-
-
Save gustavopinto/ac3ce47e18109e6881889448acb70c9d to your computer and use it in GitHub Desktop.
LLM4Devs -- Turma 5
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| OPENAI_API_KEY="sua-chave-aqui" |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from langchain_chroma import Chroma | |
| from langchain_openai import OpenAIEmbeddings | |
| embeddings = OpenAIEmbeddings(model="text-embedding-3-large") | |
| db = Chroma(persist_directory="bootcamp", embedding_function=embeddings) | |
| results = db.similarity_search("What is CDD in programming?", k=3) | |
| for r in results: | |
| print(r.page_content) | |
| print("\n\n") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from scipy.spatial import distance | |
| from langchain_openai import OpenAIEmbeddings | |
| embeddings = OpenAIEmbeddings(model="text-embedding-3-large") | |
| user_query = embeddings.embed_query("CDD") | |
| docs = [ | |
| "language models", | |
| "embeddings", | |
| "pizza", | |
| "limonada" | |
| ] | |
| docs_embed = embeddings.embed_documents(docs) | |
| print(1 - distance.cosine(user_query, docs_embed[0])) | |
| print(1 - distance.cosine(user_query, docs_embed[1])) | |
| print(1 - distance.cosine(user_query, docs_embed[2])) | |
| print(1 - distance.cosine(user_query, docs_embed[3])) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import sys | |
| import numpy as np | |
| from scipy.spatial import distance | |
| from langchain_openai import ChatOpenAI | |
| from langchain_community.document_loaders import PyPDFLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_openai import OpenAIEmbeddings | |
| from langchain_chroma import Chroma | |
| ## fazer hello world na openai | |
| llm = ChatOpenAI() | |
| embeddings = OpenAIEmbeddings(model="text-embedding-3-large") | |
| # resposta = llm.invoke("Oi, meu nome é Gustavo, qual é o seu?") | |
| # print(resposta.content) | |
| loader = PyPDFLoader("https://arxiv.org/pdf/2210.07342") | |
| documentos = loader.load() | |
| splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=20) | |
| chunks = splitter.split_documents(documentos) | |
| chunk_stringao = [documento.page_content for documento in documentos] | |
| # vectorstore = Chroma.from_texts( | |
| # texts=chunk_stringao, | |
| # embedding=embeddings, | |
| # persist_directory="bootcamp" | |
| # ) | |
| # stringao = " ".join(stringao) | |
| #print(stringao) | |
| ## E se eu fornecer pra LLM o paper do CDD? | |
| user_query = "What is CDD in programming?" | |
| user_query_emb = embeddings.embed_query(user_query) | |
| chunks_relacionados_a_user_query = embeddings.embed_documents(chunk_stringao) | |
| stringao_de_chunks_relacionados = [] | |
| for idx, chunk_numerico in enumerate(chunks_relacionados_a_user_query): | |
| chunk_texto = chunk_stringao[idx] | |
| distancia = (1- distance.cosine(user_query_emb, chunk_numerico)) | |
| if distancia > 0.55: | |
| stringao_de_chunks_relacionados.append(chunk_texto) | |
| print(distancia, chunk_texto) | |
| resposta_cdd = llm.invoke(user_query + "------------" "".join(stringao_de_chunks_relacionados)) | |
| print(resposta_cdd.content) | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| scipy | |
| pypdf | |
| langchain | |
| langchain-openai | |
| langchain-community | |
| langchain-chroma |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment