Created
October 6, 2020 02:41
-
-
Save fr1ll/7673abe5b3f1b640bc6c0e0fe2feaf8c to your computer and use it in GitHub Desktop.
Compare performance of 'map' versus 'replace' for pandas series
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pandas as pd | |
| import numpy as np | |
| import timeit | |
| def random_series(count=10000): | |
| vals = np.random.randint(0,20*count,count) | |
| return pd.Series(data=vals, name="RANDVALS") | |
| def unique_map(s: pd.Series): | |
| as_unique = s.unique() | |
| return {dval: i for i, dval in enumerate(as_unique)} | |
| funcs = ["s.replace(d_map)", | |
| "s.map(d_map)", | |
| "s.map(d_map.get)"] | |
| counts = [10, 100, 1000, 10000, 100000] | |
| def time_some_counts(func, counts): | |
| times = [] | |
| for c in counts: | |
| # create data with lenght set by c | |
| s = random_series(c) | |
| d_map = unique_map(s) | |
| # tricky way to pass data to timeit | |
| myGlobals = globals() | |
| myGlobals.update({'s': s, 'd_map': d_map}) | |
| #time the functions | |
| new_times = timeit.Timer(func, globals=myGlobals).autorange() | |
| new_times = [func, c, new_times[0], new_times[1], new_times[1]/new_times[0]] | |
| times.append(new_times) | |
| return times | |
| columns = ["func", "length_of_series", "runs", "total_runtime", "mean_runtime"] | |
| df = pd.DataFrame(columns=columns) | |
| for f in funcs: | |
| times = time_some_counts(f, counts) | |
| df = df.append(pd.DataFrame(times, columns=columns)) | |
| import altair as alt | |
| chart = alt.Chart(df).mark_circle(size=60).encode( | |
| x=alt.X('length_of_series', scale=alt.Scale(type="log")), | |
| y=alt.Y('mean_runtime', scale=alt.Scale(type="log")), | |
| color='func', | |
| ) | |
| chart + chart.transform_regression('length_of_series', 'mean_runtime', groupby=["func"], method="pow").mark_line() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment