Created
April 24, 2023 11:49
-
-
Save haseebpvt/6a7a0ac56f1e312be48da7cc748f9f84 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import os | |
| import cv2 | |
| import numpy as np | |
| import speech_recognition as sr | |
| import pyttsx3 | |
| from threading import Thread | |
| def load_face_data(): | |
| face_data = [] | |
| labels = [] | |
| people = [] | |
| for subdir, dirs, files in os.walk('faces'): | |
| for dir in dirs: | |
| people.append(dir) | |
| person_path = os.path.join(subdir, dir) | |
| for filename in os.listdir(person_path): | |
| img = cv2.imread(os.path.join(person_path, filename), cv2.IMREAD_GRAYSCALE) | |
| face_data.append(img) | |
| labels.append(len(people) - 1) | |
| return face_data, np.array(labels), people | |
| def train_face_recognizer(face_data, labels): | |
| face_recognizer = cv2.face.LBPHFaceRecognizer_create() | |
| face_recognizer.train(face_data, labels) | |
| return face_recognizer | |
| def text_to_speech(text): | |
| engine = pyttsx3.init() | |
| engine.say(text) | |
| engine.runAndWait() | |
| def speech_to_text(): | |
| r = sr.Recognizer() | |
| with sr.Microphone() as source: | |
| print("Listening...") | |
| audio = r.listen(source) | |
| try: | |
| text = r.recognize_google(audio) | |
| return text | |
| except Exception as e: | |
| print(e) | |
| return "" | |
| def main(): | |
| face_data, labels, people = load_face_data() | |
| face_recognizer = train_face_recognizer(face_data, labels) | |
| face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
| cap = cv2.VideoCapture(0) | |
| while True: | |
| ret, frame = cap.read() | |
| gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
| faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5) | |
| for (x, y, w, h) in faces: | |
| cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2) | |
| label, confidence = face_recognizer.predict(gray[y:y+h, x:x+w]) | |
| name = people[label] | |
| cv2.putText(frame, name, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 0, 0), 2) | |
| text_to_speech("Hello " + name) | |
| cv2.imshow('Video', frame) | |
| if cv2.waitKey(1) & 0xFF == ord('q'): | |
| break | |
| text = speech_to_text() | |
| if text: | |
| print("Recognized Speech:", text) | |
| cap.release() | |
| cv2.destroyAllWindows() | |
| if __name__ == "__main__": | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment