_vadd_orbit, | |
| mul_opposite.smul_comm_class β add_opposite.vadd_comm_class, | |
| sigma.smul_def β sigma.vadd_def, | |
| submonoid.localization_map.mk'_spec' β add_submonoid.localization_map.mk'_spec', | |
| division_comm_monoid.npow β subtraction_comm_monoid.nsmul, | |
| subgroup.index_comap β add_subgroup.index_comap, | |
| submonoid.pi β add_submonoid.pi, | |
| submonoid.multiset_noncomm_prod_mem β add_submonoid.multiset_noncomm_sum_mem, | |
| lattice_ordered_comm_group.m_neg_part_def β lattice_ordered_comm_group.neg_part_def, | |
| set.mul_indicator_compl_mul_self_apply β set.indicator_compl_add_self_apply, | |
| freiman_hom.one_apply β add_freiman_hom.zero_apply, | |
| arrow_action_to_has_smul_smul β arrow_add_action_to_has_vadd_vadd, | |
| Magma.of β AddMagma.of, | |
| finset.one_le_prod'' β finset.sum_nonneg', | |
| subsemigroup.supr_induction' β add_subsemigroup.supr_induction', | |
| measure_theory.measure.is_haar_measure β measure_theory.measure.is_add_haar_measure, | |
| finprod_eq_prod_of_fintype β finsum_eq_sum_of_fintype, | |
| group_filter_basis.inv β add_group_filter_basis.neg, | |
| div_inv_monoid.one β sub_neg_monoid.zero, | |
| left_cancel_monoid.to_monoid_injective β add_left_cancel_monoid.to_add_monoid_injective, | |
| submonoid.topological_closure β add_submonoid.topological_closure, | |
| lipschitz_with.norm_div_le_of_le β lipschitz_with.norm_sub_le_of_le, | |
| set.mul_eq_one_iff β set.add_eq_zero_iff, | |
| mul_action.quotient.smul_mk β add_action.quotient.vadd_mk, | |
| submonoid.top_prod β add_submonoid.top_prod, | |
| one_div β zero_sub, | |
| subgroup.relindex_inf_le β add_subgroup.relindex_inf_le, | |
| set.mem_smul_set_iff_inv_smul_mem β set.mem_vadd_set_iff_neg_vadd_mem, | |
| subgroup.card_dvd_of_le β add_subgroup.card_dvd_of_le, | |
| quotient_group.ker_lift_mk' β quotient_add_group.ker_lift_mk', | |
| finprod_dmem β finsum_dmem, | |
| measurable_set.const_smul β measurable_set.const_vadd, | |
| continuous_monoid_hom.coprod_to_monoid_hom β continuous_add_monoid_hom.coprod_to_add_monoid_hom, | |
| pi.eval_mul_hom_apply β pi.eval_add_hom_apply, | |
| equiv.inv_def β equiv.neg_def, | |
| free_magma β free_add_magma, | |
| subgroup.is_open_of_open_subgroup β add_subgroup.is_open_of_open_add_subgroup, | |
| contravariant_mul_lt_of_covariant_mul_le β contravariant_add_lt_of_covariant_add_le, | |
| right.one_lt_inv_iff β right.neg_pos_iff, | |
| div_lt_self_iff β sub_lt_self_iff, | |
| function.extend_div β function.extend_sub, | |
| mul_zpow_neg_one β neg_one_zsmul_add, | |
| monoid_hom.fintype_range β add_monoid_hom.fintype_range, | |
| filter.pure_mul_pure β filter.pure_add_pure, | |
| measure_theory.measure.inv.is_mul_left_invariant β measure_theory.measure.neg.is_add_left_invariant, | |
| continuous_monoid_hom.snd_to_monoid_hom β continuous_add_monoid_hom.snd_to_add_monoid_hom, | |
| ordered_comm_monoid.mul_comm β ordered_add_comm_monoid.add_comm, | |
| lex.has_div β lex.has_sub, | |
| finset.mul_univ_of_one_mem β finset.add_univ_of_zero_mem, | |
| monoid_hom.eq_on_mclosure β add_monoid_hom.eq_on_mclosure, | |
| finprod_mem_singleton β finsum_mem_singleton, | |
| con.rel_eq_coe β add_con.rel_eq_coe, | |
| pow_eq_mod_order_of β nsmul_eq_mod_add_order_of, | |
| has_continuous_inv_inf β has_continuous_neg_inf, | |
| monoid_hom.subgroup_of_range_eq_of_le β add_monoid_hom.add_subgroup_of_range_eq_of_le, | |
| has_continuous_mul β has_continuous_add, | |
| measurable_equiv.mul_right β measurable_equiv.add_right, | |
| is_open.mul_closure β is_open.add_closure, | |
| filter.ne_bot.of_div_right β filter.ne_bot.of_sub_right, | |
| units.min_coe β add_units.min_coe, | |
| continuous_multiset_prod β continuous_multiset_sum, | |
| div_inv_monoid.div β sub_neg_monoid.sub, | |
| set.is_pwo.mul β set.is_pwo.add, | |
| smul_eq_self_of_mem_zpowers β vadd_eq_self_of_mem_zmultiples, | |
| Group.limit_cone_is_limit β AddGroup.limit_cone_is_limit, | |
| is_monoid_hom.inv β is_add_monoid_hom.neg, | |
| set.nonempty.div β set.nonempty.sub, | |
| finset.prod_ite_one β finset.sum_ite_zero, | |
| measure_theory.ae_eq_fun.to_germ_monoid_hom β measure_theory.ae_eq_fun.to_germ_add_monoid_hom, | |
| continuous_map.pow_comp β continuous_map.nsmul_comp, | |
| ordered_comm_group.to_comm_group β ordered_add_comm_group.to_add_comm_group, | |
| finprod_unique β finsum_unique, | |
| right_cancel_semigroup.to_is_right_cancel_mul β add_right_cancel_semigroup.to_is_right_cancel_add, | |
| measure_theory.ae_eq_fun.coe_fn_mul β measure_theory.ae_eq_fun.coe_fn_add, | |
| map_mul_right_nhds_one β map_add_right_nhds_zero, | |
| subgroup.commute_subtype_of_commute β add_subgroup.commute_subtype_of_commute, | |
| mem_ball_iff_norm'' β mem_ball_iff_norm, | |
| smul_closure_orbit_subset β vadd_closure_orbit_subset, | |
| nonempty_interval.snd_mul β nonempty_interval.snd_add, | |
| finprod_mem_eq_one_of_forall_eq_one β finsum_mem_eq_zero_of_forall_eq_zero, | |
| smooth_inv β smooth_neg, | |
| mul_equiv.to_CommMon_iso β add_equiv.to_AddCommMon_iso, | |
| set.singleton_mul_hom β set.singleton_add_hom, | |
| function.injective.left_cancel_monoid β function.injective.add_left_cancel_monoid, | |
| exists_pow_eq_one β exists_nsmul_eq_zero, | |
| mul_opposite.op_equiv_apply β add_opposite.op_equiv_apply, | |
| free_group.to_word_injective β free_add_group.to_word_injective, | |
| mul_le_of_le_one_right' β add_le_of_nonpos_right, | |
| finset.prod_to_list β finset.sum_to_list, | |
| Group.group β AddGroup.add_group, | |
| quotient_group.range_ker_lift_injective β quotient_add_group.range_ker_lift_injective, | |
| con.quotient_quotient_equiv_quotient β add_con.quotient_quotient_equiv_quotient, | |
| Semigroup.semigroup β AddSemigroup.add_semigroup, | |
| subgroup.mem_left_transversals.to_equiv β add_subgroup.mem_left_transversals.to_equiv, | |
| monoid_hom.mclosure_preimage_le β add_monoid_hom.mclosure_preimage_le, | |
| is_unit.measurable_const_smul_iff β is_add_unit.measurable_const_vadd_iff, | |
| sum.has_faithful_smul_right β sum.has_faithful_vadd_right, | |
| con.map β add_con.map, | |
| uniform_fun.has_basis_nhds_one_of_basis β uniform_fun.has_basis_nhds_zero_of_basis, | |
| quotient_group.quotient.group β quotient_add_group.quotient.add_group, | |
| free_magma.traversable β free_add_magma.traversable, | |
| submonoid.localization_map.map_mul_right β add_submonoid.localization_map.map_add_right, | |
| lattice_ordered_comm_group.pos_one β lattice_ordered_comm_group.pos_zero, | |
| subgroup.left_transversals.diff_self β add_subgroup.left_transversals.diff_self, | |
| finset.coe_monoid_hom β finset.coe_add_monoid_hom, | |
| finset.prod_sigma β finset.sum_sigma, | |
| subgroup.comap_sup_eq_of_le_range β add_subgroup.comap_sup_eq_of_le_range, | |
| finset.prod_subtype_of_mem β finset.sum_subtype_of_mem, | |
| one_hom β zero_hom, | |
| set.mul_indicator_self_mul_compl β set.indicator_self_add_compl, | |
| unique_prods.unique_mul_of_nonempty β unique_sums.unique_add_of_nonempty, | |
| semiconj_by.op β add_semiconj_by.op, | |
| finset.prod_attach β finset.sum_attach, | |
| list.perm.prod_eq β list.perm.sum_eq, | |
| monoid_hom.mem_ker β add_monoid_hom.mem_ker, | |
| group_norm.coe_le_coe β add_group_norm.coe_le_coe, | |
| division_monoid.div_eq_mul_inv β subtraction_monoid.sub_eq_add_neg, | |
| subsemigroup.mul_mem β add_subsemigroup.add_mem, | |
| has_div.div β has_sub.sub, | |
| finset.prod_mul_distrib β finset.sum_add_distrib, | |
| set.mul_action β set.add_action, | |
| inv_one_class.inv_one β neg_zero_class.neg_zero, | |
| order_of_eq_zero_iff' β add_order_of_eq_zero_iff', | |
| finset.coe_smul_finset β finset.coe_vadd_finset, | |
| nhds_mul_hom_apply β nhds_add_hom_apply, | |
| edist_inv β edist_neg, | |
| filter.div_mem_div β filter.sub_mem_sub, | |
| pi.mul_single_mul β pi.single_add, | |
| free_group.ext_hom β free_add_group.ext_hom, | |
| CommGroup.forgetβ.creates_limit β AddCommGroup.forgetβ.creates_limit, | |
| comm_group.zpow_succ' β add_comm_group.zsmul_succ', | |
| subgroup.comap_le_comap_of_le_range β add_subgroup.comap_le_comap_of_le_range, | |
| locally_constant.mul_indicator_of_mem β locally_constant.indicator_of_mem, | |
| covariants.to_unique_prods β covariants.to_unique_sums, | |
| submonoid.localization_map.eq_of_eq β add_submonoid.localization_map.eq_of_eq, | |
| group_seminorm.coe_lt_coe β add_group_seminorm.coe_lt_coe, | |
| subgroup.smul_to_fun β add_subgroup.vadd_to_fun, | |
| mul_opposite.is_empty β add_opposite.is_empty, | |
| mul_lt_mul_of_lt_of_lt β add_lt_add_of_lt_of_lt, | |
| submonoid.pow_smul_mem_closure_smul β add_submonoid.nsmul_vadd_mem_closure_vadd, | |
| lipschitz_with_lipschitz_const_mul_edist β lipschitz_with_lipschitz_const_add_edist, | |
| set.preimage_div_preimage_subset β set.preimage_sub_preimage_subset, | |
| mul_opposite.group β add_opposite.add_group, | |
| group_norm.has_coe_to_fun β add_group_norm.has_coe_to_fun, | |
| mul_lower_closure β add_lower_closure, | |
| equiv.div_left_eq_inv_trans_mul_left β equiv.sub_left_eq_neg_trans_add_left, | |
| function.surjective.monoid β function.surjective.add_monoid, | |
| con.Sup_eq_con_gen β add_con.Sup_eq_add_con_gen, | |
| set.mul_union β set.add_union, | |
| min_mul_distrib' β min_add_distrib', | |
| filter.ne_bot.of_mul_right β filter.ne_bot.of_add_right, | |
| subgroup.mk_eq_one_iff β add_subgroup.mk_eq_zero_iff, | |
| is_scalar_tower.op_right β vadd_assoc_class.op_right, | |
| con.ker_lift_mk β add_con.ker_lift_mk, | |
| locally_constant.coe_fn_monoid_hom β locally_constant.coe_fn_add_monoid_hom, | |
| div_monoid_hom_apply β sub_add_monoid_hom_apply, | |
| free_group.free_group_congr_apply β free_add_group.free_add_group_congr_apply, | |
| lt_of_mul_lt_of_one_le_left β lt_of_add_lt_of_nonneg_left, | |
| measure_theory.measure_mul_right_null β measure_theory.measure_add_right_null, | |
| semiconj_by.reflexive β add_semiconj_by.reflexive, | |
| submonoid.localization_map.sec β add_submonoid.localization_map.sec, | |
| submonoid.gi_map_comap β add_submonoid.gi_map_comap, | |
| continuous.exists_forall_ge_of_has_compact_mul_support β continuous.exists_forall_ge_of_has_compact_support, | |
| sym_alg.unsym_inv β sym_alg.unsym_neg, | |
| monoid_hom.comp β add_monoid_hom.comp, | |
| smooth_within_at_one β smooth_within_at_zero, | |
| fin.prod_univ_four β fin.sum_univ_four, | |
| group_seminorm.le_def β add_group_seminorm.le_def, | |
| monoid_hom.comap_bot β add_monoid_hom.comap_bot, | |
| finset.div_subset_iff β finset.sub_subset_iff, | |
| linear_ordered_comm_monoid.npow_succ' β linear_ordered_add_comm_monoid.nsmul_succ', | |
| mul_inv_le_one_iff_le β add_neg_nonpos_iff_le, | |
| subsemigroup.eq_top_iff' β add_subsemigroup.eq_top_iff', | |
| monoid_hom_class.antilipschitz_of_bound β add_monoid_hom_class.antilipschitz_of_bound, | |
| cont_mdiff_within_at_finset_prod' β cont_mdiff_within_at_finset_sum', | |
| subgroup.has_bot β add_subgroup.has_bot, | |
| fin.prod_univ_add β fin.sum_univ_add, | |
| pi.seminormed_group β pi.seminormed_add_group, | |
| finprod_comp β finsum_comp, | |
| dfinsupp_prod_mem β dfinsupp_sum_mem, | |
| smooth_monoid_morphism β smooth_add_monoid_morphism, | |
| subset_interior_mul' β subset_interior_add', | |
| has_smul.smul β has_vadd.vadd, | |
| filter.mem_smul β filter.mem_vadd, | |
| measurable.const_div β measurable.const_sub, | |
| subgroup.inv_mem β add_subgroup.neg_mem, | |
| nonempty_interval.fst_pow β nonempty_interval.fst_nsmul, | |
| mul_mem_class.subtype β add_mem_class.subtype, | |
| ordered_comm_group.mul_one β ordered_add_comm_group.add_zero, | |
| function.mul_support_prod_mk' β function.support_prod_mk', | |
| group_norm.group_norm_class β add_group_norm.add_group_norm_class, | |
| submonoid.bot_or_nontrivial β add_submonoid.bot_or_nontrivial, | |
| subsemigroup.mem_Sup_of_mem β add_subsemigroup.mem_Sup_of_mem, | |
| subsemigroup.set_like β add_subsemigroup.set_like, | |
| zpow_add β add_zsmul, | |
| tendsto_div_comap_self β tendsto_sub_comap_self, | |
| con.submonoid β add_con.add_submonoid, | |
| div_le_div_left' β sub_le_sub_left, | |
| subgroup.eq_top_of_card_eq β add_subgroup.eq_top_of_card_eq, | |
| order_dual.covariant_class_mul_le β order_dual.covariant_class_add_le, | |
| monoid_hom.has_coe_to_fun β add_monoid_hom.has_coe_to_fun, | |
| monoid_hom.inr_apply β add_monoid_hom.inr_apply, | |
| continuous_map.mul_comp β continuous_map.add_comp, | |
| monoid_hom.of_left_inverse_apply β add_monoid_hom.of_left_inverse_apply, | |
| submonoid.localization_map.eq_iff_exists β add_submonoid.localization_map.eq_iff_exists, | |
| order_monoid_hom_class.to_monoid_hom_class β order_add_monoid_hom_class.to_add_monoid_hom_class, | |
| finset.noncomm_prod_mul_distrib_aux β finset.noncomm_sum_add_distrib_aux, | |
| list.prod β list.sum, | |
| sym_alg.unsym_ne_one_iff β sym_alg.unsym_ne_zero_iff, | |
| Magma.large_category β AddMagma.large_category, | |
| monoid_hom.one_comp β add_monoid_hom.zero_comp, | |
| tendsto_norm_cocompact_at_top' β tendsto_norm_cocompact_at_top, | |
| subsemigroup.prod β add_subsemigroup.prod, | |
| function.mul_support_prod β function.support_sum, | |
| subsemigroup.comap_equiv_eq_map_symm β add_subsemigroup.comap_equiv_eq_map_symm, | |
| finset.mul_eq_empty β finset.add_eq_empty, | |
| filter.pow_mem_pow β filter.nsmul_mem_nsmul, | |
| quotient_group.map_map β quotient_add_group.map_map, | |
| finset.subset_mul_left β finset.subset_add_left, | |
| division_monoid.zpow_succ' β subtraction_monoid.zsmul_succ', | |
| finprod_mul_distrib β finsum_add_distrib, | |
| left.mul_lt_mul β left.add_lt_add, | |
| canonically_ordered_monoid.mul_assoc β canonically_ordered_add_monoid.add_assoc, | |
| set.Union_smul_eq_set_of_exists β set.Union_vadd_eq_set_of_exists, | |
| filter.one_prod_one β filter.zero_sum_zero, | |
| measure_theory.is_fundamental_domain.measure_fundamental_interior β measure_theory.is_add_fundamental_domain.measure_add_fundamental_interior, | |
| submonoid.localization_map.mk'_eq_iff_eq β add_submonoid.localization_map.mk'_eq_iff_eq, | |
| quotient_group.mk'_eq_mk' β quotient_add_group.mk'_eq_mk', | |
| function.mul_support_binop_subset β function.support_binop_subset, | |
| le_of_mul_le_left β le_of_add_le_left, | |
| submonoid.map_supr_comap_of_surjective β add_submonoid.map_supr_comap_of_surjective, | |
| pi.mul_one_class β pi.add_zero_class, | |
| set.mul_indicator_mul_eq_left β set.indicator_add_eq_left, | |
| measure_theory.is_fundamental_domain.image_of_equiv β measure_theory.is_add_fundamental_domain.image_of_equiv, | |
| left_mul β left_add, | |
| units.unique β add_units.unique, | |
| tendsto_norm_one β tendsto_norm_zero, | |
| submonoid.map_equiv_top β add_submonoid.map_equiv_top, | |
| finset.prod_const_one β finset.sum_const_zero, | |
| set.mul_indicator_preimage β set.indicator_preimage, | |
| t2_space_of_properly_discontinuous_smul_of_t2_space β t2_space_of_properly_discontinuous_vadd_of_t2_space, | |
| group_seminorm_class.to_mul_le_add_hom_class β add_group_seminorm_class.to_add_le_add_hom_class, | |
| units.is_unit β add_units.is_add_unit_add_unit, | |
| to_dual_div β to_dual_sub, | |
| zpow_bit0' β bit0_zsmul', | |
| filter.div_le_div_right β filter.sub_le_sub_right, | |
| prod.fst_prod β prod.fst_sum, | |
| cancel_comm_monoid.npow_succ' β add_cancel_comm_monoid.nsmul_succ', | |
| ball_div_singleton β ball_sub_singleton, | |
| min_lt_max_of_mul_lt_mul β min_lt_max_of_add_lt_add, | |
| right_coset_eq_iff β right_add_coset_eq_iff, | |
| is_normal_subgroup.to_is_subgroup β is_normal_add_subgroup.to_is_add_subgroup, | |
| submonoid.closure_closure_coe_preimage β add_submonoid.closure_closure_coe_preimage, | |
| pow_eq_one_iff_modeq β nsmul_eq_zero_iff_modeq, | |
| finprod_mem_mul_diff' β finsum_mem_add_diff', | |
| mul_finprod_cond_ne β add_finsum_cond_ne, | |
| mul_hom.has_one β add_hom.has_zero, | |
| monoid_hom.noncomm_pi_coprod_mul_single β add_monoid_hom.noncomm_pi_coprod_single, | |
| upper_set.coe_smul β upper_set.coe_vadd, | |
| Group.filtered_colimits.colimit_cocone β AddGroup.filtered_colimits.colimit_cocone, | |
| mul_opposite.map_op_nhds β add_opposite.map_op_nhds, | |
| dist_one_right β dist_zero_right, | |
| finset.subset_one_iff_eq β finset.subset_zero_iff_eq, | |
| div_le_div_iff_left β sub_le_sub_iff_left, | |
| topological_group.tendsto_locally_uniformly_on_iff β topological_add_group.tendsto_locally_uniformly_on_iff, | |
| mul_equiv.to_equiv_mk β add_equiv.to_equiv_mk, | |
| eq_inv_smul_iff β eq_neg_vadd_iff, | |
| with_one.coe_mul_hom_apply β with_zero.coe_add_hom_apply, | |
| list.alternating_prod_cons_cons' β list.alternating_sum_cons_cons', | |
| equiv.mul_left_one β equiv.add_left_zero, | |
| finset.mem_inv_smul_finset_iff β finset.mem_neg_vadd_finset_iff, | |
| group_topology.ext' β add_group_topology.ext', | |
| free_semigroup.head_mul β free_add_semigroup.head_add, | |
| fintype.prod_option β fintype.sum_option, | |
| lex.group β lex.add_group, | |
| is_open_map_div_left β is_open_map_sub_left, | |
| measure_theory.strongly_measurable.measurable_set_mul_support β measure_theory.strongly_measurable.measurable_set_support, | |
| fintype.prod_empty β fintype.sum_empty, | |
| freiman_hom.to_freiman_hom_coe β add_freiman_hom.to_add_freiman_hom_coe, | |
| mul_equiv.apply_symm_apply β add_equiv.apply_symm_apply, | |
| function.periodic.mul β function.periodic.add, | |
| subgroup.left_coset_equiv_subgroup β add_subgroup.left_coset_equiv_add_subgroup, | |
| uniform_fun.comm_group β uniform_fun.add_comm_group, | |
| monoid_hom.coe_coe β add_monoid_hom.coe_coe, | |
| topological_group β topological_add_group, | |
| lattice_ordered_comm_group.inf_sq_eq_mul_div_abs_div β lattice_ordered_comm_group.two_inf_eq_add_sub_abs_sub, | |
| submonoid.mem_map_of_mem β add_submonoid.mem_map_of_mem, | |
| monoid_hom.complβ_apply β add_monoid_hom.complβ_apply, | |
| continuous_pow β continuous_nsmul, | |
| free_magma.repr β free_add_magma.repr, | |
| group.exists_list_of_mem_closure β add_group.exists_list_of_mem_closure |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment