Last active
June 29, 2025 06:51
-
-
Save ianfhunter/1eeb4e31d42f14600412951004b68cf9 to your computer and use it in GitHub Desktop.
The code for JIRA-Net as descrived in the SIGBOVIK 2025 paper submission
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from torch.nn import Module | |
| from torch import nn | |
| import numpy as np | |
| import os | |
| import torch | |
| from torchsummary import summary | |
| from torchvision.datasets import mnist | |
| from torch.nn import CrossEntropyLoss | |
| from torch.optim import SGD | |
| from torch.utils.data import DataLoader | |
| from torchvision.transforms import ToTensor, Compose, Resize | |
| import random | |
| def print_model_weights(model): | |
| print("Model Weights...") | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: # Only print trainable parameters | |
| print(f"Layer: {name}") | |
| print(f"Shape: {param.data.shape}") | |
| print(f"Weights:\n{param.data}\n") | |
| def save_model_weights(model, output_dir="weights_dump"): | |
| os.makedirs(output_dir, exist_ok=True) | |
| for name, param in model.named_parameters(): | |
| # Save weights to a text file | |
| file_path = os.path.join(output_dir, f"{name.replace('.', '_')}.txt") | |
| with open(file_path, "w") as f: | |
| # Write the weights in a readable format | |
| f.write(f"Layer: {name}\n") | |
| f.write(f"Weights:\n{param.data.cpu().numpy()}\n") | |
| if param.requires_grad: | |
| f.write(f"Gradients:\n{param.grad.cpu().numpy() if param.grad is not None else None}\n") | |
| print(f"Weights saved in {output_dir}") | |
| def save_input(input_tensor, file_path="input.txt"): | |
| with open(file_path, "w") as f: | |
| f.write("Input Tensor:\n") | |
| f.write(np.array2string(input_tensor.cpu().numpy(), precision=5, separator=',')) | |
| print(f"Input saved to {file_path}") | |
| class JIRANet(Module): | |
| def __init__(self): | |
| super(JIRANet, self).__init__() | |
| # Block 1 - 1x14x14 | |
| inChannels = 1 | |
| self.c1a = nn.Conv2d(inChannels, 1, 3, padding=1) | |
| self.c1b = nn.Conv2d(inChannels, 1, 5, padding=2) | |
| self.c1c = nn.Conv2d(inChannels, 1, 7, padding=3) | |
| self.pool1 = nn.MaxPool2d(2) | |
| # Block 2 - 1x7x7 | |
| inChannels = 1 | |
| self.c2a = nn.Conv2d(in_channels=inChannels, out_channels=1, kernel_size=(1, 3), padding=(0, 1)) | |
| self.c2b = nn.Conv2d(in_channels=inChannels, out_channels=1, kernel_size=(3, 1), padding=(1, 0)) | |
| self.c2c = nn.Conv2d(inChannels, 2, 1) | |
| self.pool2 = nn.MaxPool2d(2) | |
| # Block 3 - 1x5x5 | |
| inChannels = 4 | |
| self.c3a = nn.Conv2d(inChannels, 2, 3, padding=1) | |
| self.c3b = nn.Conv2d(inChannels, 4, 1) | |
| self.pool3 = nn.MaxPool2d(2) | |
| # Block 4 - 1x3x3 | |
| inChannels = 6 | |
| c4_out_chan = 5 | |
| c5_out_chan = 4 | |
| self.c4 = nn.Conv2d(inChannels, c4_out_chan, 1) | |
| self.c5 = nn.Conv2d(c4_out_chan, c5_out_chan, 3, padding=0) | |
| fc1_outC = 19 | |
| fc2_outC = 10 | |
| final_out = 10 | |
| self.fc1 = nn.Linear(c5_out_chan, fc1_outC) | |
| self.relu3 = nn.ReLU() | |
| self.fc2 = nn.Linear(fc1_outC, fc2_outC) | |
| self.relu4 = nn.ReLU() | |
| self.fc3 = nn.Linear(fc2_outC, final_out) | |
| self.relu5 = nn.ReLU() | |
| def forward(self, netIn): | |
| # print("Forward...") | |
| # Block 1 1x14x14 | |
| c1a = self.c1a(netIn) # x | |
| c1b = self.c1b(netIn) # a b c | |
| c1c = self.c1c(netIn) | |
| add1 = c1a + c1b + c1c | |
| pool1 = self.pool1(add1) | |
| # Block 2 1x7x7 | |
| c2a = self.c2a(pool1) # x | |
| c2b = self.c2b(pool1) # a b c | |
| c2c = self.c2c(pool1) | |
| concat2 = torch.concat((c2a, c2b, c2c), dim=1) | |
| pool2 = self.pool2(concat2) | |
| # Block 3 1x5x5 | |
| c3a = self.c3a(pool2) # x | |
| c3b = self.c3b(pool2) # a b c | |
| concat3 = torch.concat((c3a, c3b), dim=1) | |
| # pool3 = self.pool3(concat3) | |
| # Block 4 | |
| c4 = self.c4(concat3) | |
| c5 = self.c5(c4) | |
| y = c5.view(c5.shape[0], -1) | |
| y = self.fc1(y) | |
| y = self.relu3(y) | |
| y = self.fc2(y) | |
| y = self.relu4(y) | |
| y = self.fc3(y) | |
| y = self.relu5(y) | |
| return y | |
| my_transforms = Compose([ | |
| ToTensor() | |
| ]) | |
| jira_transforms = Compose([ | |
| Resize((14, 14)), | |
| ToTensor() | |
| ]) | |
| if __name__ == '__main__': | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| batch_size = 256 | |
| seed = 1688469032097200 | |
| torch.manual_seed(seed) | |
| random.seed(0) | |
| print("Seed: ", torch.seed() ) | |
| train_dataset = mnist.MNIST(root='./train', train=True, transform=jira_transforms, download=True) | |
| test_dataset = mnist.MNIST(root='./test', train=False, transform=jira_transforms, download=True) | |
| model = JIRANet().to(device) | |
| stats = summary(model, (1, 14, 14), col_names=["output_size", "num_params"]) | |
| print(stats) | |
| print("Train...") | |
| train_loader = DataLoader(train_dataset, batch_size=batch_size) | |
| test_loader = DataLoader(test_dataset, batch_size=batch_size) | |
| test_input, test_label = next(iter(test_loader)) | |
| print("Test Input Shape:", test_input) | |
| save_input(test_input) | |
| import timeit | |
| execution_time = timeit.timeit(lambda: model.forward(test_input), number=1) | |
| print(f"Function took {execution_time:.6f} seconds to execute.") | |
| sgd = SGD(model.parameters(), lr=1e-1) | |
| loss_fn = CrossEntropyLoss() | |
| all_epoch = 100 | |
| prev_acc = 0 | |
| for current_epoch in range(all_epoch): | |
| model.train() | |
| for idx, (train_x, train_label) in enumerate(train_loader): | |
| train_x = train_x.to(device) | |
| train_label = train_label.to(device) | |
| sgd.zero_grad() | |
| predict_y = model(train_x.float()) | |
| loss = loss_fn(predict_y, train_label.long()) | |
| loss.backward() | |
| sgd.step() | |
| all_correct_num = 0 | |
| all_sample_num = 0 | |
| model.eval() | |
| for idx, (test_x, test_label) in enumerate(test_loader): | |
| test_x = test_x.to(device) | |
| test_label = test_label.to(device) | |
| predict_y = model(test_x.float()).detach() | |
| predict_y =torch.argmax(predict_y, dim=-1) | |
| current_correct_num = predict_y == test_label | |
| all_correct_num += np.sum(current_correct_num.to('cpu').numpy(), axis=-1) | |
| all_sample_num += current_correct_num.shape[0] | |
| acc = all_correct_num / all_sample_num | |
| print(f'epoch #{current_epoch}. accuracy: {acc}') | |
| if not os.path.isdir("models"): | |
| os.mkdir("models") | |
| torch.save(model, 'models/mnist_{:.3f}.pkl'.format(acc)) | |
| if np.abs(acc - prev_acc) < 1e-4: | |
| break | |
| prev_acc = acc | |
| print("Model finished training") | |
| # Example: Apply this to your model | |
| print_model_weights(model) | |
| save_model_weights(model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment