-
-
Save jbarnoud/fc27c5048d6e8f394598 to your computer and use it in GitHub Desktop.
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# K-means clustering in PBxplore\n", | |
| "\n", | |
| "This notebook experiments with K-means clustering of protein block sequences in the context of PBxplore. It implements the clustering algorithm and visualize the output clustering.\n", | |
| "\n", | |
| "This notebooks only works with python 3, it requires weblogo to be installed, and it relies on a version of PBstat that exposes the `--image-format` option." | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Imports" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# Imports for the clustering\n", | |
| "import random\n", | |
| "import sys\n", | |
| "import numpy\n", | |
| "import collections\n", | |
| "import copy" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# Imports for the clustering analysis\n", | |
| "from IPython.display import display, Image\n", | |
| "import os\n", | |
| "import subprocess\n", | |
| "import tempfile\n", | |
| "import itertools\n", | |
| "import matplotlib.pylab as plt\n", | |
| "%matplotlib inline" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# PBxplore imports\n", | |
| "import PBlib as PB\n", | |
| "import PDBlib as PDB" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Clustering code" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "The K-means clustering algorithm is rather simple:\n", | |
| "\n", | |
| "* cluster centers are chosen at random\n", | |
| "* until the centers converge\n", | |
| " * assign each record to the closest center\n", | |
| " * recalculate the position of the cluster centers to account for what\n", | |
| " records are in the cluster\n", | |
| "\n", | |
| "To implement this algorithm, we need a way to calculate the distance between a record and a center, and a way to calculate a center from a collection of records. Here, the records are sequences of protein blocs. The centers are frequency profiles. The distance between a record and a center is the probability to get the PB sequence with the given frequency profile. The way to calculate the center is to build the frequency profile." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "NAMES = 'abcdefghijklmnop'\n", | |
| "\n", | |
| "def count_per_position_partial(sequences, seq_indices):\n", | |
| " \"\"\"\n", | |
| " Count the population of each block at each position.\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " sequences: a list of sequences\n", | |
| " seq_indices: a list of indices; only the sequences from `sequences`\n", | |
| " which have their index in `seq_indices` will be taken into\n", | |
| " account.\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " counts: a defaultdict with the blocks as keys and their population as\n", | |
| " values; the default value is a 0 interger.\n", | |
| " \"\"\"\n", | |
| " counts = [collections.defaultdict(int)\n", | |
| " for _ in range(len(sequences[0]))]\n", | |
| " for seq_idx in seq_indices:\n", | |
| " seq = sequences[seq_idx]\n", | |
| " for block, count in zip(seq, counts):\n", | |
| " count[block] += 1\n", | |
| " return counts\n", | |
| "\n", | |
| "\n", | |
| "def make_profile_partial(sequences, seq_indices):\n", | |
| " \"\"\"\n", | |
| " Calculate a frequency profile from a list of sequences.\n", | |
| " \n", | |
| " A profile is the frequency for each block to be a each position.\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " sequences: a list of sequences\n", | |
| " seq_indices: a list of indices; only the sequences from `sequences`\n", | |
| " which have their index in `seq_indices` will be taken into\n", | |
| " account.\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " profile: the frequency profile as a numpy array with a row for each\n", | |
| " block and a column for each position.\n", | |
| " \"\"\"\n", | |
| " counts = count_per_position_partial(sequences, seq_indices)\n", | |
| " profile = numpy.zeros((16, len(counts)))\n", | |
| " for pos_idx, position in enumerate(counts):\n", | |
| " for block_idx, block in enumerate(NAMES):\n", | |
| " profile[block_idx, pos_idx] = position[block]\n", | |
| " profile /= len(seq_indices)\n", | |
| " return profile\n", | |
| "\n", | |
| "\n", | |
| "def compatibility(profile, sequence):\n", | |
| " \"\"\"\n", | |
| " Compute the compatibility of a sequence with a profile.\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " profile: a frequency profile as a numpy array with a row for each\n", | |
| " block and a column for each position\n", | |
| " sequence: the block sequence to test as a string\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " probability: the probability of the given sequence given the profile\n", | |
| " \"\"\"\n", | |
| " probabilities = numpy.zeros((profile.shape[1], ))\n", | |
| " for pos_idx, block in enumerate(sequence):\n", | |
| " block_idx = NAMES.find(block)\n", | |
| " probabilities[pos_idx] = profile[block_idx, pos_idx]\n", | |
| " return numpy.sum(probabilities)\n", | |
| "\n", | |
| "\n", | |
| "def _argmax(values):\n", | |
| " \"\"\"\n", | |
| " Return the index of the maximum value of a sequence\n", | |
| " \"\"\"\n", | |
| " iter_values = iter(values)\n", | |
| " argmax = 0\n", | |
| " valmax = next(iter_values)\n", | |
| " for arg, val in enumerate(iter_values, start=1):\n", | |
| " if val > valmax:\n", | |
| " valmax = val\n", | |
| " argmax = arg\n", | |
| " return argmax\n", | |
| "\n", | |
| "\n", | |
| "def attribute_center(centers, sequences):\n", | |
| " \"\"\"\n", | |
| " Assign the more compatible center to each sequence.\n", | |
| " \n", | |
| " For a list of frequency profiles and a list of sequences, assign to\n", | |
| " each sequence the more compatible frequency profile.\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " centers: a list of frequency profiles, each profile is a numpy array\n", | |
| " with rows for the blocks and collumns for the positions\n", | |
| " sequences: a list of block sequences\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " groups: a list of the profile index for each sequence\n", | |
| " \"\"\"\n", | |
| " groups = [0 for _ in range(len(sequences))]\n", | |
| " for seq_idx, sequence in enumerate(sequences):\n", | |
| " compatibilities = [compatibility(center, sequence)\n", | |
| " for center in centers]\n", | |
| " groups[seq_idx] = _argmax(compatibilities)\n", | |
| " return groups\n", | |
| "\n", | |
| "\n", | |
| "def update_centers(sequences, groups, ngroups):\n", | |
| " \"\"\"\n", | |
| " Calculate the frequency profile for each group\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " sequences: a list of block sequences\n", | |
| " groups: a list with a group identifier for each sequence\n", | |
| " ngroups: the number of groups; this number cannot be obtained with\n", | |
| " enough confidence from the `groups` list, indeed some group can\n", | |
| " be empty and therefore not appearing in the `group` list\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " centers: a frequency profile for each group\n", | |
| " \"\"\"\n", | |
| " grouped_indices = [[] for _ in range(ngroups)]\n", | |
| " for seq_idx, group_idx in enumerate(groups):\n", | |
| " grouped_indices[group_idx].append(seq_idx)\n", | |
| " centers = []\n", | |
| " for group in grouped_indices:\n", | |
| " centers.append(make_profile_partial(sequences, group))\n", | |
| " return centers\n", | |
| "\n", | |
| "\n", | |
| "def get_medoids(groups):\n", | |
| " pass\n", | |
| "\n", | |
| "\n", | |
| "def initial_centers(sequences, ngroups):\n", | |
| " \"\"\"\n", | |
| " Create single sequence frequency profiles from randomly chosen sequences\n", | |
| " \n", | |
| " Choose `ngroups` sequences and build a single sequence frequency\n", | |
| " profile for each of them. These profiles aims at being initial centers\n", | |
| " for the clustering.\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " sequences: a list of block sequences\n", | |
| " ngroups: the number of profiles to build\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " centers: a list of frequency profiles\n", | |
| " \"\"\"\n", | |
| " centers = []\n", | |
| " sample = random.sample(range(len(sequences)), ngroups)\n", | |
| " assert len(sample) == len(set(sample)), \\\n", | |
| " 'Redundances in the initial sampling'\n", | |
| " assert len([sequences[i] for i in sample]) == len(set([sequences[i] for i in sample])), \\\n", | |
| " 'Redundances in the initial sampling'\n", | |
| " for sequence_idx in sample:\n", | |
| " centers.append(make_profile_partial(sequences, [sequence_idx, ]))\n", | |
| " return centers\n", | |
| "\n", | |
| "\n", | |
| "def _is_converged(old_centers, new_centers):\n", | |
| " \"\"\"\n", | |
| " Returns True is all `new_centers` are the same as the `old_centers`\n", | |
| " \"\"\"\n", | |
| " for old, new in zip(old_centers, new_centers):\n", | |
| " if not numpy.all(old == new):\n", | |
| " return False\n", | |
| " return True\n", | |
| "\n", | |
| "def k_means(sequences, ngroups, max_iter, logfile=sys.stdout):\n", | |
| " \"\"\"\n", | |
| " Carry out a K-means clustering on block sequences\n", | |
| " \n", | |
| " Cluster the sequences into `ngroups` groups. The centers of each\n", | |
| " group are computed as a frequency profile for the sequences in the\n", | |
| " group. The distance metrix used to assign a center to the sequences\n", | |
| " is the probability to obtain a sequence from a given frequency profile.\n", | |
| " \n", | |
| " Parameters\n", | |
| " ----------\n", | |
| " sequences: a list of block sequences to cluster\n", | |
| " ngroups: the number of cluster to build\n", | |
| " max_iter: the maximum number of iterations to run\n", | |
| " logfile: a file descriptor where to write logs, stdout by default\n", | |
| " \n", | |
| " Returns\n", | |
| " -------\n", | |
| " groups: a list of cluster identifier for each sequence\n", | |
| " convergeance: True if the clustering converged, else False\n", | |
| " \"\"\"\n", | |
| " convergeance = False\n", | |
| " centers = initial_centers(sequences, ngroups)\n", | |
| " for iteration in range(1, max_iter + 1):\n", | |
| " groups = attribute_center(centers, sequences)\n", | |
| " print(iteration, collections.Counter(groups), len(centers),\n", | |
| " file=logfile)\n", | |
| " new_centers = update_centers(sequences, groups, ngroups)\n", | |
| " if _is_converged(centers, new_centers):\n", | |
| " print('Convergence reached in {} iterations'\n", | |
| " .format(iteration), file=logfile)\n", | |
| " convergeance = True\n", | |
| " break\n", | |
| " centers = copy.copy(new_centers)\n", | |
| " else:\n", | |
| " print(('K-means reached {} iterations before '\n", | |
| " 'reaching convergence.').format(max_iter),\n", | |
| " file=logfile)\n", | |
| " return groups, centers, convergeance" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Some functions can be usefull for the analysis." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def count_per_position(sequences):\n", | |
| " counts = [collections.defaultdict(int)\n", | |
| " for _ in range(len(sequences[0]))]\n", | |
| " for seq in sequences:\n", | |
| " for block, count in zip(seq, counts):\n", | |
| " count[block] += 1\n", | |
| " return counts\n", | |
| "\n", | |
| "def neq(sequences):\n", | |
| " n_sequences = len(sequences)\n", | |
| " counts = count_per_position(sequences)\n", | |
| " neq_per_position = []\n", | |
| " for count in counts:\n", | |
| " summation = 0\n", | |
| " for x in count.values():\n", | |
| " freq = x / n_sequences\n", | |
| " summation += freq * numpy.log(freq)\n", | |
| " neq_per_position.append(numpy.exp(-summation))\n", | |
| " return neq_per_position\n", | |
| "\n", | |
| "def group_clusters(sequences, clusters):\n", | |
| " groups = collections.defaultdict(list)\n", | |
| " for idx, cluster in enumerate(clusters):\n", | |
| " groups[cluster].append(sequences[idx])\n", | |
| " return groups" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Run the clustering" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "read 270 sequences in demo2_tmp/psi_md_traj_all.PB.fasta\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "header_lst, seq_lst = PB.read_several_fasta([\"demo2_tmp/psi_md_traj_all.PB.fasta\"])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1 Counter({3: 90, 2: 85, 0: 55, 1: 40}) 4\n", | |
| "2 Counter({3: 90, 2: 84, 1: 50, 0: 46}) 4\n", | |
| "3 Counter({3: 90, 2: 80, 1: 55, 0: 45}) 4\n", | |
| "4 Counter({3: 90, 2: 78, 1: 55, 0: 47}) 4\n", | |
| "5 Counter({3: 90, 2: 77, 1: 53, 0: 50}) 4\n", | |
| "6 Counter({3: 90, 2: 77, 0: 53, 1: 50}) 4\n", | |
| "7 Counter({3: 90, 2: 77, 0: 53, 1: 50}) 4\n", | |
| "Convergence reached in 7 iterations\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# The Z joker block is not supported (how should it be?),\n", | |
| "# therefore we have to chop the two first and the two last\n", | |
| "# blocks of the sequences\n", | |
| "sequences = [seq[2:-2] for seq in seq_lst]\n", | |
| "\n", | |
| "# Carry out the clustering\n", | |
| "number_of_clusters = 4\n", | |
| "maximum_number_of_iterations = 20\n", | |
| "clusters, centers, convergeance = k_means(sequences,\n", | |
| " ngroups=number_of_clusters,\n", | |
| " max_iter=maximum_number_of_iterations)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Visualize the clustering" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### How are the clusters distributed along time?" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print(clusters)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.text.Text at 0x10c398f98>" | |
| ] | |
| }, | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAA8CAYAAABVRBAzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACGVJREFUeJzt3XuMVOUZx/HvTwW1oiIhQqGEMQ0iNm0hVCIgdg2GSkpq\nq+nN/iH2kjYhbVPblFjTdP+wib2YtDHE3hRvCdXerOUPAqYsgVBFkJtapKSsqdy8ICmYVKE8/eO8\nUw7LzozLzHLOzvw+yWTPnHnnzPPsu/PsmXPmvK8iAjMzK4+zig7AzMxO5sJsZlYyLsxmZiXjwmxm\nVjIuzGZmJePCbGZWMg0Ls6QbJO2Q9A9Ji89EUGZmnUz1vscs6WzgJeB6YA/wLPD5iPj7mQnPzKzz\nNNpjngHsiojeiDgK/Ba4cfDDMjPrXOc0eHw8cFDSauBS4CLgn8Ddgx2YmVmnalSYAzgOfCsitkj6\nEvBTSVOqhzMk+ZpuM7PTEBHqb32jwrwHGA1sl7QZOA/YC4wD/n+ceSJQScuV3HK76wG6Co6hGYcv\nHcevHt/EkdFjB/bEJd2wqBuAtRfO4Zpz1rU8tjLqvge6v110FCfsPT6O6Yc3sf/4APtvoHL9PWBv\nvQOf+SW8/MaJdRedD7/7Kowfmd1ftwu+9mizUcIDC2HNTnhoffPbAlr/Du9Nt6o1NVs2KswbgUlA\nN7ADWAD8G3gm36jC0C5QZmaDr8LJu62nWZgj4pikbuAXwKHUflFEHMm36yX739LfS5uZGZy6x1xb\noz1mgJuBp4FZgID9fRt00ZnFuFJ0AEW5qqvoCArRNbPoCArSof3d+nd4hZbsMUtaAFwBvAEsB84n\nd2w5/3KdqFJ0AEWZ0VV0BIXomlV0BAXp0P4u8h3eaI/5OrJjzJPT/QB2S7olIlZUG/XknlChgwuW\nmVlNvbTqUMYKYBHwGDCT7HvNi/NFGXziz8yssQotOZSRHj8XeCjd/gJcC/w636inzkubmRkMZI+5\n0SXZm4GDwJ/JLsdeC1zSt1GFbK+5i84qyr1FB1CUDT1FR1CInlZ9PXao6dD+bv07vMKJStlVt2Wj\nwvx2ajOX7KKSiWTHmU/SO8Dw2kVv0QEU5dmeoiMoRM/fio6gIB3a30W+wxsdyrgeWA0sAYYDR+jn\n63K9+HvMZmb19dKqk38vA5cDVwH/AR4EtvRtVMEnAM3M6qvwbk/+1R2PGSBd+fdZ4BjwHPDlNARo\n9XEPYmRmdhpqDWLUsDCbmdmZ5Tn/zMxKxoXZzKxkmi7MnTRZq6ReSdskbZa0Ia0bJWmVpJ2SVkoa\nWXSczZD0gKQDkrbn1tXMUdIdqe93SJpXTNTNq5F3t6RXUn9vljQ/91i75D1B0mpJL0h6XtI30vq2\n7vM6eZejzyPitG/A2cAuslONw8i+sTGlmW2W+QbsBkb1Wfdj4LtpeTFwd9FxNpnjHGAasL1RjsCV\nqc+Hpb+BXcBZRefQwrx/ANzeT9t2ynssMDUtjyCbfHlKu/d5nbxL0efN7jF34mStfc+ifoLscnXS\nz0+e2XBaKyLWAm/2WV0rxxuBZRFxNCJ6yf5YZ5yJOFutRt5wan9De+W9PyK2pOUjZKNHjqfN+7xO\n3lCCPm+2MI8H/pW7/wonkmtHATwlaaOkr6R1YyLiQFo+AIwpJrRBVSvHcWR9XtWO/f91SVsl3Z/7\nON+WeUuqkH1qeIYO6vNc3k+nVYX3ebOFudO+azc7IqYB84FFkubkH4zsM09b/07eRY7tlP99wGXA\nVGAfcE+dtkM6b0kjgD8A34yIw/nH2rnPU96/J8v7CCXp82YL8x5gQu7+BE7+r9JWImJf+vka8Cey\njzIHJI0FkPRe4NXiIhw0tXLs2//vS+vaQkS8GgnwG058dG2rvCUNIyvKj0TEE2l12/d5Lu9Hq3mX\npc+bLcwbgUmSKpKGk10h+GTzYZWPpPdIujAtXwDMA7aT5XtranYr8ET/WxjSauX4JPA5ScMlXUY2\nqcKGAuIbFKkgVX2KrL+hjfKWJOB+4MWI+Fnuobbu81p5l6bPW3B2cz7ZGc1dwB1Fn20drBvZx5st\n6fZ8NVdgFPAUsBNYCYwsOtYm81wG7AXeITt/cFu9HIHvpb7fAXys6PhbmPcXgYeBbcBWssI0pg3z\nvgY4nv6uN6fbDe3e5zXynl+WPvcl2WZmJeMr/8zMSsaF2cysZFyYzcxKxoXZzKxkXJjNzErGhdnM\nrGRcmK1wku5MQy9uTUMtDrlBccxaqdFkrGaDStJM4OPAtIg4KmkUcG7BYZkVynvMVrSxwOuRJviN\niIMRsU/SdEk9aSS/FblxG6anPestkn5SHdhe0kJJ91Y3Kmm5pI+m5XmS1kvaJOnxdEl9deKD7rR+\nm6TJaf0ISUvTuq2Sbqq3HbNWc2G2oq0EJkh6SdISSdemwWXuBW6OiI8AS4EfpvZLgUURMZVsdK9a\nl64GEJJGA3cCcyNiOrAJuD3X5rW0/j7gO2n994E3I+JDEfFh4K8NtmPWUj6UYYWKiLckTSebQeQ6\n4DHgLuADZGNfQzZTzl5JFwMXR8S69PRHyMY3qEXA1WSzT6xP2xoOrM+1+WP6+RxwU1qeSzYgVzXG\nQ5IWNNiOWcu4MFvhIuI4sAZYkw5NLAJeiIhZ+XY6dT7F/EwTxzj5E+B5ueVVEXFLjZd/O/38Lye/\nH/qbxaLedsxaxocyrFCSLpc0KbdqGtk0P6MlXZ3aDJN0ZUQcAg5Jmp3afiH3vF5gqjITyMbRDbJZ\nKWZLen/a1gV9Xq8/q8j+OVRjHHma2zE7LS7MVrQRwINptuKtwBVkx3g/DfxIUnVYxpmp/W3AEkmb\n8xtJhzd2Ay8CPyc7BkxEvA4sBJal7a8HJvcTR/549V3AJZK2p9fvGsB2zJrmYT9tyJI0EVgeER8s\nOhazVvIesw1lYgjPN2dWi/eYzcxKxnvMZmYl48JsZlYyLsxmZiXjwmxmVjIuzGZmJePCbGZWMv8D\nipul11OKeyMAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c3b6c88>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "plt.imshow([clusters,] * 10)\n", | |
| "plt.xlabel('Sequence')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### How do the clusters look like?" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGpCAYAAABvZSezAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecVOX1P/DP2WWpUkQBRdDFDooUFRHb2oEYosZu1KhR\nY9f482uNYE9iFDVqQqwYjTVo1GAEkUWNCihFUFBQEZWOVCnusuf3x7nXmR22PDNzy5TP+/Wa19yZ\neebeZ+fOzpx5ynlEVUFERERUaErirgARERFRGBjkEBERUUFikENEREQFiUEOERERFSQGOURERFSQ\nGOQQERFRQWKQQ0SNEpEnRORWb7tCRL6Ju05ERI1hkENEPxGRShH5XkSapjyk3oWIKG8wyCEiAICI\nlAM4CEANgCF1FYmyPkRE2WKQQ0S+MwG8D2AkgLMy3YmIDBeRxSKySkQ+FpE9vPubicifReRrEVkk\nIn8VkeZJz7taRBaIyLcico6I1IjIjt5jlSJyblLZX4vIO0m3dxeRsSKyXERmi8iJSY89ISIPishr\nIrJaRD7w9+s9vkfScxeJyHXe/SUicq2IzBWRZSLynIhs6T3WXESe8u5fISKTRKRjpq8ZEYWDQQ4R\n+c4E8BSApwEcncmXtogcDWsN2kVV2wI4EcBy7+E/ANgZQC/vejsAN3nPGwjgKgBHANjVu05Wb3eZ\niLQCMNarewcApwB4SES6JxU7GcAwAFsCmAvgdu+5rQG8CWA0gG29eo3znnMprEXrYO+xFQAe9B47\nC0AbAF0AtAdwAYD1jb0+RBQtBjlEBBE5EMD2AJ5X1SkAvgBwWga7+hFAawDdRaREVT9T1UUiIgDO\nA/A7VV2pqmsB3AkLSADgJACPqeqnqroOwNA0jnkMgK9UdaSq1qjqNACjYAGWb5Sqfqiqm2BBXO+k\n5y5Q1eGq+qOqrlXVSd5jFwC4UVUXqGoVgJsBnCAipd7fuRUsmFNVnaqqa9J6pYgodE3irgAR5YSz\nAIxR1e+92894992bzk5UdbyIPABr8dhBREYB+H8AWgBoCeAji3cA2Bgf/4fWtgAmJ+1qfhqH3QHA\nfiKyIum+JgCe9KsFYHHSY+sBbOFtdwXwZT37LQfwkojUJN1XDaAjgH94z31WRNrBWpFuUNXqNOpN\nRCFjkENU5ESkBawlpUREFnp3NwPQTkT2UtWPvfucZlep6l8A/EVEOgB4HsDVsJaZ9QB6qOrCOp62\nENaS5Ns+5fEfALRKur1N0vZ8ABNU9SiX+qWYD+vKqu+xs1X1/XoevwXALSKyA6y76zMAj2VQByIK\nCburiOhYWAtFd9h4mV7e9juwcTqAtbo0OrtKRPYRkf1EpAzAOgAbAGxSVQXwMIB7veAHIrKdiPiB\nyfMAfi0i3UWkJTbvrpoG4HgRaSEiOwM4N+mx/wDYVUR+JSJl3mVfEdk9qe71+Q+AbUXkcm9gdGsR\n6ec99jcAd4jI9l59O4jIEG+7QkR6el1XawBUAdjU2OtDRNFikENEZ8LGw3yrqku8y2IADwA4zfsi\nTx34W1+rThsAfwfwPYB5AJYBuMt77BrYoN8PRGQVbLDwrgCgqv+FdY29BeBzJAb/+obDxsEsBvA4\nrHtIveeuAXAUbHzPd7BWoTsB+Ll+6hq0nPzcIwH83Hve5wAqvDL3AXgFwBgRWQ2beeYHQNsAeAHA\nKgCfAqiEdWERUQ4R+4EV4gFE5gFYDfuVU6Wq/VIerwDwbyT6xf+lqreFWikiynneWJidVbW+MTNE\nRA2KYkyOAqhIGtBYlwmqWlfyMSIiIqKMRNVd1VhfPjOpElEqLiNBRFmJIshRAG+KyIcicl49jw8Q\nkekiMlpEekRQJyLKcapayq4qIspGFN1VB6jqQm9GxVgRma2q7yQ9PgVAV1VdJyKDALwMbzCiT0T4\ni46IiKiIqWravT6ht+T4OTFUdSmAl5CYneA/vsbLcApVfR1AmYi0r2M/tS5Dhw7d7D5e4rnwXOTO\nhecidy48F7lz4bnInUum5yJToQY5ItLSWxvGX1/mKAAzUsp08lK+w8tPIdrwIGUiIiKiRoXdXdUJ\nlhbdP9bTqjpGRC4AAFUdAeAEABeKSDUsedgp9e2MiIiIyFWoQY6qfoXEQnjJ949I2n4QiZV9nVVU\nVGRVNwoOz0Xu4LnIHTwXuYPnIndEfS5CTwYYBBHRfKgnERERBU9EoLk48JiIiIgoDgxyiIiIqCAx\nyCEiIqKCxCCHiIiIChKDHCIiIipIoQc5IjJPRD4WkakiMqmeMveLyBxv/ao+YdepEL3wAvDb3wLV\n1XHXhIiIKDeEPoVcRL4CsHd9WYxFZDCAS1R1sIjsB+A+Ve2fUoZTyBux007Al18CEyYABx8cd22I\niIiCk+tTyBuq2BAAIwFAVScCaCcinSKpVYFYtcoCHAD45pt460JERJQroghyFMCbIvKhiJxXx+Pb\nAUj+av4WQJcI6lUwPv44sT1/fnz1ICIiyiVhr10FAAeo6kIR6QBgrIjMVtV3UsqktvRs1jc1bNiw\nn7YrKiqYpjvJtGmJbbbkEBFRvqusrERlZWXW+4l0WQcRGQpgrarenXTf3wBUquqz3u3ZAA5R1cVJ\nZTgmpwHnngs89phtH3MM8Oqr8daHiIgoSDk5JkdEWopIa2+7FYCjAMxIKfYKgDO9Mv0BrEwOcKhx\n06cnttmSQ0REZMLuruoE4CUR8Y/1tKqOEZELAFuNXFVHi8hgEZkL4AcAZ4dcp4JSVQXMnJm4zSCH\niIjIcBXyPDdzJtCzJ9CtG/Ddd8CPPwJr1wKtWsVdMyIiomDkZHcVhc8fdNynD9DFm5PG1hwiIiIG\nOXnPH4/TuzfQtattM8ghIiJikJP3/JacXr0Y5BARESVjkJPHVBNBTu/ewPbb2zaDHCIiIgY5eW3B\nAmDZMmDLLa0Vhy05RERECQxy8lhyK44IgxwiIqJkoQc5IlIqIlNFZLM8vCJSISKrvMenisiNYden\nkPiDjnv1smsGOURERAlRtORcDuBT1LEelWeCqvbxLrdFUJ+c8MMPtvxCTU3m+0huyQESQc78+TZe\nh4iI8t/w4cAVV/BzPRNhL+vQBcBgAI9g80U4fyoWZh1y1Y03AkOGAI88kvk+UoOcdu0sCeAPPwAr\nV2ZfRyIiitfo0cDvfgfcd1/txZjJTdgtOcMBXA2gvvYKBTBARKaLyGgR6RFyfXLGK6/YdaaLaa5d\nC8ydC5SVAd27230inGFFRFQovv8e+M1vErcnTYqvLvkqtLWrROQYAEtUdaqIVNRTbAqArqq6TkQG\nAXgZwK51FRw2bNhP2xUVFaioqG+Xue+LL4Avv7Ttykpbf6qsLL19zJhhTZc9egBNmybu79oVmDXL\ngpy99gqsykREFLFLLgEWLgSaNQM2brQg54IL4q5VNCorK1FZWZn1fsJcoHMAgCEiMhhAcwBtRORJ\nVT3TL6Cqa5K2XxeRh0Skvap+n7qz5CAn340dm9heuxb44APgoIPS20dqV5WPg4+JiPLfCy8Azzxj\nQxBGjAB+9aviaslJbcy4+eabM9pPaN1Vqnq9qnZV1W4ATgHwVnKAAwAi0km8JcpFpB9swdDNApxC\nM2aMXXfsWPt2OhjkEBEVpkWLgAsvtO0//xn45S+BJk2ATz4B1qxp+LlUW5R5chQAROQCEfEb3E4A\nMENEpgG4FxYMFbTqauCtt2z7ppvsOrllx1VjQc78+ZnVj4iI4qMKnHcesHw5cNRR1j3VvLmlClEF\nPvoo7hrml0iCHFWdoKpDvO0RqjrC235QVfdU1d6qOkBVP4iiPnGaPBlYtQrYZRfgrLNsLM7kycCK\nFe772LTJxuQAiRw5PrbkEBHlryeeAF57DWjbFnj0UZtQAgD9+tl1MXVZBYEZjyPmt9oceSSwxRbA\n/vtbrpzx4933MWcOsH69zaTacsvajzHIISLKT19/DVx+uW0/8ADQpUviMQY5mWGQEzF//M1RR9n1\nkUfadTpdVvV1VQGJIOfbb7NLNEhERNGpqQHOOcfG3Bx3HHD66bUf328/u544Mfq65TMGORFavdpm\nUpWWAv6g8aCDnFatgPbtgR9/BJYuzaq6REQUkQcftPGaHTrYbCpJSZO7225A69b2A3bBgnjqmI8Y\n5ERo/HgbT9O/v/W3AsA++1im4i++AL76ym0/qWtWpWKXFRFR/vj8c+Caa2z773+3QCdVSQmw7762\nPXlydHXLdwxyIpQ8HsdXWgocdljtxxvTUEsOwBlWRET5orraJqGsXw+ccQZw7LH1l+W4nPTFugq5\n9/j9IjLHW9qhT9j1iVPqeBxfOl1WixbZpU0boLy87jJsySEiyg933WXDGLp0Ae6/v+GyHJeTvlhX\nIfeyIe+sqrsAOB/AXyOoTyzmzbNZUW3bJpocfX6QM26cdWc1xO+q2msva76sC4McIqLc9/HHwNCh\ntv3oozZ0oSF+S87kyZxY4iruVciHABgJAKo6EUA7EekUZp3i4rfSHHaYZa5MttNOQLdulitnypSG\n9+MHOfV1VQFcpJOIKNf5s6mqqiy7cWoLf106dwa2284msXz+efh1LARxr0K+HYDkr+JvAXSpp2xe\nq6+ryufaZdXYeByALTlERLnu8ccte3GXLsCf/uT+PL/LiuNy3MS9CjmweQvPZt1aQH6vQr5pk3VF\nAbUHHSc78kgbVT92LHD99fXvi0EOEVF+W7kSuO46277rLksM66pfP2DUKBuXc+aZjZfPV0GtQi6q\ndcYU2e9Y5A4AZwCohrcKOYB/JS/SKSJ/A1Cpqs96t2cDOERVF6fsS8OqZxQmTbLoe8cdbap4Xb7/\nHth6a+vKWrHC8t2kWr/e/hlEbPXy5s3r3tePP9pjIsDGjZt3jxERUXx+9ztg+HDgoIOACRM2z4nT\nkPHjbdjDPvsU11RyEYGqpvFKmVhXIQfwCoAzAUBE+gNYmRrgFIK6po6nat/e3rRVVcDbb9ddZuZM\n68fdfff6AxwAaNoU6NTJyjJpFBFR7pg1C/jLXyywue++9AIcANh7b3vO9OnAhg3h1LGQxLoKuaqO\nBvCliMwFMALARRHWJzKNjcfxNTYux6WryscuKyKi3KIKXHml5cY57zygTwZJU9q0AXr0sB/E/kQU\nql+sq5B7ty9R1Z1VtZeqNjK3KP+sWQO8/75N9/aT/tXHD4KCCHI4w4qIKLe89hrwxhuWSuS22zLf\njz+VnPlyGseMxyGbMMEi7n79Gs+BsP/+NhZn5kxg4cLNH/eDnPqWc0jGlhwiotyxcaO14gDAzTfX\nvXSDK2Y+dscgJ2Qu43F8TZsChxxi22++WfuxmprG16xKxiCHiCh33HuvTTzp0QO4KMuBGQxy3DHI\nCZnreBxffeNyvvwS+OEHSwbVsWPj+2GQQ0SUGxYuTHRP3XsvUFaW3f569rTJJ3Pm2Mxcqh+DnBB9\n8w0wezbQunUigVNjkoOc5Fnz6YzHAbhIJxFRrrj2Wkv78YtfuLXqN6asDOjb17aLaRp5JhjkhMhv\njTn0UPfIvUcPa61ZtMjG5vjSGY8DsCWHiCgXfPAB8OSTNhzh7ruD2y+7rNwwyAlRul1VgOU/OOII\n207uskq3JWebbSwJ4NKlzKVARBSHmhrgssts+6qrbJ3CoHB5BzdhL9DZXEQmisg0EZkpIsPqKFMh\nIqtEZKp3uTHMOkWlpiYxeDjd5sm6xuW4LMyZrLTUFnIDgG+/Te/4RESUvZEjrTupc+eGl+vJRPI0\n8jxeECB0oQY5qroBwKGq2htAbwADRaSu0SkTVLWPd8kie0DumDoVWL4c2GEHYJdd0nuu35IzYYJN\nO1y2zAKVVq3S+yXALiui4rFpEzOc55LVqxPrU/3pT+mtT+WiWzdgq62stf7rr4PddyEJvbtKVdd5\nm00BlKHuFcnTXo8i1yVPHU83bfc229jo+fXrgffeS7Ti9OxpLTSuGOQQFY+777bW22eeibsmBAC3\n3gosXgwMGACcdlrw+xfhuBwXjQY5ItK+oYvD80tEZBqAxQDGqGrqWHAFMEBEpovIaBHpkdmfklsy\nGY+TLLnLKt3xOD4GOUTF45137Praa60FmOLz+eeJdanuvz/9H7quOC6ncS7rU08BsD2AFd7tLQHM\nhwUnCmDHhp6sqjUAeotIWwAvicgeqvpJyv67quo6ERkE4GUAu6buZ9iwYT9tV1RUoKKiwqHq8fjh\nB+B//7M3dmNLOdTnyCOBe+6xIKd7d7sv0yCH08iJCt+XX9r1/PnAww8Dl1wSb32K2W23Wab7c8+1\nBTXDkk/LO8ycaYOvb7oJOOCAxstXVlaisrIy6+OKNjJiSUQeBvCSt5gmvEDkOFU9P+2DifwewDpV\nrXcinYh8BWBvVf0+6T5trJ655PXXgcGDgX33zTzCXrcO2HJL+0fp2tU+uN5/H+jf330f//43cOyx\nwKBBwOjRmdWDiHKfKtCyZWIm5TbbWHbdli3jrVcxqqmxhK3Ll1uetN12C+9Yy5bZ8hAtWtgYoCYu\nzRYx2LgR2GcfC3TOOMOm1KdLRKCqabeJuYzJ2d8PcABAVV8HMMCxUluLSDtvuwWAIwHMSinTScQa\n80SkHyzwyuscjn5XVTZJn1q2tGhX1QIcERuTkw4u0klUHBYtsgCnfXv7Mlm0CHjggbhrVZySJ53s\nulmfRLC23hrYcUcbv/nJJ42Xj8tttyXyvs2ZE+2xXYKcBSJyo4iUi0g3EbkBwHeO+98WwFsiMh3A\nJNiYnNEicoGIXOCVOQHADG/czr0ATkn3j8g1/qDjTMfj+JKDpF13tdlV6eCYHKLi8NVXdr3TTonl\nA/74R2DVqvjqVKySx2OGNRYnWa6Py5kyBbjzzsTtXAxyTgXQEcBLAEZ526e67FxVZ6hqX1Xtpao9\n/enhqjpCVUd42w+q6p6q2ltVB6jqB5n9Kbnhu+8som7VylYVz0ZykJTueBzAphc2b24fdGvWZFcX\nIspd/nicHXe0z42DDrI1je65J956FaNsJ52kK5fH5fz4I/DrX1t6g8sus+/F5cujXW+r0SBHVZer\n6mUADvTy2Fye791JYfITAFZUWBrvbPTpY4EK4L6cQzIRtuYQFYPkIEcEuP12u33PPTZug6IRxKST\ndOXyNPI77gBmzLAWxjvuSOSMi7I1x2UK+QAR+RTAbO92LxF5KPSa5anXX7frIKL4khLgxBPtH+bw\nwzPbB2dYERW+5CAHsJacgQNtUcg//jG+ehWbCRNsssi++9r4qCj06WMDjj/5xM53rpg2LRFsP/qo\nteLkZJADGyczEMAyAFDV6QAOCbNS+aq6GnjjDdsePDiYfQ4fDsydm4jW08WWHKLC5wc53bol7vPH\n5jzwADMhRyXqrirAZlbttZfN6poyJbrjNqSqCjj7bPtOvOQS4BAvYvAHYn/+eXR1ccp4rKqp7QDV\nIdQl773/PrBypZ3InXcOZp/Nmyd+nWWCM6yICl9qSw5g+VmOP95mXfm/qClccQQ5QO6Ny/nDH6wl\np1u32oOOc7UlZ76IHAAAItJURP4fUqaBk/nPf+z6Zz+Ltx7J2JJDVNg2bLAJD6Wlif933y23WHf3\nww8D8+bFUr2i8c03wKxZtkZVOvnMgpDOuJwxY2xSzPnnh7Ow58cf25IWgHVTJa/ZlatBzoUALgaw\nHWzqeB/vdkGoqbG02x9/nP2+/IR7QXVVBYFBDlFh8xdn3GGHzZPB7bEHcPrp1n1w883R162Y+KlD\nDjsMKCuL9tgu08i/+go47jjg6KOBDz6wwHfUqGDr4XdTVVUBF14IHHpo7ceTu6uiyu/rMrtqqaqe\npqodVbWDqp6uqssbe56INBeRiSIyTURmisiwesrdLyJzvLWr+mTwN2TllVeAyy+3D4JszJ9vo8i3\n2MIG/eUKBjlEha2urqpkw4ZZ8PPkk5aBl8IRVH60TOy2G9C6tX0PLVpU+7F164ChQ4EePYCXX7bv\nqOOPt8euuCLYwcp33WXjgnbYoe4B71ttBbRrZylNliwJ7rgNqTfIEZGh9VxuEpGbGtuxqm4AcKiq\n9gbQG8BAEdkv5RiDAeysqrsAOB/AX7P7c9Lnt77MnJnIyJgJf1bVEUcAzZplX6+gJM+uyqOVMYjI\nUWNBzk472RpKNTW2bhAFr6YmEeRkk+k+U6WllukaSLTmqFpLTY8e1m25YYP9mP/sM+D55638t9/a\nY0GYOdMCasC6qVq33ryMSPRdVg215PwAYG3KRQGcC+Aal52r6jpvsymAMgA1KUWGABjplZ0IoJ2I\ndHKtfLZUgf/+N3H7mWcy35cfLOXSeBwAaNPGLhs2WBImIiosjQU5AHDjjfbj64UXbNkBClbyUg7+\nl3jUksflzJplLUq//KV1Z/bqBbz9NvDUU0DnzhYU/fWvFnQMH579khDV1YluqvPPbzjlSdQzrOoN\nclT1z6p6t7eY5sMAWgA4G8CzALrV97xkIlLiLdewGLakw+SUItsBSO5I+RZAlzTqn5VZs6wbp7TU\nbj/7bGatHRs2JJIADhoUXP2CwhlWRIWrrunjqbp0AS66yLZ///vw61Rsol7KoS7+uJy//92mlL/5\npi3y/OCDwEcfbT6MYp99gN/+1gKUiy/OrqX/z38GPvzQeg7uuqvhslG35DS4ZqmIbAXgSgCnA3gS\nQF9VXeG6c1WtAdBbRNoCeElE9lDV1Jgx9S1R50s9zG8HA1BRUYGKigrXatTLb8U5+WRg/Hj7sJg8\nOf2cNG+/bf2evXsD222XdbUC17WrNSV+840ljqLMzJ9vv3gGDozvg4wolUtLDgBce619Af7nP5bu\nIttlZyghrqnjyfzvraVL7fPpggssV9LWW9f/nNtvB1580ZIY/vOfmY1N/fBDG/MDAI88Yj0HDXEN\nciorK1FZWZl+hVKpap0XAH8G8AWsa6p1feVcLwB+D+CqlPv+BuCUpNuzAXSq47kahiOPVAVUn35a\n9fLLbfvKK9Pfz2WX2XOvvz74Ogbh/POtfg88EHdN8tthh9nrOHx43DUhMjU1qltsYe/L5csbL3/D\nDVb20EPDr1uxWLNGtaxMtaTE7RyE6fzzVQcPVv3oI/fnPP64vSc6dVJdsSK9402frrrllvb88893\ne87kyVa+Z8/0juXFAenHHvU+YONnNgBYU8dldaM7BrYG0M7bbgHgbQCDU8oMBjDa2+4P4IN69pXe\nq+Fg7VrVpk1VRVSXLFF9/317NTp3Vq2uTm9fO+9sz3333cCrGYhbb7X6XXNN3DXJX1VVqi1a2OvY\npEnunmsqLkuX2nuybVsLeBqzYoVqu3a5/XmVb157zV7P/faLuyaZ2bRJ9YAD7G+49FL3582apdqx\noz1vyBDVH390e97KlfacFi3s2K4yDXIaGpNToqrNVbV1HZdGGqQAANsCeEtEpgOYBBuTM1pELhCR\nC7xjjAbwpYjMBTACwEUO+w3EhAm2Quo++wAdOlh/Znm5pT9/9133/Xz+uS270L599AmgXHEaefZm\nzQLWr7ft6mrgpJOimwJJVJ/UhTkb066dDQwFbAwiZS/OqeNBKCkBHnrIxqY++KDbwPQvvrDBxUuW\n2N/93HPuuYHatgU6drTP0yiWG3Fa1iETqjpDVfuqai9V7amqt3n3j1DVEUnlLlHVnb1yka284Y/H\nGTjQrkWAU06x7XRmWfmzqo4+OjGAOddwkc7sffihXR97LHDggfbPedppwKZN8daLipvreJxkJ5xg\n16NG2dTnbD3+uKXxL1b+eJw4po4HZa+9gEsvtffDRRc1/L745hsLcBYsAA4+GHjpJVt+KB3+uJwo\nZliFFuTkutQgBwBOPdWuX3zRpsK5yMWlHFKxJSd7fpCz//72q6VjR2DcuMSAO6I4ZBLk7LOPzbhc\nsMAy32Zj2TJrGbruukRdikmcSzkE7eabgW23tffEY4/VXWbhQsvo/PXX1vvx2mtAy5bpHyvKGVZF\nGeR88YW9uO3a1Z5J1bOnJU5avjwxJbwha9dat5eIteTkqi7epPzvvmPLQ6b8IGeffSzPxLPPWjPv\n7bcnAl2iqLlMH08lkmjNefHF7I7//PPWfQvYgozFJs6lHILWpg1wzz22fe21m+dVW7rUkt3OnWuz\ndP/737oT/rmIMldOUQY5b7xh10ceWXutl3S7rMaNsxaf/v0bnqYXtxYtbNxRdTWweHHctck/P/4I\nTJ9u23372vWhh9r0TAA44wwufhi1jRuBFc7JLIKzZk1u/VDIpCUHsCRxAPCvf2WXH+XppxPbxRjk\n5MLU8SCdfLIFbMuXW+ucb8UK+xs//dQaAsaMsUaCTLElJ2R+V1Vdifv8IOfllxMDTevj/4LPpQU5\n68Muq8x98ol9qe6yS+1/7GuuAY45xj4ATjjBkkJS+DZutMRmO+xgaemj8tln1s3jBwi5INMgp39/\na5GcPz/RSpmur74C3nsvcdv/IVAsamoSLf6FEuSI2ODjsjLLeTNxogX2gwZZELvLLvY3Z/ujnkFO\niDZuBN56y7br6mLaZRdg773txPqDiuuimpurjteHQU7mPvrIrvfeu/b9JSW26GG3blbmiiuir1sx\nuuEGS9q5Zg3wj39Ec0xVG5i5cqX9SHIdsxemqir7fxaxgC8dJSWJYC3TLqt//tOu/f+LYmvJ8Zdy\nKC8Hdt457toEZ/fdgauusvf8hRfaD7mJE+09Nm6cjdvJlv96ffFForszLKEGOSLSVUTGi8gn3krk\nl9VRpkJEVonIVO9yY5h1+t//gB9+sNHknTvXXcYfgNzQFMuPP7YxLttumx9ZhDnDKnPJ43FSbbml\nfUk0awaMGBHdl26xevNN4O67E7dHjoxm4dlRoxLjLzZutGb7uM2fb60JXbsCTZum//xsuqxUE11V\nQ4dal/j8+fF0IcYlF5ZyCMuNN1qr5dSpltG/c2drHPC/R7LVqpWtDlBVFf53UtgtOVUArlTVPWDJ\n/i4Wke51lJugqn28y21hVqiuWVWpTjrJrl97DVi9uu4yfivOoEH58QZnS07mGgpyABun85e/2PYF\nFwAzZkRTr2KzfDlw1lm2PXSozXD77DNr1QnTDz8AV15p2353pd+6F6dMu6p8Bx5or+EXX6Tf1TRt\nms0q2nrPto15AAAgAElEQVRr+yzt2dPuL6Yuq0Ibj5OsVSvgvvts259Jmun7rD5RdVmFGuSo6iJV\nneZtrwUwC0Bd7SeRhQkuQU7Xrtbnv2ED8MordZfJh6njybhIZ2Y2brRWO5GGW+x+8xv7Al6/3n4h\n1xccU2ZUgfPOs2nPBx5oi0z66+yMHBnusW+/3f5v+va1cVhAYQQ5paXA8cfbdrpdVk89Zdcnn2zj\nN3r3ttvFEuSsXWu9AiUlNlC3EB17rK1x9vHH1oUVtKhmWEU2JkdEygH0ATAx5SEFMEBEpovIaBHp\nEVYdvvvOfmW3agUccEDDZRuaZfX993byy8psSl0+YEtOZmbMsCbV3XZreOE5Ecsa2rOn/TI599xo\nulGKxWOPWdKxNm2sS7C0FDjzTHvs2WctGA3D55/bCsuADcjcd1/bLoQgB6g9Lsf1/bppU+Jz8Ve/\nsutevey6WMblTJhgnwv77mtd1oWqf3+gU6dw9l0QLTk+EdkCwIsALvdadJJNAdBVVXsB+AuAl8Oq\nhz91/PDDG+/DPvFE+yAdM2bzfAFjxlhf+EEHNb7iaq5gkJOZxrqqkrVsaeMbttjCvjQ++STcuhWL\nOXOAy7zRfA89ZAM9AWs92Gsv+9ERRq4if7BxVZUFrf37J1IITJ8e/oDJxmSSIyfVIYcAW21l3X6u\n44wqKy0p3E47WUI4oPhacgq5qyoqfktO3gc5IlIG4F8AnlLVzQIYVV2jquu87dcBlIlI+9Ryw4YN\n++mS6fLrLl1Vvg4drJWmutq+uJLl09RxX+fO1rS6aJHlfSE39c2sqs8uuwC/+IVt+7P4KHNVVdYt\ntW6dLaPhd1H5/NacJ58M/tgvvZTIB3LnnXbflltay8mGDfEPPg6iJaeszLolAPcuK3/A8WmnJcYj\n+mNyPvkkN2aehY1BTvYaW9qhsrKy1vd+xjJZ1dP1Ahtr8ySA4Q2U6QRAvO1+AObVUcZ9qdJ6VFUl\nVt/94gu35/hL0FdUJO6rrlbdemu7f9asrKsVqe22s3p/9VXcNckfvXvba/bOO+7PeeQRe86xx4ZX\nr2Jxww32Wm6/va2gnWrhQtWSElsZfsmS4I67dq1q16527AcfrP3YCSfY/Y8/HtzxMuF/ni1enN1+\nRo+2/fTs2XjZ9etV27Sx8rNn135s553t/o8/zq4+uW7+fPs7W7d2X3mbNrdhg/3vlpSobtzYeHkE\nvQp5QA4A8CsAhyZNER+UvBI5gBMAzBCRaQDuBXBKGBWZNMlyXOy6q/svn+OOs26tCRMSq6VOnmzr\ntXTrZuM08gmnkadn/Xpg5kxrAfOb410ceqhdT5gQzAKIxeqdd4A77rDX/6mn6s6wus02lu+qujrY\nVbXvuMO6dvv0sRlzyfxWvTjH5axYYZ9nrVpZq3M2Dj/cVoaeMcO6rRrizzjde+/NP/+KZVxOIS3l\nEKdmzSz3Tk2NJZYMS9izq95V1RJV7a2JKeKva9JK5Kr6oKru6ZUZoKpZLhlXt3S6qnxt21qXlKqt\n0QLUTgCYD1PHk3GGVXo+/ti+PLt3t3E2rrp1s9d6xQrbB6Vv5Uob1Kpq6eUPOqj+sv608qBmWaUO\nNi4trf14LgQ5/pfCjjtm/znUtCkwZIhtp3bNp/K7qlK7DYHiGZfDrqrgRLEaedFkPM4kyAE2TwyY\nb1PHk3HwcXrSGXScTASoqLDt8eMDrVLRuPhia3Hcd9/GV3ofMsR+kHz0UfaDvVVtkPOPPwLnnGOr\nzqfyBx9Pmxbf4OMgxuMk8xfsbCjIWbHCfuSVlCRmnyYrhpacTZsSLTlHHhlvXQpBFDOsiiLIWbrU\nvrCaNbPZBOk45hhrEp440dZpmTLFsnv6X2L5hEFOejINcoBEl1WGY+SL2tNP25IBLVvadmNdAi1a\nJBJ4ZjsA+eWXbRZmu3bAH/5Qd5mttrIZXuvXA7NnZ3e8TAUd5Bx1lLVWTpmS2HeqF1+04O+ww+pO\n7Z/cklOo6ROmTrXZfIW2lENcophhVRRBzpgx9k93yCH2wZmOli0Ts2XOO8+uDzvMPljzDYOc9KQ7\nsyqZHwRPmJBbq1bnunnzgIsusu377kv80muMP8vqqacyf73XrUusP3bbbQ2PdYm7yyqI6ePJmje3\nH3RA/a05fgLAurqqAKBLF5t9tmxZYgxjoSnkpRziwO6qgGTaVeXzm2b9KaP5NHU8GYMcd+vWWddH\naWmiGT4d5eV2WbWqsJvvg7RkiXU9rV5tg/7PPdf9uQccYK0aCxZYCvpM3HGHdZH16QP89rcNl82V\nICfIVPsNdVnNn29rGDVvnsiSnEqk8Mfl+LnWOB4nGOyuCkBNTeKNmWmQc/TRtWd25HuQM3++pSWf\nP9++gN96y5qi//53a6L/v/+zZQoeeyze+sZp2jR77+yxR/qtfz6/y4rjchq3YIG1tM6YYbN2Hn44\nvV/KItnlzJkzB7jrLtuua7BxqkIMcgYNsvf6xImbz8D0MxwPGdJwAtRCHpezapUNWSgttRlplL3y\ncqBJE/vhvW5dSAfJZN551BdkkSfnww8TeTZqajLejZ57ru2nR4/M9xG3TZtUy8rs73C5iKguWBB3\nreNx3332GpxzTub7ePJJ28fPfhZcvQrRvHmqO+2UyNWyaFFm+/niC9tHixaqq1a5P2/TJtWjj7bn\n/vrXbs9ZtszKt2xpubOiVF1teYEA1XXrgt33L39p+x0+vPb9PXva/f/+d8PPf+IJK3fSScHWKxeM\nGmV/24EHxl2TwrLrrm75lZCLeXJEpKuIjBeRT0RkpohcVk+5+0Vkjrd+VQPLIKYvuasqmz7USy+1\nPvpLLw2mXnEoKUn0u7doYUvd9+xpv6D97oGrr7bsrv36Wajz0kvx1jku2Qw69vnjct5+O/4lAHLV\nF18ABx9s13vvba1ema6Vs+OONtV8/frGp0L7VIFLLkkMNv7jH92et9VWluNj3broBx9/+629nzp3\nDn5sYF1dVjNm2KV9+8Zbwwu5JSfbHgGqW+iDjzOJjFwvALYB0Nvb3gLAZwC6p5QZDGC0t70fgA/q\n2E+tiC6dFpkDD7QocdQo9+cUug0bGi/jt0Icemj49clF3bvb3z9pUnb78VsoJk4Mpl6FZNYs1c6d\n7fXZf/+6Mxqny882nZylvD41NapXXmnlmzVTffPN9I51/PH23JEjM6trpt56K7wWhdWr7bUQUf3u\nO7vvmmvseBdc0PjzN2601mIRyxpdKGpqVHfYwV6HyZPjrk1h8f8H77yz4XLIxZYcVV2kqtO87bUA\nZgHonFJsCICRXpmJANqJSL2/5VTt1/XppwOvvNLw6sMrV9pq4U2a2IwoMs2aNV7m5z+3qbsTJtiA\n0GKydq39Om/SJLEmT6Y4LqduM2ZYC6I/FsdvScnWCSfY4NjKSpup1ZDf/x4YPtze56NGpT/Owh+X\nM2VKJjXNXBjjcXytW9sYRL8Vt6bGpvMD9c+qSta0KdCjhz1/xozg6xeXzz4Dvv4a2HrrRJ4kCkbY\ng48jG3gsIuUA+gCYmPLQdgCS5/t8C6BLffv57DP7UPnnP21qd8eOlvF09OjNF54cN86mkw4YYMnC\nyF27djaDoKam+Lqspk61D+mePe0LMxvMl7O5jz6yrrwlS+w9Nnq0fbkGoW1b63oFElOe63L77XYp\nLQWeey6zyQT+l13Ug4+Dnj6eKrnL6t13bVDo9tvbDDYXhdhl5Q97OPpo6/an4ITdXdUknN3WJiJb\nAHgRwOVei85mRVJub5ZKKnkV0qefrsD8+RV47jn7R3rySbtsuaVNbzz5ZPtyyXbqeLE74QTL8Pzi\ni5uv31PIghiP4/PH5bzzjq3OXOxr3bz/vv0/rl5trYUvvODWspiOs86y2UBPPgnccMPmY/GGDwdu\nvNHu/8c/EkFRuvyWnKlT7cdUYzOyghJmSw5QuxX33nvtvtNOc/9y793bXvtCmkbO8TjhqS9XTmVl\nJSqD+HWYSR9XOhcAZQDeAHBFPY//DcApSbdnA+iUUqbefrrPPlO95RbVPfesPTOoQ4fEarlTpjTc\n10d1W77cZnGUlqouXRp3baJz2mn2vhkxIpj9+bMH3nsvmP3lq/HjVVu1stfihBPcVh7ORHW16rbb\n1v2a//Wvic+Ixx7L/lj+SuWffpr9vlz162fHfOed8I4xaFDtz9MZM9yfO26cPad///DqF6V161Sb\nN9dAVnynzW3alHh9G5oViVwckyMiAuBRAJ+q6r31FHsFwJle+f4AVqrqYtdj7Lqr9a3PmGErRt90\nk+XZWLrUfi1us01mydzIZlMccYT9Sn355bhrE50gW3KAwu6yev99e5322suS6O27r633dOCB1op1\n+OHWxD94sF1++MEW3nzmGRu/EYbSUjsGUHvRzpEjgQsvtO0HHwTOPjv7Y8WRLyd5cc6w+F1WgJ3b\nPfd0f67/eTtjRmFk+377bWDDBuue7Ngx7toUnpKSxBIZc+eGcIBMIiPXC4ADAdQAmAZgqncZBOAC\nABcklXsAwFwA0wH0rWM/aUWGNTWq06er3n67amVlWk+lFP5slaOPjrsm0Vi50v7epk2Da2l49lnb\n55FHBrO/XDJwYO1f/I1dfvMb++UWthkz7Hjt2qmuX2/noKTE7vvzn4M7zq232j6vuCK4fTZk9Wo7\nXvPm4b6Oy5ZZCy6g+sc/pv/8Ll3suZ99FnzdonbFFfa3XH993DUpXMcdZ6/xM8/UXwYZtuSEOiZH\nVd+Fw+BmVb0kyOOK2K+PvfYKcq/F6dhjbTzOuHG2MF379nHXKFxTp9r1XnsF19Lgj8v53/9scHxY\nLRhR++47W8vHH7/RrJnlb6mutl/wydfV1fbe2X//aNb82XNP++U9ZYrlwXniCRtEf+utwFVXBXec\nqFty/Facbt3CHQC71VbWGvbf/wJnnJH+83v3tnw+06cnBpbmK47HCV+YM6wiGXhM+WurrWz6/dix\nwL//HUwTfy4LuqsKsOR23bsDs2YBkyZZV04heOopCxyOPdaCl1xz5pkW5Dz6qN2+7jobiByk5MHH\nNTXhz7wJe9BxsieesPa3TILSXr2A116ziSEnnhh41SLz9df2f9u6NdC/f9y1KVxhzrDiZDhqlN8/\n/+KL8dYjCmEEOUDhjctRtS9BAPj1r+OsSf1OO81yHQG2uvjttwffitSxo62+vXZtuCsp+8KePp4q\n09erUBbq9FtxjjiCMyPDFOZq5AxyqFHHHWe/UMeOtQSLhSzsIKdQkgJOmmQJEzt2zN1m/A4dbCrz\nffcB99wTXjdZlF1WUbbkZKNQcuUwDUk0wuyuYpBDjerQwcaVVFVZlulCtWKFraHUvLllbQ3SIYfY\n9XvvNZylO1/4s5Z+9avc/oV76qnAZZeFOw6IQc7mdtoJaNXKxm0tWxZ3bTJTVWVjEQGbIUjh2WYb\nYIstbNzn8uXB7ptBDjkphi4r/0uqd+/gv7g7dLDBsBs2AB98EOy+o7Zhg00BByzxXrGLcnmHKKaP\nB6GkJDHxI1+7rD74wNKQ7L67LcZK4REJrzWHQQ45Of54eyO+8QawalXctQmHH+QE3VXlK5RxOa+8\nYt2WffpwBiNQO8ipqQnvODU1tWdX5bp8H5fDrqpohTX4OOxkgI+JyGIRqXOpNhGpEJFVIjLVu9wY\nZn0oc506AQcfbFOgX3st7tqEwx+P439pBa1QxuXk+oDjqHXqBHTuDKxZE1IyM8/ChdbV2bGjNe3n\nunwfl8MgJ1phDT4OuyXncQCNvUUmqGof73JbyPWhLPhTQQu1yyqsQce+gw+21rD33wfWrw/nGGFb\nsMBa88rKbPYSmSjG5eTLeBxfPrfkLFliLXPNm9v/LYUvL7urVPUdACsaKRZBajAKwnHH2Zf066/b\nr9ZCsmwZMG8e0LKl9cGHYautrHvnxx/zd1yOnxvnmGOArbeOuza5g0HO5vbc0z4vPv00/wbbjxlj\n14ccArRoEW9dikVedlc5UAADRGS6iIwWkYDntFCQOncGDjjAPrD+85+4axMs/8upT59EbpUw5HOX\nVT7kxolLlEFOPozHAWx21a67WrbrWbPirk162FUVveTuKlvNKRhxZzyeAqCrqq4TkUEAXgZQZxLw\nYcOG/bRdUVGBCj9XPkXqxBOBd9+1LqtTTom7NsEJu6vKd+ihwL335meQ8+GH9mXVoQMwaFDctckt\nqYOPw8h8nG8tOYCNy/nsMxuX43df5bqamkRLDoOc6Gy1FbDllpbKY/FiYPbsSlQGMEsj1iBHVdck\nbb8uIg+JSHtV/T61bHKQQ/E5/njg8suB0aNtRelWreKuUTDCnlnlO+gga8KfOBFYt866x/KF34qT\n67lx4rDttnZZuNByLfm/SoOUL9PHk/XuDTz/fH4NPp46FVi61KaN77Zb3LUpLrvuap+Nc+Zs3phx\n8803Z7TPWLurRKSTiKXpEpF+AKSuAIdyR5cutk7R+vUW6BSKsGdW+bbc0rrEqqosMWC+SM6Nw66q\nuoXdZZWPLTn5OPjY76o6+uhoFpOlhDBmWIU9hfwZAO8B2E1EvhGRc0TkAhG5wCtyAoAZIjINwL0A\nCqgDpHAV2iyrxYuBb76xablRrJicj+NyXn3VmpGZG6d+YQY569ZZK1FZGbDddsHvPyzJ08iDHGcR\nJo7HiU8YM6zCnl11qqp2VtWmqtpVVR9T1RGqOsJ7/EFV3VNVe6vqAFXN0zknxeWXv7Tr116zD998\n538p9e0LlJaGfzy/BTafghy/q4oZjusXZpAzb55dl5dH8x4Nyrbb2hiulSvth0SuW7XKUjw0aQIc\ndljctSk+Ycywint2FeWh7bcH9tvPAhz/V08+mzTJrsMej+M76CAbmDp5sq1enesWLrTz3KQJc+M0\nJHnwcdCtFvnYVQVYd08+JQUcNw7YtAkYMABo2zbu2hSfvOuuosJVKGtZ/fOfwB/+YNsDBkRzzLZt\n7Quxuhr43/+iOWY2knPjdOgQd21yV+fOttDgqlWJoCQo+TZ9PFk+jctJHo9D0fODnLlzg1sihUEO\nZcTvsnr11fzM3ltTA1x3HXD66Zb357zzgGOPje74+TIuh7lx0hNWl1W+tuQA+dOSo8rxOHFr08aW\nSdmwwVawDwKDHMpIt27WvbN2bSKnRL5YvdoCmj/8wcY3/OUvwIgR0Y518Mfl/Oc/9oWYq4HiRx9Z\nxtoOHYDBg+OuTe7r29eugw5y8nH6uC9fWnJmz7ZxQx075k9On0IUdJcVgxzKmN9lNWJE/qxM/uWX\n1i316qs2nfuNN4BLLol+quiBB9pMmZkzLVj0s8MefzwwdCjwwgv2oVtdHW29UvmtOKefztw4LtiS\ns7nddgOaNrX8QatXx12b+iV3VYWRzJHcBD34ONZVyL0y94vIHG9phz5h1oeCdeKJ9sX3+us2rfXC\nC4FPPom7VvWrrAT69bM67r67DTg+/PB46tK6tY0HOukkoEcP+1CdMwd46SXgllvs/u7dbVp7nz7A\nxRdb/Tdtiq6OGzdaHQF2VbkKY/Cxan4HOWVlto4VAMyo95sgfhyPkxt22cXWCwssIFbV0C4ADgLQ\nB8CMeh4fDGC0t70fgA/qKaepxo8fv9l9FL1x41T79h2v9lFsl0MPVR01SrWqKu7aJfz1r6pNmlj9\nBg9WXbky7hrVtmGD6vTpqk8/rXrttarHHKO6ww5a63UFVDt1Ur3oItXKStXq6s33E+T/xQsv2DF7\n9w5slwWvpka1Y0d73Z5+enwg+1y0yPbXvn0gu4vF2Wfb3/DAA/Ecv7H/ix9+UG3WTFVEdcmSaOpU\nrBo7Fxs2qG7atPn9XhyQdhwS9yrkQwCM9MpOBNBORDq57DuINS0oe4cdBvz855X45BPgoous22X8\neOt22WknG/eybFl89auqslaQCy+0rp+rrwZeeSX3poc2a2ZJ9k47DbjzTutOmzfPugHffRe49lr7\nFb94MfDQQzamp0sX62qbMCHRwhPk/wVz46RPJNGa89JLlYHsM59bcXxxj8tJ/r9QBZYvtxQOzz1n\n/29nnmktl3vvzRmEYWvsM6pZs2C7C+NeoHM7AMkpor4F0AXA4niqQ5nq0QN48EHgjjuAkSOBBx6w\n7pfrrgOGDQNOPTW6PDTJ/vUvC7qaNgUeftg+zPJJmza28vsBB9hrO3WqrQX0wgv25ffgg3bZZhub\n8ebfl63qaubGydTee1sX7vTpwZyLqVPtOh+nj/v8GVbjxwfzmqSjutomR8yYYf8fX35Zf1fIccdF\nWzcKX9xBDgCkDvnMk+TfVJe2bYHLLrMWhrFjbebS6NHWKuC3DEStUyfg5ZeB/v3jOX5QRGz2Tt++\n9utzyhQLdpIDHsC+YIPyi1/YbBNy16+fXc+ZY/8HQYliyZGw9Oplv87nzg32NclU69bWMpZ82WWX\nRGoHKhyiIS8oIiLlAF5V1Z51PPY3AJWq+qx3ezaAQ1R1cUo5Bj5ERERFTFXTngcbd0vOKwAuAfCs\niPQHsDI1wAEy+8OIiIiouIUa5HirkB8CYGsR+QbAUABlAKC2UOdoERksInMB/ADg7DDrQ0RERMUj\n9O4qIiIiojjkXV5HERkoIrO9BILXxF2fYlJXckcRaS8iY0XkcxEZIyLt4qxjsRCRriIyXkQ+EZGZ\nInKZdz/PR8REpLmITBSRad65GObdz3MRExEpFZGpIvKqd5vnIgYiMk9EPvbOxSTvvkjPRV4FOSJS\nCuABAAMB9ABwqoh0j7dWReVx2Guf7FoAY1V1VwDjvNsUvioAV6rqHgD6A7jY+1/g+YiYqm4AcKiq\n9gbQG8BAEdkPPBdxuhzAp0jM1uW5iIcCqFDVPqrqzTuM9lzkVZADoB+Auao6T1WrADwL4Bcx16lo\n1JPc8aeEjt51hGt5Fy9VXaSq07zttQBmwfJO8XzEQFXXeZtNYeMOFTwXsRCRLrBs+o8gkaKE5yI+\nqROHIj0X+Rbk1JU8cLuY6kKmU9KMuMUAnDJWU3C8NA19AEwEz0csRKRERKbBXvMxqjoJPBdxGQ7g\nagA1SffxXMRDAbwpIh+KyHnefZGei7inkKeLo6RzmKoqcxpFS0S2APAvAJer6hpJWk6d5yM6qloD\noLeItAXwkojsmfI4z0UEROQYAEtUdaqIVNRVhuciUgeo6kIR6QBgrJcL7ydRnIt8a8n5DkDXpNtd\nYa05FJ/FIrINAIjItgCWxFyfoiEiZbAA5x+q+rJ3N89HjFR1FYDxAI4Gz0UcBgAYIiJfAXgGwGEi\n8g/wXMRCVRd610sBvAQbchLpuci3IOdDALuISLmINAVwMiyhIMXnFQD+Eo5nAXi5gbIUELEmm0cB\nfKqq9yY9xPMRMRHZ2p8hIiItABwJGyPFcxExVb1eVbuqajcApwB4S1XPAM9F5ESkpYi09rZbATgK\nwAxEfC7yLk+OiAwCcC+AUgCPquqdMVepaCQnd4T1pd4E4N8AngewPYB5AE5S1ZVx1bFYiMiBAN4G\n8DES3bjXAZgEno9IiUhP2ADKUtgPx+dU9TYRaQ+ei9iIyCEArlLVITwX0RORbrDWG8CGxjytqndG\nfS7yLsghIiIicpFv3VVEREREThjkEBERUUFikENEREQFiUEOERERFSQGOURERFSQGOQQERFRQWKQ\nQ0RERAWJQQ4REREVJAY5REREVJAY5BAREVFBahJ3BVyEvRQ7ERER5TZVlXSfkzctOapa6zJ06NDN\n7uMlngvPRe5ceC5y58JzkTsXnovcuWR6LjKVN0EOERERUToY5BAREVFBkmyagaJiY3KGptw7D0B5\n9JUJmzh2OY5KfT3qcdywjKvibh4K8lw4a+FYbn2otTDzkF/nosyxXFXAx/2NY7lHsjjGPGR6Lobi\n5kbL3LzZZ2K2HD97+jse94NhGdckePOQX/8XJ7kVO6aHW7nXhmVckzo5vlVKFly92X363tuQAQf/\ndLtm27scD3ozNF/H5IjIQBGZLSJzROQat2eVh1onSkd53BWgn5THXQH6SXncFaCflMddAfIkBzhR\niD3IEZFSAA8AGAigB4BTRaR7vLUiIiKifBd7kAOgH4C5qjpPVasAPAvgFzHXiYiIiPJcLgQ52wH4\nJun2t959RERERBnLhWSAjiOfK5O2y8E+ViIiokI1z7tkJxeCnO8AdE263RXWmpOiIpraEBERUczK\nUbsxY0JGe8mF7qoPAewiIuUi0hTAyQBeiblORERElOdib8lR1WoRuQTAGwBKATyqqrNirhYRERHl\nudiDHABQ1dcBvB53PYiIiKhw5HHG4zoLuu3wo5vcyvVtPOuod+DGi1zjeMw/uh1TSsqdys2qcjvu\n7qXnOJUrLn0dy01xKuWaqvMB3OJU7mI4vqcC5vJvVr3A7W8o3dbtbxC0dipXfezmGVbrPO7L8bx2\ngXJ8Q51Svb1TuWdL5wd7YNc5JQXBMeu5bHAr94rj+/Pnf3Ir55xt3TV7+1luxeRvjZdxfpvkccZj\nIiIioqAxyCEiIqKCxCCHiIiIChKDHCIiIipIDHKIiIioIDHIISIiooLEIIeIiIgKEoMcIiIiKkgM\ncoiIiKggxZ7xWES6AngSQEdY7sO/q+r9KWXcMh67KnFMmljpmHXyYJcsxW3c9uW80kYnp1Iii53K\nub8NvnctmPdE2juVu7N6jlO5a0u3cjuuYwrQmxwzI6tjhtpbAsyg7Jp8XNU1w+ppTqVK5BGnclWP\n3epUrnSPTU7l0M81O7ojl9fv62vc9rXDHx0PWuZU6pTqbZ3KuWdQzmWO7889/8+t3Ey3ZRmlZXen\ncl+v6eBUbvvSqU7lgEfdijn+g8uTjX+mjDzDra3lTCCjjMe5sHZVFYArVXWaiGwB4CMRGctFOomI\niCgbsXdXqeoiVZ3mba8FMAtA53hrRURERPku9iAnmYiUA+gDYGK8NSEiIqJ8lzNBjtdV9SKAy70W\nHSIiIqKM5cKYHIhIGYB/AXhKVV+uu1Rl0na5dyEiIqJCM8u7ZCv2IEdEBDak+1NVvbf+khUR1YiI\niIDLuFIAABq7SURBVIji1N27+Opp/WhULnRXHQDgVwAOFZGp3mVg3JUiIiKi/BZ7S46qvovcCLaI\niIiogDC4ICIiooIUe8ZjF4FnPHY/sFu5PHgNKTy5/jZxzaD8e3HLAnzL5w5ZgKsdX5TXHF+Uq10z\nCrtl7ZXdr3cqp5+5ZZWO5eQ6Zm6XEW6ZrKs7ljqVaz5ghVO5qg7DncoVBtdEvK7vE8dzK27nVvUO\nx+NWOZZz5PDhKI7/O4qbM8p4zJYcIiIiKkgMcoiIiKggMcghIiKigsQgh4iIiAoSgxwiIiIqSAxy\niIiIqCAxyCEiIqKCxCCHiIiIChKTARJRepzScaWds6thAX9OuSZwvKt6iVO5/1faMYva1MWhglu7\nJYLDcreEhq5JI53PRO5/tRQAxzfyVY7vlbtdk27GIc+TAYpIqbc456tx14WIiIjyX84EOQAuB/Ap\nGP8TERFRAHIiyBGRLgAGA3gEgbdzExERUTHKiSAHwHAAVwOoibsiREREVBiaxF0BETkGwBJVnSoi\nFfWXrEzaLvcuREREVHjmeZfsxB7kABgAYIiIDAbQHEAbEXlSVc+sXawi+poRERFRDMpRuzFjQkZ7\nib27SlWvV9WuqtoNwCkA3to8wCEiIiJKT+xBTh04u4qIiIiylgvdVT9R1QnItE2KiIiIKEneZDze\nNK/xmeWl5bc67rHKsVwLx3LtHcp857ivno7lZrsVE7e/9epqt5n7d5Xm/vslet0dy80KtRbZcs0C\nXLWk8Qy6ZR3dMqxWT3TLxlt69yancngu2Iytrq9J4B+jDsfdofoUp119XfpslpXJzE1wO7e3wDEb\nb05zfKP0dvxbp93hdlTHz/d3q//tVO6A0uecygH/dCwXpDzPeExEREQUJAY5REREVJAY5BAREVFB\nYpBDREREBYlBDhERERUkBjlERERUkBjkEBERUUFikENEREQFiUEOERERFaS8yXgsMrTRcsFnHXVM\nrniHQxbL64Y7HnS1Y7mAueaRzP23C4XM5d/C9X9RpKNTOdWlbjt0foM6vuG3ccxQuyjYTMtO9RPH\numnQdSsmZY7ldnYs55ip3vl97JJtHxBp7XZU/drxuEFyfe3OyN+MxyLSTkReFJFZIvKpiPSPu05E\nRESU33Jlgc77AIxW1RNEpAmAVnFXiIiIiPJb7EGOiLQFcJCqngUAqloNYFW8tSIiIqJ8lwvdVd0A\nLBWRx0Vkiog8LCIt464UERER5bfYW3JgdegL4BJVnSwi9wK4FkCtUXWqlUm3yiFSHlX9iIiIKFKz\nvEt2ciHI+RbAt6o62bv9IizIqUWkIso6ERERUWy6exffSxntJfbuKlVdBOAbEdnVu+sIAJ/EWCUi\nIiIqALnQkgMAlwJ4WkSaAvgCwNkx14eIiIjyXNotOSJyl4i0EZEyERknIstE5IxsKqGq01V1X1Xt\nparHqypnVxEREVFW0s54LCLTVbWXiBwH4BgAvwPwjqruFUYFvWMq0HjG49g4pYDdyXFnc7OqClFh\nKncsNy/EOtTvJtziVO4WOGYpduGakf1Pjse8mpmRC5bre+V+x/fKpXG8V26OLOOx38V1DIAXvVYX\nJvsnIiKinJLJmJxXRWQ2gA0ALhRbfGZDsNUiIiIiyk7aLTmqei2AAwDsrao/AvgBwC+CrhgRERFR\nNjIZeHwxgBpV3eTd1RTA8YHWioiIiChLmYzJOV9VV/g3vO3zg6sSERERUfYyCXJKROSn54lIKYCy\n4KpERERElL1MBh6/AeBZERkBQABcAOC/gdaKiIiIKEuZBDnXwLqnLvRujwXwSGA1IiIiIgpA2kGO\nqm4SkccAvOvdNTtpEDIRERFRTsgk43EFgJEAvvbu2h7AWao6Idiq1Tpmbmc8JqIcUe5Ybl6gRxXH\nfKi/x61O5WLJjJzT2W4pEq7vlV6O75VpQb5XMst4nEl31T0AjlLVzwDAWz38WQB9M9gXvH1cCeBc\nWObkGQDOVtWNme6PiIiIKKNlHfwABwBU9XNksZq5iGwHW4V8b1XtCaAUwCmZ7o+IiIgIyCw4+UhE\nHgHwFGx21ekAPgygHi1FZBOAlgC+y3J/REREVOQyacm5EMAsAJfBWmA+QWKmVdpU9TsAdwOYD2AB\ngJWq+mam+yMiIiICMptdtQEWlNwdRAVEZEsAQ2AjBlcBeEFETlfVp2uXrEzaLof7AEMiIiLKL/MQ\nxAQB5yBHRGY08LCq6l4Z1uEIAF+p6nLvOKMADACQEuRUZLh7IiIiyi/lqN2YkdkE7nRacn6e0REa\n9zWA/iLSAsAGWNAzKaRjERERUZFwDnJUdV7qfSKyNYDlmm6yndr7nSQiLwKYAqDau/57pvsjIiIi\nAtIYeCwi+4tIpYiMEpG+IjITwEwAS0RkUDaVUNVhqtpdVXuq6lmqWpXN/oiIiIicMx6LyEcArgPQ\nFsDDAAaq6gcisjuAZ1W1d2iVLKqMx1c6lhseai2IqMi4ZrvNvOGe0Mmx3OJQa5G9kxzLPR/gMTPL\neJzOFPJSVR2jqi8AWKiqHwCAqs4GHHOaExEREUUknSAnOZDZEHRFiIiIiIKUzuyqvURkjbfdImkb\nAFoEWCciIiKirKUzu6o0zIoQERERBSmTZR2IiIiIch6DHCIiIipIDHKIiIioIDHIISIiooLEIIeI\niIgKUjpTyGMl4xvPeFzd0m0CWOl+dzoedb1juSDd61juRMdyLziVck0j+ShucSp3Dm5y3GP+c33t\nRjq+dmcW02vn+OKtXeX22rVqUzyvXeBiymR8k+P/xS0F8X/xfSxHdf0/+7r6Aady25e2z6I20Yqs\nJUdEHhORxSIyI+m+9iIyVkQ+F5ExItIuqvoQERFRYYuyu+pxAANT7rsWwFhV3RXAOO82ERERUdYi\nC3JU9R0AK1LuHgJgpLc9EsCxUdWHiIiIClvcA487qaq/3OpiuC/RSkRERNSgnBl4rKoqIvWOfNMn\nhiVu9K6A9K4Iv1JEREQUg3neJTtxBzmLRWQbVV0kItsCWFJfQfn1sOhqRURERDEq9y6+CRntJe7u\nqlcAnOVtnwXg5RjrQkRERAUkyinkzwB4D8BuIvKNiJwN4A8AjhSRzwEc5t0mIiIiylpk3VWqemo9\nDx0RVR2IiIioeIjGlOUyHSKikNsbL/fSdU772/7ns53KfV36ilM5t8zI27ntSha4lbvFMfvn7292\nK+dI4PZ++T1udSpXGFlM3bhmRlbnSYaLGy9SIFwztmrbxjOjAwBWBvt/QZnjZ0o2HL9X8J1TqZIS\nt3OxuOoup3IdSv/PqZybm6Gqrh+jP4l7TA4RERFRKBjkEBERUUFikENEREQFiUEOERERFSQGOURE\nRFSQGOQQERFRQWKQQ0RERAWJQQ4REREVJAY5REREVJAiy3gsIo8B+BmAJara07vvLgDHAPgRwBcA\nzlbVVXU8VwGHTKaOaVHlAbeMmOtPK3Uqt0/biY2Wmfn3fZ32hcMdz8drjokffzfMrVi12wof95R2\ncSon+Mqp3E24xalckH7mmHu4n7zhVO6Q6k1O5SaULnIqB8xzLEebc88rTfnFNTOy62dKmcNb5frb\n3N5Ps6/bwancPC13Kje49AWncsADjuW6O5ab61RKpMqpnKpLRma3bMz5kPH4cQADU+4bA2APVe0F\n4HMAbusyEBERETUisiBHVd8BsCLlvrGqWuPdnAjArZmAiIiIqBG5NCbnHACj464EERERFYacCHJE\n5AYAP6rqP+OuCxERERUGt9GmIRKRXwMYDODwhktWJm2XexciIiIqPPMQxCSMWIMcERkI4GoAh6jq\nhoZLV0RQIyIiIopfOWo3ZkzIaC+RdVeJyDMA3gOwm4h8IyLnAPgLgC0AjBWRqSLyUFT1ISIiosIW\nWUuOqp5ax92PRXV8IiIiKi6RJQPMhnMyQPcdOhZze210tEPdBgWd9K6jWzFd7FauiHKoCY5xKqd4\nzXWHbgrgtSMqFIIyh0InOu5tnmO51U6lVGc67q+Y5H4yQCIiIqLIMMghIiKigsQgh4iIiAoSgxwi\nIiIqSAxyiIiIqCAxyCEiIqKCxCCHiIiIChKDHCIiIipIDHKIiIioIBVnxuOglTSehLFs0RVOu6rq\nODzb2lBjHDNeb1P9K6dyi0r/kU1tiChntXUsF3RmZNfFKKscy8XFIau089+Q4xmPReQxEVksIjPq\neOwqEakRkfZR1YeIiIgKW5TdVY8DGJh6p4h0BXAkgK8jrAsREREVuMiCHFV9B8CKOh66B8D/RVUP\nIiIiKg6xDjwWkV8A+FZVP46zHkRERFR4msR1YBFpCeB6WFfVT3fX/4zKpO1y70JERESFZx7cB2rX\nL7YgB8BOsEhluthsly4APhKRfqq6ZPPiFRFWjYiIiOJTjtqNGa4zzv5/e/cfZFdd3nH8/SGbjAQ1\nkIYJLcRGqSixFiJtpKBDaMcSKAIDHUEZC+g4nf5IMx1qsUzV1Npi6x+gODqO5VfRBrEMKTj4AyQ7\nhoiByCZZILRACROURkCl/Gw3ydM/znfNzcpmv3f37vmee/bzmsnc8+uefZ4899599nu/99x9FWty\nImIYWDi6Lukx4LiI+EmpmMzMzKw96vwI+Rrge8BRknZIumjMIc2/YI+ZmZn1jdpGciLivRPsf0Nd\nsZiZmVn7lZyT0x57Jh6EGjns1qxTfXh33gUdPz2QN/D1qmdWZh338vwrs45rh7z/uw/qqqzj/p45\nUwnGzIrIea3Nu1I9XJf5I/OudzvvhQ9kHffs3C/m/dxey7xqPBsunfiYE/52arFMwN9dZWZmZq3k\nJsfMzMxayU2OmZmZtZKbHDMzM2slNzlmZmbWSm5yzMzMrJXc5JiZmVkruckxMzOzVnKTY2ZmZq2k\niOZ/ZZSkGBvn4OAgy5cvLxOQ7cO1aA7Xojlci+ZwLZpjsrWQRERkXmp5r74dyRkcHCwdgiWuRXO4\nFs3hWjSHa9Ecddeib5scMzMzs/1xk2NmZmat1DdzckrHYGZmZuVMZk5OXzQ5ZmZmZt3y21VmZmbW\nSm5yzMzMrJX6rsmRtELSQ5IelnRJ6XhmEklXS9opabhj23xJt0v6T0nflnRwyRhnCkmLJK2T9ICk\n+yX9edruetRM0qskbZS0OdViddruWhQiaZakIUm3pnXXogBJ2yVtTbW4J22rtRZ91eRImgV8DlgB\nLAHeK+noslHNKNdQ/d93+ghwe0QcBXwnrdv0GwH+IiLeAhwP/Gl6LrgeNYuIl4GTI+JY4FhghaS3\n41qUtAp4EBiddOpalBHA8ohYGhHL0rZaa9FXTQ6wDHgkIrZHxAhwA3Bm4ZhmjIhYD/x0zOYzgOvS\n8nXAWbUGNUNFxH9HxOa0/DywDTgc16OIiHgxLc4BZlO9uLsWBUg6AjgN+Gdg9NM4rkU5Yz8RVWst\n+q3JORzY0bH+RNpm5SyMiJ1peSewsGQwM5GkxcBSYCOuRxGSDpC0mer//NsRcQ+uRSmXAx8G9nRs\ncy3KCOAOSZskfShtq7UWA9N58mngz7s3WESEr2lUL0mvBm4CVkXEc9LeP5pcj/pExB7gWEnzgJsl\n/fqY/a5FDSSdDvw4IoYkLX+lY1yLWp0YEU9KOhS4XdJDnTvrqEW/jeT8EFjUsb6IajTHytkp6TAA\nSb8M/LhwPDOGpNlUDc71EbE2bXY9CoqIZ4F1wCm4FiWcAJwh6TFgDfA7kq7HtSgiIp5Mt08BN1NN\nOam1Fv3W5GwC3ihpsaQ5wLnALYVjmuluAS5IyxcAa/dzrPWIqiGbq4AHI+KKjl2uR80kLRj9hIik\nA4F3Uc2Rci1qFhGXRsSiiHg9cB5wZ0S8H9eidpLmSnpNWj4I+D1gmJpr0XdXPJZ0KnAFMAu4KiIu\nKxzSjCFpDXASsIDqvdSPAf8O3Ai8DtgOvCciflYqxplC0juA7wJb2fs27l8D9+B61ErSW6kmUM6i\n+sPxqxHxSUnzcS2KkXQScHFEnOFa1E/S66lGb6CaGvOViLis7lr0XZNjZmZmlqPf3q4yMzMzy+Im\nx8zMzFrJTY6ZmZm1kpscMzMzayU3OWZmZtZKbnLMzMysldzkmNm0kbRb0pCkYUk3povldXP/X5H0\ntbR8TLpO1ui+d0u6pNcxm1l7+Do5ZjZtJD0XEaNXPf0y8IOIuHyS57oQOC4iVvYwRDNrMY/kmFld\n7gJ+TdIhktZK2iLp7nTFYCSdlEZ9hiTdJ+mg9BUuw+l7uj4BnJv2v0fShZKuTPddLOnOdM47JC1K\n26+V9BlJGyQ9KumcYtmbWe3c5JjZtJM0AKyg+hqKT1CN6BwDXAr8SzrsYuBPImIp8A7g5dH7R8QI\n8FHghohYGhE3svfrLACuBK5J5/wK8NmOfYdFxInA6cCnpiM/M2smNzlmNp0OlDQE3As8DlwNnAhc\nDxAR64BfSl/ktwG4XNJK4JCI2D3mXEr/XsnxwL+m5S9TNUlQNUJr08/aBizsRVJm1h8GSgdgZq32\nUhqZ+bnqC9R/oVmJiPhHSV8Hfh/YIOkU4H+7+FnjNUD/l3GMmbWQR3LMrG7rgfMBJC0HnoqI5yUd\nGREPRMQ/UY38vGnM/f4HeE3HemfD8j3gvLR8PtU3tJvZDOcmx8ym0yt9fHM1cJykLcA/ABek7avS\nJOMtVKMv3xhzjnXAktGJx2n76L6VwEXpvucDq8aJwR8nNZtB/BFyMzMzayWP5JiZmVkruckxMzOz\nVnKTY2ZmZq3kJsfMzMxayU2OmZmZtZKbHDMzM2slNzlmZmbWSn3xtQ6SfDEfMzOzGSwiuv5alr5o\nciqr2Rvu7HQ71fVenadXP2cco2WdNc7dB2bI/m6PK37/1JsP7N7n9oBZu6rV2dX6rIGxt2n/6PoB\n6Zaxt+m4X9i+//29PFf+/raepyHx7k63u9L+3XvSOvvcavQhsGuc2/H29/p+TT9ft/ebzlgyzzeS\n1tNDgJHdY9Z37Xu3kTG3Y7dPdb3X513N5PjtKjMzM2slNzlmZmbWSm5yzMzMrJXc5JiZmVkruckx\nMzOzVnKTY2ZmZq3kJsfMzMxayU2OmZmZtZKbHDMzM2slNzlmZmbWSm5yzMzMrJXc5JiZmVkruckx\nMzOzVnKTY2ZmZq3kJsfMzMxayU2OmZmZtZKbHDMzM2slNzlmZmbWSm5yzMzMrJXc5JiZmVkrucmp\n3frSAfTW04OlI+idrYOlI+ip5wd/UDqEntk++HjpEHrq3sEXS4fQM4P3lY6gtwZ/VDqC3lm/u3QE\n5bnJqd1dpQPorWcGS0fQO8ODpSPoqRda1OQ83rImZ1Obmpyh0hH01uCTpSPonbv2lI6gPDc5ZmZm\n1kpucszMzKyVFBGlY5iQpOYHaWZmZtMmItTtffqiyTEzMzPrlt+uMjMzs1Zyk2NmZmat5CbHzMzM\nWqlRTY6kFZIekvSwpEvGOeazaf8WSUvrjjHXRLlIerOkuyW9LOniEjF2IyOf81NNtkraIOk3SsSZ\nIyOXM1MuQ5LulXRiiThz5Dxn0nG/JWmXpLPrjK9bGbVZLunZVJshSX9TIs4cma9ny1Me90sarDnE\nrmTU5i876jKcHm8Hl4h1Ihm5zJN0q6TNqTYXFggzW0Y+h0i6Ob2ubZT0lhJxTkTS1ZJ2ShrezzHd\n9QAR0Yh/wCzgEWAxMBvYDBw95pjTgNvS8tuB75eOewq5HAr8JvBJ4OLSMfcgn98G5qXlFX1em4M6\nlt8KbCsd92Rz6TjuTuDrwDml455ibZYDt5SOtUe5HAw8AByR1heUjnuqj7WO408H7igd9xRqcylw\n2WhdgGeAgdKxTyGfTwMfTctvanBt3gksBYbH2d91D9CkkZxlwCMRsT0iRoAbgDPHHHMGcB1ARGwE\nDpa0sN4ws0yYS0Q8FRGbgJESAXYpJ5+7I+LZtLoROKLmGHPl5PJCx+qrgaZeNzTnOQOwEvg34Kk6\ng5uE3Hy6/hhpATm5vA+4KSKeAIiIp2uOsRu5tRn1PmBNLZF1LyeXPcBr0/JrgWciYleNMXYjJ5+j\ngXUAEfEfwGJJh9Yb5sQiYj3w0/0c0nUP0KQm53BgR8f6E2nbRMc08ZdpTi79pNt8PgjcNq0RTV5W\nLpLOkrSNavTjAzXF1q0Jc5F0ONUL3hfSpiZfMyKnNgGckIaqb5O0pLboupOTyxuB+ZLWSdok6f21\nRde97NcASXOBU4CbaohrMnJy+RywRNKPgC3Aqppim4ycfLYAZwNIWgb8Ks383TmRrnuAgWkNpzu5\nL75j/4pr4ot2E2Oaiux8JJ1M1RQ0dR5LVi4RsRZYK+mdVG8pvmtao5qcnFyuAD4SESFJNHsUJCef\n+4BFEfGipFOBtcBR0xvWpOTkMht4G/C7wFzgbknfj4iHpzWyyenmNe3dwF0R8bPpCmaKcnJZAdwX\nESdLOhK4XdIxEfHcNMc2GTn5fAr4jKQhYBgYAvr16zu76gGa1OT8EFjUsb6Iqkvb3zFHpG1Nk5NL\nP8nKJ002/hKwIiL2N+RYUle1iYj1kt4gaX5E/GTao+tOTi7HATdU/Q0LgFMljUTELfWE2JUJ8+n8\nJRMR35D0+T6uzQ7g6Yh4CXhJ0neBY4AmNjndPG/Oo7lvVUFeLhcClwFExKOSHqOay7KpjgC7lPu8\n+fmIdMrnv2qJrre67wFKTzTqmFA0ADxKNXlqDhNPPD6e5k5unTCXjmNX0/yJxzm1eR3V5LfjS8fb\ng1yOZO/VwN8G7Cgd91QfZ+n4a4CzS8c9xdos7KjNMmB76binkMubgTuoJo7OpfoLe0np2KfyWAPm\nUU3SPbB0zFOszeeBj3c85p4A5peOfQr5zAPmpOUPAdeWjns/+Swmb+JxVg/QmJGciNgl6c+Ab1E9\n6a+KiG2S/ijt/2JE3CbpNEmPAC8AFxUMeVw5uUg6DLiXalLbHkmrqF7gni8W+Dhy8gE+BhwCfCGN\nGoxExLJSMY8nM5dzgD+UNAK8BJxbLOD9yMylb2Tm8wfAH0vaBbxINWrQOJmvZw9J+iawlWqi65ci\n4sFyUY+vi8faWcC3ohqdaqTMXP4OuFbSVqq3R/4qmjdaCGTns4QqnwDup5o32TiS1gAnAQsk7QA+\nTvW27qR7AH93lZmZmbVSkz5dZWZmZtYzbnLMzMysldzkmJmZWSu5yTEzM7NWcpNjZmZmreQmx8zM\nzFrJTY6ZmZm10v8DtKN3NRD4V08AAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c3e3a20>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "full_profile = make_profile_partial(sequences, range(len(sequences)))\n", | |
| "plt.figure(figsize=(8, 6))\n", | |
| "sp1 = plt.subplot2grid((8, 1), (0, 0), rowspan=3)\n", | |
| "plt.plot(neq(sequences), label='all sequences', lw=2)\n", | |
| "plt.ylabel('Neq')\n", | |
| "plt.title('All sequences')\n", | |
| "sp2 = plt.subplot2grid((8, 1), (3, 0), rowspan=5, sharex=sp1)\n", | |
| "im = plt.imshow(full_profile, interpolation='none')\n", | |
| "plt.colorbar(im, orientation='horizontal')\n", | |
| "plt.xlabel('Position')\n", | |
| "plt.ylabel('Blocs')\n", | |
| "plt.tight_layout()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACSCAYAAABhcPBkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAElBJREFUeJzt3XuQJWV5x/Hvb866IqyKK8ht1xxQLoIYQGulIIZZlQgG\nFytcBI2ipEylTBSJwQuWywLxUqaiVDCmEoIEDeIFEDGlhuUySGlkuS+wa1jFkeW2LHIJmIjMzJM/\nTg+cnem3Z6dPnzmn5/w+Vaf2nLe7337fnjPP9Ha//byKCMzMrP8N9boBZma2dRywzcxqwgHbzKwm\nHLDNzGrCAdvMrCYcsM3MasIB22pD0nslXd/rdpj1igO2DRxJE5L2qLjOpqRrJf1G0npJb6qyfjNw\nwLbBpVIbSQsSiy4GbgYWA58ELpG0Q8m2meVywLa+I2mppMskPSzpEUnn5qzTzM6Uh9rKRiT9Wfb+\nlZKuk/S4pM2SLs7Kf5StfrukJyUdl5UfJek2SY9J+rGk/dvqHZX0UUlrgSfb95kt3ws4EDgjIp6O\niMuAtcAx1R4ZG3SpswWznpDUAP4DuAp4FzABvHYrN4/sBXA28MOIOEzSQuB1ABHxh5ImgNdExD3Z\nPg8EzgeOAm4C3g1cIWmviHgmq+8E4EjgkYiYmLLf/YB7IuI3bWW3Z+VmlfEZtvWbZcAuwGkR8X/Z\nGetPStTzO6ApabeI+N0Mdfw58M8RcWO0fBV4Gjg4Wx7AP0TE/RHxdM72i4AnppT9D/DCEu02S3LA\ntn6zFPhVzlnsbH2U1nXqNZLulPS+gnV/D/hIdjnkMUmPAUuAXdvW2Viw/VPAi6aUbU8raJtVxpdE\nrN9sBF4uqRER4wXrTV5+2JZWwATYeXJhRGyideaMpEOBqyRdN3kZZIp7gU9HxGcK9leU1vIuYA9J\niyJisi2/D3ytYBuzWfMZtvWbG4AHgc9J2lbSNpIOmbpSRGwG7gfeLakh6WTgFZPLJR0naUn28XFa\nAXfyrH1T+7rAecBfSFqmlu0k/bGkRVvT4Ii4G7gNOCNr758ArwYunU3HzWbigG19JbsU8jbglbTO\nfDcCx08uZssz3fcDpwGPAPsCP25b9jrgp5KeBL4LfCgiRrNlq4ALs8sfx0bEzVldXwIeBTYA76H4\nrHqqE7J9Pgp8GjgmIn49i+3NZiRPYGBmVg8+wzYzqwkHbDOzmigdsCUdIelnkjZI+liVjTIzs+lK\nXcPOnkb7b+DNtO7U3wicGBHrq22emZlNKjsOexnw88m77pK+ARwNPBuwJflupplZCRGRm5ysbMDe\njS2f/LoPeP301c7I/h0Bhkvuar4YYbCPwQj17v8ZBcvO3Mo6RpjpGJxRUNeZhW2ogxG68x1IJ17U\n8pW55bdcvXdymwOH3tlxi/KNMFP/Gw0xPr4qubzsNWyfPZuZzbGyZ9j308r5MGkprbPsKUayf0ez\nV7Pk7szM5qvR7AUTM2TQKRuwbwL2lNQEHgDeAZw4fbXhtgY1S+5qvmj2ugE91ux1A/pAs9cN6LFm\nrxvQY82C8tayoSExPn5dsoZSATsixiT9FfCfQAM4v3iESKqhg6TZ6wb0WLPXDegDzV43oMeavW5A\njzU7rqF0tr6I+AHwg+K1FifKHy272+mUuOFwV/7NBgD2PSu/fEF6m5VjjdzysyjYT986rmDZt2dV\n00oSx5K5OzapNhTtX+yTW/7M4vwbTgsq/MoWKXNjsR9+Br1UNCBtbEX+7+2CRpnjMlywbFOivNqR\nzn7S0cysJhywzcxqwgHbzKwmHLDNzGqik+RPSyVdK+mubM68D1XZMDMz21Inczo+A5waEbdlUynd\nLGm1E0CZmXVHZTPOSLocODcirs4+R3H+hS7T8ell8bLEgn8sqDB1nKobIjdnUkMhgT3Hjs4t39C4\nPL+qgiwFqeFmUZD7odJhaAX95Ir8/WhFfi6PHcZOTla1ufFkYknVP//hRPnIrGsqMxRyrkiH5Zb/\nYuyE3PI9Gp8sqCu/PA77YLoBI6kHV0ZmvZ97xr6c3Oanjc3T62k0OGF8PJn8qZJr2NkTjwfSmkDV\nzMy6oOOAnV0OuQQ4JSKe6rxJZmaWp5Nr2Eh6HnAp8O8RkfN/5pG29038aKqZ2ZbWZS9gxuxPpQO2\nJAHnA+si4pz8tYbLVm9mNhD2zV4AGhri0vHx5LqdXBI5FPhTYLmkW7PXER3UZ2ZmBSobJTKt4l6P\nErFyUgMrKvyaFI0s+RRn55YXJnJKtPkXY/+U3GaPBR9ItC0/KdSZ4zcm61o5tCi5rNf6eTTIbCVH\nfJT6bhaMIuNbZSrMVTRQKe/XoNEQY+OrujtKxMzMus8B28ysJhywzcxqwgHbzKwmOgrYkhrZ6JDv\nVdUgMzPL1+kZ9im0xnx3Z6iJmZk9q/SwPklLgH8DPg38dUS8bcpyD+uznioaUjXbr33RvIFrI38o\n4v41HDpnvdVoiPEuDev7InAaUPwspZmZVaJUwJZ0FPBwRNxK+lELMzOrUNlcIocAKyS9FdgGeJGk\nr0bEe7ZcbaTtfRMnfzIzm2o0e82Y+6lcwI6I04HTAdTKNv4304M1OPmTmdlMmkyezA4NifHx1AQK\n1Y3D9igRM7Mu627yp3WJ8/t9z01s9WiVLUgvOiZx9/7SVLtAym/bmWPpORtWNvo3KVDdpJIYAZyl\nxGik76VHaex45L255ZsbF8yqXVBtvqyiG0JXJ47BGyscjVJ4nHs86iU16mfsx+k2Nw5JTAVXcKDH\nvpBfX+PU7ve/m6NEzMxsDjlgm5nVhAO2mVlNOGCbmdVE6YAtaXtJl0haL2mdpIOrbJiZmW2pk1wi\nFwLXRcRXJC0AtouIJ9qWB1qVv3GXRqZs6biCZZckymffrirzVVjFVGIaqD7+mc3B7G194lX5xTvn\n/zy16cxkTWV+B6udiqzI9H62Rom8IzlKpNSDM5JeDLwhIk4CiIgx4InirczMrBNlL4nsDmyWdIGk\nWySdJ2nbKhtmZmZbKhuwFwAHAV+OiIOA3wAfr6xVZmY2TdnkT/cB90XEjdnnS8gL2HFt24cmaPeS\nuzMzm6/uojUPDExMFCc/LZv86SFJGyXtFRF3A2/O9rolLS9TvZnZANkve00mf0oNiih/hg3wQeAi\nSQuBXwDv66AuMzObQXeTP3mKMOupov9eHpso/3Zle+/nREr1lPp5vqRgmyoTynWfkz+Zmc0TDthm\nZjXhgG1mVhMO2GZmNdFJ8qdTJd0p6Q5JX5f0/CobZmZmWyo1SkTSbsD1wKsi4mlJ3wS+HxEXtq3j\nUSLWx1IjDqobPaKCtEyf4uzcco8eGWwzjRLpZBz2AmBbSePAtsD9HdRlZmYzKHVJJCLuB/4euBd4\nAHg8Iq6qsmFmZralUgFb0kuAFUAT2BVYJOldFbbLzMymKHtJ5M3ALyPi1wCSLgMOAS7acrWRtvfN\n7GVmZs8ZzV4wMVG8ZtmA/SvgYEkvAH5LK4Cvmb7acMnqzcwGRZPJk9lW8qfrkmuWvYa9hlZK1VuA\ntVnxv5Spy8zMto6TP5lZzSXmgARg/Zy1ogpO/mRmNk84YJuZ1YQDtplZTThgm5nVRGHAlvQVSZsk\n3dFWtljSakl3S7pS0vbdb6aZmRWOEpH0BuAp4KsRsX9W9nngkYj4vKSPAS+JiGkzpkuKeyZellvv\nW+LK3PINjccSLRkp6EIJibw/e469PbnJhsbls6kKgK8npog6sY8T/KT688VEXz7cx30p/Okck2j3\npWd2pynzQGrKs94nrCoaJbIpUZ6eOiz1rdnUSE/59rLxao5BR6NEIuJ6YGoUXQFMZuW7EEhHOTMz\nq0yZa9g7RcTkn61NwE4VtsfMzBI6Sa9KRETrAZl856x66tn3Bw8v5ODhhZ3szsxsHhqlm7lENkna\nOSIekrQL8HBqxQ+vWlSiejOzQdKkm7lErgBOyt6fBOTfjTMzs0rNNKzvYuAnwN6SNkp6H/A54HBJ\ndwNvzD6bmVmXdTX509DQObnLrh6/OLf8MxOfyC1f3XhxwZ5GZtmyAkVj9EocptScfnWczy91aLrz\n7ZkL869H3Tbb7zP0w3c68XNeUNCusfyhnUMF342LEsdgtkN4nfzJzGyecMA2M6sJB2wzs5pwwDYz\nq4kZA3YiAdTfSVov6XZJl0kquitoZmYVmHGUSCIB1OHA1RExIelzAFMTQBVNEabEn4mzxp7KLT90\n6AvJ9o0kbgKfvW48uc3YUCO3fJ9X3pLcZsOC/OHmy8aWJ7dZ03got1ysyy1PJdcp69jEHfLXKH3n\n+pqxH+aWL2+8M7FFOomODYbU6BFIf6f3KRiSdSJjiSWp34/FybrS38+CIWHDid+PkW8lN1FiKrKY\n5fRlHY8SyUsAFRGrI2LyIcobgCUz1WNmZp2p4hr2ycD3K6jHzMwKdJT8SdIngd9FxNfz1xhpe99k\n8nl5MzObNEo3kz8BIOm9wFuBN6XXGi5bvZnZgGiytcmfSgVsSUcApwGHRcRvy9RhZmazszWjRC4G\nDgN2oDVhwRnAJ4CFPHcL9r8i4gNTtkuOEknvK7GgoInJRcnK0ne1C+/oRv5d4Krzj1RJHJdbHnw7\nvU2iP11KOWMDSgW/a3HM8fkL5mz6tt7lmZlplMiMZ9gRcWJO8Vc6bpmZmc2Kn3Q0M6sJB2wzs5pw\nwDYzqwkHbDOzmphpirBpiZ/aln1E0oSkogf5zcysIoXD+vISP2XlS4HzgL2B10bEtAwrZYb1zZ0y\nf2NqmOQoMUbv8LEDkpusbtzardaYbZ3U2NKTE0mZzj+3oLJ6/d52lPwpL/FT5gvARyton5mZbaVZ\nX8OWdDRwX0Ss7UJ7zMwsYVaPpkvaFjgdOLy9OL3FSNv7Jk7+ZGY21SjdSv70ClpR93a1rjMtAW6W\ntCwiHp6++vAsqzczGzRNupL8KSLuAHaa/CzplyRuOpqZWbUKA3Zb4qeXStoIrIyIC9pW6YOUQIkr\nMq9OT4PFnXOVRKbX8n88+08fpfms1ckRNP6bbNUpyM3GNWM/yC1fnj+zH+xc8Lv+UGoEScXf51SH\n7ipo276zj0OFATuR+Kl9+R6z3qOZmZXiJx3NzGpijgL26Nzspq+N9roBPTba6wb0gdFeN6DHRnvd\ngN5aM9JxFQ7Yc2a01w3osdFeN6APjPa6AT022usG9FZ9AraZmXWqo1nTZ3LQQbsA8MADi9h11126\ntJfE3dlXFGyysFttSevuMUhIHJolpG63w0EHbZdY8vyOmtKT/veZQT8G7f0vGiWyiL1zyyfjyTQv\nLdjprjsmFnT2fZ4m1aFtnnv7wALYte0zOf1pNMSNNxbsZqY5HctqJX8yM7PZSiV/6lrANjOzavka\ntplZTThgm5nVRNcDtqQjJP1M0gZJH+v2/notb5YeSYslrZZ0t6QrJW3fyzZ2m6Slkq6VdJekOyV9\nKCsfiOMgaRtJN0i6Lev/qqx8IPo/SVJD0q2Svpd9HrT+j0pamx2DNVlZR8egqwFbUgP4EnAEsC9w\noqRXdXOffeACWv1t93FgdUTsBVydfZ7PngFOjYj9gIOBv8x+7gNxHCLit8DyiDgAOAA4QtLrGZD+\ntzkFWMdzSW0Grf8BDEfEgRGxLCvr6Bh0+wx7GfDziBiNiGeAbwBHd3mfPZWYpWcFcGH2/kLg7XPa\nqDkWEQ9FxG3Z+6eA9cBuDNBxiIj/zd4uBJ5H65d3YPovaQnwVuBfeW6A6cD0v83U0R4dHYNuB+zd\ngI1tn+/LygbNThGxKXu/ibYUtfOdpCZwIHADA3QcJA1Juo1WP6+MiDUMUP+BLwKnAe0p+Qep/9D6\nI32VpJskvT8r6+gYdPXBGfoi/Wp/iYgYlDHqkhYBlwKnRMSTanu4YL4fh4iYAA6Q9GLgO5JePWX5\nvO2/pKOAhyPiVknDeevM5/63OTQiHpS0I7Ba0s/aF5Y5Bt0+w74fWNr2eSmts+xBs0nSzgCSdgFy\nZueZXyQ9j1aw/lpEXJ4VD9xxiIgngGuBtzA4/T8EWJFNcHIx8EZJX2Nw+g9ARDyY/bsZ+A6tS8Qd\nHYNuB+ybgD0lNSUtBN4BXNHlffajK4CTsvcnAZcXrFt7ap1Knw+si4hz2hYNxHGQtMPk3X9JL6A1\nB+p6BqT/EXF6RCyNiN2BE4BrIuLdDEj/oTX/raQXZu+3A/4IuIMOj0HXn3SUdCRwDtAAzo+Iz3Z1\nhz3WNkvPDrSuUa0Evgt8C3g5rZRlx0fE471qY7dJ+gPgR8Banrss9glgDQNwHCTtT+uGUoPWSdE3\nI+JvJS1mAPrfTtJhwEciYsUg9V/S7rTOqqF16fmiiPhsp8fAj6abmdWEn3Q0M6sJB2wzs5pwwDYz\nqwkHbDOzmnDANjOrCQdsM7OacMA2M6sJB2wzs5r4fzeVhmy91zTZAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c3b6a90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACSCAYAAABhcPBkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEXRJREFUeJzt3X2QJVV5x/Hvby5v8hIBUdiFNRcFfAkksBqkQGFVSNDA\nYqpEQUXQhMQKKiEEECh5DYEyFbUCZVVEFDAIJggI0TIsxFmNRhaUl0UgYOLAssAC4SWgAXZmn/xx\ne8LdmT59Z/re3p6e+/tUTe2d092nz+nb89B0n36OIgIzM5v7RupugJmZzYwDtplZQzhgm5k1hAO2\nmVlDOGCbmTWEA7aZWUM4YFtjSDpG0g/rbodZXRywbehIWifpdQOu81xJKyWtlXTmIOs2m+SAbcNK\npTaSNkosegA4CfgO4LfRrBIO2DbnSFok6RpJj0t6UtKFOeu0syvlka6yUUl/lH3eRdJySc9IekLS\nlVn5D7LV75T0nKTDs/JDJN0h6WlJP5K0R1e9Y5JOlnQX8Fz3PidFxOUR8T3gOUr+x8Csl9TVglkt\nJLWAfwZuAj4MrAPeMsPNg5evbs8FvhcRB0jaBHgrQETsL2kd8NsR8V/ZPvcCLgEOAW4DjgKul7Rb\nRKzN6jsCeA/wZESs67ObZqX4Ctvmmr2BBcBJEfG/EfFiRPy4RD0vAW1JO0bESz3q+BPg7yPi1ui4\nHHgR2CdbHsDfRcTqiHixRFvMBsIB2+aaRcCDA7iKPZnOrYkVku6W9LGCdX8TODG7HfK0pKeBnYCF\nXeus6rM9Zn3zLRGba1YBr5XUioiJgvV+lf27OfB89nmHyYURsYbOlTOS9gNukrR88jbIFA8B50XE\nXxfsbzYPEv3Q0SrhK2yba24BHgUukLS5pM0k7Tt1pYh4AlgNHCWpJenjwOsnl0s6XNJO2a/P0Ami\nk1fta7rXBS4GPiFpb3VsIekPJG0500ZL2kjSZkAL2Dhrt/++bKB8Qtmckt0KORTYhc6V7yrgA5OL\nWf/q9Vg6Q+meBN4M/Khr2VuBn0h6Dvg28OmIGMuWnQVclt3+eH9E/DSr6yLgKTpD9D7K7K6UvwL8\nms7DydOzzx+ZxfZmPckTGJiZNYOvsM3MGsIB28ysIUoHbEkHS7pP0gOSThlko8zMbLpS97Czt9H+\nAziQzpP6W4EjI+LewTbPzMwmlR2HvTfwi8mn7pKuAg4D/j9gS/LTTDOzEiIiNx9N2YC9I+u/+fUw\n8Lbpq01mmRwFlpTc1XwxynAfg1Ga0f9E3qZjCjKmXnrWDOsepdcxOJOzk8vOpulZW0ep5hwoyLW1\nc+KY3VhwPblr+jvozyi9+t9qiYmJs5LLy97D9tWzmdkGVvYKezWdnA+TFtG5yp5iNPt3LPtpl9yd\nmdl8NZb9wLoeGXTKBuzbgF0ltYFHgA8CR05fbUlXg9oldzVftOtuQM3adTdgDmjX3YCatetuQM3a\nBeWdZSMjYmJiebKGUgE7IsYlfRL4Fzq5Ey4pHiGSaugwadfdgJq1627AHNCuuwE1a9fdgJq1+66h\nslfTO6NEGvaQRNunly3/RH75/lU9oGiGMzgnuewczhjYfoqmcBk/Nb8NrfPT+0/VN74wUdcjRedy\nvY90NtR3UL93J8pvLtjmw/nFWpPeJG6aaYMGbvKhY2qUiN90NDNrCAdsM7OGcMA2M2sIB2wzs4bo\nJ/nTIknfl/TzbM68Tw+yYWZmtr5+5nRcC5wQEXdkUyn9VNIyJ4AyM6vGwIb1SboOuDAibs5+b96w\nviJKDASL1xRsVDB0qEaprgBcPH5/bvkft3bLr6tgSFtquFkUDNIrMwwtVVtwYMFW+e2W8oeIvXFi\nabKm34k7csuvaj1UsP+Ugi9nn8Sx+UnR0NL88/MMPplbPreHAe6QX3xMYsgtdCaPy/P5glcKd0sN\nkywY9psYJrhg/KjkJqsX7TK9sNViZNVEtcP6sjce96IzgaqZmVWg74Cd3Q65Gjg+Ip7vv0lmZpan\nn3vYSNoY+BbwDxFx3fQ1Rrs+t/GrqWZm6xt9sfMDwEhx9qfSAVuSgEuAeyLii/lrLSlbvZnZUFiy\naecHgNYI5/zPRHLdfm6J7Ad8BHinpNuzn4P7qM/MzAo4+ZOtJzkYZoCnSdHIks9ybm75Ocek/1cx\nVd+KS3ZPbvO7rcNTleXa7KlPJet6YdsL8xcM/E8rv3FFx/OixEid4+b0aJDZKhhZk1p0dEH/Lx1g\nQreipuV8ba2WGHfyJzOz5nPANjNrCAdsM7OGcMA2M2uIvgK2pFY2OuSGQTXIzMzy9XuFfTxwD3XP\nkWRmNgRKD+uTtBNwKXAe8BcRceiU5R7WZwNUNKtjYou8cVOZWZ/2I+n9H7F2UW55ueRPg5VOjDXs\nis6n+o5OlXM6fgE4CSh+l9LMzAaiVMCWdAjweETcTplLHzMzm7WyuUT2BZZKei+wGfAbki6PiI+u\nv9po1+c2Tv5kZjbVWPYD63rcrygVsCPiNOA0AEkHAH85PViDkz+ZmfXSZvJidmRETEwsT645qHHY\nfoZhZlaxSpM//VPi9vbhjUw8k7pVX9SXASaRGRKpozx+amraJmhdkD8aSdemv5tlh749t/zA1kHJ\nbZIGOBSj6IHQ+Pvzj0Hr6sH9PaWmdYO5PH3YHrPeQqxMLqszYVaVo0TMzGwDcsA2M2sIB2wzs4Zw\nwDYza4jSAVvS1pKulnSvpHsk7TPIhpmZ2fr6ySVyGbA8Ir4qaSNgi4h4tmt5KJFLZH6NAZybOQnm\nm1JHWenRA6lRAuk/h+0LWvDuRPk3CraZPecFSX0Ha0rUVeLcKLGX4jN3enxstWBiQslRIqVenJH0\nSuAdEXE0QESMA88Wb2VmZv0oe0tkZ+AJSV+T9DNJF0vafJANMzOz9ZUN2BsBi4EvRcRi4FfAZwbW\nKjMzm6Zs8qeHgYcj4tbs96vJCdgxJfmTnPzJzGyKUSYT5VWV/OkxSask7RYR9wMHAj+fup6c/MnM\nrIclTCbKGxmBiYl0SouyV9gAnwKukLQJ8J/Ax/qoy8zMeqg0+ZOnCLN6FQ2pOjJRPriheM1MpGQb\nzvTzs5P86UwnfzIzazoHbDOzhnDANjNrCAdsM7OG6Cf50wmS7pa0UtI3JG06yIaZmdn6So0SkbQj\n8EPgTRHxoqRvAt+NiMu61vEoEZvDUiNIBjd6RAXpgj7LubnlHj0y3HpNEdbPOOyNgM0lTQCbA6v7\nqMvMzHoodUskIlYDfws8BDwCPBMRNw2yYWZmtr5SAVvSNsBSoA0sBLaU9OEBtsvMzKYoe0vkQOCX\nEfHfAJKuAfYFrlh/tdGuz+3sx8zMXjaW/VSU/Al4ENhH0iuAF+gE8BXTV1tSsnozs2HRZvJidmRE\nTEwsT65Z9h72CjopVX8G3JUVf7lMXWZmNjMVJ3/6UmJpmTnYzMzyfKhg2WDn1axar2F9ftPRzKwh\nHLDNzBrCAdvMrCEcsM3MGqIwYEv6qqQ1klZ2lW0raZmk+yXdKGnr6ptpZmaFo0QkvQN4Hrg8IvbI\nyj4HPBkRn5N0CrBNREybMb0o+VNq6qQmJr4pmoTq3kQ/39jAfjbyO1PBt/PlRLuPTU+AOuwaeQ6U\nkDprLiqY8u24AR2DvkaJRMQPgaenFC8FJrPyXQa8r+9WmplZT2XuYW8fEZMDqdcA2w+wPWZmltBP\nelUiIjq3PlJGuz63cS4RM7Opxqgyl8gaSTtExGOSFgCPp1ddUqJ6M7Nh0qbKXCLXA0dnn48GritR\nh5mZzVKvYX1XAj8G3iBplaSPARcAB0m6H3hX9ruZmVWsluRP4rHc8vk2z11qTr/51s9GSg35i90T\nG6xMlA+P2Z7P0NRzOn8cRSpuweD+pp38ycxsnnDANjNrCAdsM7OGcMA2M2uIngE7kQDqbyTdK+lO\nSddIemW1zTQzs56jRBIJoA4Cbo6IdZIuAJiaAKoo+VNyX4mn0KmkM4P255umkwVt+2L+097x3dNt\na919X265pk4unxl0P1P92eal9JPrI8Zfm1t+VeuhgbTJ5p/U3y2UO6fPODz/vN3iy0/mlr9w9Tbp\nyo79t8SCm2fZqrJOKFj2hWklfY8SyUsAFRHLImLyJcpbgJ161WNmZv0ZxD3sjwPfHUA9ZmZWoK/k\nT5JOB16KiMTUxKNdn9s4+ZOZ2VRjVJn8CQBJxwDvBd6dXmtJ2erNzIZEm5kmfyoVsCUdDJwEHBAR\nL5Spw8zMZmcmo0SuBA4AtqMzYcGZwKnAJsBT2Wr/HhF/NmW7WY8SqZv4UHJZkH/Xp2iKsGqytMyc\nEk+oI+fpdNdG+erujA0N7ZwfN+JPExucWjASpaJcSVXpNUqk5xV2RByZU/zVvltmZmaz4jcdzcwa\nwgHbzKwhHLDNzBrCAdvMrCF6TRE2LfFT17ITJa2TtG11zTMzs0mFw/ryEj9l5YuAi4E3AG+JiKdy\ntm3csL5i+dMGdUY6zlGpabCWF0xbtP/Z1bTFbMYS5+2hiXjy8YKhe39Y9/mcihuQFzv6Sv6Ul/gp\n83ng5KJtzcxssGZ9D1vSYcDDEXFXBe0xM7OEWb2aLmlz4DTgoO7i9BajXZ/bOPmTmdlUY1SV/On1\ndKLunercH90J+KmkvSPi8emrL5ll9WZmw6ZNJcmfImIlXXfRJf2SxENHMzMbrMKA3ZX46VWSVgFn\nRMTXulZpVmaVHlKDKgDWPn5cbvlGry4YcVGz1NRN49u1ktu0mLv9sWHxmvziGx7IL/9OuqYjJjbQ\nlHeJ2HH6+KrkJue1Npn1bgoDdiLxU/fy1816j2ZmVorfdDQza4gNFLDHNsxu5rSxuhtQs7G6GzAH\njNXdgJqN1d2AWj04+mDfdThgbzBjdTegZmN1N2AOGKu7ATUbq7sBtXpwef/3zX1LxMysIfqaNb2X\nxYsXAPDII1uycOGCKnc1EEWjRGgtzi2e7GMvdRyDZH82y+8LzLw/s9WUc6BKw34MZt7/VD65TfOL\nCy47d+ZVueWLF6+dQTtmIfG3tpCX97MVW7GQhV1t2Hja+q2WuPXWgt30mtOxrE7yJzMzm61U8qfK\nAraZmQ2W72GbmTWEA7aZWUNUHrAlHSzpPkkPSDql6v3VLW+WHknbSlom6X5JN0raus42Vk3SIknf\nl/RzSXdL+nRWPhTHQdJmkm6RdEfW/7Oy8qHo/yRJLUm3S7oh+33Y+j8m6a7sGKzIyvo6BpUGbEkt\n4CLgYODNwJGS3lTlPueAr9Hpb7fPAMsiYjfg5uz3+WwtcEJE/BawD3Bc9r0PxXGIiBeAd0bEnsCe\nwMGS3saQ9L/L8cA9vJxzaNj6H8CSiNgrIvbOyvo6BlVfYe8N/CIixiJiLXAVcFjF+6xVYpaepcBl\n2efLgPdt0EZtYBHxWETckX1+HrgX2JEhOg4R8evs4ybAxnT+eIem/5J2At4LfIWXB70NTf+7TB3t\n0dcxqDpg7wh0p6t6OCsbNttHxOQEbmsonuhtXpHUBvYCbmGIjoOkEUl30OnnjRGxgiHqP/AF4CSg\nOyX/MPUfOv+RvknSbZKOzcr6OgaVvjjDPEu/OggREcMyRl3SlsC3gOMj4jl1vckz349DRKwD9pT0\nSuBaSbtPWT5v+y/pEODxiLhd0pK8deZz/7vsFxGPSno1sEzSfd0LyxyDqq+wVwOLun5fROcqe9is\nkbQDgKQFQM7sPPOLpI3pBOuvR8R1WfHQHYeIeBb4PvD7DE//9wWWZhOcXAm8S9LXGZ7+AxARj2b/\nPgFcS+cWcV/HoOqAfRuwq6S2pE2ADwLXV7zPueh64Ojs89HAdQXrNp46l9KXAPdExBe7Fg3FcZC0\n3eTTf0mvoDMH6r0MSf8j4rSIWBQROwNHAP8aEUcxJP2Hzvy3krbKPm8B/B6wkj6PQeVvOkp6D/BF\noAVcEhHnV7rDmnXN0rMdnXtUZwDfBv4ReC2dlGUfiIhn6mpj1SS9HfgBcBcv3xY7FVjBEBwHSXvQ\neaDUonNR9M2I+CtJ2zIE/e8m6QDgxIhYOkz9l7Qznatq6Nx6viIizu/3GPjVdDOzhvCbjmZmDeGA\nbWbWEA7YZmYN4YBtZtYQDthmZg3hgG1m1hAO2GZmDeGAbWbWEP8HPsZLyQDmNh4AAAAASUVORK5C\nYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c835f98>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACSCAYAAABhcPBkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEf5JREFUeJzt3XuUJGV5x/Hvb3pB7gLRw2V3SaNI1IhZFs9CIGYXIxER\nFv+IF+IFNcfgkQhBQIQEWEQF9SSSeDkag2RBRBNExGAMoMxKUFlA7he56MDuAgsol10QZGaf/NE1\nu70z9dZsV3dPd03/PufM2eq3quu9TM9DUf3U+yoiMDOz/jfU6waYmdmmccA2M6sIB2wzs4pwwDYz\nqwgHbDOzinDANjOrCAdsqwxJ75N0Ta/bYdYrDtg2cCStk/SyDp7vpZIukrRK0pOS/k/Sgk6d32yc\nA7YNKpV6kzQrp3gb4DpgPrADsBS4XNLW5ZtnNpkDtvUdSXMlXSLpUUmPS/pCzjH17Ep5qKlsWNLf\nZNt7SFqWXfE+JumirPwn2eG3SFoj6W1Z+aGSbpb0hKRrJe3VdN4RSR+TdCuwprlOgIj4dUScExGr\no+FrwObAnp0eGxtseVcLZj0jqQb8N3AV8C5gHbDPJr49sh+AM4EfRsRCSZsDrwOIiD+XtA54bUT8\nKqtzb+Bc4FDgBuA9wGWS9oyIF7LzvRN4M/B4RKybog/zaATs+zax3WabxFfY1m8WALsAJ0bE7yLi\n+Yj4aYnz/B6oS5odEb+f4hx/C3w1Iq7PrpDPB54H9sv2B/CvEbEqIp4vqlTSdsAFwJKIWFOi3WZJ\nDtjWb+YCD0x1FbsJPkbjPvVySbdLen/BsX8IHJ/dDnlC0hPAHGDXpmNWTFWhpC2B7wM/jYjPtNF2\ns1y+JWL9ZgWwm6RaRIwVHPdM9u9WwNpse+fxnRGxmsaVM5IOAK6StGz8NsgEDwKfiohPF9RXOK2l\npBcBlwIPRsRRRcealeUrbOs31wEPA2dL2krSFpL2n3hQRDwGrALeI6km6QPAy8f3S3qbpDnZyydp\nBNzxq/bVzccCXwM+JGmBGraW9BZJ22xKgyVtBlwMPAu8r5XOmrXCAdv6SnYr5DBgDxpXviuAt4/v\nZuMr3Q8CJwKPA68Grm3a9zrg55LWAN8DjomIkWzfEmBpdvvjryLixuxcXwR+C9wLvJcprqqb7A+8\nBTgIeDLLPlmTXdmbdYy8gIGZWTX4CtvMrCIcsM3MKqJ0wJZ0sKS7Jd0r6aRONsrMzCYrdQ87exrt\nl8AbaXxTfz1wRETc1dnmmZnZuLJ52AuA+8a/dZf0LeBwYH3AluRvM83MSoiI3MnJygbs2Wz85NdK\nYN/Jh52e/TsMLCpZ1XSaXbBvVZvnHqYaY/CqRHm7//M0TDX6303DTDUGp3NGct8Z6/+eqmqY6f8M\nbJcof7qz1STmflw4tt/67ZEl36C+5N3rXy8b+vmk42s1MTa2JFlN2XvYvno2M5tmZa+wV9GY82Hc\nXBpX2RMMZ/+OZD/1ktWZmc1UI9kPrJtiBp2yAfsG4BWS6sBDwDuAIyYftqipQfWSVc0U9V43oMfq\nvW5AH6j3ugE9Vu91A3pq+0WvTeypMz42Q0NibGxZ8hylAnZEjEr6O+B/gRpwbnGGSL1MNTNMvdcN\n6LF6rxvQB+q9bkCP1XvdgJ5KB+xN17VH0xtZIlX7kqRg1ag5p+WXr0x/SdS/PlSw7yu5pamR+SGf\nSJ7pTSTGrA8o0aHRM/P7U/vH/u1Lmd/n4EiNzTSNS9FCdDmhd/xLx1SWiJ90NDOrCAdsM7OKcMA2\nM6sIB2wzs4poZ/KnuZKulnRHtmbeMZ1smJmZbaydNR1fAI6LiJuzpZRulHSlJ4AyM+uOjqX1SboU\n+EJE/Ch7XcG0viKp/JzqPaWfSmkD+PHoD3PLD6wdnH+ugv6flkj5i4Jcp0/0OBUwNWfZqZyZfM9v\nRs/OLf9S7dnW6y/Y95XEeB5VOGapuTT+OlnLTKJE/z/HCcn3nNDBz6DI/7tptOFPJx9fq3H82Fh3\n0/qyJx73prGAqpmZdUHbATu7HXIxcGxErG2/SWZmlqede9hI2gz4DvCNiLh08hHDTdt1Bv3RVDOz\nie4D7s+2NcXsT6UDtiQB5wJ3RsQ5+UctKnt6M7OBsEf2A6ChIa4YG0se284tkQOAdwMHSrop+0nf\nYTczs7Z48ifbSCqDpJMfkzKZJUVSWSfTlnEyTQlEQ4kTrioYs28mGpczFzIAu/bxhF2dJLZN7gvW\nTFMbJqvVxKgnfzIzqz4HbDOzinDANjOrCAdsM7OKaCtgS6pl2SHf71SDzMwsX7tX2McCd1LFCTXM\nzCqmdFqfpDnAfwCfAj4aEYdN2O+0Pps5imZleuCk/PLdPtOVpkxU1LRWDcyVV8GgLRhdlFu+vDbc\nlaY06+aajp8HTgSKn6U0M7OOKBWwJR0KPBoRN9HZ/8CbmVlC2blE9gcWSzoE2ALYTtL5EfHejQ8b\nbtqu48mfzMwmGsl+YIq5n8oF7Ig4BTgFQNJC4ITJwRo8+ZOZ2VTqjF/MDg2JsbFlySM7lYc9MN9V\nmJn1Sncnf1qeuL5fcEZX6uyuxK36WQWT5YxWsZ+pJaWentZWdELRRFIdnRhq2laPm50oX9WxGqZt\nzHqsaJm8yxNXuIcMLexSazboZpaImZlNIwdsM7OKcMA2M6sIB2wzs4ooHbAlbS/pYkl3SbpT0n6d\nbJiZmW2snblElgLLIuLrkmYBW0fEU037Ay3Jf3OLdRY9Sjk6L/9b7drN0/WNdlHrnO04cxT8nl+T\n+KzdXsUsIZPyM6UiOp0pNbmeRpbIR5NZIqUenJH0YuD1EXEkQESMAk8Vv8vMzNpR9pbI7sBjks6T\n9AtJX5O0VScbZmZmGysbsGcB84EvR8R84Bng4x1rlZmZTVJ28qeVwMqIuD57fTF5ATuubnpRB+1e\nsjozs5nqPuB+oHuTPz0iaYWkPSPiHuCNwB2TDtSBZU5vZjZA9sh+xid/uiJ5ZNkrbICPABdK2pzG\nfx7e38a5zMxsCt2d/Gkalgibtnl3zFo0KBMpzTiJoLJwNP2oybLazztStSd/MjObIRywzcwqwgHb\nzKwiHLDNzCqincmfjpN0u6TbJH1T0os62TAzM9tYqSwRSbOBa4BXRcTzkr4N/CAiljYdMy1ZImb9\nSgW5SqdyZm65s0f6WNG6YpH6vbU2AdhUWSLt5GHPAraSNAZsRScXljMzs0lK3RKJiFXAPwEPAg8B\nT0bEVZ1smJmZbaxUwJa0A7AYqAO7AttIelcH22VmZhOUvSXyRuDXEfEbAEmXAPsDF2582HDTdj37\nMTOzDUayny5N/gQ8AOwnaUvgORoBfPnkwxaVPL2Z2aCoM34x25j8aVnyyLL3sJfTmFL1F8CtWfG/\nlTmXmZltmtJZIhGxBFjSsZZ0WtFSiw+clF++22e60hQbTFHwIXT63gxzVuJ3fXJnq/GTjmZmFeGA\nbWZWEQ7YZmYV4YBtZlYRhQFb0tclrZZ0W1PZjpKulHSPpCskbd/9ZpqZWeHkT5JeD6wFzo+IvbKy\nzwKPR8RnJZ0E7BARk1ZMlxRj9+d/c1rb7Jn8CqcrS0Pb5ZfH062fqmDfVxJLRB1VwQyB1HJXVc12\nmGn9mQ6DMmapOZ4uH03nRx8y65T8HXFtS3W3tURYRFwDPDGheDEwPivfUuCtLbXIzMxKKXMPe6eI\nWJ1trwZ26mB7zMwsoZ3pVYmIaMx7ne+Mf9mwa+G+sGi/ohsIZmaDaIRuziWyWtLOEfGIpF2AR1MH\nnn6sA7SZWbE63ZxL5DLgyGz7SODSEucwM7MWTZXWdxHwU+CPJK2Q9H7gbOAgSfcAb8hem5lZl5Va\n03GTTizF0FB+us+apz+ZW77vlj/LLb+99oOOtQvSqXhPb52ftgSw7TOtpy6l1vSbWev5HVCwr7WU\npr5wdGId0i+1tjbfTNTq5xmq+pnOp4LL28tfyL+NcUjtsIIzTk4jbiutz8zM+ocDtplZRThgm5lV\nhAO2mVlFTBmwExNAfU7SXZJukXSJpBd3t5lmZjZllkhiAqiDgB9FxDpJZwNMnACq8QRk/jfuQ0P5\ndf5s9JLc8muG7ki27wRuL2x/K1Lfgjf8V27p6CvSmSW1e7+aqGdlbnlqcp2yXpnIhzlC6W/ut3nq\nw7nla7f7ckfa1P9SOUTdyaaaCYr+bsp8pndNlK9NlP/9vPQDerU/GcvfsbSzWT+pCaNaTcJrO0sk\nbwKoiLgyIsYforwOmNNas8zMrFWduIf9AaCzidJmZjZJW5M/SfoH4PcR8c38I4abtuuMPy9vZmbj\nRujm5E8ASHofcAjwF+mjFpU9vZnZgKizqZM/lQrYkg4GTgQWRsRzZc5hZmat2ZQskYuAhcBLaCxY\ncDpwMrA58NvssJ9FxIcnvC+ZJZKuK7EjEkt6AZGcy+J/Wqq7rKIJZHudVyBemVse3F30pny97owN\nDLFtYs+a/OLt03EmnkxlqfTnB3qqLJEpr7Aj4oic4q+33TIzM2uJn3Q0M6sIB2wzs4pwwDYzqwgH\nbDOziphqibBJEz817Tte0jpJO3aveWZmNm6qLJHzgC8A5zcXSpoLHAQ80MnGpDMMJy+ls74tifS9\nWwsmndmrg8sW9WdyUEPwy/wdcwrSLVd6KSzrrUjmlibSe5Ope5CeSmpVCy1qRzoluSiupRReYedN\n/JT5Z+BjLddmZmaltXwPW9LhwMqIuLUL7TEzs4SWHk2XtBVwCo3bIeuL0+8Ybtqu48mfzMwmGqFb\nkz+9nEbUvUWN58jnADdKWhARj04+fFGLpzczGzR1ujL5U0TcBuw0/lrSr4F9IuK36XeZmVknFAbs\npomf/kDSCuC0iDiv6ZCeJ0mkGvBanZp8z7dHb8wtf2dtn+R7Rg/I/ya6dm3nMk46TcofndGTasn3\n1D7Sv/2xQdFa9kRy0jjg4dHjc8t3rn20pTqmbkR+8dGjo8m3fCn9Z5hUGLATEz81739Z61WamVkZ\nftLRzKwipilgj0xPNX1tpNcN6LGRXjegD4z0ugE9NtLrBvTUquH72z6HA/a0Gel1A3pspNcN6AMj\nvW5Aj430ugE9tWrZr9o+h2+JmJlVRFurpk9l/vxdAHjooW3YddddulnVJKkMCYAdeHlu+Xh7c+05\nP/89v9u0fvVmDBI7XprfF5hiDNrQi/73m0Efg271vyhLZBbzcss7/jlPtGEuW6zfvputmbshK5r5\n8ycvh1urieuvL6hmqjUdy1JRxDQzs6TUmo5dC9hmZtZZvodtZlYRDthmZhXR9YAt6WBJd0u6V9JJ\n3a6v1/JW6ZG0o6QrJd0j6QpJ2/eyjd0maa6kqyXdIel2Scdk5QMxDpK2kHSdpJuz/i/Jygei/+Mk\n1STdJOn72etB6/+IpFuzMVielbU1Bl0N2JJqwBeBg4FXA0dIelU36+wD59Hob7OPA1dGxJ7Aj7LX\nM9kLwHER8cfAfsDR2e99IMYhIp4DDoyIecA84GBJ+zIg/W9yLHAnG6b8GbT+B7AoIvaOiAVZWVtj\n0O0r7AXAfRExEhEvAN8CDu9ynT2VWKVnMbA0214KvHVaGzXNIuKRiLg5214L3AXMZoDGISKezTY3\nBzaj8cc7MP2XNAc4BPh3NiS9DUz/m0zM9mhrDLodsGcDK5per8zKBs1OEbE6215N0xS1M52kOrA3\ncB0DNA6ShiTdTKOfV0TEcgao/8DngROB5in5B6n/0PiP9FWSbpD0waysrTHo6oMz9MH0q/0mImJQ\nctQlbQN8Bzg2Itao6QmHmT4OEbEOmCfpxcB3Jb1mwv4Z239JhwKPRsRNkhblHTOT+9/kgIh4WNJL\ngSsl3d28s8wYdPsKexUwt+n1XBpX2YNmtaSdASTtAuSszjOzSNqMRrC+ICIuzYoHbhwi4ingauBN\nDE7/9wcWZwucXAS8QdIFDE7/AYiIh7N/HwO+S+MWcVtj0O2AfQPwCkl1SZsD7wAu63Kd/egy4Mhs\n+0jg0oJjK0+NS+lzgTsj4pymXQMxDpJeMv7tv6QtaayBehcD0v+IOCUi5kbE7sA7gR9HxHsYkP5D\nY/1bSdtm21sDfwncRptj0PUnHSW9GTgHqAHnRsRZXa2wx5pW6XkJjXtUpwHfA/4T2I3GlGVvj4gn\ne9XGbpP0Z8BPgFvZcFvsZGA5AzAOkvai8YVSjcZF0bcj4pOSdmQA+t9M0kLg+IhYPEj9l7Q7jatq\naNx6vjAizmp3DPxouplZRfhJRzOzinDANjOrCAdsM7OKcMA2M6sIB2wzs4pwwDYzqwgHbDOzinDA\nNjOriP8Hci5kvas05wkAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c884fd0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACSCAYAAABhcPBkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEmdJREFUeJzt3XuQJWV5x/Hvbw4g4AqGqAjsyAEBg4aUrNZKQQwjgi63\nBaoCShQQLS3jBbIqClguKwQ1WhEroGU0QBaCeEFAvJSyKINGDTe5yUXUOLqALhAugiLuzD754/TA\n2Zl+e+b0ufac36dqa895+/Z2n96Hpvvp51VEYGZmg2+k3x0wM7P5ccA2M6sIB2wzs4pwwDYzqwgH\nbDOzinDANjOrCAdsqwxJb5L0g373w6xfHLBt6EjaIGnnDq/zakn3S3pU0s2Slndy/WYAm/S7A2Z9\nolILSZtExGTOpBOAuyJivaSlwFWSdo2IdW310qyJr7Bt4EgalXRpdsX6oKSzc+apZ1fKI01t45Le\nkn3eRdI1kh6R9ICki7P272ez3yLpMUlHZu2HZFfGD0v6oaQ9mtY7Ien9km4FHmve5rSIuC0i1jc1\nbQqMduJ4mE3zFbYNFEk14BvAVcAbgA3Ay+a5eGR/AM4Avh0R+0raDHg5QET8naQNwN9ExP9m29wT\nOBc4BLgBOAa4QtJuTUH49cCBwIMRsSHR928ArwaekW37hvnvudncfIVtg2YpsB1wUkQ8ERFPRsSP\nSqznz0Bd0g4R8ec51vE24N8j4vpouAB4Etgrmx7Av0XEvRHxZGolEXEIsAg4CFhTos9mhRywbdCM\nAr9OXcW24P007lNfJ+mnko4vmHdH4L3Z7ZCHJT0MLAa2b5pn7Xw2GhFTEfFt4DWSDi3bebM8viVi\ng2Yt8AJJtYiYKpjvD9nfWwKPZ5+fPz0xe9j3NgBJ+9B4CHjN9G2QGX4DnBkRHynYXqtlLTcFOpqJ\nYuYrbBs01wK/BT4maUtJm0vae+ZMEfEAcC9wjKSapDcDL5yeLulISYuzr4/QCLjTV+3rmucFPg+8\nXdJSNTxT0sGSFs2nw5JeJOlASVtI2lTSG4FXAte0tutmxRywbaBkt0IOBXahceW7FjhqejIbX+m+\nFTgJeBB4MfDDpmkvB/5H0mPA14ATImIim7YKWJ3d/vj7iLgxW9c5wEPAz4Fjmf9VtYDTaPyH4H7g\n3cBREXHzPJc3mxd5AAMzs2rwFbaZWUU4YJuZVUTpgC1pmaS7JP1c0gc62SkzM5ut1D3s7G20nwH7\n03hSfz1wdETc2dnumZnZtLJ52EuBX0w/dZf0ReAw4KmALclPM83MSoiI3OJkZQP2Dmz85tc9wCtm\nz3Za9vc4MFZyU52XKtM2Nfrh5DIja09LTpufcQbpGPTeOL3f/20LprVaRO+ogmlfnuc6xpnrGJxG\n+hz8MK2fg0qc7OdN5f/P8PEju7e8jfkbZ3DOgaL9HG95K6njPHXj07/nqs/Cqrc/PW1kyezfs1YT\nU1Orktspew/bV89mZj1W9gr7XjYuHTlK4yp7hvHs74nsT73k5szMFqqJ7A9smKOCTtmAfQOwq6Q6\ncB/wOuDo2bONNXWoXnJTC0W93x3os3q/OzAA6v3uQJ/V+92Bvhp7eWpKneljMzIipqbSFQ1KBeyI\nmJT0LuA7QA04tzhDpF5mMwtMvd8d6LN6vzswAOr97kCf1fvdgb5KB+z569qr6Y0skfyHJKmHfh/h\n9Nz2U1hZsJ389nMmJ5LLvLNWz20fKbg1fxVn5LbvV9C3wbVFwbQncltTv9k5id8M4J0dPDZF43mt\nTvTh2KLzhufltk++7V257bXPDcLvnDgKiwv6dk/+Q8zUv5tKVqooOjl+eWp++85FhRlT2ynY0On5\nv4FWph8i5x3r6YeOqSwRv+loZlYRDthmZhXhgG1mVhEO2GZmFdFO8adRSVdLuj0bM++ETnbMzMw2\n1s6YjuuBFRFxczaU0o2S1rgAlJlZd3QsrU/S5cDZEfHd7HsyrS+5jkRa3WWJlDqAw/looj/56WlQ\nlLpUlAaWn8weFRy2T9o3Oe0Tk1/JbX9fbcf8dfHH5LpWJtLtoiAP6/QSqYCptRWf2WO5rSNcndt+\ni9Ln4B6fTIwVvCKd0lXOkYn2S1pfVSoVMJEG2FuJX3TzRJ+ffCy9prOelds++dxacpnajxK/56cL\njk0q5e8d6fP5tE/PvsGhWo1VU1PdTevL3njck8YAqmZm1gVtB+zsdsglwIkR8Xj7XTIzszzt3MNG\n0qbAV4H/iojLZ88x3vS5zrC/mmpmNtME06WfmLP6U+mALUnAucAdEfGp/LnGyq7ezGwo1Hn6UlYj\nI1wzlbiHTnu3RPYB3gi8StJN2Z9lbazPzMwK9KX4U8vrKphWxVo1g6wXRYFS2UAAH0pkBJ1Ozh23\np/w+0Z7Ohmn8z+H8FZ6DPauklOpFwX6OjeW3n5iY/4hV8+9Oz5XIB0r8NnpZOnsjbvhsYkqroxRB\nq9HLxZ/MzBYIB2wzs4pwwDYzqwgHbDOzimgrYEuqZdkhX+9Uh8zMLF+7V9gnAnfgZA0zs64rndYn\naTHwn8CZwHsi4tAZ0zuW1mfWdwXZWcdObpvbfkGtRBpYwXYOnnxJbvs3a7e3vsJkhtyQXHsVjM+4\n6NF/zG1/fKvPdKs3T+lmWt9ZwElA8buUZmbWEaUCtqRDgPsj4iaKM8PNzKxDytYS2RtYLukgYHNg\nK0kXRMSxG8823vS5jos/mZnNNMF0+ac5aj+VC9gRcSpwKoAa1fDfNztYg4s/mZnNpc70xezIiJia\nSg+K0qk87CF5UmFm1j9dLf60MnF7+/TEsF6QGtZrl4It7Zlozx/qqtgWBdPy+5YaBgvKDXfVfysS\n7Wf1ZOupByKXFRznIxLHeXI0vUxt7cOJKSX2s9wYZS2uDNgicT490blhvap5Pr+lYFqiyFdBlgiX\nJbLbflzwg/5LZ34DF38yM1sgHLDNzCrCAdvMrCIcsM3MKqJ0wJb0bEmXSLpT0h2S9upkx8zMbGPt\n1BJZDVwTEedJ2gR4ZkQ82jS9R7VEliTaf9KDbS9EqUyZVAZPb5QZJq6jQ8sVZRV8MpE9saJE5kBR\np3/5wfz2nc9sfTuV1MlzsyDzTImYEkWZZ53JtpsrS6TUizOStgZeGRHHAUTEJPBo8VJmZtaOsrdE\ndgIekHS+pJ9I+rykLTvZMTMz21jZgL0JjXsRn4mIJcAfgJM71iszM5ulbPGne4B7IuL67Psl5Abs\n8abPdVz8ycxspgm6Xfzpd5LWStotIu4G9gdyqqiPlVm9mdkQqTPf4k9lr7AB3g1cJGkz4JfA8W2s\ny8zM5tDV4k+9SetL5UH9U8EyvSlkZEMicQqujM4WUkplFk6uKChylUo5tLTEgT548sXJRYqHaZs/\nF38yM1sgHLDNzCrCAdvMrCIcsM3MKqKd4k8rJP1U0m2SviDpGZ3smJmZbaxUloikHYAfALtHxJOS\nvgR8KyJWN83ToywRs8GkgoJAH+KM3PYy2SMjSm9n/T/kb6d2kbNHWqWCy9t91u+T2/7ftR+2tI2u\nFH9qWnZLSVPAlsC9bazLzMzmUOqWSETcC/wr8BvgPuCRiLiqkx0zM7ONlQrYkv4CWE7jfcrtgUWS\n3tDBfpmZ2Qxlb4nsD/wqIv4PQNKlwN7ARRvPNt70uY6LP5mZzTRBV4s/Ab8G9pK0BfAnGgH8utmz\njZVcvZnZsKgz3+JPZe9hX0ejpOpPgFuz5s+VWZeZmc3PAij+ZGYpqdJo3flXP8SUGG8yWhtv0sWf\nzMwWCAdsM7OKcMA2M6sIB2wzs4ooDNiSzpO0TtJtTW3bSFoj6W5JV0p6dve7aWZmc+Vhnw+cDVzQ\n1HYysCYiPi7pA9n3nBHT00+oP0L+kEanlCh8M8hWJvazTIGfXkn9ZhOJfdmxgvsCMHl4/v7ULh/c\n/Smjk9kgVTyfS0mNxXZlwX4e8PHu9GWGwivsiPgB8PCM5uXAdFW+1cDhXeiXmZnNUOYe9rYRsS77\nvA7YtoP9MTOzhHbKqxIR0XhBJjF9Ri0RuZaImdkME3Szlsg6Sc+PiN9J2g64PzWjXEvEzGwOdbpZ\nS+QK4Ljs83HA5SXWYWZmLZorre9i4EfAiyStlXQ88DHgAEl3A/tl383MrMv6UvwpXZAmUUCF1gqo\nNBxZMO0rJdbXutSYfp0cz69X0r9Z0TPndQXTeiF1PoGUf07FQYmCZd/8cCc6VGmtns8w2Od0y1Lp\nfgCXJvbziNbOGxd/MjNbIBywzcwqwgHbzKwiHLDNzCpizoCdKAD1CUl3SrpF0qWStu5uN83MbM4s\nEUmvBB4HLoiIPbK2A4DvRsQGSR8DiIiTZyzXwSHC0k/7y2WQ9FfqaXuquE5ZBydyO5aOTiWXWXT7\ng7ntj2+Vej+qNxk3veNBtVqVOp+h3Dk9lmjf9z357bEunb1RuyhnbHAAvtFKl+aWyiBpMQuv7SyR\nvAJQEbEmIqZforwWWNxSr8zMrGWduIf9ZuBbHViPmZkVaKv4k6QPAn+OiC/kzzHe9LkOLv5kZjbD\nBN0s/gSApDcBBwGvTs81Vnb1ZmZDos58iz+VCtiSlgEnAftGxJ/KrMPMzFoznyyRi4F9gefQKA5x\nGnAKsBnwUDbbjyPiHTOW61iWSOFQT3+VGOrprgVUw6AkcUhue/DNgoUS54OTJKxHxPMSU36faE9f\nM1bttJ0rS2TOK+yIODqn+by2e2ZmZi3xm45mZhXhgG1mVhEO2GZmFeGAbWZWEXMNETar8FPTtPdK\n2iBpm+51z8zMps2VJXI+cDZwQXOjpFHgAODXXerXRopSczb5WSJ978KClMJjhmS4J+UXuPnO5PeS\ni7y2tl+3emM2L8FWiSmP9bQfg6jwCjuv8FPmk8D7u9IjMzPL1fI9bEmHAfdExK1d6I+ZmSW09Gq6\npC2BU2ncDnmqOb3EeNPnOi7+ZGY20wTdKv70QhpR9xY1CnYvBm6UtDQicircj7W4ejOzYVOnK8Wf\nIuI2YNvp75J+BbwsIh5KL2VmZp1QGLCbCj/9paS1wMqIOL9plr7XVknWrjo2nQmSGrbodBZWwahE\n/RiWHZb+LzgMSQaNDbBfJNqX5DfrpvSqLk38mz6iV+f5kQXTWh9erzBgJwo/NU/fueUtmplZKX7T\n0cysInoUsCd6s5mBNtHvDvTZRL87MAAm+t2BPpvodwf6LDWC+/w5YPfMRL870GcT/e7AAJjodwf6\nbKLfHeiz69teg2+JmJlVRFujps9lyZLtALjvvkVsv/123dzUbAWv82wX+U+bl9C9PvblGCQOgl6Y\nXiKWdKeP/dn/wTLsx6D9/d86v1kF60wsQpfO89k2f+rTffdtwvbbb940bXYfajVxfcGF+JxjOpbV\nGNPRzMxalRrTsWsB28zMOsv3sM3MKsIB28ysIroesCUtk3SXpJ9L+kC3t9dveaP0SNpG0hpJd0u6\nUtKz+9nHbpM0KulqSbdL+qmkE7L2oTgOkjaXdK2km7P9X5W1D8X+T5NUk3STpK9n34dt/yck3Zod\ng+uytraOQVcDtqQacA6wDHgxcLSk3bu5zQFwPo39bXYysCYidgO+m31fyNYDKyLiJcBewDuz330o\njkNE/Al4VUS8FHgpsEzSKxiS/W9yInAHT9ccGrb9D2AsIvaMiKVZW1vHoNtX2EuBX0TERESsB74I\nHNblbfZVYpSe5cDq7PNq4PCedqrHIuJ3EXFz9vlx4E5gB4boOETEH7OPmwGb0vjHOzT7L2kxcBDw\nHzydXzo0+99kZrZHW8eg2wF7B2Bt0/d7srZhs21ErMs+r6OpRO1CJ6kO7AlcyxAdB0kjkm6msZ9X\nRsR1DNH+A2cBJwHNJfmHaf+h8R/pqyTdIOmtWVtbx6CrL84wAOVXB01ExLDkqEtaBHwVODEiHssG\nvQAW/nGIiA3ASyVtDVwm6a9nTF+w+y/pEOD+iLhJ0ljePAt5/5vsExG/lfRcYI2ku5onljkG3b7C\nvhcYbfo+SuMqe9isk/R8AEnbATmj8ywskjalEawvjIjLs+ahOw4R8ShwNfBahmf/9waWZwOcXAzs\nJ+lChmf/AYiI32Z/PwBcRuMWcVvHoNsB+wZgV0l1SZsBrwOu6PI2B9EVwHHZ5+OAywvmrTw1LqXP\nBe6IiE81TRqK4yDpOdNP/yVtQWMM1DsZkv2PiFMjYjQidgJeD3wvIo5hSPYfGuPfSnpW9vmZwGuA\n22jzGHT9TUdJBwKfAmrAuRHx0a5usM+aRul5Do17VCuBrwFfBl5Ao2TZURHxSL/62G2S/hb4PnAr\nT98WO4VGfckFfxwk7UHjgVKNxkXRlyLinyVtwxDsfzNJ+wLvjYjlw7T/knaicVUNjVvPF0XER9s9\nBn413cysIvymo5lZRThgm5lVhAO2mVlFOGCbmVWEA7aZWUU4YJuZVYQDtplZRThgm5lVxP8DIV98\nUevEzhYAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c8cb5f8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "for i, profile in enumerate(centers):\n", | |
| " plt.figure()\n", | |
| " plt.imshow(profile, interpolation='none')\n", | |
| " plt.title('cluster {}'.format(i))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.text.Text at 0x10c6e23c8>" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAEPCAYAAAAHyx5KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYo1WZ9/852ZNak9q6uqsXupum2bQRgWaTAmcQUXFf\nUJhLZRR1dHx/vjMu76i0P/e5Xn86jiiojLgBjguiIyoodAuCQEOLrN30VtVLdW1JJZXK+iTn98fJ\nkz1VqepKUqk+n+vKldTzPElOqurJ9/ne933uI6SUaDQajUajqT2WRg9Ao9FoNJoTBS26Go1Go9HU\nCS26Go1Go9HUCS26Go1Go9HUCS26Go1Go9HUCS26Go1Go9HUCVut30AIcRAIASkgKaU8t2j/IHAX\nsD+z6edSys/VelwajUaj0dSbmosuIIFBKaV/lmN2SCmvqsNYNBqNRqNpGPUKL4vj3K/RaDQaTdNT\nD9GVwB+EEDuFEO+psP8CIcSTQoi7hRCn1WFMGo1Go9HUnXqEly+UUo4IIXqAe4UQz0spH8jb/wSw\nWkoZEUK8EvglsKkO49JoNBqNpq6IevZeFkLcAISllF+Z5ZgDwNn5OWAhhG4QrdFoNAtASqnTd0uI\nmoaXhRAeIURb5nELcDnwVNExfUIIkXl8LupCoKToSkq5bG833HBDw8egP5/+bPrzLb+bZulR6/By\nH3BnRlNtwI+llPcIIa4HkFLeDLwJeL8QwgAiwNtqPCaNRqPRaBpCTUVXSnkA2FJm+815j28Ebqzl\nODQajUajWQrojlRLgMHBwUYPoaYs58+3nD8b6M+n0Sw2dS2kWihCCNkM49RoNJqlhBACqQuplhT1\nmDKk0Wg0JyyZmpZGvr92LA2g0sWOFl2NRqOpMTpSd2Ix24WWzulqNBqNRlMntOhqNBqNRlMntOhq\nNBqNRlMntOhqNBqNpiy33norF198cfZni8XC/v37Z3mGZi606Go0Go1GUye06Go0Go1GUye06Go0\nGs0JzJe+9CU2btxIe3s7p59+Or/85S8X9Dq33norGzZsoL29nfXr13Pbbbdl9/3Xf/0Xp512Gj6f\njyuuuILh4eHsvnvvvZfNmzfT2dnJhz70IS655BJuueUWALZt28a1116bPfbgwYNYLBbS6TQAwWCQ\n6667jpUrVzIwMMCnPvWp7L5bb72Viy66iH/913/F5/Oxfv16fve732Vfy+/38653vYtVq1bh8/l4\n/etfn933P//zP2zZsgWv18uFF17IU0/l1un58pe/zMDAAO3t7WzevJn77rtvXr8nLboajUbTQIRY\nvNtC2LhxIw8++CChUIgbbriBa665htHR0Xm9xszMDB/+8If53e9+RygU4uGHH2bLFtV2/6677uKL\nX/wid955JxMTE1x88cVcffXVAExMTPDGN76RL3zhC0xOTrJhwwYeeuih7DzXuRqLvPOd78ThcLBv\n3z527drFPffcw3e/+93s/kcffZTNmzczOTnJRz/6Ua677rrsvmuvvZZYLMazzz7L2NgYH/nIRwDY\ntWsX1113Hd/5znfw+/1cf/31XHXVVSSTSXbv3s2NN97Izp07CYVC3HPPPaxbt25ev6uGLz1V5fJU\nUqPRaJqRub6/YPFui8GWLVvkXXfdJaWU8nvf+5686KKLsvuEEHLfvn0lzwmHw7Kzs1P+/Oc/l5FI\npGDfFVdcIW+55Zbsz6lUSno8Hjk0NCS///3vy/PPP7/g+IGBgezxN9xwg7zmmmuy+w4cOCCFEDKV\nSsljx45Jp9Mpo9Fodv9tt90mL7300uzYN27cmN03MzMjhRBydHRUHj16VFosFjk1NVXyWd73vvfJ\nT33qUwXbTjnlFLljxw65d+9e2dvbK//whz/IRCJR4TeY/ZuX1TPtdDUajaaBLKbsLoQf/OAHnHXW\nWXi9XrxeL08//TSTk5Pzeo2WlhZ+8pOfcNNNN7Fy5Upe/epXs3v3bgCGhob48Ic/nH39rq4uAI4c\nOcLIyAgDAwMFr7V69eqq3nNoaIhkMkl/f3/2td/3vvcxPj6ePWbFihXZxx6PB4BwOMyhQ4fw+Xx0\ndHSUfd2vfOUr2df0er0cPnyYkZERNmzYwNe+9jW2bdtGX18fV199NSMjI/P6XWnRPQ7+8he4++5G\nj0Kj0WgWxtDQEO9973u58cYb8fv9BAIBzjjjjAW1rbz88su55557OHbsGJs3b+Y973kPAGvWrOHb\n3/42gUAge5uZmeH888+nv7+fQ4cOZV9DSlnwc2trK5FIJPvzsWPHso9Xr16N0+lkcnIy+7rBYLAg\n/1qJ1atX4/f7CQaDJfvWrFnDv/3bvxWMNxwO89a3vhWAq6++mgceeIChoSGEEHzsYx+b1+9Ji+5x\n8KY3wWtfC9PTjR6JRqPRzJ+ZmRmEEHR3d5NOp/ne977H008/Pe/XGRsb46677mJmZga73U5LSwtW\nqxWA973vfXzhC1/g2WefBVTx009/+lMArrzySp555hnuvPNODMPg61//eoGwbtmyhT/96U8cOnSI\nYDDIF7/4xey+/v5+Lr/8cj7ykY8wPT1NOp1m3759/OlPf5pzvP39/bzyla/kAx/4AFNTUySTyezz\n3vOe93DTTTfx6KOPIqVkZmaG3/zmN4TDYfbs2cN9991HPB7H6XTicrmyn7Naai66QoiDQoi/CSF2\nCSEerXDM14UQLwghnhRCnFXrMS0G6TSMjIBhQJmLJY1Go1nynHbaafzv//2/Of/881mxYgVPP/00\nF110UXa/EKKgmKlSYVM6nearX/0qq1atoquriwceeIBvfetbALzuda/jYx/7GG9729vo6OjgzDPP\n5Pe//z0A3d3d/PSnP+XjH/843d3d7N27lwsvvDDrtP/u7/6Ot771rbzoRS/inHPO4TWveU3BGH7w\ngx+QSCSyldFvfvObs6JdPPbi8f/whz/EbrezefNm+vr6+PrXvw7A2WefzXe+8x0++MEP4vP5OPnk\nk/nBD34AQDwe5xOf+AQ9PT309/czMTFRcCFQDTVfT1cIcQA4W0rpr7D/SuCDUsorhRDnAf8hpdxa\ndIys9TjnSygEZjpgzx44+eTGjkej0SxNMmvaNnoYTcOll17Ktddey7vf/e5GD2XBzLaOcb3Cy7PV\nfV8FfB9ASvkI0CmE6KvLqI6Dqanc47yUg0aj0WiOk+V8kVIP0ZXAH4QQO4UQ7ymzfxVwKO/nw8BA\nmeOWFFp0NRqNpjbMNT+3manHIvYXSilHhBA9wL1CiOellA8UHVP8Gy65zNm2bVv28eDgIIODg4s9\nznmhRVej0WgWn/vvv7/RQ6gpNRddKeVI5n5cCHEncC6QL7pHgPyJWQOZbQXki+5SIF90o9HGjUOj\n0Wg0zUNNw8tCCI8Qoi3zuAW4HCieRPUr4B8yx2wFpqSU8+tB1gC009VoNBrNfKm10+0D7szE523A\nj6WU9wghrgeQUt4spbxbCHGlEGIvMAO8q8ZjWhS06Go0Go1mvtRUdKWUB4AtZbbfXPTzB2s5jlqg\nRVej0Wg080V3pFogOqer0Wg0mvmiRXeBaKer0SyQv/4V3v52SCQaPRKNpu5o0V0gWnQ1mnmSSsGX\nvwyXXw733afEV9Nw/H4/r3/962ltbWXdunXcfvvtjR7SskaL7gLR4WWNZh4MDcFll8FvfwuPPQav\ne51apkvTcP7pn/4Jl8vF2NgYP/7xj3n/+9+fXZxAs/ho0V0g2ulqNFUgJfzoR3DOOfCqV8Ef/whr\n18LWrVp0lwAzMzP84he/4LOf/Swej4cLL7yQ1772tfzwhz9s9NCWLVp0F4gWXY2mCm68ET7/ebjn\nHvjoR8FcBk2L7pJgz5492Gw2Nm7cmN324he/mGeeeaaBo1re1KMN5LJEi65GUwXPPQcf/CBsKZo5\nuGkTBAIwOgp9S359k5ojPrM4vYblDfNbKCAcDtPe3l6wra2tjWm9SHjN0KK7AKQsXENX53Q1mgpE\no+B2l263WODcc+GRR+Cqq+o/riXGfMVysWhtbSUUChVsCwaDtLW1NWQ8JwI6vLwAwmG1iL2Jdroa\nTQUikfKiCzrEvATYtGkThmGwd+/e7LYnn3ySM844o4GjWt5o0V0A+aFl0KKr0VQkGgWPp/y+rVuV\n09U0jJaWFt7whjfw6U9/mkgkwoMPPsivf/1rrr322kYPbdmiRXcBmKJryfz2tOhqNBWoFF4GFV5+\n7DE1f1fTML75zW8SjUbp7e3lmmuu4aabbuLUU09t9LCWLTqnuwBM0e3rg5ERndPVaCoyW3i5qwv6\n++HZZ+HMM+s7Lk0Wr9fLnXfe2ehhnDBop7sATNFduVLda6er0VRgtvAy6Lyu5oRDi+4C0KKr0VTJ\nbOFl0KKrOeHQorsATNHt71f3WnQ1mgrMFl4GLbqaEw4tugvAFN2eHrDZVB1IMtnYMWk0S5K5wstn\nnqn6MhdPCdBolik1F10hhFUIsUsI8esy+waFEMHM/l1CiE/WejyLgfn90NmZ+z7RblejKcNc4WWb\nDc4+Gx57jOefhwcfrN/QNJpGUA+n+2HgWaBSy5UdUsqzMrfP1WE8FZES3vlO+Nwco9Ciq9FUyVzh\nZYCtW5EP/4VXvhJe/nKYmKjP0DSaRlBT0RVCDABXAt8FKjUXXZymo4vA8DB8//tqyc/ZMEW3o0OL\nrkZTkWQShAC7ffbjtm4lev9fOHhQrWt/9GhdRqfRNIRaO92vAv8KpCvsl8AFQognhRB3CyFOq/F4\nZuXYMXUfDs8uovlO17yI13N1NZoi5gotm5x3Htadf8EMhvn9tR2WRtNIatYcQwjxamBMSrlLCDFY\n4bAngNVSyogQ4pXAL4FN5Q7ctm1b9vHg4CCDg5VecuGMjhY+Pumk8sfp8LJGUwXVhJYBVq4kTCsb\n2cteTtaiq1nW1LIj1QXAVUKIKwEX0C6E+IGU8h/MA6SU03mPfyuE+KYQwielLDnt8kW3VmjR1WgW\nkbkql/PYad3KVv6iRbfOfOMb3+DWW2/l6aef5uqrr+Z73/teo4e07KlZeFlK+X+klKullCcBbwPu\nyxdcACFEnxBCZB6fC4hyglsvzPAyFApwMeXCy1p0NZoiqgwvh0Lw+6ASXdDh5XqyatUqPvWpT/Hu\nd7+70UM5Yahn72UJIIS4HkBKeTPwJuD9QggDiKDEuWEUO91ySFm+kErndDWaIqoMLz/yCPyF83g7\nPwZgcrLWA9OYvP71rwdg586dHD58uMGjOTGoi+hKKXcAOzKPb87bfiNwYz3GUA3ViK65lq7HAw6H\nDi9rNBWpMrz85z/DLs7iVJ7DTQS/v7qQtGbxkLLSjE7NYqM7UuVRjejmh5ZBi65GU5Eqw8sPPQQx\n3Iz4TuclPHFihpeFWJzbgt9+yczcXPZo0c2jmpxusejqnK5GU4EqwsupVK71snG2yuuekKIr5eLc\nFvz22unWCy26eRyP09U5XY2miCrCy08/DdPTsG4duC67gIt48MQU3QajnW790KKbIRZTVZQmOrys\n0RwnVYSXH3pI3V94Idhefgkv408EJiv10tEsNqlUilgshmEYpFIp4vE4qVSq0cNa1mjRzWCKrCmi\nlUQ3GFT3WnQ1mjmoIrxsiu4FF0Dnqf2M0sfA5JN1GJwG4LOf/Swej4cvf/nL/OhHP8LtdvP5z3++\n0cNa1mjRzWDmc085RS18Egwq91tMpZyuDi9rNEVUEV7+85/V/QUXQEsL/MkyyNbY/WXPPc3is23b\nNtLpdMHt05/+dKOHtazRopvBdLb9/dDbqx6PjZUep8PLGk2VzBFeHhmBAwegtVUtqysEPN52KZdy\nv87rapYtWnQzmKLb16du+dvy0aKr0VTJHKL78MPqfutWsFrV42d7B7mYB/CP67yiZnmiRTeDFl2N\nZpGJRGYNL+eHlrP09nKYARKP7Krt2DSaBqFFN4MpsCtWqFv+tnx0TlejqZI5nG5+5bKJzwfbGcTx\n5/trPDiNpjFo0c1gFlLlO938Zhkm+X2XQTtdjaYis4huLAaPP67yuOedl9ve1QX3cykdu7ToapYn\nWnQzmK7W5Zugs3emYFs+Orys0VTJLOHlnTshmYQzzshdwIJyuju4hN4X/gyGUaeBajT1Q4tuBlNg\n7xj7NM+7bi3Ylo8WXY2mSmZxuvnzc/Px+WCSbvzt65QV1miWGVp0M5gCm7ZNg3uyYFs+Oqer0VRJ\nFaKbn88FJboAz/UOwv06xKxZfmjRReWXgkGw2yEloqQcAaBUdIvX0gXtdDWailToSCXl7E4XYGfb\npVp0NcsSLbrkxLW3F2KpKElredGdmVGrorjd4HSqbVp0NZoKVOhItXcvjI+r8239+sJ9puj+2XaJ\nmsibTNZhoCcuiUSC6667jnXr1tHe3s5ZZ53F7373u0YPa1lTc9EVQliFELuEEL+usP/rQogXhBBP\nCiHOqvV4ypE/RzeajBKVU1itEAhAIpE7rji0DGoheyHUcbpPuEaTR4Xwcn5ouXhxG1N0h6e9sHEj\nPPZYjQd5YmMYBmvWrOFPf/oToVCIz33uc7zlLW9haGio0UNbttTD6X4YeBYoWbBRCHElsFFKeTLw\nXuBbdRhPCQWia0SZigfo6VHb8ltBlhNdIfTyfhpNWSqEl00dzZ8qZGKKrt8PXKpDzLXG4/Fwww03\nsGbNGgBe9apXcdJJJ/HEE080eGTLl5qKrhBiALgS+C5QbsHGq4DvA0gpHwE6hRB9tRxTOcz5uCtW\nKKcbiAbKdqUqJ7qgQ8waTVkqhJfN7/Ozzy59SleXuvf7gcFBLbp1ZnR0lD179nD66ac3eijLFluN\nX/+rwL8C7RX2rwIO5f18GBgAKiysVxuKnW40GeVULboazfFRJrycSsGTmZX7ziqTTGprU32Yw2FI\nbH0Zjre/HeLxXBHFMkVs374oryMHBxf83GQyyTve8Q7e+c53smnTpkUZj6aUmomuEOLVwJiUcpcQ\nYnC2Q4t+LglDg1qCymRwcJDB4/jnKqY4pxuIzc/pmt8rWnQ1mgzptBJLl6tg85496jxZsybnavMR\nQoWYx8chkO6gb/NmePRRuPjiOg28MRyPWC4G6XSaa6+9FpfLxTe+8Y2GjmW5U0unewFwVSZv6wLa\nhRA/kFL+Q94xR4DVeT8PZLaVkC+6i02+6EYORQgnwnT3JQH7vJyuzukuTYy0gZE2cNlccx+sWRxi\nMSW4RZVSZmj5JS+p/FRTdP1+6DPzustcdBuJlJLrrruO8fFx7r77bqzmkk+amlCznK6U8v9IKVdL\nKU8C3gbcVyS4AL8C/gFACLEVmJJS1jW0DEU5XSOK0+qkozcI6PDycuB7u77HR+/9aKOHcWJRoXK5\nWtEFmJxE53XrwPvf/36ef/55fvWrX+Fc5mH8pUA95+lKACHE9UKI6wGklHcD+4UQe4GbgQ/UcTxZ\ncvN0JdFklP62fjxdpXN1teg2JyPhESajk40exolFhcrl+Yiu349yuI89ppyzZtEZGhri29/+Nk8+\n+SQrVqygra2NtrY2br/99kYPbdlS60IqAKSUO4Admcc3F+37YD3GMBumsHp7EtgsNro93Tg7SkU3\nqMyvzuk2Gf6on3Ai3OhhnFiUqVyWEnZllsmtWnTb2lQHjeeeK195pTku1q5dSzqdbvQwTihO+I5U\nZgtImw1crVHcdjedrk4c7crW6pxu8xOIBbTo1psy4eUDB9S51tcH/f2Vn1oguqB6rob130+zPDjh\nRddsftHbC/FUFLfNjdflRXh0eHm5oJ1uAygTXq4mtAxFc3VBnWBFJ1dsOMb+T+5fhIFqNPXlhBfd\n4iIqj92D1+UlZQ9gsahiDnNZTy26zYkW3QZQJrw8l+iGnwozcddEqdMtI7ozz8wwdtsYGk2zccKL\nbsF0oWQkG14OJabo7lZ5qPFxdUzxCkMmenm/pY0W3QZQJrw8Vz536v4pRm8fLS+6MzMFxxp+g/jh\nODJVdlq/RrNk0aJb1BjDbXPjdXvLtoLUTrc50aLbAIrCy1Lm1qSvVA9lhAwMv1Equi0tJSdX0p9E\nJiWJ0QQaTTOhRbeoBaTbrnK6+V2pjh0rv5auiRbdpYuUUotuIygKLx89qiJGnZ2wbl35p6RCKZL+\nZOE8XSgbXjb8KucTG9ZTiTTNxQkvusWLHbhtKrw8FZsqcLqRiMrtulwlne30lKElTDgRxmF1kEqn\nSKb02qx1oyi8nJ/PLV7Oz8QIVnC6ZUQ3GVB/y/hQfDFHrdHUnBNedMs6Xbe3pP9ypdAy6ClDSxl/\n1E+Xu4tWRyszyZm5n6BZHIrCy9VULhc73blyurYum3a6mqZDi265nK6rNKdbjehqp7v08Ef9+Nw+\nWh2tOsRcT4rCy9U0xTCCBqlgivaWNBYLhEKQTFIxp9u6pZX4sHa6muZCi24Zp1suvKxFtzkJxAL4\n3D5aHC1adOtJhfDybE2ljJDK06ZCBl6v2jY1RcWcbuuWVu10F4FrrrmG/v5+Ojo6OOWUU7jlllsa\nPaRlzQkvusU5XY/NM+/wss7pLl20020QeeHl8XE4dEgZ1pNPrvyUVDAFUJrXLSe6AUM73UXiE5/4\nBAcOHCAYDPKrX/2KT37ykzxhXiVpFp0TWnTzW0B6vbl5uh3ODoKxID29qiepzuk2L1p0G0ReeNkM\nLW/Zohaor4QRMrD32UvzumVyumZ4WTvd4+f000/HlVcdKoRg/37d7atWnNCim98C0mLJhJdtbuxW\nO267m1af+pLW4eXmxR/143V5tejWm7zwcjX5XFA5XfdJ7lKnW5TTlVJi+A08J3tIR9MYYaMGH+DE\n4gMf+AAtLS2ceuqprFy5kiuvvLLRQ1q21GWVoaVKfj4XVHi5zdkGgNflxdoaANqZmMjNGdSi21zk\nVy9r0a0jeeHlavK5UkpS0ymca52lc3XXFYaXU+EUwimwOC041ziJD8exndbcX2XbxfZFeZ1BObig\n533zm9/kxhtv5KGHHmL79u04HI5FGY+mlOb+Tz1OzHxuVnSNKL0tvQB0ujoJGwG6utYyOQl796pj\ndE63ufBH/ZzsO5lWuxbdupIXXq5qulA4hcVtwdHrKHW6pxWKruE3sHvtALjWuIgNx2g5raUWn6Ju\nLFQsFxMhBBdeeCE/+tGP+Na3vsWHPvShRg9pWVLT8LIQwiWEeEQI8VchxNNCiG1ljhkUQgSFELsy\nt0/Wckz5mE53xQp1H02q6mUAr9tbUMG8e7e6zxfdFyZf4LEjj+mc7hImP6c7k9DzdOtGJrwcDKoL\nVocDTjut8uGpUApbuw2bzzZnTjcZSGLzKb9gOl3N4pFMJnVOt4bUVHSllDHgUinlFmALcIUQ4rwy\nh+6QUp6VuX2ulmPKpyS8nMnpAiVzdcuJ7k+e+Qm37LpFh5eXMEu9kOqxx+C22xo9ihqQCS//9a/q\nxxe9COz2yocbQQNruxW7zz5nTtfwG9h9hU5XszDGx8e54447CIfDpFIpfv/733PHHXfw8pe/vNFD\nW7bUvJBKSmmeLQ7ADqTLHFahMVxtKSu6Gafb6eokEAtkXXAwqO7zRXdkeoSZ5Ey2LWQ0Culyn07T\nMJa66P7jP8I73pG7qFs2ZMLLVRdRhQxsHTmnW7CmbtGUoaQ/53Rda13a6R4HQghuuukmVq9ejc/n\n46Mf/Sj/8R//watf/epGD23ZUvOcrhDCAjwBbAC+IaV8rOgQCVwghHgSOAL8i5Ty2VqPC8oXUnns\nyrZ6XYXhZZMC0Q2PAKry2eVSU5BisZJlRDUNJL85xtHpo40eTgnmspG7dsEppzR2LItKJrxcTREV\n5MLLZZ2upzSna/PmwsuxIe10F0p3dzfbt29v9DBOKOrhdNOZ8PIAcJ4Q4vSiQ54AVkspXwz8J/DL\nWo/JJL8xBmTm6dpyOd388LJJseia/Xx1XndpUuB0k0vP6Zqpyqefbuw4Fp1MeLmaIirIhJc7rOVz\num53QRjJCBSGl7XT1TQTdatellIGhRD3A1cAz+Rtn857/FshxDeFED4ppT//+du2bcs+HhwcZHBw\n8LjHNFd4ec/kHtbPJrrTI1iEum7xeNQXRCRCNjSmaSwxI4aRNvDYPUsyvCxlTnSfeqqxY1l0olFi\nFg/PPacaYpx55uyHz+p080NJHk9BeNk54CR+VC1mL6zzy1Ldd5/q7fyKVyzg82k0C6SmoiuE6AYM\nKeWUEMIN/D3wpaJj+oAxKaUUQpwLiGLBhULRXSzKhZfzC6nKhZfNtXSllIyER+h0KRXWxVRLj0A0\ngNflRQixJEU3HoeU6ny4/JxuNMpoyE06DQMDBW2Yy2IEC3O6FdfU9Xgw/AbuDeoFLU4Ldp+dxLEE\nzlXO+QyPV71KLTMYCqmudBpNPaj1v1o/8H0hhBUVyv6JlPJuIcT1AFLKm4E3Ae8XQhhABHhbjccE\nqC+8qSl1FW6e4PlON9t/eW3uOU5nbi3dQCxAIpXIhpf1XN2lhxlaBpak6OZ3Nty/H8JhaG1t3HgW\nDSkhEuFYUJ0UxReu5TBCqnrZ1mnDmDLoaJeAYGpKXZhY8/K6+U4XMnnd4di8RHfnTmWcQf3ey82/\n12hqQU1FV0r5FFCSzcmIrfn4RuDGWo6jHPku15LJbOc73eKVhqA0tNzubM/O/dQ53aVHsegutXm6\nRe2EefZZOPfcxoxlUUkmwWrl2IT6ejFrJmYjFUzhXO3EYrNgbbUiZww6O+1MTamL4668ubr5zTEg\nL697fvVDfPjh3GMtupp6MmchlRDCN9utHoOsBcWhZShyupl5ur29uf3FRVQn+04uKaTSTnfpsNSd\nbrhoOMsmr5upXC53jlXCdLqAyutOVp6rm98cA8C51jnvubp/+Uvu8fR05eM0msWmGqf7BLAGCGR+\n9gLDqKk+Elhfm6HVlrKim5/TzYSXHQ61AlEgUOp0N/g2sOvYLqSUuN2qiEOL7tJhqYtusdNdNnnd\nTOXyvEQ3k9MFsHeZKw252b+/dNpQfnMMUE43sqf6E0/KUqdba4RoSCsCzRKkGtG9F7hTSnk3gBDi\nlcDrpZTvrenIakzxF4KUsqR6eSo2lT2mRHTDI6xuX43NYiOeiuPxqGSvFt2lQ77ottiX3iL2pugK\noYRgWTl1GydkAAAgAElEQVRdj6dkSt5smNXLADafDcNvVGyQUS6nG/hDoPglKzI0lJsuCLV3ulLK\n2r7BLAghkFJqxV9CVDNP93xTcEFN6wEuqN2Q6kPxYgeJVAKrsGKzqJPZbXOTlmliRix7TL7oHp0+\nSn9rfzZXqHO6S48C0XW0MJOcaegXYDGmwzr1VHW/bJzuQsLLmXm6oMLLlfovpxNpZFxibc0tzDvf\nVpD5oWWoj9PVaEyqEd2jQohPCiHWCSFOEkL8G6pzVFNTsthBnssFdYVY3H+52On2t/XTYldf5jqn\nu/Qwu1EB2Cw2HFYHUWPpXBWZTvfUU1XV8uhorkNVU7OA8HI5p1sup2sEVDeq/HDtfBc9yA8tg87p\naupLNaJ7NdAL3An8IvP46loOqh7MNkfXpLiCuTin29/arxxUYkZPGVqC5DtdWHp53ZkZ2EKAl+3Z\nzxlnqG3Lwu0uILxsLngApU53cpJseLk4tAwqB5yOpTGmq1vM3hTd9ZlqFO10NfVkTtGVUk5KKf8Z\nuCizCtCHyzWvaDZGVNvkik4XcsVUl1yiVkg5P29KQiWnq8PLS4dmEN0BovRNTWc7Ni0b0V1A9bJZ\nSFXW6WZEt7iIClRUyrnGSfzQ3G43GlV9roWAyy5T27TT1dSTaqYMXSCEeBZ4PvPzi4UQ36z5yGqM\nKbr9/eq+ktMNRAO88Y3qavi1r817fp7TDSfCOry8BPFH/Xhd3uzPS010w2Fwk8IdT2ad7rIopopE\nMBxupqfVOrpzzYFNG2nS0TTWlrlzuuWcLqjVhqpZ+OCJJ8Aw4IwzYOVKtU07XU09qSa8/DVUv+QJ\nACnlk8AltRxUPSgR3XJON9MKEtSXh8l0fJq0TNPubFdON6FzukuRck53KTXImJlRouuMJZve6Uop\nefTIo+qHaJSYUCdEX59ylbORmk5hbbMiLOrAWXO6RY0xTGZb+CBtpBm5VZ3wZmj5/PNz3b+009XU\nk6pWGZJSDhdtqi55skQJh9UXnsuV66Vczul6XSq8XIwZWjZ7+s4kdU53KdIM4WU3KeyRBKefrqqq\nn35aTR9qNl7wv8DlP7xcVYdHo0Rk9S0g84uoYBanG4mUNMYwMVtBliNwb4Dd/7gbmZJZ0d26NSe6\n2ulq6kk1ojsshLgQQAjhEEL8C/BcbYdVW/JdrnkVHjVya+mamOHlkudnQstAtpBK53SXFkbaIJwI\n0+HqyG5baqIbDoMHA4sh8XlS9PUp1zVcfInbBITiIYLxIGMzYxCNEk7Po+9yXmMMmH2ebrmcLszu\ndMfuGIMUxEcSBU63rU091k5XU0+qEd33A/8ErEJNFTor83PTUhxahsxaumUKqczwcsHzM04X0FOG\nlihTsSk6XB3ZpRdh6TXIMJ0uQHKiufO6oXgIgN2TuyESIZRUJ0RVlct5LSChupzu8DDccUcuKlDJ\n6aaiKSZ/NYlzjZPhx+OMjKgOc5s2aaeraQzVVC+PSynfLqXslVL2SCnfIaWcnOt5S5lyojuv8PL0\nCCtbVRWGzukuTYpDy1Cl05Uyu1h6rZmZAY8puuPNndc1Rff5iechGiWYmEd4OZgqdLpe5XQ7O5Wi\nBgKQdudyuqLNxuWXw9VXqzVxobLT9d/tp/UlrbS9pI1nd6j9552nFjnRTlfTCCq2gRRC3FBhlwSQ\nUv6/NRnRcZBMqhPIN8cyDMXThaB8IVWnq3PWnC6QrV7WOd2lRSAaWJjoPvYYfOIT8Mc/1nB0CrN6\nWdrE8nG6E7shaicQVyXL813sAMDisGBxWRCxFO3tNkIhmJEe2iIRjKjBPQ/b2b1bHfvQQ/Dyl1de\nzH7sjjF6r+5l5m8zHHpCia459U87XU0jmM3pzgDhopsErgM+VvuhzZ83vQlWr567q0/VTne28HJr\n+fByM+Z0Z56bYdfgrkYPY1FZsNMdHlbCW4dqJjO8LFa4SE40v9MdaB/g+cnnIRJhMjKP8HJRThdK\nK5hDhsrpRseS3Hx77tidO9W9xWnB3mUnPpJzu0bIwH+Pn5439OAccOLfUyi6ptPVoqupJxVFV0r5\nf6WUX5FSfgX4DuAG3gXcAZxUp/HNi8ceU05zri8ts1NOgegaFcLLlQqpMk63uPdyMzrd+KE4wR1B\nkpPJRg9l0Viw6Pr9datmMkXXNuAiOZ7ktNPU9ueeU1GbZiIUD3HOynMyTjfKxMzCq5ehNK87lVA5\n3fH9Bkem7WzerLabogul7SAn7pqg82Wd2H12LL1O5LEYQuTWLNZThjSNYNacrhCiSwjxOeBJwA68\nREr5MSnl2FwvLIRwCSEeEUL8VQjxtBBiW4Xjvi6EeEEI8aQQ4qyFfAiAVArGMqOa6/uyotO1u5l6\nYIrIbqWcs4aX86uXm7yQyphSM8Cmtpe6+mbFH/Xjc5WKrrn+ceUnZpqt1SHGq6qXUzjXKafb2qpa\nEyaT8MILNX/7RSUUD3HWirM4HDpMaibMWHh+1cvmYgcmxU43kGghPhUhPZVkGhu33Qbt7XD0qLpB\n6cIHZmgZYCjipEvGOe203DRB7XQ1jaCi6Aoh/i/wKDANvEhKeYOUsur1s6SUMeBSKeUWYAtwhRDi\nvKL3uBLYKKU8GXgv8K0FfAZA9WdNqZoUDh2a/diyoptxuiPfHmHyblUnVjG8PF1avdzMOV0jaIAF\nAvdXvzzaUscf9eN1ewu2Ve107fa6xHhNp+tZr5wu0LR53VA8RJeni7Wda5kJjnMsqE6I+S7rZ1LS\nfznqYepolBYM3vwuG2edBWefrfY9/ri6z3e6yckkwQeDdF2l5h3tOuKkhzhbt+beI9/pNuPcaE1z\nMpvT/QhqmtAnUSsNTefdQtW8uJTSlCAHyikXl4VeBXw/c+wjQKcQoopr41Ly18dciNONJCN47B6S\nE0lSIaXe7c52wokwqXQqe1zMiDGTnKHLrU7m4jaQzZjTNaYMOl/WydR9y8zpLjS8fO65dVG9mbDE\ng0HbycrpAk278EEoHqLd2c7m7s2Ep/z4Yx4cjpyrnI38xQ5Miufq/vIeD8TSxLDy2S+or62XvlTt\nM0U33+mO/2wc3xU+bK1KzB94zomPBOefl1NXux2cTlWsHqt+ZUCN5riYLadrkVK6pJRtZW7t1by4\nEMIihPgrMArcI6V8rOiQVUC+Lz0MDMz3Q0D1optIKFdstUJ3d267GV5OjCeyq5VYhIV2Z3uB2z0W\nPkZfS192aTFzylC+0222q2YjaNA52EniWKKgEKWZ8ceOQ3QvuaTmoptOQzKaJoWgdZ0zK7pmMVUz\nOt12ZzundJ1CNDRFFHdVLSChcLEDk2Kn+9+/8WDHhtVrz7pn0+maed18p5sfWgb486MWwtg4d1Oi\n4H10XldTb6pqA7lQpJTpTHh5ADhPCHF6mcOKT8sFSVa+6M4WXjaP6+1VwmtihpfznS4U9l+GwtAy\n5HK6Npu6ck6nlbA3E8aUgc1no+NlHcsmr1vO6VbVHMPvh4suUknVGlYzRSIqnxvDirPPTmJc/dMs\nB6drhENEcVcVWobMPN322auXo7ix4sC3Nnec6XR37lQXuuaiB/EjccJPhvFdoZ58+DAcOQIBi5M1\nrsKLSp3X1dSbivN0FxMpZVAIcT9q4YRn8nYdAVbn/TyQ2VbCtm3bso8HBwcZHBws2G+GjEE5XSnL\nX2WXCy1Dbp5ucjyJEcq1ljaX98s+P6+ICgqb6Hs8EAyqL1Sns9ynWJoYUwa2Thvey7xM3TdF39UL\nivAvKRYcXp6chFWr1NyzPXvg9HLXicePmc+NWazYu+1Zp7tpk7p4279fHdPSUpO3X3TynS6xCBE8\nrKvy38gIlRZS2X12Is9H8GV+/RILCVsXTm/OJ6xfr1YwGh1VotqXaZAx9t9jdL+2G6tLvabZ+jHV\n5SRxtFB0l5vT3b59O9u3b2/0MDSzUDPRFUJ0A4aUckoI4Qb+HvhS0WG/Aj4I3CGE2ApMSSlHy71e\nvuiWI9/phsNK/MotKVZuuhBkwstJN+lIusDpFvdfzu+7DLlCKsiJbjSqWs01C+FjKfY9a+PSt7dy\n+OuHGz2cRWHBzTH8ftVd5cwzVYy3hqLrIUXCasXus2NMGciUxOEQnHKKcrrPPgvnnFOTt190TNFd\n07GGYCJOFFfFymUpJV944At8/KKPY7VY1TzdCk53wwZg9UOct/oc0n/rwtaWO0YI5Xb/8Afldl/7\nWhvpRJqR746w8asbs8c98IC696xzEj+8vJ1usSH5zGc+07jBaMpSy/ByP3CfEOJJVBX0PVLKu4UQ\n1wshrgeQUt4N7BdC7AVuBj6w0DfLF12onNed1elmpjkUON3i8HK4THg5z+lC81Uw73vS4JNfsrH9\nYAupUKqqdUmXOsdVSNXVlRPdGmF2o0rabAirwNZpI+lv3ryuKbrdnm48CUnUPVMxvLzXv5dP3v9J\nDofUBV4qlKqY073oIuj7wDv41LcfxrD7sLUWZp/yi6mEELjWqErwzsvUFbeUcNddwElh1p5dutD9\ncnO6mqVPzURXSvmUlPIlUsoXSynPlFJ+LrP9ZinlzXnHfVBKuTFz3BMLfT9TdF0udT9v0U1GcQVd\nCJsodbqxuZ2ulLJ5pw3NGMxg4/f3CDov7Wz6qUNSSgKxQMEC9lCF6Jql5263Sq7WMLFqOl3Dnlm4\nPS/E3Ix5XVN0AdyGhUjX4YpOd8fQDgD2BfYBpW0gIed0k+kE44lhAqlhDKsXe0uq4Lj8vC6oYqqe\nN/dgsamvtieegOFIDP5rJ2xJL3unq1n61LSQqp6YontWpr1GpWKq2ZyuI+TAtc5V4nQLwstFTtdq\nsWK32IkZsaZ1us6kQRgb992Hyuve39zFVNOJadw2N3Zr4RJwLpuLZDqJka6wHLQZWoYSpxvZE8lW\ntS8GZk435VRi4+hxlMzVfeaZSs9eWsSNOGmZxmlVhQzuJER7hiqK7vaD2/HYPewP7CcdT0MaLK7C\nryLT6Q5NDZGWaYaDwyQtHdg8haKbX8EsJQz88wAD/ys3AeIXvwBWxLCkBN9kjNhh7XQ1jWXZia7Z\n4m2+TjeSjGAP2nGtdxVWL7vLhJdbC59c3JWq2ebqulJKdJ99Fowz1Hxd2WzznvIo1xgDVPgxv/Ct\n9Il5ortxo/qnynwb7/uXfUz+evEW11LhZSMruvlO96RMk9W5mrwsFaYT07Q729U0ulQKeypNvGdv\n2fCylJIdQzt402lvYp9/X9bliqKqR9Pp7g/sB2A4OIxBO3Zn4dSAtWtVNmBiQp3zXa/qwnOyJ/Ne\n8POfA31xLrZ0E+yz4B8qvCLWTldTb5aF6MZiMDWlqj5f/GK1bd5ONxnFGrDiXu/GCBlZ0SkbXm4r\nfHIz919OGxKnTBFBffk/NOxGSkl0X5NdOeRRLp9rMmuIOV90rVY49VRVzYTqcGS2y1wMsmvpukpF\ndyBj1A43SU1bfmiZWIyYxQHde8o63f2B/aRlmldseAX7p/YXLHYwkUiwJ3PyWN3q97J/ZD8r21Yq\npytbsTkKnapZTAWFfZhB9bDevRvc62K8dMDFp87fiBxJEkrkpoJpp6upN8tCdEcz9c59ferKFyo7\nXdMRF1+FR40oloAFx0oHFruFdFQ1z8pfU9dIG0xGJ+lt6S14bjO3ggweNYhiRWamS993v8B7qbep\nu1OViO7tt8N//icwx1zdycnCdSHPOCMbYjb8hmqXuUhk19L1ZES3x54NL3d2qqK86WkIVdH7bXy8\nsf9zBaIbjRLBDd3PlxXdHUM7uGTtJWzwbmCff19BC8g7xsb47NBQ9libz8bh4cNcuu5S5XTTLdgd\npUV+xZ2pTH7xC3W/5pw469xOzu/zYrQK/r+/Hsweo5f309SbZSG6+UK6Zo16XE500+mcQJeIbjIK\nfuU4rO1WUtMqxJwfXh4Nj9Lt6cZmKay0bOZWkP5DKrRsct990HlZZ1PndQtEd2YGPvIR2KGKd6p2\nulCQ101OJhdddN2kEC2lTleInNs9UnbWeo7paRUJv/zyRRvavMkX3chEhGi6FdqP4Gop7W62/eB2\nBtcNst67nv2B/QWLHYwlkwTyGpLYfXaOHTnG4LpBhoJDJA03Nlvp1UUlp2uKbtuGGGszFZada9z8\n5qlj7M+cpHohe029WXaim/9llSqsuWBiAgxDfa/mN6+QUhI1oki/xN5jx9ZuyxZT5c/TLZfPhVwr\nyGYMLwcOq8rlU09VfXL37YPIKV4C9wWaNq9bsMLQf/6nKmnPLEE1p+iazX4hK7pSSpL+xQ0vmysM\nWVrUBY+9J9eVCqoPMe/erdxwIyud80V38nCUCB5s4XXsC+wtOM7M516y9hK6Pd0YaYPgeDDrdMcS\nCaaM3O/Y1mUjMBLg7P6zEQiSCRd2UZqPLy6mAjhwAHbtUk422hZnTUZ0W1e7eXe6i3/ZpyqntdPV\n1JtlJ7oul2rxaBilc3cr5XOT6SQWYcGYMHJON1NMlR9eLpfPheZe3m/6qHK6PT2q5TDAgy+4sLZY\niTzbRB8kj6zTDQTgK1+Br30tG+KYt9N9+mkV9UjB1OTi9aU2na69vdTpgmqKBXOLrhnRCYVUJKcR\n5Iuu/0iUKG5aY6fw/MTzBccdnDpIIpVgU9cmhBBs8G3g2MixbE53PJksEF27z8702DTrvetZ27kW\nI+HAJkot6cCAOucDASW2AHfeqe6vfJVkOBFjTeYq27nayStjbewKh/njLbfw0vv+HdBOV1M/lp3o\ngurgB6XFVLMVUZl9lx09jgKnmx9eruR0zUKqZszphkdThLHh9cJll6ltZoi5WefrZrtR/fu/w+te\nBxdfXL3TzRfd/n4wDJK71T/OpH/xRddWQXSrdbpmClTK6vK/tSBfdKeORojipovN7J7cXXDc9oPb\nuWTtJdlK5fXe9YyPjWfn6I4ViW6yLYkv7qPD1cF693okYCmzHnK5YioztHzFGzMRK5sSdueAk9SR\nBF/ZsIH/1dNDm185Xu10NfViWYpupbxuNX2Xi51up6uTqZiaQlPcGMPELKRqxpxuZEyFl71euPRS\nte2++6CziYup/FE/q8IW+Pa34YYbVGXSzAzE47MvZF8sukLAmWdiPKbEIx1MlX/eAjA7UjnaSwup\noHrRzf8fDwYXbXjzIl90Q6MqvLzSUep0dwztYHDdYPbnDd4NBMYC2fDyeFF4edo9zVpUZeQGsQGc\nMUS0/BVtfjHVyAg89JBKIW1+WZw1TmdW6J0DqhXk67u76ZmZ4deb1FJj2ulq6sWyFN35Ot1IMkKL\ntYVkIImty1bgdB1WBw6rg3AiXNIYw6SZc7qxSRVe9vlUsW53t/qin1rXydSOKWS6+fK6/pifrd//\nA7zrXTAwQHDaQqqrB8bH5+d0Ac48k+RTBwn6gEUUXVW9bOD0Lo7TBTVtrhHki+70mAovr2+v7HRN\n1nvXM+2fLiikmkmnSWbi5H6nn5WplQCslWtJOSPqF1eGfKf7y18q5/+KV8CENVdEBTnRFULwmhde\n4AWvOmm109XUi2UpupWcbsXpQskoXYkubO02LDYL1jZr2eX9KhZSZaqXmzG8nAwY2fCyxZJzuzue\nduLodRB+svm+jVxDR1j9u4fg4x8H4O//Hp6d6CVyYHR20S2eMgRwxhnM/O0oh7sFifHFFV03KVwZ\n0bW2WCENqYh6j4U43aUgujPjKrx8ao9yumYx3sGpg0SNKJu7N2eft8G7gag/iq3dRjKdJmQYeG22\nrNsdtY3Sk+wBYGV6JQlnuOLJZRZTPf44/Oxn6vEb3gDD8VwRFaicrtkK0uv3E7QrB6xFV1MvTijR\nnS283B3vxt6j2gZa260FrSDNBhkVC6nszVtIZUzlRBdyed3774f2re1M72y+uNs7fraHyX98B3R3\nc+gQPPYYHDH6GHlybEFON7pnkmMrJa7o4rl+M7zs7lKiK4RYUIOM4WHYRIgeYktCdKN+FV5e39+F\n3WJndEYVsO04uKMgnwvK6SZDSWwdNiaSSbrsdnx5onvYcpjOmFq4oM/oY8YRqnhyrVypzutgUKVH\nrFZ4zWtgKJYrogJwrlKiK6XEOznJlF2FtnV4WVMvml50pcyJrjkZfyGFVL6oD3u3El1bu62kFWQg\nGpjV6eaHl5sppyvDBjNYs1qTn9e1r3CQHKvdQu414W9/49znp0l9+J8BePBBtXmMXoJ7RmdvjlE8\nZQjgjDOQwQij/eA0JGljcUqETafr6co1+s8X3e5ucDjUkCpdxEUiqjHG1RziIiaWhOjGAiq83NcH\nm7s3s3tChZiL87kAazrWYAlbkC2S8WSSHrudzjzRPSAP0BJRCwr7Ej6Cjll+GeRCzKD+j30+GI4V\nhpetHivWFivJiSS+0VGmXC7sJLTT1dSNphfdUEi1gWxtzc25W4jT9Ua8hU43r7m91+XFH/UzGh5l\nRWtpQ1mzOKcZna6YKXS6mzYp1zA+Dn7pIDGamP0Flhr/9m/8+8UWvL3qn8BcS3WUPmYOzOJ0YzE1\nz8z8I5p0dBBwrCTYAREnxCYXJ8RsdqRq7ck1JskvprJYctOGKjXIMC8qu4nThrEkRDcZVOHlFSvg\nlK5cMZXZFCMfu9WO1/AyYZ1gLJGg1+EoEN0XUi/gCDsAaI20ErBPkp5FHfNF9w1vUPfD8XiB04Vc\nXtd77Bj+jg56GScaVX9+jabWNL3olsvT9vWBzaaEw3SdUs7udDsiHRWdbqerk32BfbQ523DaCk9g\naO42kNZooegKkQsxPzdiJzHWRKIbiSDvvZdvn2PBbVN/DFN0x+jFODpLTjcQAJ+PWCrOrpFd2c1S\nwphYRagdZjyCwKHF+WaOhCV20rR0507B+RZTmUVU3cRpXSKia0yr8HLW6U7uZjg4TDgR5tTuU0ue\n25Hs4Ig8knW6XrudgGGowkXbCGJKhaPTU2mS7QaJ6cof0hRdIdRMMciEl/OcLmREdziGd3SUQGcn\naz3jQMUaLY1mUWl60TWFNF90rdbSL6xQSAlwS0uu9ZtJ1IjSPtOeFd3inK7X5eWp8efLhpahtA1k\nM4muPa6mDOWnMk3R3bmvycLLw8OkVvXT2taFEIJAINepaZQ+xNgsTjeTz/3j/j/yvt+8L7v5wAGY\npockSWZaYOrI4ohuKpwihpXW1lyO094zP9EdHgYLkm4StJFsuOiGw2BNRkna3LS3wyndyunuOLiD\nS9ZdUrKSEEBrvJXh9DDjyWSB090f2E9XfxdJv/p9JP1JLD4byXDleVEXXqiiXG95i7qwTqTTjCeT\nrHQ4Co5zrnYSfyGIL50m4PGwxqXmcOu8rqYe1FR0hRCrhRD3CyGeEUI8LYT45zLHDAohgkKIXZnb\nJ+fzHpUqks28rhliNo8rdrmgnG5ruBVHjzo5i51uu9vHba2vo69tZdkxFE8ZaqacrtModLqQE90d\nf7M3V3h5aIjYqr5s3+U//1ltbm9XTtcZnMXpZkT3yPQRxmbGspsffxxStOJIhAi3S4JHFye8nJ5J\nEcWaTYmAcrrzaQU5PAydJLAhacNo+Dzd0VHwEMHW5kaInNMtniqUjzPqZF9yH2OJREFOd39gPwMr\nBpAJSTqexggY2HtcpGcqh5c7OpT7v/129fOReJx+hwObpfBrzjngJH5gGndLC1II+lrU31vndTX1\noNZONwn8P1LK04GtwD8JIUpjTLBDSnlW5va5+bxBJdE187pm3qtSaBky83TDLRWdrtXZjWFtxdu2\nvuwYmrUNZDoN7nSKGWx0dua2r12r1nQdnnYQPdpETndoiHB/V1Z0zdDym9+snG5rZKxyc4zMdKEj\noVLRtaUdeBPHCLdB6NjxX4Qkk2BLqtWd8tONCwkvd6OmvyyFnO7oKLiJYm9XJ8JJnSdxJHSEe/ff\nW5LPBdWL2Rqxsie+RzndPNHd59/HBt8GbD4byUASw2/g7m+rKgZsGupyoWXIiO5QBDo78RoG7e2q\n85p2upp6UFPRlVIek1L+NfM4DDwHlLOLpXGnKqnW6ZYLQ5tEjSieaU+2kMrWVuh0hV19ibe0rik7\nBtPpNltOd2pK0oqBaLVhK1w4icsugxB2UiFj0Sp2a87wMIHe9qzompXLb3gDTLt66U6NQmJupxtJ\nRrIL3e/cCW5D4DVGmHEKpsaP/yLErFyOW6zkR1zn25VqeBh6iBPpcDUsvJxKp4gaUVrsLRw7pkTX\n5VUngt1qZ13nOiLJCKf1nFby3HQkjbAL9k7vZSyZpCcvvLwvsI/13vXYfXYMv0HSn6RtoBtrtPpW\nnMPxOGudpTUYzgEn8SMJ6OzEl07T0qZCBNrpaupB3XK6Qoh1wFnAI0W7JHCBEOJJIcTdQojSs3MW\nFsPpRpNRXCFXRadr2FWRiN1dPqfbrNXL/pE0BoL2rtJ/g8sugzSCqM1W4L6WNENDjPd48Ll9RKNq\nfq4QKtfnWdtDNxMEjnkqi25XF0enjwIwOjOKlPDE45K2ZBpEmphdMh04fqdrVi4nbNaC7Qtxuj0k\nsGxoaZjTnU5M0+ZoQwiRDS+7fe7s/s3dm7lk3SVYROn/mBE0sHXa2B/Yz3giQa/djtdmI5AR3Q3e\njNP1K6fbtW4ltnj1v//hCk7XtdpFfDStnK4Q2FrUBZZ2upp6YJv7kONHCNEK/Az4cMbx5vMEsFpK\nGRFCvBL4JbCp+DW2bduWfTw4OMjg4CAwt+gWO92yomtEcYQcOadblNM1rK2ABGd32c/XrPN0A4dy\nfZeLueACdT+ZVsVUzhWljmHJMTTEyHmn43O38OijKoz74herXN/KdQ6md7cR2pOc0+m6bC4VYg6s\nJz6VImEX2B2txG0pYsHFc7pGlaJbbspQKqXE+OXE8b6kBfFEoCGim1+5PDoKA0RJdOemXV158pV4\nXWX+wQAjZGBvt+OyuRiJx+ix25lOpbI53Q2+DSR9SnCTgST9G9bhSKZVXsQyt18Yisd5aXHVJOBY\n5SA+IZAdnXhtNoRbnbDLwelu376d7du3N3oYmlmouegKIezAz4EfSSl/WbxfSjmd9/i3QohvCiF8\nUkxnFv4AACAASURBVEp//nH5opvPfMPLlZyufcqedboWj4V0PE06mcZitxATbpBhkrb2smMwGy7Y\n7apyOplUN7s9d8xkZJKHDz/Mqze9uuxrNIKpw6qIyrnyBd7035/gZ2/5WXaf+fucTNmJH0vQ+qIG\nDXI+DA0x3HkGXpeXBzP53IsvVvfr1mXm6j4fJuwKI6UsrKb1+2HNGo6EjnBm75mMzYxx6G/QRpJI\nqwWPcBCxGhhTxy+65lq6hqPw9HP0OArCy3196v9pdBQSCdUsw+TYMfU/ttoVx/eiToJIZgIpoFDI\na02+6Jrh5XRvzum+9+z3VnxuKpjC1m5jg28DzyXVPF2/YRBIJhkODrOucx0HfAdIjCVIhVOsXXsS\nMRu4IxFEfgVaBYZjMd7QXXqhbGu1YbGlMVw9+BwOUi71O18OTjffkAB85jOfadxgNGWpdfWyAG4B\nnpVSfq3CMX2Z4xBCnAuIYsGdjWrCy7PN0QVIhBOItMDammvJZ2u3qXVUgTB2iBxiRrhLnwx47B4i\nyQggs3ndYrf7wPADfP6Bz1f7serC9DHVjcrS+zw/f+7nDAdz3URcLlX165cOggebILxsGDAywsGW\nJD63L1tEZYru2rWqgjm8dxK7xU7MiBU+3+8n0dFKKB7ijN4zGJsZY+dO6MAg2iFoszlJiQQysnhO\nN+0sFEibz4YRMLKLTFitqlEJwNGjha9hXkyutMfpPNlJGBvpoFH3NXWLna6HCO195c+TYoyQgbXD\nylrvRiJpSafNRqfNxkQiSm9LLy6bC7vPTmx/DFuHjU53J1G7IBQ4NveLU7mQCsDZFiNu6cPr8RB3\nZc7zZeB0NUufWud0LwSuAS7NmxL0SiHE9UKI6zPHvAl4SgjxV+BrwNuqffFUSjXAALWIdT4dHapD\n1cyM6nsw25QhGZCkO9MFzsfabs2KbkhaIbyXoCwfGLBarDhtTlWQVSGvOxmZZDQ8Wu1HqwuRUeV0\nrR3qiuQXz/2iYH9PDwSwM3WwCaYNHTkCvb2MG0E6nT4eekhtvugidW863dhwhbm6k5NMuiT9bf2s\naF3B2MwYjz+ecbpe6HB5sBDFEj3+ebpZ0XUViq7FrhbbMAK596i0mL0pul0yjmetkxlhp1UadReO\nYtF1E6Wj3zPHsxRG0MDWbqPfewpuEliEoNNmI5BMssG7AVAXItG9Uew+O0II4i4bR0f3zvnaUsqy\n3ahMnO4w8ZQPb1sbkYwuLwenq1n61Lp6+UEppUVKuSVvStBvpZQ3Sylvzhxzo5TyjMwxF0gp/1Lt\n64+Pq/ROd3dhKBdUAU2+253N6eIH6StsZp+/vJ/fSHP1SS9lNFl5juZcc3UnIhMFU1GWAtEJJbrp\nlhG2rNjCz5/7ecH+3l6YwsH0cBOI7tAQrF2LP+pnasTH9DSsX59ziuvWKaebqtSVyu/nmCPByraV\n9Lb0MjozxhNPQDsGES94W1uxpcPYYsc/T9dc7EC6SkPB1RZTqW5UkrZYHOeAk6jdRivJus/VLRde\n9q2qzummQilsHTZ87RuwpVQxk9dmYzots6Jr99mJ7o1i86oL3pTLwej4gTlfezKZxGWx0FZclp/B\naQ8Si3fgbWkh1OLCSUw7XU1daOqOVMWh5UgywoFA7oQ087ovvKDcrs1WuogMgCVgQfgKZy3lL2Q/\nmkzy7o0XczReebrCXBXME5EJZpIz2akoS4H4pCqkSrmOce2LruWp0ac4Fs6F7np7IYCD2EgThJcz\nohuIBdj/jPojm6FlUOHlUfqwTFaYq+v3c9gWYVXbKnpbetk/OkogAKtak4Q6JF3edtypIM5FEF1z\nLV3RsnDRHR6GFgyEVWBrs5Fw2BpSwVwuvNw1UGV4OWhgbbfS2rIKmVBzZV0WC2kJa7wbgYzT3RfF\n5lPiKd1uxscOzvnaQ7O4XACndZJ4tAWf3c64t4cexrXT1dSFZSW6X3zgi3zotx/K7jed7qOP5o4r\nV/RonbJiKZo2k+90RxMJTmtpYTqVIl4haWZWMFeaqzsZnQRYUm43mVnWL2YfYV3nOq48+UrufO7O\n7P5Dlx4kcFKc5HhzOd1ndirRNUPLoP72fmsvbZFRPLbyTvegdTorugfH1N9pU3+SyVZJ3wovbclJ\n3InjT5qa4WVLOdHtqa4rlZouFIceJSyG295Q0Q1nlrp1E6W1t7rwsul0He4+4lGVehFCYJMx+jpz\nTjcVSmH3qVCWaGnBPznHeoeUri5UjDM9Sjzkwmu34+/00suYdrqaurBsRDeajHLT4zdl51lCTnQf\nycwMLhtaBuxTdmxdhWEocyH7lJT4DYNeu50VDgcjFdyuWcE8m9OFpSW66ZDqRjUj1JKFbzz1jfzi\neZXXjaVSPHPaIaZOSiInm8fp+qN+dj5Y6nQtFkj39NHLGNZUkegmEhCLMZSaZFW7Et1jYfV3WuNL\nMt6aZuWabroSx3DHF0d0PaSyhXv5zMfp9pDAsUqJbrrF1pAGGabomueiR0QRnvk5XcPaQjI2nilG\nBIwwXW1rAbIO17y3trYT8FdYdimP4sXri3EmR4hP2dS84I4O7XQ1dWNZiG5/P/zobz9iTccaRsIj\n2f1mePnxx3PHlSN/jq6J2SBjMpmk02bDZrGwyunkSKK86ytuBVkup9vh7FhSoiunldMNyWOsaF3B\nFRuv4NEjjzIZmeRuv5+4PYW/R2Kdbg6nmxxYSTQZZfxwGz09apnCfBwDvfRRpitVZoWhI+GjWacb\nNNTfqdeTJNIu8K3rpjd2iJZ4+riXgDNzuvb28k632pxuD3HaTlKiK1sbG14eHQWQuGWEbLhnDoyQ\nkVnA3sD7/7P35vGNHfS59/foHO27ZUm2bI89S2bLMjNZJgshmQQaluZTyAJlv6yhtPRtub1vy73c\n3oYLbd/evm2hF2iBC2UtNFAIe4GSBBJCIJOZTLaZhFlsj1dJlmTtOuv940i2ZC2WJ2PPZKrn8/Fn\nbOlYkj3Wec7zW55HFDiZPolhGKiVND632YyvKVxr0PzX5g10Nb08US63dKOqwV6epJIQ6JMk0l53\nT+n2sGG4IEg3GjX4yC8/wl/c/Bcki0lU3Twr1pRuza61Hek6sg5s/Y1JJDWDjHlZJlqd0orZbG37\nuqtZQS6UFtgd3n1eka5QVMkjklZM0nXb3Lx0y0v59rPf5p/n59kie1mMqtiKCoZhrP6A5xKTk6Sj\nPlyEwLBw/fWwMtTGtdlUulppRZB9zRgjO03MGyPk7EcRUyBoeAQZIyhiCfqJFueRNEjFn5/arZWX\nJV/zkI+1f3UryMVF82NQquDbahKLxX9uy8vz82BDRrNUl9W7gJY1fwdxRWHA7uBk+iQLpQUErYAh\nmlevK5WuwxeikFn9PdTOjaoGe/4UlTmNgCSx6HL2lG4PG4YLgnQTvh8hWSRu2XoLIWdoidhqSreG\ndqTrzDlxRBvfoDWlO18N1waI2e3MdKl0W5WXd4d3M184f9aGpLJKwVbGITpxWs2rhTt23cFXj32H\nH6fT3CbGKEc0dFhanzovYRgwOclcnw1LOQw0lpZrCO4wla5cWKF0a2EHuWmGfENMjktQDtA/kkIo\nKBAUQRCQSiIFF6SeZ6ZujXTt/tXLy4OD5sXD7OxyyHrN2nTUXcE+bP5tWvukc5KpW19edmLG+nUL\nddHc003IMpucPk6kTnAidQKvRSBd/WElnwSWZcXr8odQcosoWueWR8dBKlVFKi0gSAK+PCzarYR7\nSreHDcIFQbr3lf6O913zPgRBYNA7yGzOLDHXVEIN7UjXnXPjjDSeLJaUrqIQrZFuB6XrsXrargxp\nusZieZEdoR3nldK1ySp5V4aBupzgW7ffys8KcIPPwyUBJ/gVFi228zvMPpEAp5N5CpQXzIXtVqQ7\neJEHAQOS9iala/T1MZMzy8uPPQYUIuy8Mo6aVrFUVZZFtpmZulPPj3RrjlT2YDPprnSlstlMZypd\nX/57r4XXx6zmuhCALSThO4c93drksmbrnnTrle5Wb4iT6ZOcSJ8gaLWRqZKuYBGQgtKS0rV4vEQt\nvobZjVboOEi1uAg+H/ZhO/qMgt0ArzPdI90eNgQvfNINP8Op0hFef8nrARj0DC71dR2ORtOMdqTr\nyXtwR90Nt9WUbry+vLyK0m03SJUup/E7/MS8sfOGdFUVnLpK3pNk2L/8i/HZfbhHXsUW5RRb+20Q\nUEgb53mYfXWI6tczCUrJMG437N3bfNjYZoE4EVyzNJGu7HdjF+24be4l0h29eB49pWKrqixRcZrx\nfrPPT/XXlK6zb3WlC80l5poxRp9ewV4dpHKGTaV7rvZ0a8YYuqO7yWWommP4JRKKwm7/ICfSJziZ\nPknE7lwiXTBVbk3p4nIxaPE1uKetRKnq3xxdEV6/hEwGAgEzzP50hYABTm+uV17uYUPwgiHdTz32\nqabb5uaAaz7CO/e8B7tknnxi3ljLCWZoHetnGAa+gg/PQKOXa80Gcl6Wu1K6bqtZXm7V000Wk4Sc\nISLuyHlDupmMueephRMMeJZ/MTOVCmXHMJMn/4XtYSv4FRKqlcrseax0q6T76DNxKES49lqaogph\neVfXOac3kW7OYyPmNYd3aqQ7sDmOkNFw1NZVRB8Fj0HmeWbq1vZ0naHVB6mgmXRrStdTWla67sFz\n29OtlZe7HaKCqg2kTyQuy+wJjS0p3ZjD10C6o386ivuy6kWxy0UUT0fSPV2pMGy3Y1nZ1K+hRrrD\ndipTFYKSiM1bJJ83OxU99LCeeMGQ7gd/+kH+9Zllx6RSCRaVBOz+Gn94/e8s3T7oWS4vQyPptvRd\nVmS8ZS/OcOPJYqmnqygNPd3pdqS7ImmonnQXigv0u/qJeqLnTU83lQIPKtrADIN15eWvxuO8KtTP\nfSf/Dbckg1MjLVjJnM/+y1XSPfRsAophbryx9WGxGCSECJ6kSrZUZ46RSpFyCgz5hjCMZdIN+pPo\ndgGfyyRd2RuiZDdYTD4/0s3nDJxouPrbKN3E6krXhoakakshHd7Bc78y5KKIxb2G8vKihuaxUNJ1\n9vRtYTwzzq8Xfs0mT18D6Q68eQDJW72KcrkI4exIuqvt6JLJQDCIfcgk3ZDdhuiV0TQol9t/Ww89\nnA28YEj3u6//Lu/53nu479R9QFXlXvmPuCfvIOpZriEPegdbrg0JgtkbW4l8PE/RXsRibTbHWDm9\nPNSpvGxtvzKULCYJuc4vpZtK6NjQ0UIzDUr3y/PzvC02wlWxq/jRiR8iFiTSdpHF89l/eWICdWiU\no5Om0r3jjtaHSRIU3FEiZZn5TKPSTTo0hrxDnDxZqwJE0UsZFL+FQFU2a/4QZatOPvP8fhdyXkdD\nwBtofvuJXhFd1tHqnK9akW4/FYR++5JfuG+oujKU3liptlLpSt7uysuGZqAVNVJ2jX6rFZfNRcgV\n4tGZR9nqjS4NUjXB7SZoODqT7ipuVDWle1g7zJNPPUnQ6cTwms/X6+v2sN54wZDuvsF93POae3jd\n11/HYzOPMTlTgas+wdjcHzYcV9/ThWWl28qfGSA/nyfnbm7miN66nm5V6fpEEc0wyLU4IXhsjYNU\nCwvw0EPwt38Lf/6RJA98v58XX9FPqpRC08/9JHAt1k/wzzLoNZXusUKBWVnmpmCQO3bdwb8e/Vfs\nZRsZt4XC1PlNuocWRlGsCcbCYXbtan+o2hchWimTzDaS7pxVXh6iAsbCEfLxHOWAhWD1D8foC6FY\nNcq556f61bxGCRG3u/k+QRBWNciohdfXSssAwaiIjkAxvXExQ4ZhkJNzeKzeJdK1+rvc0c2piG6R\npGYazwBsCW7BMAy2eKMNSrcBLhd+zcpktj3pTqymdNNpCAR4xniG7FSWoMNB1uvCRaHX1+1h3fGC\nIV2AA2MH+OStn+TWr9zKx574MMQvZYvnkoZjVvZ0a0q33RBVMV6k4Gn2Q241vSwIAjG7ndkWare2\nMlRraX3uc+YE7R/9ETz61AL5+X6OPyfhsvhJlbpOLlw3ZGdNNyrNNbtUXv5yPM7rIhFEQeC2Xbfx\n/V9/H5cikvYKlOfO7/LyvYdHwR3n5TdEOh4qDESJyEXS+caVodNSgZg3tkS6u0cjlBIlSj5hSekK\n4X40UUZ7nmYhRl6jiNSSdKFzmL2imDF/9cYYAIEAZJFQ0xv3/1RQCjglJ4W8SKUCfY4SkmdtYQdx\nRSFcfX9tDW5lLDBGyGbrSLpeVWAiM9H2sVdzo6op3QnbBJYFC32SxHRgkDCJntLtYd3xgiJdgNt2\n3caHbvoQX49/GH7xvqbhqPqVIYD9+80p5he9qPXjlefLFL3Fptvrp5cjdRK53TBVzQZyz57q94uw\nZw+8613wstuS7BwNmcdxfvR1c7Om0lXspjGGYRj88/w8b6zW4Ac8A1wSuQQrKdIB0J5nH3M9YUxM\n8KUHR8GV4DWvDHc81jYcIarkyJYble64mGXIN8Qj1YyrK3ZGKC+UyftYIl0pGgJLCeN5xvvpBVPp\ntsth7+RKNT1trg9t8VVwblomXb8f8kgYWXXDhoFWWkAO+osslXpWQc0CMlH3/toS3MLWvq0EJakj\n6boUgYnFibaGLZPlclfl5RPiCRxp03953t8LPehhY/CCI12Ad17+Tu7SD8PxlzeRbi0LVTfMMtvo\nqLnG+fGPt36scqJMyVdqul30mnm6DkHAUeew025tqKZ0L7/cfL7FRXj8cfjUp2Bo2wIXDfUDYJPP\nj75uMWGSbkk0y8u/zGaxCgKX1zHBlYNXIpIiEzIgc54q3WwWrSRzuhRC9MXZt70z6Xq2RomoWfJK\nI+meII1LHeKhh8w2xG9cF0FP6SzWka49FkKi8LwydQ0DKGkU25SXoXmYqpapOz0N4+Pm56OuCrah\n5ZUYux0KFituXV1yYFtvrCTdiLd5ejl3OEfhWPMLqindhKIQrpLuK7a9gjdd+iYCnUjX7UYqy4DA\n6ULritGq5eXqINUxjuHJeQiKIgv+vp4VZA8bghck6QIwtxcQmkjXJtrw2X1LAQNghtm32x6QEzIV\nX7NytUgWBIeFTVrjrl/MZms5wVyzgQSzf1x/Qk2WkgyHTKUrlM4P0i0nVQqCgCqUCDqCfDke5w3R\n6NJgDsCwbxiJFKmIgXS++i9PTjJrHQVRBmuJgCPQ8fC+nRGiWoay3ki6R/U4Tz48hK7DS14C2wYj\nGBmDtNcgWCVd53AIu76IVT5z0q1UwGFolAWx5VoTNJeXHQ7zb0pR4OBB87ZBqdLQ0wUob3Cm7krS\n7fc0k+70309z4n0nmr63pnTry8tXDV3FGy97I35JIq2qrZWsy4VQLBIZPMAlh57i8AppqhsGU5UK\nI6soXdnjIkUKRVRwZSukAoGe0u1hQ7CupCsIwoggCPcLgvC0IAhPCYLw/7Q57u8FQfi1IAhHBEHY\n181jr4z1q8fKvm4nqEkVJdBaxRleCyNK4/RVuwnmmtJthWQxyZaoqXTVxfODdOWUSt4q4xcHUA2D\ne+Jx3hBp7IcO+4ZBnycX0ZBkDV3ZuCGdbpF7eoJnCpsQPEn6Xf0NFw2tEL0sSkRPoVAlXUXBKBaZ\nMNL85Ftmaf3228Fr8+Iuullw60tK1zMawqsvYK+c+SCcGXagokrt/YltYVvTrm5N7T78sPlvUFs2\nxqhBcWxs6EET6Tqby8ul4yVSP0pRONr43qiFHSRWtG8A7BYLVkGg2CpG0+WCQgGvfwceQeOVTz7J\n0TppPy/L+CQJZyf/50yGpE1lyDdEzp/DmEmz6PP0lG4PG4L1VroK8D7DMC4GrgF+TxCEhtlSQRBe\nCWwzDOMi4C7gH7p54E6ku7Kv2wlaUkP1t1YuqsdCrNz45m3X061NLwNw993mImwVC8UFtg+bpFtO\nRpnPn/uerrqoUrCVCNkGOZjLEbPb2bbihDnsG0ZVpzCCCkVJatofPR/w5HcmGDdGuerGOAPezkNU\nALFL+vCTxSLkkWUgk0H3++h3Rfj3H4tYLPCqV5lDcxE5QtyzTLq+sT78SuJ5xfvV3KgUa3tS6LSr\nWyNdd7FZ6WqujTXIWEm6QUez0i2dKDHwtgGmPtIYk1RvARlusVbQtq/rckGxiMM1zCWWFH+1ZQu3\nPPEEp6o7epOVSufSMkA6zZxUZtg3jByQ0acyZL290IMeNgbrSrqGYcwZhvF49fM8cBSIrTjst4DP\nV4/5JRAQBKFpo/azn238uiPprlgb6vgaUwZasLVykd0CUbmxBti2p1sdpEKW4S//Ev7935fuSxaT\n7Bozy8vZ2Qjz54HSNbIqeUeBiGuAE6USO1sMwAz7hilUxiFw/vovn35ogglGedEtCcLuzv1cAKtD\nJG0J0V+pMDGpVS0gPTjVIRTFnDivCf4+uY+4x8BfJV1/vxVJKeJWNLQzFLu1LF3N1oF0O7hSzc+D\nBR2poGAbaGx9GBucqbuSdAP2RtLVihpqWmXzhzeTuCeBXDeMtxR2UGc+U4+2fV23G4pFBEcUoxzn\nLQMD/NdNm3jpkSNMVyqrD1EBZDJMiwVGfCPo/TraTIa8295Tuj1sCDaspysIwhiwD/jliruGgNN1\nX08BK6IK4J3vhM9/3vzcMOpj/Zqfa6UrVUekwAi0noIsuwUile6U7lJ5+ehRk3h/+lPADDvIlDOM\nRfvweEBOR5hZPA9It6CSd2aIeQcZL5fZ3EIdDHoHyRUnICCzoNtQ5s8vpTs3B0xMMC2OsuPyOBH3\n6koXIOeIEF10cuxkARYWKHodlONm/fb225eP85YDVHwGYrVkbbGAIMu4K/oZE1stS1d3tGno0lnp\nAvQhYwlamwxdBN+5LS/7pMYs3dLJEo4xB/YBO/239TP7yeX35JLSleWWSrct6VaVriL5KRdN9fy7\nQ0O8OxbjpUeOcDCXW13pZjJMsMiwbxgxKqLOZMm7pJ7S7WFD0P6dfxYhCIIH+DrwB1XF23TIiq+b\nWNAw7uatb4VvfQve9rYDyPIBvF5aToAOegd5Nvlsd68tI0Bf6/uKLoNQqfHENlhVuoZhNPQPXVYX\nJaWEfugxLNu3w89+BkCmnMFn92EVJYaH4VghwnQXeaDrDbGkUgin2B0c5FS5zDU+X+MBxSK222/n\n1Vtkvr5NJqF4KZ9n/stf+xpcyQQDV49S5FHCrtWVLkDJFyWyOM2vJ/IwmGLRKRE/YZLubbctH+cu\nepB9jSd+QdZxlyGVMgiFOvePW6GmdA3HKuXlNkoXTGMM50izmpMC57a87BFLDT3d8okyjq0mAQ6/\nb5gnXvYEI//vCBabBXVRxbnV2VHpppUWF3kOB5TL5AUn5cxzSzf/8aZNZFWVP5+c5O+2bu38wjMZ\njrPANt8eHAMOFueylKwC/cILf0/3gQce4IEHHjjXL6OHDlh3pSsIghX4V+BLhmHc2+KQaaA++Xa4\nelsDPvzhu4G7+da37ubgwQNAc2n5qXyex3I5Yt5Y1+VlMS0itDl5Zp0GgRWk6xZF7ILQZFNnESw4\nJAfaocfgrW81vfqSySULSKieOPNR4ufBnq61opL3JhkNDXCqXGasXh0oCrz2tfCLX3BgRgOPRprz\nz3/5q1+FUSa47vWjxAvdK10tFCGatXJyKg+pFJMaqOkY+/c3ZjA7cw4q3sYLDVGzYlgM0nNn1tet\n9XRxnVl5GWCTs4JrUzPpWkPntrzsEhrLy6XjJZzbzK89l3pwX+wm/i/mBaeaVdE9AhVdx9di6Kmt\n0rVYwOEgrYucnPtlQ67uhzZv5q+2bOElwWD7Fy3LIMucrMwx7BvGN+TDiOs4dAGHO/+CV7oHDhzg\n7rvvXvro4fzDek8vC8BngGcMw/hIm8O+Dbylevw1QMYwjCZW+sAH4IMfNI0B/uf/NG8bGDCt6H6c\nSvHyI0e4+tAh3n/yZNc9Xa2oIWgCNm/rCLBFl4Gv1EzIQ3Z72xKzcfgwXHklXHcdPPQQCyUz7ACq\nJ85ChLR8bpVupQIOTSPvm2UsZCrdpfKyrsPb325+/qEPcVFOxFLRSdtFshPnj9KdmICDD1cIscBL\n3hwjUUx0rXQtg1EiOZGJWZN0T6k6ZIcaSsuGYWDPWym5G3e4Jd1FwQWZ6TNbG6qVly2dSDdkkm79\nykw96W4LNA9RATj6N7687LH6iFf/nB36ivLyiRLOrctfD79vmKm/ncIwDLRFjYJbIGy1tpw472SQ\nIfv9pDWdMbefpxNPL90uCAJ/vGkTl7ZzHQFzgT4QYCo3zYhvhNBoCEvKghsrkrdMPteLGephfbHe\nSvdFwJuAmwRBOFz9eIUgCO8WBOHdAIZhfB84KQjCceCTwO+2e7D/8T/gT/+0+oWkU75xjr0HD/K+\n48d5XSTCLy6/nPFyuevpZSWpIPtlnG2Ct1MOHU+zWVXbYSqP1Y345FNmmOsNN8BPf7oU6wfVE6fs\nQdO15Unnc4B02kwYKvfNEPEOMFOzzTMMeN/7TAeGe+6BLVsYXjQQZZmMx0Jx5vwh3a9+FUY4zaI7\nhscvEi/EuxqkAnCMRojmBU7P59ESKSYoQ66RdLWchmY30IXGeqNV8JL3wuLsmZFuTelaPO1J12Kz\nYHGZJdgaaitDYCrdemOMGpxR64Zm6mYrWQTZh65DKASWSmN5eSXp9r28D62kkflpBjWrknUZSzu6\nK9HJIGM6FmPQYmF/7Ep+Nf2rtb3oqu/yVHaKYd8wA5sHcKQd+Cw2Ul4fSubcvS97+I+Bde3pGobx\nEF0Qu2EY7+3m8fKqyr7fT7NnxwJHnAukLR4+tnUrtwSDCIJASdM4XS4TdQ8wm59t6ruuhJJUqPgq\nuKytresSDh1nofnKt90w1Y6sDd3tRAyH4cYb4fd/n+RbLm1UugjYtQiJYgK3rY0l0TojnTazdPPB\nSQxbP1HbHDaLBT70IXjgAXMIzOWCkRHCqQqSWiTtE85JkP2PfgR/9memrabbbX64XOZL3M4ElrFR\nABLFRNflZd+2KJH7DWYX8kw9mSLpLXCRc4iLLlo+RllQUPwCmpJt+F6LO0hBh/K8DKz9/6+WgFxA\n7QAAIABJREFUpSt7O+yRUi0xJxSsgWp0n9e0elxchKhYwT7c/NyeQQnbBitdtWDOAgwMYEZrdVC6\ngkVg+A+Hmfq7KdRFlYxTb9rRrSEgScy1SfSaisUYtljYP7SfX03/iruuuKv7F11dEVusTBJ2h5E3\nyQRyAbyCwEnvMLZMHOiglHvo4XliQwapzgZeduQIv8hmudrn46039HGluokXjbkanKacokjQaiVj\niLisLlKl1FI/tRWUhELJV8IpNSvdgqaRd4El19y7a6d098wZ5C++iCCYJebnniMXn1oi3Vq/UCxH\nmM/PMxYYW8uv4KyhpnRzvknyFo9ZWv7EJ8zx8IceMt3zqy/Yn8hi0RZN/+XExivdj32MJT/klXi1\ne4Lg3irpFtqXlxe+v0DxaJGRPzL/A/p2RogWNZKLBWZnU6QuzXL73sZNNjWlogQsKJVGq0G9L0RZ\n0VEXzux3USiABw3d15l0bQM2yuNlXBctXxAOD5ukG1SbjTEAfDEJK0o13m/tQ15rRbaSpZKtI93F\n5fKyruhUTldwjDVOEg+8ZYDxPx1Hl3UWnHrLyWUwSfdosUWZCZiKRhk2DPYP7ecfD/7j2l50JkPZ\n4yTmjWERLNiiNgKFAC6jwpR3ENvpOLBlbY/ZQw9rwAuGdN8di/H1iy/G2847r4rNDgenSqWlvm5H\n0k0qFD1FnNZm0p2XZaw+ES3evJAZs9l4tsUJ4ZIphcyOMZN0bTbYvx/vwScI3XAFsNyX07PRc+pK\nlVowcKNStlo5LauMlUpmo/zhhxun04JBRM3AJifIhAwsxzde6da8hj/zGbPEWigsf7z68UnEsJnd\n2GmQavKvJskdzBH9T1Fs/Tasw1EGKiq6lCc3OU/qKviT2xqnt5WUghwQKZWTDbcL/SHktEYpe2ak\nm89DBA3V35l0I6+JMPdPc/T9xvJo/cgIPP00uFoYYwAE+i2ksVBKaWzEWztbyVJU6kh3brm8XJms\nYBu0YbE3FrpEl8jguwaZ/MtJEg695eQydC4vT4XDDKsql0Uv40T6BAW50H3VKJMh77Yy4jMvwCw2\nCxVXBX9OYNobwZlPdPc4PfRwhnjBeC/fHg6vSrgAYw5H131dOSGT9+RbKt24LGP3W9FyLUjXbme6\nhdLdMVUiuaNu/PWGGxg89NyK8jJUUufWCjIzq1ERwEnUHKKamDB3ZbasuMIXBLShGO78DOmIjrUg\nt012WQ8YxjLpvvrV8LKXmXu0b34z/M7vwEBlAkZHKatlKloFn93X9BilEyWKR4uE7wwz/bHqUHzE\nzNTFlidAnKwlwmWXNSpDNaVSDkiUSsvhGQBSJIRilamcoRd1oQAONGyBzn/L0f8UJfVvKSpzy22M\nP/5jeMubDayZ1krXjPezoqSeXwpSt8hWsuQXWpeXV5aW6zH03iFEj8i8U22rdINWa3vSDYUYVhRs\noo1LIpdwaPZQ9y86k2HRKZgWp1VUghX8C3nmPSHc54FxTQ8XNl4wpNstlkjXM7iq/7KSVMh5cq2V\nrqLgClhRs81v/HY93a0TOWa31bl13Hgjm5+cWlLbwaB5TlIyESZT5+7NnZtVKVgMvMIgp0olNj/9\ndNvsQ3F0DO/iDHK/imppHO5Zb6TTkMuZ/cyWWyATJunWSsut+vdzn58j8oYIox8YZeYTM2gFDSIR\nwuUSWHP0sYDYN9QUiKEsKOR9Ag5U0qX00u22WD+GWEErnJnqr+3pOoKr9HQDVsKvDTP76eULx5tu\ngk//rYLoEhFbTD8HAma8n75BiVDZSpZsoo50i8WuSNces3Pt7LXMidqZKd1AgOFyGYD9sf1rG6bK\nZFiwaQ2kq/fruJMFEr4g3nJP6fawvrjgSHezw8GpcrmrXV0lobDoWmypdOdlGY/fipZtVrotQw8S\nCZwVjflw3VDW1VezaXKRSHXgRhCW14ZOxc/drm5+XiVvVQhK5o7u5p//vD3pbhplJFOEUJ6cZNvQ\nYaqayh0ba5MSVSPdYmsLSEM3mPv8HANvHcC13UXgxgCz/2cWHA4qVisBS5I+Y5GBbSNN36ukFLJe\nU3HVVyUcQyFESwFKZ/Z7qK0MuUKdSRdg6PeGmPnHmYagCXlabllaBpN0c0iQW/9MXcMwyFaypOa8\nQJ3SrZaXO5EugORpjPVbiY6k6/MxXG3vXDV0FY/OPNr9C89kiFsrDaQrRSQcySJpj5egGj9ji88e\neugGFxzp1ivd1crLSrJKum16uv6AraXSHbDZmJdl9Poz2+OPM7O5n4Ja1+t1Onlm2M7IU8sulyMj\nQD7KVPrcKd1SQqVgK9PvGGS8UGBzImEyWyuMjLA9XYG+AhmsyPMbN0xVT7pN0HUz1X3Tprb93Mz9\nGaSghHevSQwjfzLC6b85jS7rZL0+Bo04Xr3Mlp3NT6CmVNI+g5DV3kC6ntEQNiGHWD4zxV/M6VjR\ncQVXf+t5LvXg3OYkee9yX7ky1bq0DKZZU8FixamplJojos8qKloFi2AhOWe+lpXl5Xo3qnaIt0gY\nqiFQjfdrhSmPh+GqdVRtgrlrpNPMiqWlni6AM+bENl8i73cT5oXvStXD+Y0Ll3S9qxtkKAmFBedC\n656uohDss7dUujaLhYBkXqkv4fBh5rfHmvZvHxyF0MFnlr6uKd253Lkj3cqCSt5epN8TI6mqxHbv\nbh84PDLC7lQRAjJJ9dwp3SbMzpo1Z4ej7eTy3OfmGHzb4NLXvit9OLc7iX8ljhbxc5kxS8FhZSjY\nZPWNsqCQ9OhE7K4G0vUPupCMHPY26yyrQcnplBBxe7qbLh567xDTH182aKtMtx6iqkG2bUym7ko3\nqoGwZjqZVcvF9W5U7ZCoy9JdCb8oklXVxgtbQNF1Eg4Hg1lzlWt7aDupUopEocuycCbDpCXXoHR9\nQz5scYVioBd60MP644Ij3U0OB1OVChH3QFc93ZQj1XJPd16WCfU5WipdaNHXffxxUts3NWTq6obO\nj4YquB5eLn/VSHehcu7Ky3JaI+/M4umLMZLPI7YpLQMwMsKueBZ8OnHVSmkDDTI6km61tAzm5PJK\n0lWzKsnvJIm8oVEBb3r/Jib/ahJjMMSrRhMU/BJD3iFWQk2pxN06gw4P83W2ncEgoMm45DO7+FCz\nKiVEOpkm1aP/1f2Ufl0i/6TJBJWp1sYYS4/vlPBtwK5uE+n6q6VlQcAwDEonO5eXgbZhBwCSxYJL\nFMmvqPXOyTIRWUaqZuhaBAtXxq7k4MzB7l54JsNJUg2kG9oUwpHUKfusvdCDHtYdFxzp2i0WwlYr\noiPaldJNOBNty8sRrw000Fvkp8bsdqbrSffwYRZ3b2lQuplyhqe2ebEcPgzVwY8a6ea0c6d0tUWV\ngiuNLRBm8/R0234uYJaXTyfALZLBSubU+Ue6rYwx4vfECd4cxBZuJKjgS4JYXBbylf087buIKZ+d\nIV8z6SophXm3zpAr0Kh0/aCpKs4zjPfT8pqpdLvccLFYLcTeHVtSu6spXc1tulJtBOl6bT7SaZAk\n6HMul5blORnRLSJ5209oFzUN1TDwdgibb9XXnapUGFYUc2iriqtiV3VdYtbTaaYthYa/l75NffgW\n7VQ89JRuD+uOC450ATY7nZSkALO52bYrLoZmoKQVktZk20GqqN2O6BNRc20mmGslxkIBxsepXLSl\nQekmi0nsgX64+GL4pZloODwMFMOUhRSafm4mNoy8St6TRLTb2Dw+Dnv2tD94ZITIbBo0lbRNIj+1\n8eXlbb44TE83fjz11DLpFpoHqeY+Zw5QrYQgCGx6/yYWj1/PJ17xFn626yJi3pURzybpJjw6w65Q\nA+mKIhiajlvVz6iEaxTWRroAg3cNkviXBEpG6djTBRA8GxN6kK1kcQjm5HI0CpZSoavJ5RpqpeVO\njnFtSVfTGkh3/9B+fjXTHemqqSTWUATRskz29gE7kXwfikc3lW6257/cw/rhgiTdMYeDeU1AtIhk\nK9mWxyhpBcknkTfyLZVuXFGI2mxIPqn9BHNN6T75JOzahcsdMIPsq1goVsMObrhhKepveBjQJSyK\nn1Qp1fS4GwGhqJD3xtELGTZbrdCmxAeA14thtSJVcqQ9lg2L96vt6O7gGJe+chj272/8+NznzH+B\neLFxkKr4XJHS8RJ9r2id2Ri+LYyiuhk55eepoUEGPYNNx8gLKgRFBr3NRiaGDi7ZXGla889V1Cgi\ndV1eBpMU+l7ex/zn51dVupbAxoQeZCtZrHrdutD4OGwyjUq6GaJKdBiiqqHVMNVUpcKwYTSR7qPT\nj3a1Q25k0njCjZUN24CNYN6PZjUoWhyU463PGT30cDZwwZLuaru6mekSxaBASWm2gZR1nbymEZQk\nU+m22tWtXxt6/HHYu3c5yL6KpVi/G29cCrWvWUEa+UhDr3CjYBggVcoU7AXixSybo9FVv0cbjuEo\np8n42LBBqlTK3NG92vEE3Hprs9KdnobXvAZotoCc+/wc0TdGm0LeaxBEgfyrCrz+KzA5vBmr2Hjy\nNwwDLa0iBSUi7hZGJoaIu3xmpEtp7UoXlgeqKqc7K10puDGZutlKFku9G9XRo7BrF9DdEFW8w7pQ\nDa2Shk5XKgwLglldqmLIN4RkkZhYnFj1dUuLOXzRTQ23WfutOItO7CWd454xlJnerm4P64cLknRr\nVpCddnUP3x/nwS0KhuRpOunGZZl+qxWLIJhKt5UrVf0g1eHDsG8fbqu7oaebLCZNpXv99WZ5WZYJ\nhcBuBz0XYWJh4/u6pRI4LXnygpUJXWWs3uW/DaRNY3gKCdJBMNIbo3RrpeVrfM8g7N7d8dj6lSFD\nM5j/wnzL0nI9nrvNxfbndAxjZ9N9Wk4Dp4DXaW1JuoLFjrMM6dTaypC6DqJskq6zMyc1wXedD9Et\nYigGUrB9r9Tev3HlZSptSLfL8nI7Y4wa2paXJalB6UKXq0PlMgYG0fBYw82CKKD4FfqSMid9mzDm\ne65UPawfLkjS7cYKMnt/hkN7wRq+oem++WppGUD0ii3Ly01Kd9++JqW7UFqg39lvuhZs2waPPbZs\nkJGP8uzpjX9zp9PgsZRRdDunvF42X3HFqt8jjW6mL5slPVhAzG6M0q2R7iXS8sm8HerNMdI/SWON\nWvFc2rl+ezIUJL7lFLueaGGMsaBgBEQCkql0V1YkrDYvihUyc2vryReLphuVIolY1vjOEwSB2O/F\nsA/ZO/ZBnWFpwwaptOKZk26nyeUa2pKuzdaSdB+dXsUkI5Oh6LY17OjWYIQMQgsVJr2DGPGe0u1h\n/XBhk26bMHvDMHA9XMRxgxOj/8VN98dlmWj1hNC2vGyzmdPLqmoO9Vx2WUuluxS4sLKvW4hw8hxc\nUadS4BZkhisiJbudSKh9IMQSRkYYzJbID6URZa3lNPfZRo10t1aegQ5Kt6SUUDQFr800wGg3QLUS\nJ60OBrWfcM0vHOSUxgsJNaWiBUSCkoTf7qeklCir5aX7HY4AeQ9kZtZmkJHPm77LqrVuYvfkSfje\n97r6/oG3DLDrnztfgLgHzPLyRuzpyrk60j12DHaaVYN1V7oORxPpXhW7avVhqkyGrNPSsC5UgxSV\nCKbKTHuiiOegAtXDfxxckKQ7YrczK8tE3LGWPd3isSIlyeAN+/wovkvIrXhjz8vyktJtN0gVsdlI\nqSrKsWMQi4HPh8fmaVS6tUEqgAMH4Mc/BpZJd2Jh43u66TR4DJ1hwcJYudxRNS1hZITRdAEjnKNo\nsyJvQMTf+DiIqEQWj8OOHW2Pq6lcQRDQihoL310g+vrV+9TPqSqjmZ/jKukce6yxOWsmDJkGKIIg\nEHFHGswXpL4QRZdBOtHsv90JtSxdzV5Hul/7GvzlX3b1/RabBd9VzaEO9fDGJNyo1Xi/9UO2kqW8\naL6WYX/OvJobHUXJKBgVA2uks4rtZAFZQ0CSSNddEGmGwZwsE3O5Gnq6AFfGruTQ7KHOGwGZDGm7\n0ZJ0nTEngYUys74wYrqndHtYP6wr6QqC8FlBEOYFQXiyzf0HBEFYFAThcPXjv5+N57VaLAzYbNjd\nwy2V7uyPFzi8D7bbNFzFk/wg1ThFPF93Fd5O6YqCQMRqZe6pp2DvXgDcNnfD9HKylCTkrCrJV7wC\nnngCjh9fIt3Z7DkqL+sCQbvO5lWUxhJGRtiSzEJfiay4Ma5U4+OwhZNU+gaX/Hxbod4YY/HhRdyX\nubGGOp/MK7rOZLmMPzfHsevLzN3TePGjplTKfoFANdUq6mmcYBYjIcoOnewa+9uFgum7rDvqSPfx\nx+HIEbPhexbgDwqUECkl1zeYIlvJUkybpDtWPgbbt4PFsjS5vNrFXCcLyBpWDlLNyzJ9koTN7W5S\nukFnkJg3xtHk0fYPmMmQtCktSdc35MOfkkl4g9gzPaXbw/phvZXuPwEvX+WYnxqGsa/68eGz9cRj\nDge6I9Kypzv17wukrnMgq2X6Ck/zr4nGK9v5uvJyO6UL1bWh48dh3z4A3FY3eU3g706f5rlicXmQ\nCkxj3He8Az7+cXOCuRBloXSOysuqiOBRGYu0zp9twsgIW+aS4FdIGRvjvzw+Drs4irq98xBVorBs\njJH5SYbgza3iiBpxolRi1OHgMwfcLPymiOXexYZ1E2VBoeBbJt2Vw1TWgRCKXaW4xkzdfN7s6eJc\nQbrlsllmPguoJQ0pC+tPurWEocHM2vq50NkCsoaV5eWpSoVhux1akC6sbpKhLiRIWBUGPM3th8Bw\ngGDaYMHnwnkOLVp7uPCxrqRrGMaDwGqLFd2Z0K4Rmx0OSmKgSekauoH6YA7njX5KaomB8q/5YSpF\nqc5eKF5XXm6ndKE6wTw7C3v3UtY0/mFugfLln+TBxUWuO3SIY+6r8Tnqeqa/8zvwhS8wGspDIUJG\n3fg3dyahIxowMRRmc7jZr7glhofZPD0HXkgo6690azu6u3kG2941DFHdlyZwc2DVxz9WLLLT5eIX\nv7WP0QMxtIpO4YnlcqWSUsj5zIQhaCZdx3A/mrWCXDgzpSu4pOUbJibgpS81yfcsoJapq2bWn3Qz\n8ybpBubWTrrdKN22pOtytSTd1SaYF+cmqPhcDcYYNdgGbfQvOskEJVzd+jj30MMZ4Fz3dA3gOkEQ\njgiC8H1BEDrLmjVgzOEgKziberr5I3kKQYGdW80BGZ/FYJ/Xy4/qli7rp5c7Kd1Ln4Lc4/18acsW\ndv7qVzy0uIjj6f/KF7aPcfjKK8lao7xmPMsDtcceHYUbb+TSJ74MhQhFYeN7urk5FUUqcnTLdjZ3\nu7fidNKnyFhcEnHVSmFqfZVuKmWqwsusR3Hs62JdyBVBySgUnyniv9a/6uPXSPcnb/kJN0Q286ub\nReL3LJOqmlLJellWuq7GCWbPkB9DLGMUyk2P3QnLpFs96T/1lDl8tH//WSXdPBLG4vpeGKWL5iCV\nywW2k2sbotIMo6s93Y6ku6KnC9UJ5g4xf7n4aQx/678P24CN8KKLfBC856AC1cN/HLRf+NsYHAJG\nDMMoCoLwCuBeYHurA+++++6lzw8cOMCBAwc6PvCYw8F9mTKarpGX83hs5gpJ5r4MT14u8DKPh9lc\nCafVyS39/XwjkeBV/WYpeL7uKryT0r3463lsxw7wN5k8X9y1ixcHAkT+LUVBLjDkDqM/9d/4/647\nzVuOHePmQID/f+tW+t/7XmK/9weQfx2ydePf3MW4iijkOB0bYrOjs2tQPfq8bgynkwxWshPrS7q1\nyeXLpGcQdv9ux2NrFpCLP1vEd40Pi33168hjxSI3BUxFvN3p5DsvVrn1rxNs/vBmBEFAWVBIbTO4\ntK683BB60CegizLWUrPa6oQa6UreKukeOWLOA+zdC5/97Joeqx2WMnXz66t0MyVzT3dgAIS6daHy\nifKqg2yHczm2OBx4pM6nn6DV2uBItUS6DgdUKmYfvG73au/AXo4lj5mGNy1c5kqJWcRg62l9W9RG\nX9ZJMaDik1+4SveBBx7ggQceONcvo4cOOKekaxhGru7zHwiC8AlBEPoMw2jyR6wn3W6w2enk1Nzc\n0q7uRSHTBGLhvjQ/26/xR243J6tuVLeHw9w9Po6s69gslsbpZW97pTt8sIgsV/jGyd1ErzFP4h6b\nh7ycxybacFvd3Bkd4GWhfv7k5Ele9dRT/Pymm5AEjZu0w9xvUUkuFuj3r9Ge6HmgkCjh1HPMBdZG\nuv7BGBZDJy1JFKbXRjZrxfg4COhskY+tuqMbL8bZ0b+D9NfSBF6yemkZ4NlikffETL9ljySRvsSK\nqurkH8/j3edFTakkvXpDT/fJ+PIsYDAImqBgl9emdGs93SXSffxx0/d6z56zpnSdTigIVpyqSrls\n8tN6oGaOMRyR4fA4VE1WSsdLq1pA3pfJcHNw9d57K6V7mdttEq3TaTq91Fl7OSQHO/t38vjc41w7\ncm3T48mpOLZNrS8IbAM2/Fk7Fb9KQEmYPY5uJvvPM6wUJB/84AfP3YvpoSXOaXlZEISoUB1zFARh\nPyC0ItwzQatdXV3RyTyUIXuNA6coUlSKOK1Ohux2trtc3J/JoBkGKVVdKn21CzxQF1WMOYNLfuPX\nDXmnNYOM+h1dryTx0W3bOFYsMlmpILz3vfwX+8chH+WpUxt7Va2nJ7FSxiKKBFYp79VD2rQZV3GR\ndLBCZW79le4Ip6k4/GasTwfULCAz93U3RGUYBseKRXbUTUTvcLsp/ZaPxD3m/4WSUoi7dYJtppeD\nQVANBYeythLuktL115Hu3r1mjFI2C8lkx+/vBoIAisN0pVrPXd28YpLuXs9x03PZbkcra8gJGcdI\nZ9L9STrNS7ogXa8oUtA0tOqQ25LShbZ93ZvGbuLbz3675eNpqRSucLPPNoAUlLDKFiSrQVFws+7u\nIj38h8V6rwx9BXgY2CEIwmlBEN4uCMK7BUF4d/WQO4EnBUF4HPgI8Lqz9dxDNps5EOUdWurr5h7L\nURm2ctEmcwCkpJZwSebJ945qiXlBUQhIElK1bNWup5v9ZRaP4zT979pFZapC7pAp2msGGQuluh1d\nzDWmV1Wfgze/mevlnzA0H+CZyY3t68YSR4j7BWKWtfkQCps2EcjlyEQzaMn17RfWJpcXh1Zv8ccL\nccLFMJWpCp7LV08RmJNl7BYLfXUXHDtdLk68zE78njiGYaCmVObcetvp5UDADFN3qtqaNn1qe7p2\nvwiaZq6Q7dljKrc9e8xy81mA6lrf0ANFU1ANGRQnl4h1peVTZRybHAhie4Uo6zoPZ7PcuMrFFIBF\nEPBKEtmq2m0i3RZ93XfsewefO/I5FK35b9SyuIg32uxGBabjlxaEvorE25z/sn4lgh7+w2O9p5df\nbxhGzDAMm2EYI4ZhfNYwjE8ahvHJ6v0fNwzjEsMw9hqGcZ1hGI+creeWLBaG7HY83q1La0OZ+zJM\n7pfYV414qe/93B4Oc28yyUyl0jBV2a6nm/3ZAr7iQSwvvo7Ye2JM/29T7TYoXWdj/+jOcJivJxLg\n9fLwljfx7ieKHJ/d2L7uSHac6YCNUdsaTyojI4QXc6RjKcisv9LdzTOo2zqXlsGcXnY/5sZ/gx+L\n1F0/d+eKvd+dLheHt6ggQP5QHmVBYdqltiVdUQTNAJe+tni/fN5UuvagCCdOQDhsMjiYivcslZjx\nrG+mbraSxWb4AIFt6rE1TS7/Mptlp8vVdZWlVmLWDYPpSoWhVZTurvAuLuq7iO88952m+6zZAsHB\nLW2fyxqV6CvY+XblZRiONZpj99BDlzjX08vrijGHA6tr2SAjfV+aR/boy6SrLicMbXE6idntfCOZ\nXOrnQnulu/ijKfxbSuDxMPjOQZL3JpGT8pLSbdjRreIlwSDPFIvMVCo8ef3v8q7jU0zPTjc99npi\ntJhkKuhmq3vtpDuYzpIaSYOiUzpZWp8XyLLSte7tTukKvxC6Ki1De9I9VioReW2E+L/EUdMqGa+B\ns1rtCLvCxAvxhl1eDQtOdW1JQ4W8gRMNR1BcLi3XsHfvWVO6+NY39CBbySJpVTeq/NGlyeXyifKq\n6UL3ZTLcHOiu9w6mQUZaVUkoCl5RxFkLvW+zqwtw1xV38anHPtV0uzNfJjzUPuDDM+QkuGhBs+hU\n1mY21kMPXeOCJt3NDge6PcpsfhatrJF9JMt3d1TY00Lpglli/vTsbAPpih4RraBh6MsnXEM3yD2p\n4rvFdLax9dvof3U/s/9ndknpNlhAVmG3WLg1FOKbyST2PTt5wj3ArkfvW89fQQOMxSzRisx00MdO\n/9pJd2QhjRbJ8euxAWY/0zpI4nm/xrod3eC1nZVuUSmiGzr5B/JdD1G1I91ni0XCrw0z94U5BKcF\nn8O65Kpkl+y4rC4y5WUW0y0SDllYE+mWszoqFjx+y/Lkcg0rlO6T+TyVLmvXJ0slFusGjqR1ztTN\nVrIIskm64WTjju6qQ1TpdFdDVDXUlO5UpcJIfcm3TXkZ4M7dd/LY7GOcSp9auk3RFDwljf7YtrbP\n5R3y0pcoQyBPLtf2sB56eF64oEl3zOGgJAWYyc2QfSSLuMuJM2Bd6ufVK12AO8Jh5urcqMCM/RJd\nIlp+We0WjxWRyGF75fKE5NDvDzHzDzN4LV7ycr5leRmWS8zDw/Cx8E286rEH1+NHb4nSt3/MlD1M\nrs/JRZ41ls+GhhhJJCFQ5pHQIHP/NIeunP3gA3NH12A3R/HsX92Nald5F1pew31xdxPgrUg3ZrNR\n0HWU3XYkn4QQFJdKyzWsLDEbkgNnZW2kK2fqsnRXKt3du+H4cSiXSSsK1x8+zGdmu7uw+e1nnuEv\nJpazZG2h9c3UzVay6CUfAjremWeXd3SPdy4vFzSNx3I5ru+in1tDPeku9XOhbXkZzCnmN136Jj5z\n+DNLt83mZgiUQWqzMgTmBHNfUoOBGfL5tof10MPzwgVPulnBxWxulsz9GTLXONjn9S7dv1Lp7nK7\n2eVyNShdaO7rZn+2gE85Ai960dJt3su92IfsbD20teUgVQ23BIMczuVwDct8z3aAvkJ15s0jAAAd\nSUlEQVQODh48mz92W+jf+R7TrgCFfitjax0UsVrxyzIuj8yxshvHFgcL31s4669xfByizINoQYh0\ndsyKF+JcPXk1wZuD3QU30Jp0BUFgp8vFc6US4deG0bsgXcHpxVWyrIl0lZxGsZ509+xZvtPhgK1b\n4Zln+OjUFJscDj41M9NQ0m6Fw7kcRwsFvplMLh273pm62UoWteBjmCkM3/KE+Wo93Z8vLrLP68Ut\nNjtCtcOZkC7Au654F589/NmlgaqZ+Al00WKGWbeBbcBG34IA0bme0u1h3XBBk+5mh4OkLjKbnyVz\nX4ajV1qW+rkARbXYoHQB/mxsrGmdYWVfd/E7J/EPZcDXmPgy9PtDbPvetqaVoXo4RJFXhEI84U2i\nFwf43PYIfPGLZ+PH7Qxdx37f90k77eQjlrWTLhAURWxOgXgcYnfFmP3U2S8x1/q5M/7V+7mJYoJL\njl/SlfUjQFHTSCgKoy1+9p0uF8eKRQbfPoh8h7+JdGPeGKcyy+VKq8+PvQLphe7TfLScqXSDStws\njY6ONh6wdy+LR47wselpvnHxxWQ1jYOrnP0/PTvLfxkZoaTrHK2SkCu6vpm6mbLpRrWLo1h2m6Vl\nQzMoT5RxbG7/d3VfOs1L1tDPhQ6k26GnC7A7vJutfVv57nPfBSAx9RxFd2evZ9uAjb6UCOFkT+n2\nsG64oEl3zOHgtKyiFTRyh3P8bIfK3jrSbeVc89uRCPtXkKnoXaF0Hy3gu7FZxYbvCOOd9MJztByk\nquHOcJgfVRKIpShf2mHFuOcec4VkPXHoEAWnG8HiomQV16Q2ahjwerE4HCQS0H9HmOwvs5Qn12YQ\nsRpq/dxMbPXJ5Xg+zuajmwm+pLse4XPFIludTsQWqniH08mxYhHnFicLdwWXdnRruHX7rXztma8t\nfe3091N2QGa+e+cnLW+Sbv90tZ+78nXs3cv/Lhb5zVCIi1wu3jk4yKc7lJgLmsZX43HeMTjIq/v7\n+WZ1z9cblXCikU2vT+7xbCqLUfZxhesolt1mabn4XBFb1IbobP931a0pRj1qg1QtlW6bnm4Nd11+\nF586ZA5ULcycQPa2T6sC05UqlBYhlOkp3R7WDRc06Q7a7aQUhRfHb8J6mZVfafkGpVtSS7isnd+I\nYJaXa0pXSStUUhLuOy9vOs5is5B6dYrYN2Nty8sAr+jr49FclvBAH8eHMlTCw3D//Wf4U3aJ732P\n70WG2To3RjZ6ZjuII+EwmsNHSS1SNkSib4ie9YGqmtJVtq2udHPP5MBGR3VVj1al5RpqShcgo6pN\nSvf2Xbfz4MSDSyVmx2A/RZdBKtn9RYdRVCki4h9fMURV+3n27uWjY2P8t6oCftvAAF9LJMirrYn9\na/E41/l8jDgc3NbfzzeraVn+oEABiWJifawgZxaqxhi25SGq+S/OE76zfTsgoygcLRa52tc5D3gl\nzrS8DOZA1aPTjzKeGSc7P4nm7/zctgEbfRkJArme0u1h3XBBk64oCIw4HFx++kWkriijGkbDG7ek\nlJrKy60g+SS0nEm62YcW8BrPYrnx+pbHll5TYuinQxQXii0HqQBcosgtfX24rhfAtcDpG14H//zP\nZ/ATdg/tO9/jCWMTv4o62LL9zGwnI+EwZWcAvNPE4zD4rkFmPzOLrp49RVVTutbLVle6wi8EClcU\nnlc/t4Z60k23IF2PzcNv7fgtvvLkVwBwxPqoODXy6TUo/aKpdD0nloeoHpl6hI8+8lEAPhaLccvB\ng+yoBlEM2u0cCAT4arz1LvenZ2d5V9XO8ga/n/Fymclyecl/WV6nTN35jEm6Ow2TdHVFZ+5zcwy+\ns7XbE8BPFxe51ufDblnbKef5kK7T6uSNl76Rzxz6DIXkNEKgs8q2DdgIZC3gL/eUbg/rhguadAG2\na3aueWwfX970MHs9noYTdEltbYy+EvWDVNlvPIsvHG9rT+gccjJ+xTjX/+z6lj3dGu4MhylenoKy\nn19cdAvce6+Zq7oemJ+n8sxRdo6/kodfHOLy2JkpXd/QEJpkhb4pEgnwXObBPmwn9W8pPnL6NB+s\nJRU8D9SUrv/a1ZWu96AX47rue6qdSHeb08l4uYyi6y2VLsBb9ryFLzzxBQD8/VYqNg1tDe4YlrJG\nEQn70WXSff+/v5/3/+T9nMrO8ZFUiv/+/e8vJz4A7xoc5FMtSsxPFwqcKpf5zb4+wDSDuTUU4t5k\nskq6VpTU+pBuMmuS7mjZNMZIfT+FY4sD9672F3P3pdNr2s+tISBJpBWFqUqFofoBx1V6ujXcdcVd\nfPbxz1JMzGANta481SB6RAQEHFa9p3R7WDe8cEh3lSnOdnj138uUbwhw78AEW6yNimxNSrdaXs4+\nmMJ3tbftsW6rmx++5Ifc/sjtiHL7/tYr+/pIxRZBHuPxkmCehH/wgy5/qjXiBz/g/sA1iKUgld9m\nTUEH9RBGRghkszA4S018xe6KMfmP0/z55CQfnZpi7nm4ChgGZE6lcVNgaP8QYJbzT/3ZKXKHcg2T\nvIZmEHkqgvuG7lV7J9J1iCLDdjsny2UyqrqUpVuPm8ZuYj4/z9PxpwkGQbEpCPls188vlDUUDMTx\nE7BrF7+c+iXjmXHeeOkbedfB73BTIMCucLhhX/dlfX3MyTJHVrDAp2dmePvAwJJdKcBt4TDfXCJd\nCX2d4v1ShSx9BQs2ZBgYYObTMx1VLpxZPxfMnu7JchmHxdKYStRFTxfg4sjFbA5sJjV7Ckd/c3h9\nPQRBoOgV6VOtPaXbw7rhhUO699675m9J/SjFpgcrPP6BIJuGbmZ86scN969V6Rq6QXbCie/O9irM\nbXNz0HuQ8dFx5j431/Y4rySxoxCEvus5FZ+H178evvKV7n+4NWDhS99iTriWH1k3oQ+Vz5h0GRkh\nklmEgQRPVkN3Ir8dYeGhRe6U/bwpGuWvT58+49eZSsFI4SjPWXYRCJoViYkPTZD+cZqn73yag5cd\n5PTfnKYyVyF/JE/WlyW8pfNaUQ26YfBcqbRUum2FWom5ndIVLSJvuuxNfPGJLxIMgixpSOXVT/wA\nigJ2XcNDCrZvB7ud//Xw/+I/X/uf+YPr/pj7tDD/ORZpMskQBYG3Dwzw6ZnlXOiypvHl6gBVPW4J\nBjmUy2F4FTNTt0VQx9lAppxlV26RdHQn5ekK2YezRF4TaXv8vCwzValwuWd1b+yVCEgSzxWLjaVl\n6Kq8XMNdV9xFXwlc/bFVj5V9NvpKLjL5niVVD+uDFw7p/umfrmnCV11Uefadz5L/uxi/lipUnCM8\ncuxLJArLqT5rVbqFI4vYtBS2W1v3c8FUutO5aX5+6885/denO/Y7bxLDEH0Rj2lfgDvugB/+0Eyb\nOZtQFCwPPsJA4jrU94SZVMpcu8ZhliUMDDCQSSOG0nzgA3DzzXDfEYP7b4J33m/nTzZt4p/m5piX\nz8ybudbPnfbvQhCg+Osic1+Y45J7L+Hq41dz0ccuovBUgUd3PcrTr32aJ7c+SdjVHelOlsuErNaO\nGa6rkS7Amy97M1964kv4/BqKqGJVumsJ1BKGItIcwt69PLfwHA9OPMg79r2DH5ecxPQFHn72yy3t\nIN8+OMhX4nGK1b//byST7PN42LziAsIpirw0GOTnRpIcEpbC2Sfd2dwsp4UH2ZWA4ugu5v5p7v+2\nd+fxUVVZAsd/p6pSVLaisieGbBBIYiAGXEKDGuyPCh1csG1g2gWbHnHUEdCRxXZGZexWbHHQbrV1\nRkS7lW4WWxmldQZaYGRRAiqLkLCvYQuQQIqQhXDnj/cqZqukEkOW4n4/n3yo5eXVOySpU+e++84l\nemw01mBr7WpADa0oKeH6nj3rVeW+ctls1MAPSrqjLx9NXtQQrC0MLwOcd9kJL06kxO3bhylNa63u\nk3SdTpg/3+fNdz22i/C8cOKGR7L57FmKq2sY03sIr+W/VruNZ2m/lngq3TMLvsPpKjLWdvMi2B7M\nBXWBswPO0iOhR+1ycU25LSoC4mMpCszngwP5MGxYmyr65pxbtpoC202sDlGsu2UPr6amtrh4uFdW\nK+EV5aSnluJyGROub37jEP+X5sL91gkus9m5OyaGWQcOtGn3nvO5JbHGSMKeaXtInJqIPdqOWARX\nrov0d9IZfHAwKf+ewoKrFhAd7L3Cqmt7C1UuQJqZdJuaSOWRGZ1JTEgMW8tXUCUXsHuZWdyQZ7GD\nWMtByM7mpbUv8dBVD2GxOph18CAv9uvP7C9nUz0gs9HCB4kOB4OdThaZs5P/6/BhHohrejj3jshI\nPis7gVsC6FF9njZ+/vFq4mcTiT08gYyzJdT0y+DI20eImxDH4uJiwlev5s2iokYNPdo6tAzU/hwa\nJV0fz+mCMaHqR6EZ3y8u0Qxx2Qk/FYGlMrzVx6ppvug+Sfe55+CZZ4xxuhacWHKC0pWl9JnVhxSH\ng4LycvoHBzNtyOP8YcMfOFtlfIpt2AbSG0+le+bvh3FmN786SnCAcY4xMiiSxCcSOfDCAa9dhXKv\nstFzVzgX1GuMW/gg5Xfe0e5DzJtnL6D0ws2sG5VAdlgwo6J8qwy9ibhwgVBHFXv3wpSnz8OdRayd\nl0rh0QD+bfgpHo1JYO7Roxxvw7u9p9Kt6pNByYoS3BvdxE+Ob7SdLcRGyOgQiiKLCLa3vf1jQ3Ur\n3YbX6dY1LmscH+39E5UoetT4tryfp9KNv7CHU2mJfLDtAx655hF+tWcPQ51O7krJoW9EX+aX5xvj\n7A1aXU2Ii+Otw4fZUV5OQXk5t0U2XbWNjIhgRWkp1SFWnO28pu6HBR/y3fHvCMx/inQKqbH3JyA8\ngOIMGw/s2MFrffsy58gRfrJ5M0V1zu23dRIVQLDVihUvla4P53RrlZb6lHQzh/QgwVrDm2+27jg1\nzVfdJ+necIOx2Pc77zS7WfWpanb80w7S5qZhC7URY7fTQ4SBoaH0i+jH9UnX1/ZkPVft43W6ZnOM\nM4VWnLd4XxoMjEtLACIDIwkfEQ4WOPXpqSa3tdlgWV4/LFeEcM46gZHb8+HLL6G4fRa2VwqC1u6k\nxB7EhrtKeTXVe7N3X0XbbFRUKuzB5YT9sog7k8J4bHQQC21JZH2+g2dGKcZERPNSG87teipdW/8M\ndv/Lbnr/tjdWR9OT0Y6fPe5zlQutS7rNVboAPx/wc5bs+JgqUQTi2xkBz1q68TU7eK1iFXcNuIt5\npypYVlLCnLQ0AKYNmcaLX72EyspqNMQ8MiKCPadPM2XBAu5zubB7GaoNCwggx+mkol9lu/ZfLjlX\nwsTPJjLntjkcP+wggwIqd0QQ9Y+xjNm6lX9NSuLe2Fi+HDSIIT17MnDDBt4/epT9FRWcqakhM7ht\nl6mJCGEBAY2TrtMJa9fCwIH1vwYNgjlzGu/Ix6TrinfgOHmhxfabmtZWF3sR+7kickxEtjSzze9F\nZKeIbBKRgc3u8Lnn4Ne/bvbSmp2TdhJ1ZxRhw4zhLIsISQ5HbVOMaUOmMfvL2ZyrNpamC7C2vK6n\nzWmjYn8FlWcDCb7rR81u66m8IoIiEJHaatebq/vaeStiAAzMZWXPfRT0z4FFi7xu3xqbF++msup6\n/npLODNSk+nVDgtzxwWHEhGUSO6fRjD74AF+0y+J2bPhP9ZH8VFQEreu2MjJadHMOXyE4lZWu0d3\nuYnmODFnArEEWYga7b0qLy4vJirY96rdl6QbGRCABThRXU3PZpJudHA01yVdR2VQCT1qfFv0wO2G\ncNxU2Sz8ftf7XJ7xIC8dPMhnWVm1a8ve3OdmrGLlQJKr0RBzwKJF/GLxYj5JSeH+Rx6BQ4e8vtYd\nkZGcznS3ayvIqcumMiptFNfEXsu5U+VEcA73hipeHuwmyeFgUrwxIhFgsfB0cjL/k5XFCwcOMHzT\nJm5wubD4eC11U1w2W+Okm5NjJN25c+t/vfwyPP+88V5RN3H6mHSDL3MQfgrKfVzhSdNa62JXuu8A\nI7w9KSJ5QKpSqi/wAPBGs3vLyUENHMTJSfP49rpvWT9gfb2v/Mx8ytaV0Xtm/Wr0l3Fx3GSeU8rp\nlUOyK5k/bvqjT+dzwTinW761nNDgQ1him3+jD7QFIkhtN6qon0VRebiS0tXe3/1698jngQNZkDGF\nB9IrKH/7fZ+OqyVfz3yXk9YcNuaFMDmp8TBtW0Q7nYSGJBCaMo6K4jXIOePNPzsbfrX2Mj4KSuJn\nSwro87/hvLjPqHZXrlzp074tO7eznf6ELNpP6uzUZpteXIxK17PwQaDF0mITh3FZ4yhz7mV/2Raf\nku7ZsxBBGQfCrGSn3cOMw6dZMmAAiXU+CIkI04ZOY6F9R/1K9/XX4fHHeXj8eJ5KSqJfXh5cey1s\n397ka90eGcnxDDfOdlj0YOXKlSzfu5ylu5cy88aZFBVBGtvZYRmLe0QIS6pLmZue3uhnNSg0lA1X\nXsmY6OhGs6xb656YmHrtWwGwWCArq3Glm5sLa9bAggXw6KPUjv2XlDQ5F6Ph72ZATAApZ2xU6KSr\nXSQXNekqpVYBzb0l3Qb80dx2HeASkRhvG7s3u9lcPJVdcx30ejCSjD9n1Pu6fP7lDFo/CGtw/SHJ\n6YmJ9WZ6Th86nedXPe/T+VwwKl0AZ3rLf4giQlBAUG03KovNQuK05qvdlStX8sYkJ1cvH8DqUVMo\nLD7CucL9Xrf3RWkpRO0uZ/kwG69kpzfZb7gtosLD2Wu3s7VHBk8kxJP7bi6rD6wGjEVzPIl3ysxS\nFq4+TJG7yqekqxQ4D23jEGPpmevCmdP8DOvis8U+z1wura7GXVNDfDMrzHikBwU1O7TscWvarZQ4\n97HH/Z3PSddJBV9knmNj+B28l5FBdmjj673HZI5hVVgZZ9evMf5TZsyAV16BVavolZ3NsykpMHWq\nMb9h2LAmV6iK79GDCzgICaz8wUl32efLmPDJBKZmvMETjznJzoZ0Cjll+zHPX+9mYWam11EBh9XK\nsykp3Bz+wyYlPZOc3Gjlr2bFxcEXX8A338C990JVlddKt+Hvpj3WTuIZKxFNXKetae2hjdNY2008\nUPfk3yGgF3Cs4YaF9xdy8pOTJD+dQlziG1j274e7n2zTi45IHYHL4eJ0pW+zTKxOI4n3vMm3T+zB\n9uB6fZdj7oth34x9uDe7Cclq+lpFiwWWzYiiz5O9yZv1LE9OeJ2hr7zo0+s1ZcmCUgbW3MhX/Rz8\nNrP110d6ExUTw6bycsa6XPxb5r1c7Yrmpwt+yut5rzM6c3Rt4p05BF58dBc/K9jLgNPw9dfN77es\nDNIq9+BgCGkvNX/eHIxK19ek65m57Eu7yPSgIL7y4SStw+bggkrAdv4433zT8sjltm0wxFrNvDEP\nMyu1H8O9JCKbxcaI26dge306PPQQ5OfD6tUQ0+Cz6PjxEBEBeXlGC9Ebb6z3dIQ7glBrEZs3Q++W\n/zu9mr9uBaXJOUyaPLL2sRGxRzlpu4J7bu/NoCY+OHQJLhcsXQpjx8Ltt8Pp0167yNVlj7FTdbQK\npZTP7UU1rTU6O+kCNPzNbnIGQ0B4ANdsv4YAVwDc9AwMHmxMOmrjC356xsrOU6fg81tb3N5WYwUm\n4rzvap/27+zhrHe+0eqw0uvRXmwds5Wgvo2HOI9tP8aWr43T3h+Xwbql4aiQG1g3ru2XD8VXWTkR\n4eD+65s/B91a0QkJSEEBT82aBSdPMhzYWZlB/rvj+Mr+MBYxBk8m9YHDJaOYMncscy2FrFvTcixJ\n0Vfzt6tKuadgHhQ0v627ykFSz6EUbvE6XaDWkcrKFoeWPTKCgpqduVxXSMB11JR/RPC7i1n3bvPb\nRgJKwog7Ucb4FoZb7/vRg+wJm071F4v4zeNXc275/V63zXwwlel3jmRXH1e9P5x77cmEVbxA3IeL\nWfehT+E0Kf14AiMP3gXpf8NqAasVAov7s3tEDU9c1nKziU4VGAgffggTJhiXGPnwc7UGWrEEWjhf\nep6AMF3tau1PLvYsPRFJBj5RSg1o4rk3gZVKqfnm/UIgVyl1rMF2eiqhpmlaGyildMnehXR2pfsx\n8AgwX0QGA6UNEy7oXxpN0zTNP1zUpCsifwFygUgROQg8AwQAKKX+Uyn1qYjkicgu4Cww/mIej6Zp\nmqZ1pos+vKxpmqZpmqHLd6QSkREiUmg20Jje2cfzQzTVLEREwkVkmYjsEJGlItK2fnldgIgkiMgK\nEdkqIt+JyCTzcb+IUUQcIrJORDaa8c0wH/eL+ABExCoi34rIJ+Z9f4ptn4hsNuPLNx/zp/hcIvKB\niBSIyDYRyfGn+PxFl066ImIFXsNosHE58HMRyejco/pBmmoW8gSwTCnVD/jcvN9dVQOPKaUygcHA\nP5s/L7+IUSlVAdyglMoGsoERIpKDn8Rnmgxs4/urCPwpNgUMU0oNVEpdYz7mT/H9DvhUKZUBZAGF\n+Fd8fqFLJ13gGmCXUmqfUqoamA/c3snH1GZemoXUNggx/x3VoQfVjpRSR5VSG83bbowLf+Lxrxg9\nS9vYMeYnKPwkPhHpBeQBc/j+Uj6/iK2OhpMy/SI+EekJXKeUmguglDqvlDqNn8TnT7p60m2qeUb7\n9DPsOmLqzNg+BnjtyNWdmJeKDQTW4UcxiohFRDZixLFUKZWP/8T3MjAVqNt6zV9iA+MD0t9FZIOI\nTDAf85f4UoBiEXlHRL4RkbdEJBj/ic9vdPWke0nN8lLGrLZuH7OIhAB/BSYrpcrqPtfdY1RKXTCH\nl3sBOSLSv8Hz3TI+EbkFOK6U+pbG1SDQfWOrY6hSaiDwE4xTH9fVfbKbx2cDBgF/UEoNwrgapN5Q\ncjePz2909aRbBCTUuZ+AUe36k2MiEgsgInHA8U4+nh9ERAIwEu57SilPGyq/ihHAHLpbAQzHP+Ib\nAtwmInuBvwA/FpH38I/YAFBKHTH/LQY+wjh95S/xHQIOKaXWm/c/wEjCR/0kPr/R1ZPuBqCviCSL\niB0Yi9FQw598DNxn3r4PaHvvx04mRrPat4FtSqlX6jzlFzGKSKRn9qeIBAI3YZy37vbxKaWeVEol\nKKVSgH8Aliul7sUPYgMQkSARCTVvBwM3A1vwk/iUUkeBgyLSz3zoRmAr8Al+EJ8/6fLX6YrIT4BX\nACvwtlJqZicfUpvVbRaCcX7laeC/gYVAIrAPGKOUaqdVUDuWiFwLfAFs5vthrF8B+fhBjCIyAGMy\nihXjA+sCpdRvRCQcP4jPQ0RygceVUrf5S2wikoJR3YIxFDtPKTXTX+IDEJErMCbB2YHdGM2GrPhJ\nfP6iyyddTdM0TfMXXX14WdM0TdP8hk66mqZpmtZBdNLVNE3TtA6ik66maZqmdRCddDVN0zStg+ik\nq2mapmkdRCdd7ZIkIjXmEm9bRGSh2eyiNd9/mYgsMm9fYV5P7nnu1u6+DKWmaReHvk5XuySJSJlS\nytOh6H3ga6XUy23c1y+AK5VSE9vxEDVN80O60tU0WA2kikiYiCwWkU0i8qXZgQoRyTWr4m/NFVyC\nzdakW8xe088CY83nx4jIL0TkVfN7k0VkubnPv4tIgvn4uyLyOxFZIyK7ReTOTote07QOo5OudkkT\nERswAqN15bMYFe8VwJPAn8zNHgceNleouRao8Hy/uc7zU8B8c3H0hdRfyeVV4B1zn/OA39d5LlYp\nNRS4BXjhYsSnaVrXopOudqkKFJFvgfXAfmAuMBR4D0AptQKIMJvkrwFeFpGJQJhSqqbBvgQvy+EB\ng4E/m7ffx0jaYCTmxeZrFaDXOdW0S4Ktsw9A0zrJObNyrWUsktQoeSql1G9FZAkwElgjIsOByla8\nlreEXOXDNpqm+RFd6Wra91YBdwOIyDCgWCnlFpE+SqmtSqkXMSrjtAbfdwYIrXO/bgJdi7FUHua+\nv7gYB65pWvegk652qWpq2v4M4EoR2QQ8z/frkE42J01twqhOP2uwjxXA5Z6JVObjnucmAuPN770b\nmOzlGPRlBJp2CdCXDGmapmlaB9GVrqZpmqZ1EJ10NU3TNK2D6KSraZqmaR1EJ11N0zRN6yA66Wqa\npmlaB9FJV9M0TdM6iE66mqZpmtZBdNLVNE3TtA7y/2ofwtfpFbWsAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c998240>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "grouped_seq = group_clusters(sequences, clusters)\n", | |
| "plt.plot(neq(sequences), label='all sequences', lw=2)\n", | |
| "for clust_id, clust_seq in grouped_seq.items():\n", | |
| " plt.plot(neq(clust_seq), label=str(clust_id))\n", | |
| "plt.legend(bbox_to_anchor=(1.3, 1))\n", | |
| "plt.xlabel('Position')\n", | |
| "plt.ylabel('Neq')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "'all clusters'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAEYCAIAAABdsnUYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3JpcHQgOS4xNeq0bM4AACAASURBVHic7L1/TBxXnuh7\nynPNZASOuzxX9prHW6AimdxVvMYUf3j/SCC4W9rMMxetSSPZV2u0jqd7lTzFLzYR/ZRc/9JEohXs\nyLlKdOnYXuHV2pJ78Ipr3/GVaBNI3mrzJBc/lGg38MYFaBGM0djVDo0mCxrX++NAcfr86uquruoG\nn4+iyFRXnT5ddeqc7/n+lEzTBAKBQCAQCAQCwYZlS6E7IBAIBAKBQCAQOEJItAKBQCAQCASCjc1P\nzp07V+g+CDYDiUTCMIzy8vK8NxiNRv/+7/++ubmZc3IkEgEAKIpCbScWi/n9/nx1DKT/WDvd47dA\nhfOLOJcoiiLLclY9yeEbE4mErusAAPK7DMP4p3/6pxxGgq7rhmFk7HzG38hqh9pn2FsdgfqjSDRN\n+5d/+Rf+yfYHHud+2kTXdU3TZFn+2c9+5vwjziU5AIf63bt34/F4ggZYG3V5n0MywhrzObx9Tr6R\nOmjt3A2rNYcddu/3CgSeYgoE+SAYDD548CDvDXZ1dcmy3NnZyT8ZAMA6p7OzM+/j3PqxNrvHaYEF\n5xdxLhkYGMi2J1l944MHD9BlLxQKoZ/CWw3x+/1Pnjyx+dVPnjyxeRsz/sZQKIS1w+nzrVu3sPkw\nYx+ePHmiqqp1fjAYZJ1pZ+Dx76cdnjx5EgwGqf3P4SPOJTkDh3pnZ6d/DVmWFUWx/uzp6UHPNE2z\ns7MzL1+dEdZvzNdvt9Mya/DbmVGt1hx22Mnlnj0sgSAjQqIV5IEnT54oiuJGg3AhzHi+lxIt+mNt\ndo/TAgvvJVo7KIqiqioUVQcGBgAAXV1d8KOenh4AwK1bt0zTfPDgQVaCPlRkOpRoodhEtsPpcw6P\nz+/3K4ry8OFDqzUnA4/TN5t0dnbKsgzvSVdXF3p/cviIc0luUIe63+8nbxp6JpR0nXyvTbyXaEmo\ng9/mjFoMEq1nD0sgyMh/ILW2AkG2xOPxYDCoaRoAANVgoUc0TYvH4wAAWZaDwaClmkokEqqq6roe\nj8fhIoo2aBiGYRiJRMKy3uq6HovFAACKogSDQaqh1vou0uZrGEYsFoM2vlAoZF1OdiMWi0FbMJyy\nsR8LvwXtHmxB0zRoSA2FQoqiwEaw70Jb4Nwx9MdafYAGSvSSRCKhKAppx9R1XVVVwzB0Xbf6bxiG\npmmqqsqyjP1ktB34EbxX1rdrmqbr+sDAAPwh8GAikYCiWzQaDYVC8HepqtrZ2QnvHoR1M+GFsKvY\nk0IfdCgUIp+y9RtlWY5EItFolDyH32fDMMhL+H2G18K7ZN0W9OvIgQf7ST4CeJzsWzAYZD1i6igN\nhUKWVBSPxy1Xhxw+4lyCPhH4ONBOZnxZMoK9VvBX23+t4F31+/3xeBy6TFiTDPwI+zrsAWFvGQrs\ngPXyom8o9TUB3JcUe1tZgx+7b6zJMwf4rxXnxwLaU8YeFshmgqU2KBA4otAitWAzEAqFoIZMlmXr\n4JMnTwAA0KQIFXiqqkIVlyzLUMtlmiYAAE5wqqqSDcKTLR0ANBPDdmRZVlUVtgMQHQP6XfAca5xD\n3SG0eMKWLbse1g14rTXPogoM2DfTNLHugbXlFs7jcEJXVRX+Sf46c00lRr1jsCdWI2BN/Ql/nWXQ\nf/jwofURWNOowZ8JTdiYTbOzs9PqCfaT0Z8J/419+5MnTwYGBlBfAvjrrG6w9Hmcm/ngwQMAwIMH\nDzC9HfkQrY6RvxEFEOZ1Vp/NNWXhwMBAZ2cnvIcZ+4x9KdxWsfoMBx7rEbD6xn/E6CODdw+97daI\nyuEjziXYrwNrIgj/XpnIUMfuLakRxF6KbF8rqOGGZ2JvNxxdFlAchFex3jLsXUDvCfrDqa+Jmekl\ntVpmDX7svvEnz6x0tJzXymqH9WOpTxl7WPYnWFaDAoEThEQryAPo+mpJBui0jtmgFUVBFwx04kMb\nNAm7MCpPQMMc/NOaEOHiga0Z1gKGyh/QIRJdnNAlEP0hmNyJyqZo9wAAiqKgFmRM1iFb4Nwx2B9r\nUbSWFij1WpdAR16rAwMDA6SoB7cBDx48gL1C1xhsycEeCvntkIcPH3Z2dkIFObzcspjDdR193Jyb\nCR8BPBNd1DEREG2B9RstWEsj2WfTNOU1YLctdwJOn6FKFXrr+v1+a0/FH3isR0DtG/8Ro/2HrWEy\nKPzSHD7iXEJ9IpYQY/NlsaBKtOiZmNRo57WCH1kuHHBokYZ7zB+GNc7tS7Q5vKSwZdbgJ+8Gf/K0\nL9HyXyu+RMt5yugNsTnB8hsUCHJGZO8SOCUej0OBAC4h0DgIj1tWp1u3blkWLtLUa2k4sAYxYPBv\n51r4ETTAQQsaei0AwDoH6nLgv6EBGr08FApZvSW7YVkqu7q64BLF6RvE8oKAWgfLbohaCdEWOHcM\n9sf6t3UJ/NXWJdBMjPY5EAgoigIXe6tXwWAwHA6Hw2GoIGT9ZBTqt0MSiQQ0g8L+W8ehhXpgYCAU\nCkWjURhAbXUM/gO9mZFIRJZlywSJto8+aFVVoUzA+Y0ZofYZDo8nT548ePAAiqThcJjfZwCALMua\npsHhhHqSAMbAA9xHQPaN/4jJR8Yx1+bwEfV4PB7HngjWhxxeFqx9h68VxBq0UHSz8ldADMMIh8PB\nYBAdcpxxboccXlIIa/AD4m7wJ0/78F8rO7DeCOvTrCbYjA0KBNkiJFqBU1AnV2se13UdegTC46qq\nxuPxtra2QCCwY8cOdJnhN4gCpz90GSNPMwwDGrOsI9a/4WIQiUQCa0BpmPSxg7qTaDS6Y8eOtra2\naDRqLSSsvlGhrhZYC6w7xsHv90P5CS4h6CVwmYTyFnpJT08P9GyjrqDZEgqFoLncMIy2tjb0eFdX\nl9/v7+rqgjcQsG9mPB6Px+NUqRR2Hr17UCHK/4059HlgYMC6IVDfD1d9Vp91XW9ra4NB6FBVDACA\nrXEGHoTzCMi+cR4xCSo0OP+IetzyV7aOWI8jLy+L89cKQk4O6FQD721eXoGM8J8gZ/AD4m5kNXly\n4L9WfDhP2cL+BGuzQYEgW4REK3AKKoeFQiGYzDIej0NvKgCAYRhwdoOz2MOHD/nTqE3BjgV/ZuxE\n6OrqGhgYoIZZdHV1PXz4EOowotFoIBCwAiCc9I1sgXrH+MDIIbgoYtoy2G1VVVFdI1hTz2QrBWJA\nmdv6E/rAoUfQnsAfAj+l3kwYU/LSSy9JkiRJUiKRiEaj8B/8brB+Y259RoH9hxIDtc+klSAUCkGR\nBWQaeOQj4PSN84hRqLKdpaTM9iPOJfxf5/xlcf5aZSQcDmuaduvWray0kjnDf4L8wY/ejWwnT/dg\nPWUMmxOs/QYFAvsIiVbgCBhfbP0JsxHBedyalOEqDuNvYMQAZ+bCGkRR13ImWEcSiQS2PimKYoXf\nQiyVhrWcWzEisDVyhUskEjCTPwzTefDggbaGw+WEbIF6x/hYNk3yEniLurq6NE2zYv+hsRV6atqR\nAlkkEgnWqmNtXawj8DFBEY16M6Fi0gKa6eE/UMkSEg6HLfcS6m/Moc/kR1ZkN6vP8lpYvXUJ/DeM\nhmENPMB4BJy+cR4xCtSbYskW4LPI4SPOJYqiwPh99O5Z/3D4sjh/rdCmrH9DFSkUp2KxWCwW40hX\nfMgnnhH+E+QMfuxuZDV58uG/VtQfiKrbqU8Z+8nA3gRrs0GBIFuERCtwRDwex1ajYDAIE+hgrmPW\nTBqNRjkzF9mgBZzQw+EwnGc1TSMd1KDLnXVOLBaDCxtYi/C1PtJ1PRwOU014hmFEo1FrroeLtyzL\nnL7ZhNoC645x8Pv9MPENVdyBgSYwMRAAIBwOQwVPT0+Pruuoe2tWwJ5bl2P3PxQKRSIR+I1Q1rRy\nPFFvJppjH9rr4VoIRQFZliORiPUQY7EYJotgvzGHPkMZFP0oGo12rmX1ovYZdg91QoCuw1afqQMP\nMB4B/37yH7FFMBi0+gNLcFkt5PAR5zh8IvDyWCxmvcLOXxbnr5WFNbfouh6NRuGMkUgkwuFwKBSC\nWnaIfbkQ/hb4b/SHZ4TzBDmDn3o3bE6efOy8Vqwfy3rK6LX2J1ibDQoEWVPo0DTBxsYKQ7aAETZY\nLSX/WsYfawcvy7KVpgqL5EUbxHIdWDWWrISgVmYANHuXNTNabov8y8luwIXcMsXCj8gfi+U6QFsA\nSNQwDMSmtsC6Y1hr2H2AURTkJdY3wrhmGAQjI+l+rKB7aofJGGrs29F7i91ArJgW+hH1ZmL408O9\nYUy69aSogefWb+TcN36fsY+CwWDGPlvpYyFWcL3JHnicR8C/nxlHhXXb4WuFfZrDR5xLrCciyzKU\nzq0BafNlscCeNfW1Amu5FOy8ViaSvcu6mVbmik6klJ0FbIQ1zrH5BKzZUrAfnttLSo5/9IaQd8PO\n5Ml6rTA4rxX8N+fHst4I9GHZn2A5DQoEOSOZpkm+7QKBTTRNsxkgDG2ycDmEDoVkXQCbDVobetaZ\nVk51LJzF5uVohwEAVj/t/1hOmw5bgBiGsWPHjp6eHvtq3YxIkgRd3zJ+tRViQv4W1r0lb6YdYGtZ\nXZJtnzkfcfrM+pn8gZdV37J6xLCrrBcq249Yx62u+v1+GGVllRF28rJQz4R32L7uFrpwQL8CK2m/\nzWszYuVMyKpN6hPM+JZR74bNydMm/NeK82NZbwT2sGxOsJwGBYIcKbRILRAIssaN9I1AqEmKiaLK\n0IlV0IDacagmLBLIZLoFh/oExVsmELiHqIIrEGwkoFMgmvfROZqmwXClQoVRC1DceMQOgRE8gUDA\nCvfBEu4KUKhP0IO3DPULJ7EKoAgEmxXhdSAQbCRgRIVCq8meMzDCKRgMigWvGHDjEecFmGMOAFCE\nQwWOYVgFt9B9oT9B8ZYJBG4jJFqBQCAQCAQCwcYmP14HVC9+wzBgbg60TqBAIBAIBAKBQJBf8pCP\nFlZuxMrwGIZRX18vyzJWJ1MgEAgEAoFAIMgvedDRtrW1ka7uME009CKqr6/PV9IigUAgEAgEAoEA\nw6lEC+uykPVXdF23PA2sFHrkaSK2WrBJMJJAG8n9cn8T8yN9CijVWRzPewvOOyDYpAyPLKB/Vu0u\nrdxdWqjOCIqH5DNj9A+5l7R9vZQnGMBRV7tH3l62NeevEFiMTyan51Pjk0kAQIO6EwDgKyvZt8cH\nAAD6FNCn0s5W64Dss9u0e8siA0cSraZpiURiYGCAX1cTiraapmEF8WZmZhKJRMaM7gLBBkAbeRZ4\nI+ert5j/Tj1u1v+FqY1sGbiHvdurx3s+B6G3+C07bMF5BwT54vrdqbFJAwDQ0ljRULezIC1gHD79\nFfrnyaMvn/nlK86bFRSWL5cSzTMB9EhTmf9//OmA/RZG/6BhLWRF6s/oAeuf3py4fHMiubgM/2xv\nVs6G9gq5Nmf6h2cvxL6bnktZRy7f+N769+Mv3zRjV83ox+gl5FrAw51lkYMjiRZWiA4EAlBUZaWb\ngZ+SH8H62k46IBBsHhKDZmIQ/lMKvQWUahC7amojAAAz2i2hk4h1PPKBFGxd3zE7bMF5BwSucerS\nSO+dVY1A7x09B9nReQsCQQG58MV3qLwFAOi9o49PGre7XxNCbQ6Q93MT4Eii7erqgo4EMEkh6kIQ\nDAYtxS0s2efkiwSCTY+ZGLR2w5K/CSjVZuL+2kf3JcTEb8aurP7DMKR4n6UlddiC8w4IXOLCF99Z\nwijk8o3vq3aXHjtk1+vDeQsCQQEZHlmgil9jE8Z7F7VrZw9436UNzac3JzafOAsc5jpQVdXv9/v9\nflmWZVmGYqskSWCtrHk4HA4EAsFgUEi0AkG2mPG+9T+sfxtJE/FMsoRON1pw3gGBc1hr+fnYtzPz\nS960IBAUllMXme6Y/UOzmD+3gM/M/NLlmxOF7oUr5CcfLeoLa5VsuHXrlqZpAACR5UAgyJo1BwCI\nqY1Iq8fvc07LZwvOO/D80drx9ZD2yPqzUd3V1/2qwzY/vUFfe5KLy5dvTlw6VedBCwJBAbl+dwr1\n9ST59MZEXvzCnxNQX+RNRh7y0XJQVZUUZ2OxWCAQCAQCxVO1XCAwIx8+k36K/ldgWQ0LEV3rjKmN\noodNw8BjUfPVgvMOCBwzPLKAisgYvXf0p6kVt1sQCApL712df8KQ9giG6gsy8jS1gjkgbSbyo6PN\nilAoBKPERGSYQMDCTBcTTcOQjCSQfZRkKNoINYuWwxacd2BDgoTHQVaD5ApE/9As/4TeO/q7R2pc\nbUEgKCAz80tjE3jeT5L+4dnVhFMCLhknhA2NuzpagUCQI6TiE4qShECJKU3z1oLzDmxAYHgc+l8B\nNdB2tCn9w7z1yXkLAkFhsSmBbW5BLY9wLDabACHRCgTFCCXiCibMIsqUAJ0usjhswXkHBA6xs0iP\nTRic6C7nLQgEhWVYsxX1NT2XEsPYDjbv5wZFSLQCQfFBSo0AmEaS7tpr0BzIHLbgvAMCx8BqCBnh\nLFHOWxAICot9naIYxhmZmV/arDFhkAJItIlEIhKJRCKRq1evev/tAkHxw3AD0KmCJrXMoMMWnHdg\nFSNp1v+FueNPSFHYrP+LZ9JPQUxMAkxsGlI5S77zFgSCApJVWq5poaPNxKa/RQWIDFMUBdZiGB0d\nffz4sfcdEAg2JEaSKmiahiF500LGyylVx66sJq8NvyM9/Nf1SyIfiqpjfMYnkza1Kawob+ctCASF\nZdxGTFhuJz+fbHo1dgF0tFCi9fv9+/fv9/7bBYINAFXrSdWPrn5ESCQOW8jpcjSsCgZUmWsqWFPX\nAa1eg2kYYK0CmQBl2LbelOVB6LwFgaCwZKVTFKYGgfCjFQiKD6obqzbCtO+Txx224LwDAAB9ykSC\nxtb1u9po2nFU0hWskdVaTvWXdd6CQFBYZuay22iJjRkffqGKTYCQaAWCosPkeKZ60oLzDgBAlBOz\n9LLpIqypjYjYMpLxbERMqtuA8xYEgsKSrdp10/uJOuTp4iYvp1IAP1pd13VdBwCMjm6eNJYCgRc4\nFzQdtpDN5ZhYbOr6ao0GMttX4j4Itjrq2KbDTlZ5C6oHofMWBIICkoPCdWZuCYiizrlSVV526XRd\nQ93O8clkVvvh4qEAOlpd12G1sJGRfOiBBILnBkouWHjcdsFehy1kdzmrRgOZ92AT1WjIC1mFeAOa\nasp5CwJBYclhTIph7IQzoVca6nYCAPbt8R07tCHLQBZARwvDwoCogisQbGroNRrUOlGjISPZ5owk\n3eOctyAQFJbNnTm1CGlpqCh0F5xSAIlWIBBsfmjFY00jKTFiyFzvz4YiB6/W8ckkWtfeeQsCQc7s\n/5l6p3LAYSO5jGHhPMOFEwDaqO7ysicuISRagUCQf0yqkKqNUFPPmtqI3ZS6zwc5aEyTqTSFlvMW\nBIKc8W2RXy/1F7oXApxNr/YWuQ4EAoELMGLITJHWwAY5hCRj2innLQgEhUUMSC/Zvm1robuQBwog\n0cZisUAgEAgEOjs7vf92gWATUoQ5EKgZbRP3mV9kO7jteYCVtOjk0ZfbmxXqR8lUmgjrvAWBoAhp\nb1b0Oy2Pv3zzbGgv+alIq5wzVeVlhe5CHiiA10EoFAqFQkBEhgkEm5f8ZLQVIJwN7X33SA0AwLet\n5PKN77FP7dgTnbcgsMP1u1No0H3V7tINGjlebDSquy6dWs3O9e6Rmun5pd47aUGlYgw/5zjV0eq6\nHolEotGoQahkDMOIRqPUjwQCQUa2DNyTQifI41Ln+1t6PvegBecdIKEkQICIWWINakBMVXkZFEYB\nACfX/oGCVldy3oLACf1Ds5dvfG/91z80W+gebUhIO0NLY1owfoO608PuCDYAjiRaXdfr6+tVVQUA\nBAIB9CPDMOrr62VZNgyjra3NUR8FgucPSa0D/iaps4PyUWcHCL0lKXTbcb5acN6BrBApaS2oEVrt\niJJve9lWbGnPewseMD6ZHB5ZGB5ZEOXKBDbBBu0myDZl8fPXf43+d+GL7wrdow2JI6+DWCwWCoWC\nwSAAIB6P67qurC1y8Xjc7/dD74L6+npN06Dgm38Sg1h2dyn0FlCEiUewwfEfBAAApVpSFBNJ1yr5\nD66mC/A3gRg3javDFpx3QJATVF0ptpbX7pExzR+q0HLeAsbT1Er/0GxycbmlsaJydym3+zyGRxb6\nh2aHtQVWKobHX7554Yvv0JCgfTXymV++kvM3CjYNVeVl28vw6KVGdVe2lXIFmxhHEm1XVxcAQNM0\nTdMAAAqis9F1XZZl+G9VVQ3D0DQNuh/87ne/m5+fBwD89re/tc7JGTMxaEY/Ro9I/iYh0Qo2OpK/\nafVfSnVaAQJ1rchjpnfHYQvOOyDIDbLuUVV5GSZH7qvh3XznLaA8Ta0c7vgK1tS9fHPi2rkDsLBQ\nVjxNrbx3UbNjfx+fMISMUvz8XTI2taxXlyh/4wt5841VDrZSgueEPESGQYkWOhhQJVR4UNM0XdcB\nADMzM9PT0wCAH374obm52c5XzMwvYXN01e5SJ6oCgaDYsXZlah1AfE+lteOSvwnby+W5BecdEOQJ\nci3PVqZ00sLxc9+MrSlNk4vLx899M9hzMNvp15KJBRud5DOjeSYw+gcN/nnNiN2pHPBtSVv6p1f0\na0Ys56+4sLOL9EWh7sH21cjY/udpaoVU5QrcRZ+iVMmxdCIe4kii1TRNURToWhAOhzVNg+VtMaAg\nC09DyZjr4PrdqSHtEWdb//jLN3Ppt0BQ/LDsDPbtDw5bcN6BrHgOciN8enNiWFvYVyOfPFLDWXRJ\nizx1La8qL8POtIp+OW/BAk7C6JHk4vLlmxNWyLkdLnzxnRBnNw3vzoUtcRYAMPoH7d258PWKW+g5\nU8v6pd9Hc/6KCzu7cq73MTZp5GBDEDjBjHabsSvoEUmWpSe/874njiTaeDxuSbR6emX2YDAYiUTg\nv6Hgm1XLT1Mrx899s7FtT7Grpj5FceqFx4OtQN1foJ4VI+OTSXQK85WVPM8FOSV1XVyQlGoT/cwa\nTlzJ0mELzjuw3o4+ZRJ5DCRZBrJs6s+RG+7Bv70Ppboh7VHvHf1292usEU4WR6DaW6t2l2LyqPUG\nOW/B4vLNCfLC3jv62dBem5qwp6kVLMWSYOPy5VLi9g9x7ODtH+KvJ2OeuR8I7PPz139t80yYlwM9\ncvvia6/ZvJjMJl4IBS1wKNGGQqFAIGC5E0AFrSRJpmmqqirLcjgc1nU9GAxmJdGiblsbg9hVM94H\n/yl1fQTU/Wbkw1WDbOyK9PB7q/Jn2vGBe0KotbgQ+xbdwDSqu/q6X81j+8MjC+MTBjWHfHbZIr0x\nr6DeO5jgaFOgdNiC8w7AbfrAPZC4b7YdxT+6dQOodeaOzVBJ3A6YkjK5uHzqknb/vx+0eXllOUUe\nrSwvBRp5OJ8t9A/PskK4+odmbb41MKTMzpkCPk9TK5dvTvQPrT6U2hq5/ZDicabbTx7TNa+Xfh91\nW6J9nnUcRY0+ReomUJ2IlziSaBVFefjwYSKRkGXZSmVgmqsKnVu3bsGIsWyzHFy+ObGRxFkATH3K\nyrIpGR1An7L8C03DAJEPpJ7PAAAACWIzDQO0HZUe/msh+vscAdeA3js6Z01tVHfZXxWKx7yyAQid\nALIPBFslWUbVtDAvGABACrZaW8ENRjYbm5n5JbKcwdiEceGL76hR/GRcl6+shDzNt41yMF8tQDge\nX0PaI5tvDdmZwjI+mRzWHk3PL2EZIaBjRtHmVRifTB4//w26wRibMMYmtN67+u3u17zxHB37URtM\n0R0Fp5b1v3NZTZtxuAoKA7Xco9/udj2/5CEyjOo7C6HKsrFYLB6PAwCePHmCZbEFUAQhZv+NhRnt\nTvszdkXq+gjIPkwSMnVdiveBYKu3vXuOGJ9MHu74Ks/6IW/MK4wNbhYpYB224LwDAEiWCSI9tmx9\nsstrRlsvyWpj03uXkH3h8Ts61aGW4gVrTztlDXXnLYC1jF2sM/uHZsFZO02C8UzqiUbVI1X98MjC\npzcmWM5s8HhxSrQz80usqWxswjjc8ZU3Qi3pb4DyZSohHA+eQ0xiby/JcqHsz05rhuVAKBQaGBgY\nGBiIRin2i81QXoVUO8X7gJEk1VGmqGXvGk9TK8fPf5NncZZqXvFyM+o8KsthC1ldbt2ZdPkYzZbg\nqDMFhHxz2VtT1pyWXFx24mBKFkzKtlQBv4WMYQzDIwtZfR2VwR5/X/er1n/OG2Rx/e7U4dNfbdDY\nDP5UNjZhUN2d884/ciXa2z/Ek882knFVkB/IMpCFm9jzoKPNL2OTG/yV0EbIOBhTG5GoJwuJ1jV6\n7+gsF8DcoZtXNqxY5jYyQy+40dNFa6P2/cbGJ5Occdh7d+pdWkFaFOfG1txaGNYyCKwZT4BwpvRG\ndZc3zpHDIwvvXbTtdFxkfGrDDe/yje9bGipcvZnTK/rUcoYN2JepxF+9GMzL1/nKSjDlPdVzRlBg\njKRJpKnxVMuTTtFJtPza4lXlZQUv3siHrnZNDJqUo8DUdUmf2vALfFGScbmtrZF9ZSVZ5Ygxic2o\npNaJx0cFndQkdX/a+LeEP283A1CnmIfMPqROAjB/yzBXKTg9l8ISZs0QXqe1e7KrZOG8BUjGN8jm\njpGjXKTGq7nBqYsbNTccjASwc+blm99fO3vAvZ58ucRLtQkZ/VHLl0S7b4/Pjs4+o0+LwF2ymQw9\noOgkWg6+bSWDPQeLPHkyKfQAKLlqjN2zkGjdgROP4ttWwsmdxIPiRFuwzehGAiu8wtLdugBMHdV7\ndwoVvxwGiVN0EuyNTUajU//wLDoU7cdRsUooOW8BwKI2mQTWbJ0cSLyJ9eGryYsc+5ki+odmZ0JL\n7hUeQnPQshj70WtFeM5pawV5wdRGsSOSohRQpCmARGsVVpiZmamsrMQ+5fg51e6Ri1yc5UCugqvH\nE4Mb2JuwiOGsYe3NSi7irDZKyavqjv+75Fjmc9iC8w6wJjXJw9q5ZHg4xAoSv3b2QC4SQDYbm4xi\n37D2COQUjeRcduG0YMf7a6OIif3DGzg2o/duFp7WCKoZwgAAIABJREFU/UOzGZ1YcmbUhrRqR+rN\nLxsrLdImhBRsCirPFECiVRQFpkcYHR19/Pix/QvtFyIXCPIP1bziUqoKVjI/+3tfhy047wBLcvUq\nT2HGTBdjE0ZT+P7IjTey2ydTNzaMSTyZWs4o9o1NGPy6nc5N8zm04Fz/6gbDIwv9Q7Mzc0vbt221\nn3Qva8N0YhBzHqMUyvGEmfmlrCS2/mE3JVob0qrxR2N6Ra/a6lEOk424V+kfnh2fTCYXl6t2l7Y3\nKxtXSQehe+IVjsJItFbBBX4V3OeC56ls0oamKPzfnSs4HbbgoYbVCZxsRyjJxeXDHV/Zr3QAAGVj\nI8kySy1hUxzh1+3kmOax0BmWF0EOLThxT7SfAyG5uIydzHH5PXVpBE0N0T80m7uWHeFsaC8mBZpI\n4nCI5G/Kl0Q7PLLQe0cfn0xW7S5taazgC+XZZv7h747gV6NttjRWtDcrdjzLWWloSaaWvZNobcYm\nFglkJdTLNydy9H8rEoovVHoj+dE6wYx8iKvHZZ9064ZLXyd1vg90nUzXJQVbgaKkTZdGMepCNiIO\n19EXM15GvL3CXaRoOXVxxKb34diEcf3uVBYlNlywsg1rC7nFqzlPd8VqwUnOmcOnv7J5Zu8dHctf\ndvsive7mhS++IzOdjU0Yhzu+zhhcwXEsrq2R3VNqkly/O2WlXJieSw1pj8YmjUunmDqtHJ7CkPao\npQEPnn6aWnnvokbKx/1Ds/1Dsy2NFZ+cVvOlLJxe8UhHMz6Z3EDVlamVUOGOOmszUdFAxsEX1okW\nPC8SrZEEsSuYrVDqfN+lb5M635e6fgWMJEgMppVK8h9claENA0vPLuBg09TocB3NUMCaZmsWYWFe\no40CwwCZ0ncPjyxklXb08s2JLCRacpvq2MqGCt/OY7edt/A0tVJUdWupRdcg03Op4+e+4Uv2HMeP\nfTllgciN8ckkmUEMTkQsoZaqg2xUdx1rrn66uNJ7VyeNAOOTSUyizVhVvn9odmZ+KV81GjJm+MoL\n0KfI1a9o7fg6j4XZWZVQk4vL52PfcnY1GDPzS713p4a1R2hrtTVyS0NFAXwYisyJFhREotV1Xdd1\nAMDo6CgAoLXja5sX9g/NYpP1mdDeP7dxoRntxsVZWZY6O2x+b7ZIobcAAED2gdAJgKhjpTWfS8nf\nJCRaO5Cqhf6h2cs3J66dPeC1pYZqay5QWZQNATNmjhtzhttS1Dqp61erx5FNqSTLINgqdXZQ9QHZ\nam6m51L9w7OkZosC1crm2Jd6HFHFJVMrDltz3gJLNdjerDSoO+2kR80v/PRVQ9qjrLTsKF4WVr0Q\n+5Z6vPeO3qDuJIcf9LbEDqJyVUtjRVP4Piavk/uZ87FvMz6vsQkjK7mqsHx6c+I842YWJ+OTSU4l\nVFg70E47F774jtrO2IQBq2xcOl2HDSTMrYiz1a8qL8PcljInAKZmfSkohZFo0VwH9rUp03Mp7O19\nN2XPYEQW8YIV510A1bpLSnVaGk5r+1Lop75RoFrKpudSsOqjl0ItxdYsyhfzYXnc8ivfaiNoqIEE\nADCSZuAN7P6bhgFiV8zYlS1dH4H0rSm1dqtvW8nZ0N6Wxork4nL/0Cy5HA5rC3YkWpesbMUWr03V\n8rY0VkCJp3aP3BS+75kSN5laHhvKVF8gGy17QRifTHJWugux72gSLeVXXzq9vnZsL9t68kgNpvfF\ndiPQd9ZOD3vv6C2NFc6zNbuawOtpauV87NsN5GwAuXyTKc5CWIWyUTA/cpLk4vLxc998clpF3wVM\nr/zz13/NurylsYIsAU3No78K3W5ZYB0trwqupmmBQAD+Y8eOHZIkRSIR51/p9/u7urq6urreeust\n561lJnaVUuAHXQUTg8+kn+b8H/51qGoKW+qsP0UCWhv0D89yyoce7viKzCTvHm7YmgV2MKPdrMx3\nAIBnkQ/MyIfoEao4e7v7tWOHqreXba3cXfrukZqzob3YOXZDcBxsbD45rT7+8s2TR1+mfsoZzGSt\n2mzJtgWqlvfkkdWeV+4ubW/2KPQHADA2YWSUnqfnUtdtyAQFhJ+Ei9p/0v23pbECC4Mj6w1h9+rT\nG1lUx7VTh0L+ifz/KA9Sf2b+t/Ie+y3nBRjuueHE2Zn5pYzTS8YTqH7kVN67qOWlPHVmSLtloZ1o\nAV9HGwgEQqEQACAajYZCoWAwCI8ofC1LkWFGu7EjkmsKWgCYKqgC1oXboFyIfcf5NLm4fOriCLoB\nxWQFjpWnUd2FZYLjpJoHwC1bsyAz6SpbKmb0Y8nfZOkGSIs5mX743SM1WM2F5OLyzHzm7PS0VDW2\nPE/am1cLOpz55SvjEwaprpu28e2eQTqe1tbI6D1saajgvF8FYUh7ZKmmXA8SzZ6MUfm9d3VMzUxq\nyslEENvLtjaqu7DhNDyyGmhIdSi36m723tEx8Xd6LmVdy+J6xa3aF1QAwN/4QqN/0K4ZMf7vyhcZ\nk/EVLXb0r/wcf3ynBZJTF0e0f/hL++fnhhsxss5hSrS6rhuG0dXVBQCIx+MPHz5UFEVVVV3XN5JE\nmxjMoKAV2AFG5ADvhuzYZGbFzJD2CJ1/MYsJZwrYVyNnZV6h2JrVOi8LXz23pAVWqnVAloE+Rb7R\nZvgd6eG/wn+TokM7zR7d0ojLZJllStJ5CdiNDkT95I41V5NyxvgEL4GXxzxdxHW0DeneePv2+KrK\ny1jLsHt7S+jqR50c+odmwdnVf7sbJJo9dmazsQkD21OROlrsKUD21cgsfwZS89ferFjOsieP1JAR\nY/1Ds5xx2FTmf73Ub/15XA6REq0bkWFPUyvHz3+zEcVZkH0KNhKWBzYLqPJ33Q+HuiwWGqbXARRb\nDcOIx+NWBll9oyVPpSto3VSM5xIQE7tqBn4B/wPaKDCSZvgd6NJgvvSfgFVlDjseu5rHbpuBX6Cu\nFGbgF6vfGPnQ3PEnz+oPPAu88SzwxjPpp2bbUfrSnlfsF350uycAUCM6hcbdOyRZ3jJwT3rwz9LA\nb6SH/7ql6yPsBFPXrTGJiVlV5WVUOZU0xGfUolHqPfoP2tnY1NbIaB9aGirIgCTn4Vx5hNRzk7eL\n48lw5pevoP9xvgjuLdH/OJuK9mZF+4e/7Ot+deTGG7W0ajseGVuzJ7fZjNwwUCMHyD3AzNwStcGq\n8jLU32Z72dbb3a9hQ5E/o/7Vi0H0z9oX1OoSXL3lhkR7+ebERilQh8GqJl1bIzequ+wEJlI9sFsa\nK0ZuvPH4yzcff/nm7Yuvka9DVsleckGfKkInWsD3Oujs7KyvrzcMA/oe1NfXAwBguS8nxGKxeDwO\nAHjy5An003ULbZRiJXRbQZt9QIypT1n9lIwOM/yx5bVp6joIvCEN3APqfjQ+xtR1M/z2FgBAyDVf\nZFpEDgDAjPeZ8b7VTGSe6CmhYmaaNjX03tE9iM+ljKIieHWfH+D4X/+7s2MLAM8iH6DnmIlBKdhK\nyjSs8EFOJn8muQ4DUrXW0liBqQaLSv9EdobU22Vw1Mk3VeVl1psORbG6o/ewfuac1rdIQDcST4kd\nDlWIB7SCcFC5S6ZKaGmswLI7bS/b2t6soEr0VTcMRsQ1JtECAF4v9U8tu+t4wMndlhfGJ5PJ1DIA\noHaPbCf71fhksn94Pe1SZXlp7R6ZpRCl7hAsTXnGxGqAVhetUd117ewB68+Gup3Xzh6oO3oP+96n\np3mVCJ1SfJloITyJtqurC8qv1v+haOuQUCgE20kkEolEAkupzTEYtTcrmCM8f1kiM2S5raB1jpkY\nxIKQTMMAkQ+AWkcRLiMfSMFWl8RKs+0oJyLHTNxfFbVdFmpPHn3ZUvNQgz3t5l3KmeIri/JcIYVO\nULKkdXZIWMRnvA/0fEaKYlXlZdRmt5dtxWaeDCKakaT5jdlS1ZPqzNo9cm/6EUuvVnBsylIe1yQ/\nE0rT9ZKiGMhHIt7CgloJSDU5K5USa9wOk4o92jzZoO7EbuOwtvAqTaLd/zPVtwV/6L6fuD4M+Lnb\nssWSRzmuIJzUs5T8WRroBQBmziI3VORzbFR3oXszUhjFIJ/ju0fxxwODNbHFkV+J0CHF6UQL+BJt\nIpFANbJdXV2aphmGISNqSF3XY7EYAICMGDMMw/pIZhfPtH/TfdtKyJOZ7o/6FEWiLXoPWqz64urB\nxH2JJlyahiHF+9xQ02YMxwFwTEe7YbpQl8DyiVw6VTc+aWA7WjKjeH6hONGKmDAPkUIn6B8EW9Fk\nz6ZhSNro+CSuk/CxtRTZTffUwF57YWHkF5GJ/aGWqBgg12C624aH2lDfthLyHT95pIb0hPasSwAA\nM/ALbJ6UFMXy56bi21Zy7dyBhrqd/cOzZFm75OLy+GSSZVUgdbGrxxkSLenHQm2ZfI7TcymqNId6\n0Frsf0GlfnseyaNrWcYEWDlfPj2XOnz6KyxzFgBgfBKvCXqsOe0EqjCKgq13VeVl1FevQd2JNeKu\nyaJYK2jS/Wg1TUskEoFAIJFOOBzWtPVsc7quBwIB6GUbCARQL1vDMOrr62VZNgyjra3N9d9BYBJu\nplKwtcgVtBwoPivwOFuNmhck/8EtPZ9vGbi3pesjiXCcMKMfA93FpDlklqUzxBHXFTPFl0T6+YIh\nNVImUNo7ki9VIulEa1MnQVdwErJFsaWkRWHpuT0rT0DmqAJrYf7oEU9dLRODFGekns/4F0FxFgDQ\n0lBBTapPzUEL4dxt6E9p/Qe1ANjE2EiLKoNgQ5SMC4SQLrPAfR1t//Bsvhxy7CfAojI2aWS8HMuc\n9TS1Qrr1k3szjku6fTcqzvPNP7Tw3CKJLaHraOPxOJRco9EoelyWZVVV0dOCwSB0IdB1PR6Pd3Z2\nWh9ZXgr19fWapqEXuo6RBFSXg42AFGyVOt8Hum6G38FivaXODqAoZvjtdUHWTYFSCp1Yn6P9TVJn\nBwi/g2m+zWh3xnk8N7B4GkhD3U4syNpdF3gjSVFXF8er+zzAy3lH7iu0EbDDtZw1uSYkZhmLyaRL\nRQIpQLD03LV7mFH2+YXlXUaG+cPkJy4m8lvDDL+DHZFCJ/ibnEZ1F6ozI1PIAUTNnDFOMSP2NdbY\nEB3SHv2fgBaCtpUi0VLF3Dzi/D5YcHS9VeVlZ0KvWLIm6XgD0t8L37YS1uBHM2fZibAEDG8QCOmM\nxHGjevzlm6x28gxVy1McyX/oEi1M2hUIBAYGBjgXW/IrACCRSPT0rKdc1nXd8jRQVdUwDOixAAD4\n3e9+Nz8/DwD47W9/y/FGcARSMBMi+Q8WiZ8HH0lRpFs3AABA3S8ZSTP89vpHPZ9DfZV064b5Ej1P\nez57otaRoqrU9RGI96Xd23gfcEeiZb3nZN4ljqnOKQ5szQJ3ISZQ00iCHe58F1UnYc/5hKUk3r4N\nFxOfptyM5LANaSf12GWWhGVwZ7317iXyWyXajY0HSZYlIgUHBmZuBgC0H6rGytdxLE7ZTnGYrDw2\nabAKzrOKHmNQhVeqmJtH8ijRclT4LY0V6HLDeQ1h9UHLtYCsx4tmziLlUdbejLW/JbclXpd/p0Ez\nWBWLlofnR8sXZy2gN0IwGGRpYaHYqmkadEuYmZmZnp4GAPzwww/Nzc3Z9tgOFJeDovegXQVdJhEf\nCUmtWxekPPGdoKu0ZR8IncD9FxODbuwWWOso+Uq754OYs61ZsKlwISExqWtxNZLDDTiZUPML67aQ\nhngv0h0YSUpSyM6OjOOBtAu3NFZg8hBnKnPo45FcXLb/sJb+8EfyoNvCKwkr9VUBwaqvv3ukxret\nBCtEbBXLoMmjdq0NLDxz9eGRa6EZD6BItDCj1sDAgCRJ5KemmbaDDYfDhmEMDAxwyi5AQZbMkwB9\nc3PoNB8z3odvoDeIghYAILGkVe99NxkqKCnYioevaSNu3F7WdrZqNy4KuLiMibxdhYXhPg4Axd9G\ncs3slXOWA5CPGrYFp2jl7IJ0zIx24wZAtQ5k0pg0qrtIzV/l7lLMh6pI3Kkfzi6CIhCc7CiPOZU+\nfv76r21+0eUb32OKfCwRCoSsPggAOHaoun9oFpVHxyYMlr2FpWHlBLAWHYbhZD50G0pk2MDAANTO\nmjTQM2OxmGEYt27dIsXZYDBoxZBpmuZpmTEy/39xeHjYgiXRuuSewUBSFOZNI3ZjpoGbKfMCy/Tj\nndmluF/d5wFe4CPpQe7ers+FwN5NIOk+j+hTZDoaqefzjNfZtzhRnTgLjux+li4S0gEGo1HdRY0a\ndAnWd5HHoYCL+ZBw1KsFd+yxD6XQTNE40QJOzTAAgGEYkUikvr5ekqT6+vpIJGKk701hNJi0RiQS\nAQBAza6qqrIsh8PhQCAQDAa9lGjJtACm+zWuNhuFTgrB8n/3kiJ/dZ8XGC8vmVWNOmjzEChNONFK\nsmzfKMGKDCMpkiIL9pOHeCOUexrEnQlKQFjn+3Yc61kBZ1Tnk9z65ir7f+ZhYPcafJeD2hr52rkD\nnBMa1V3of5wzq8rLsJOpry3LJkBKtFRZPJeqLkVIcWt5eH60bW1tuq53dnYqigKTywYCgQcPHlgn\ndHV1wRgyFEuPe+vWLaim9TTLAYt4n81Ijk2FPrWuytpQ0pjHFYnoiCwHRYAZu0pJAEwkM4EVa3z/\nL56M3Xm6YlqyiywUtPZNCm5nVs6NYthbFgtExi5Jlm1GaGQb3CYA7DxiANbNOneAH0mJVUngOCFg\nic+pcF4E5wGd9ve9BYcyH5JRs4WDKdEahpFIJJ48eWKlIwgGgy+99BJWdoEPVZb1rgouAiyS6c13\nFRgjCeJ9ZryPki5RloG/SfIfzFyUweU0txsCislb3BbPMRP3pdhVbMSakQ9wU0ywFdCMdxzFJ7bC\nodXp0iCVwflwAdooCpui2FsWBxQFbddHNtUErNtIWqJn5paAC+4zzOFN48ulBJjJfx+yhRUsZVWR\n9RJXXwT7G5tiLPXsZgrRbGF6HUAHAyy7Vl6cB0KhEHTVxZLdustz4ngQ7zNfevlZ+G1q0S/TMMx4\n37Pw2+ZL/4le3BU5kzlMycSchXZR8A4h0RaCZ+G3zciHALpr61Nm21Fageu3AE3Vwcr+Q6YuZ0Ep\nbpKPGbwYEnVtCIqlmhqZscuOamANVmUvUk7yuPLZhqMg4iwo0HMhHXtYW/SnqZWfv/5r9L8LX3zn\nfgcBcL/MU1YwJVpFUfx+P3SNhcRiMV3X7StoiwrTMPgy3GYgdvVZ21FWdTEUU9efBd4ARI6ztHMY\nn1L8F10I/y/O5POmYQB3wuAEfMzox8927Hom/fTZSy+TbvFS6AR0oiVVHdNzqRnaUkRKuva9Qu3U\niBbki6II/zcMSsaufOThZkm6zsGs5K7XVsw31D1nVXlZQcRZwHXqdS+Yj9zwsLbo5Irpaf4EMs1l\ngaBItJFIJBAIQH+AaDS6Y8eOQCCwY8eOcDjsVkEET6CIYpuJeN8zpBwDWPXxen/LwL0tD77ZMnBP\n6nwfu8KMfMAbiLErFOlNGzVp/otOOr7BKKb96KaHLLxMOSc9uT0ZAtJ7l6JSHSYWgOysikUzgxeQ\n58chgZKxa20TVbRsyqdDLR3sGazcC6Q0mS/36MrdpZhfyvRcqn+YUvyMlHQ9zZ9QNK60FD/aYDBo\nKWLRqmAbC0mWcW1lvA90/apA3XEdM/Ih+qekKNLAb9JqNPibpGCrGXjDui2mYYDox6slysgGDQME\n3pBu3VhvJDFoth3FTpPYdrenqRU0brdqd2lWComZ+SXq+eTe3dvNqCvJdwV0lGpK/mMESZalgXuo\nLyOZq7z3jt5+qBodS8MjC5jmr6q8LDttma7biXAvqjj9vOOefhGDld3TvuuIQyh21WxqJRZkGGAv\nAieFwvW7U5hJ/VV8mi8AZMEt37YSq1hXQei9q1M1xKQ0ma2XPNWOBGlprOi9kyYvXoh9h6U3nplf\nws4B3mZrNrXRIolToki0bqcmsAorzMzMVFZWuvQtUs9nmPhl6rqkjW7OEqZkUYmezygqBHU/XvEr\n3ifpUyxlg6mNmC+9LPkPAqUaaCPktC4pCkgvLTY8stA/NDs+abBshVXlZfv2+GAeQb4r4dikQV0y\nyZnOy82oqU9R6o4IXEPq+hUAgCrUrpaMTn+jWxrwIsnJxeXj57+5dvYAHE7jk8nj577Bmso2EZWX\nM7jzUCGXgo08g1VNjfQp9CzLr2kYZMCiq4xPZFdSDtPRJheXWdXCz8e+Re9ko7rrVfIkzyH9Vgue\nwrn3jt5+CC+yMDyygEmTtTVytps9jpNug7oTa396LnW44ytrQpuZXzp+Hp/QvEzTC0AR6Wh5+Whd\nAnro+v3+ujq3ZlkpdAIEW0mT5WZNTItlTpUUhaVHpOSaoZnRJcS9xEzcN2NXqN7fUs9nlnrsaWql\ntePrw6e/6r2jc1zfpudS/UOz713UmsL3+Qm0WZ+SygZP7WvFFNf5nCB1/WrLwD0p2GoNS8l/cEvP\n59LDfyU3qPv2+Cg5PieMuqP3Dv7t/YN/e78pnMiDJOSh84nzkJSNHmzE8gHNmIHfVTx2p05m6axJ\nDunLN78nT7t+dwp7HQouOLIohkRyhzu+Qi0D/cOz5Pa4/RDdVyq317CloYI1obV2fH3wb+/XHb1H\nLrjtzd6WLC6aZZGXj9YlFEWxcia4UQUXWHKbvwnE0rcOifsAbEbHA2yHxHHwkn2SWoeKp3Rtk1on\nqXUcay8AYEvP56jcfLjjK/S98m0raW9WqnaXwkSMM3NL0/NLvXd0a/acnksdP/+N9g9/yWq/f2iW\nmm6mfyjNi8i3rcQz6yeAyaQ8+zKBhb8Jlumyc/NbGnE1LYRjN8g6EWzRzODPAyyLOSnpempp5Rq4\nHNKg7qSOYSqtHV+jf7Y0Vhw7VE2W2O0fmr2uTqGG+/HJ5PnYt1hrLY0VOvi3XDvuIsUgaicXlw+f\n/qqqvKxqd+n0/BIZLlZbI1t3uLK8FGjrH3Fiy0jDI8qZ0Cuk3AzY8dON6i6PM3yZ2kiRLIsFkGjd\nxvLZl/xNWBiTqY24NwcVEiyEi/8D7YX3ZbD2dv0KrVhBOiaeDe1N83laU8ej0zS/JMz0XGp4BM+9\nR2oUCpDXc7P6rmwWTh6pQfdOds7P9itMXZeMpBslS5wbHDZfSBA1vvtpagVb0b3X4Zmxq5JXsRks\nRTV5HywvLHJr995FbWzSgCbpYW2BfE0a1V2Vu0v1ItDpF3Nyhum5FHXx8m0ruXRKRf/ETmAFh/DV\nty0NFS2NFZgqh4VvW8ml04XwMSqOZXEzSrSWpEWt8BTvA5jl3d+0xfx317vlKmpdWoErvgIp3WAq\nsVdlqetXkr/JjPdBJ1pJUYC6X/IfBMFWbC1vqNv5+Ms3qY2MTyaTqWXoxUV6r/O5EPv2dvdrlrvt\n09QKqVFgbdwff/km0EaBYVCKpWmjIDEIlOoc9zb2ooIEhWJ72dZLp+uoWg2SRnVXjuEm7sQIsopL\nUaEWiXDYgv1rPSO5uHz97hT2mC7fxOvDuV1/S1IULFzBZrRxXnIRsvLyckK+2g9Vk4re3js6Zx5+\n92ghkwnwKWxlgUZ1V2V5KX8JOxvaiw5CMmSZFRySUXz/5LQ6M79kJ5PdpdN1Xhot1ymOZbEAEq2u\n67quAwBGR13OgCP7pGAr5jtrxvswX9ILX3yHjqd9NbL92ipFgqRUm8ifZuI+U4GUGMRTQKjc/Vw2\n1l6oLRifTI5PGMnUsvNEkmMThuUCPzyycCE9ggHSAOOIY1etBy11fQTU/Wb4Haihx+KH1o/DrE/Z\nx3YUT1yngEVLQ8XJoy9ntNv6tpXwS8Pz8CrrBd+U4U0LBefyzQk0lvRpaoWULVw118DsMeZLaRK/\nqeuSO/XVSemNNZ2SBmtLSV+5u7S9WbGvR/DeWr2xgIkOqPezqrzs2tkD2J6KDFlmVbrmbEsg28u2\n3u5+7fLNCc6cRu2DZxTJslgYidaDXAcQSa3DJVptBJP2xieM4sznnwXBVpCejNaMfEBNAG5GPkD/\n5MSQZcuFL76jmnqhyxEAYF+NDMPCsmoWusCzPq2tkeELbOpTVqCGZHSA2FXL4cTUdRB+W3rwzwAA\nEO1eP24YIPKB5G/KWlNbNHGdAg5wX8pZAGpr5Eun1Jxrd9nJepGXiYVT3d6zFgrO9Fzq+Llvrp07\nsL1sKwzuZm5u3QFmj6GrSLxayEkvLEAzWKNK+rOhvf1Ds3Y8cApmrXaGe84Jfd2UlA+XTtVBBwCY\nz8dK3UO185D+P9TgkPHJpJ0HtL1s65lfvtKg7uwfmsWeaW2N3NJQ0d6sFLISYXEsiwWQaGGiA4Ck\n8XKRYCtIl+EAACDe52XWlYxIXb+iO2Ox3SHw47JP6nwf9XldVUOiZcf1KTP8DpaygJNNNisufPEd\nJjqcPPpyS0MFtl/Me10+VlQpVuDH1Eak2FUQbMWPGwaIdmdd+0dk198gwAXg0xsTmGQJwxZPHqlx\ntAAUOjjMeTZWhy14lg4WMqQ9Upr7G9Vd1H0ClC1c+mop2Ap3/pL/IEWitRGbkUNKXfKXUhN4kSId\nWgt6e9nWa+cOHD79Fb97vm0lt7tfK4y12itYfnHZ0lC3k3wKWPJ1AEDtHkoOL2pwSO/dLGRB+O2X\nTtXNzC/BzUztHnl72dbhkQWluR898/bF1zzVuBd6PoRsQj/aNJRq0vnJTNzPlySXHxCLOUQKtoLQ\nW8BImtFukLiPiqGSLAN/E1lSXOrswM40Y1fM2BUJOhMbBiWbbLAVdynOFWxW9W0rIXeiT1Mr9hW0\nWJQu6xxq1j0zMYi7u63lKKCUCM6UKV0KncDjC3W9SOI6BRmBC8DM/NKwtgAXgAaVsiBlBMsQAjzM\nesFyoPSyheKBpfZ2NQGnZGXdDr0lRT7AphE78WGslLokVmDA9m24BNw/PPtuehQjGRYGCH/ihrqd\nn5xWz9NctiBQnC2UtdpLrt+dGps0sHTptTXyvj1yg7oz64QnCGOTBrZtgAIluS3pvaOjI4FaHMEO\nlVlWLMovlPmwONIdFCAfrdcQJiEz3kep71rmblvVAAAgAElEQVQ4oMU87T99CsT7zJdeNqMf4+PG\nMMx437Pw22bgF2m/QvZJA/ckwil2tUFSnA2dYFULc05ycfnCF99ZdVBm5peu351qCt+3789Xtbs0\nY6Edpo6NmnU4MUjNH2kaBl/nSjcpbu6KyhuXxKAZ+RD+B3UGZuRDc8ef/O/lO/768jtn3qw488tX\n4HICjz+TfmrW/4UdpTt9GLigrbfvQOleCxuRds+qSZEjwUaac5Y0SU3jAKFmIcWKS5E6AmrCh2OH\nqgd7DpJCv29bycmjL4/ceGPjirM2d2vX706p/+V/vXdRI9Olj00YvXf04+e+Uf/L/6IWmHUC6Urb\nPzR7fa0u99PUClkcYUPg2XyYLZtdRwuApO43yaOJ+3x3fhh5MDZpPF1cGZs0YMzBvhqZtKS7QuL+\nM24uWADze7cdlQZ+s35I9kkP/lmKXTWj3aSS0kLyH5Q6O/Ib1HKsuRrbiV6+8b2dfIqsbCYAgDOh\nvUNhphsizLlI/Yj6203DYC48ifusIE3Jf5B+o0QtXHeQuj6SDMRuYC/TnIWZGLR8byR/E4j3WX+a\nifsg8AZ0pzYjH64f10ZWj7MNx5KigM4Oiv+Sg/BeTt1Lm5Dm5mynJmoL2MGCV2eorZGn55b4joYt\njRWe6avoRptM8WGskCBK4MHaD6E+zVMXR1D/TvsJHyp3l147e2AmtDQ9vzSsLfjKtu6rkTdBHJid\n3dqpSyN29KDQVxsmDMlH1wBgPA6YQ823raR/aHYjRm1KsgxCJ/I7H+aLAki0sVgsHo8DAJ48eRII\nBFz/PtpEYyYGOe781+9OYTYaKK4NaY8u3/i+tkY+E9rr6lyQ5mYA3Qa0EdJibibuUyoxht6SQm9J\n2ihI3DeN5GquLtkHFEVSqkEOgVA2aGmouH3xNdJhcf2Exor2ZiW5uIzlVDrc8fWl03XUm7lvj++T\n0+p7FzXyo9oa+ZPTeavVbBpJprlErQNUCwvnEoETqBOiPgW0EaswnuRvomRkIzEMijt1tBsEW7Es\ny6sxghyTBfShJP2XbIT35paBEoNav5QsIkXmv3TeQsFXXF9ZSUujzJdITh7xMOmYup8yEjLFh7HL\nnuHHrdFCNVINaY9OXRo5G9qbXFy+fHOCfDqspLz9w7PD2gJpcG9Qd+Xmh7NRsCnOWly+8X3V7tIc\nM/oRsCyNuXkaFAvBViD7JFnG3W+KIN1BASTaUCgUCoWAN5FhAAAAyABVjvfk2GSG1AdjE8bh0199\nclrN16CnIimK1NmBSqtSYtBsO0qMoREJvAUSg+aaHRy6CMMksgAAGJ+7qlDUp8zYVUvGRZ1xpWAr\nmsZLUqpXDeuk6ACPE8lcocMidJBfNaX97pEP/Pu+/6Meuq7D01hpYqmBpfAOY7uLk0dfthPTI6l1\nwEiS+lpJUYDsS5NQ2RVNV99PpRo/x8MiqM81iUEz2o25i0B5NKOpwYxdpWwCY1epEQz8+B6YwA4o\n1Xg8r41hMM22QmBwSiJ56Uq7r0a2maKBYzHPLyeP1HAC9k8efdlro3mwFWCbokzxYdT0TE9TK5iK\nEZVHt5dtpYYT8BPKkqNoeGTh1MUR6s5kbMIYmzAu3/i+Ud11Jj2X6oYgo6FjeGSBvFfoCvI0tUKm\nxDof+xZNFWd9V//QLHTHhzfTt62kFjrgsn24t5dttV8cwSZWFFpVgVxpV50bsSz4AAAyTMVz8iPR\nxmIxKKSiGIYRi8UAAKFQSM7SephfKDm8DINlJ7LmzfZmpXaPXFleOjO3NKQ9wgblexe1yvJSl7a2\nkixLA7/B50d/k9T1kZmepWvVWRA1tso+M9qNruVm7IoUOiGpdWZ6TIMZ75NiV6SBe2a027p8y8A9\nIMtm21FLFpQ631+Ne9BG044HW6Wez6FUaplxtwHQcOvGaw9HQezK6nedAZL/IOj6CCjVZuQD1GBH\n1h4jOXaouqWxAqa5rdpd2qDutPMOS6ETUs9nwEiCl15Gf7Kk1kkD94DsA21H8U0O2Ygsr6oMFSKj\ngpBo3cfKHEz/NHHfTNxfH5y0EygHdV2KM6bdxCAzBQq0k5AzuIPwXk7dy5yD3PPYAgorTt8zKneX\nng3tZZlrvE8fLoXeIosp8uPDkovLZJA7xQs2fXJrUHdmqyMniyxS7xvGkPZorMO4du7AxlLWZjR0\nfHoD98o4G9qLRtfBlFggPc1fcnG5f2jW0lhRpV542pD2aEh7BJMls/rQqO7KKNH6tpVkTOAFu4E5\nKvi2lbQ0VpwN7eVfm2esHT5GEaQ7cBoZZhhGJBKBXgTY8fr6elmWDcNoa2tz+C1OoToesL2YfdtK\nbl987dKpumOHqhvqdh47VH3t7AEyE/upi66JNWuFfHFsqPSfEaG4AAAzduVZ+G3KcW0Es8wCfcoM\nvIGqNs3ox2bkQ6CN4sfjfWbbUbIDZvgdM/pxmuicuG8G3jADb5D+Z8/ajq4qfWNXrZgeM/IhiF1d\nPSkx+OLp/+s/nw5+GFL/+uQv/vRYEES7Mwb2SV0fAQCA7ANWkDI83tkBRXBbxpG1cyTCFG4aRjG8\nvZsYs+0oR5xdPy36sRl+J7uWGYoEk/FAJf/B1TFDvJIcb3ULltSYldcB6R4AaGpXTokBJy1kTP+e\nX/q6X3385ZvWf9B6c+xQNVnPrKWx4nb3a172bRWlmozBzRgfRoo15BEskIijtqeCyVU2xVkIdAlz\n7t7tJfwt2cz8Elkn+V1ayWsyrNAa809TK4c7viLF2doauVHdBb10kovLHK15S2MFxx3IOod/wvW7\nU3VH712+8T22w4FfXXf0nmdFgyVFWRVOCDUlVYngMU51tG1tbYZhkCrYeDzu9/uh4ra+vl7TNFXN\nm+Nj1ijVpCskp4DhySM15FaVrEI0PZeieqe5iI068pIsSz2fgWArMJKYTnRL10cgdALIPhDtfma5\ndWsjqL8Bpt9dJXbFTNynO/ImBjHLr2kYUuf7kr8JOjLC224aBtAMKdgK8+CYsSuWitSMXYG1dtPe\nB/9BKfQWpqUzdR3oupm4L0W7QegESyNiiSAAAMnflKZNsQRZGxLt+qJF6mgBADaSUApyw4x8mFGD\nvn5y7IqkVFPz0K1GMOg62ZoUOgFked2SAJh6d8ka3tTHTYx/DKooSQVNI4pBXa7ImBiOJtV5Czbb\nJOHkAR2fTLZ2fI0e4di+z/zylfZD1b13p6bnUlXlZYX1/pRCJzBzWcb4sN47+skjNZaJaXhkgfTu\nwHS0LQ0VdrR3FqjXJrVmOMx4CAXlYW0Bq4mTXFzGIs+KCnK15b9c5E6MJThW7i69fTFta2S9jIc7\nvsJeE8ztDRaz5ASobS/b2t6s8OOkWxorODJxxp1JcnGZfNZusTbd4WsrpNDLolOJdmBgIJFIRKNR\n7Liu65aYq6qqYRiaphmGAQD43e9+Nz8/DwD47W9/6503gv8gtmKZui5po9RIlPZmet7+k0dqsHHZ\nPzy7b4+PUyLh3+aerKdBRj5BSySYkQ9t/4zMSJ0dq7MqLAK8JhFK/oPrqz41cBt2hpUoQGNothKD\nUvqKjhqCJVk2A29YHbCCbyR/kyn9dPUChsKVY3Q2DQNEPwaGQS+OwKjruxpjZx/rzaQNEvKHC/KD\nPkVOlJKigGCr5G8yE4Mg3ofH5US7JbhVw666dWN1/k13MlkforLPZLwI61jDKaesFyxxhJOpgPRk\nJdfm8UmemcJJC6RASfVYyAvJ1DLWz3dTFBWaReXuUszHYGZ+qfdumnLdI0mXKNMIbMSHHT//ze3u\n12DZM6qJbx+hI+fLOijQAG39efnmBDb2amtk+O3wz4a6nSeP1NQdvYfFQM/ML4EX7Xyh15AmBf6e\nihzhZBEvC+qYuX53ChNVMacFeOHt7tdIwRflzC9fGdYesU7gFx8eHlkgxVkY0gfWHCTs73mcs67o\noQpvG12itQMUWzVN03UdADAzMzM9PQ0A+OGHH5qbm7H6Ar//D0Dq+ijvOSCo+wkz3kcalKvKy1iK\niu1lW7EdM8vJ6frdKdL11retpEHd2d6suDvhMuQ55nECKXRC6uwA2ogZ+RAVHSS1Tur5HEBTr/XI\nyEy3rAXedgdgsxlNGGbsCpDljLnN8wJFx18cRf82H7gbjOUVDf/tbwKdHSDwRloxEcOQYlcwNa2k\n1q2rE9JjQyXrTGoOGjaUIPdMWS9Y/rLZeR0sLmMKKjJGnhXknm0LpIWUpQkrhuLh0/NLpPbLC4lW\n9lHSeGWMD5sw6o7eq90jj00apBTi21ZCbidOHqmxKdFiwUzkVdfOHsCWtu1lW0kH5f6h2b3/2c4X\neg25s8p2BKL1ge1g02lhe9nW9kPK2ARPjXrplHq44yvqQz/D9YIldz5YVPrZ0F6+PJ1nilvR44VE\nCwVZMnQM5jqA9QXQ42kJKTPB1I9isCvKYvC3O9in5OzPCSyF26n+odlGddel03XFWXJQ8h9clR6U\naslIopa11ZgqAKSez+0bhXPDsgVL/oMwWxNDOfexFHoLW0LyI1JjkOkOhB+tS2D18xRl1SvaQvZJ\nA/ewmD8zdlXCHA9QlTyiTpDQJBs23HjSyD7dAXXRfZpawaYIVB71Uculao9QcYcUiFH9k/MWUKia\nsKe2vSk2K5K/iWJEivfxCzHCcCLqR1Sv2crdpe3Nih2h9iQibI1PJrGlqlHdRV1xWhorMIl2en7J\n2zgju2AjNu/VEEieLqYNco6KN6OsvG+PD6pysedyds3Nhuqc0z+MJ6w9efRlLMnS9rKtt7tfw3Tt\n3kBR9BQ63YFbEm0wGIxEIvDfmqYpVE/EvJAYfLZm184BUsxNLi6zUkiSXvPYELcfWNoUvl+khQdR\nsQ+RFFHn1KzlgFzBlXNdvwKEK4IZ7ab7HuQXYgAXSdG/zYY2irlrW8F8acCYP8TqYuq6lL7HkFij\n1IlRjEh3YKcWLun/R/oAoDMJWWcIADCsLaD6IX70tJMWyOAwqjrZ43AxL8moJZmZX5qeXwIvvQq0\nfyM/bcj1e1m5S/nJy1bPOfoyumYNk6VxaUMCALC9bCspS3255EVWzWzBssXlkDxuZm4JOFBrOGTf\nHt/IjTd67+iw55XlpahfNRXSceIkS0mcyVXXFUjHg0IrevIv0UqSZJqmqqqyLIfDYV3Xg8GgixKt\nC/TenaJmhCGdr1G/pfHJZFaBpacuaff/e5aene7jioIzJ9a1xejBro9AYjBNU8tOLZzPzlArzzH8\nsAW5Q7qaMBwTKRmUsMmUNWIdzEWSUk0ZBplcx8YnDUyiJRfj7dsyhGRBB0e4/g2PLJBWIJbIkm0L\npM/V9FyKTODlWTJa53BC0wAAP3/91+ifrJJRwyMLq+lIM6XT4n8dB07cEit5GYRMYUY6ihSj9iRL\npudSVga0mfmljHpr8iePTRrHAP1V/fTmBHrTYJEFzB99bNJgZbKz+TpsL9v67pEaqusCFcw80qju\nYrlENqg7CyDR5rTDd5U8SLR+v9/v91t/mubqnH/r1i1N0wAAhcxykBNwZKBzhJUKDj0NK71ILdBs\neXCT9e7GJowLX3znfTLFjYJETQ4q+6TODtQXwjQMaa26hItQxSBtREi0+cVMDxOUOLXBlGqsaI3p\nxTCgLYfaCF+iHdIeYYZCUoWGeh2w3EBPXRyBOQQvZIprdt4CxpD2CCvimkMtsaepleTicnF6W/G5\n8MV3HHEBZtrnXE6mByYhU/qjwPHDyshrJ4VZxgRSG4ILsW/hj6WuthjkQ+kfmj0b2kve5+GRBUxd\nBVPFtR+qxvLUHj/3zbVzuDsytY4DAODLpUTzTO5VUVN/Rtk+FxWS7Mthh+8q7vrRUmVZr6vg5sTl\nG9/3D802qDthKBhp9KkqL0MLsV6/O4VN8b5tJWjC6jO/fIX0SegfmhUSLRNW1DChRfZClKF6wetT\nwvEgz2BeqvxcKGTJA7ehWTAy1n4c1hZQ1c7M/BIZxkH1fMUY0h7VHb0HGL7+dpRwNlugFGiYTGIS\nrX0dLRkmW1sjtx9SXK25mF846sDaGtmOqS1j4aiMGUmPHaquLC/FKo3bLKC4EaHWrhubMJTmfpst\nVO4uxUZycnH5vYvatbN4anmyEAP0aa7cXYql7IQeg1YGtJm5pbFJY2OXtHUC1Q62iSVaKjlWwdWn\nKC4aLkTVVZWXJReXk4vL03Mplh6itkbG4kZ77+Jj+mxoL6YpOXaoun9oFn3BYEbbP89f5zcNlATm\nFgV6Wyhe8KJyWN7JVDuj4JDpDjJmvcBKEGHZpiCYzwBLq8dxpsSUcM5bQMH23v3DthIGPU2tHD/3\nDVUuGZvQ+odmjzXbepdhiq7xCQOmCGhUd+2rkdsPVbun7h0eSZPX+T8WO5mqr+VLtFXlZdiGgQqs\nNL7qxQszQtqWZb0PGyoGzoT2DoXThl//0OzB+fvthxQYy5VcXP705sQYYdxHVVEgvaLY9Fzq8o3v\nvTHxY85InAQpnBqELkJbpgub7qAAEm0uwIJV6SEjW3o+d+OrqnaXnjl74ELsW+p64NtW0t6sYIpV\nanluqgbiWHM11uyw9mgTSLRSsNUS78xoN0ASMK1ngdVGzMAvKMepFLRsMh0y3YGQaJ9DKOkOmNUH\nLc7HvoUFnMcnk9S1EIsxzehWS4IJUk5aINVjqAsjsKeghcWWOEmFhrRHdlKYkRb/1dKjN74/efRl\n+1W1ULkzoyx4+PRXNpsdmzCwk7Fc/ZCWhoqq8jKWiuRMKAtLXeXuUkyUJ12BSZU/qWW3wCRyX1kJ\n+N/sd6eo2bfHhylZwdqGinWJb1vJpdNpgtqZX77SoO7svaOz9iTtzUqDuvP4OdwRQv6J3FTmp15i\nk9o9Mvql2GuIkrHQritQXcIKmu5gI0i0hDi7XhYrH1BLpPR1vzo+mRzWHqHe4qzc3WTYL2uebWmo\nwAJa8+LexCnxwMpZlucSD4bhpAIexXZf6CQgFMh0B4YhGUnPMj88F2TlSFCQQUIGQ+h6RueT5OJy\nU/g+TERKPQGTUfjJZalgIprzFjAuxL6F5nWW1yCGnRyZfGdclorX4vKN7zPWLaOmBgeZPB+wirsc\nhRyswpV2hKE5PhN6hRR6AAAtjRV2FLRZ0aDuAiDNMXRYewRoHm4z80uYRH7y6MuvUqqbb1RIJSuH\nqvKya2cPkLp/qB1/enplbNJAt3P79visaC1aRODO//GnAw76DloaKzAHX+hJjL2qcJA7+aKckfwH\n8aW/oOkOil6ijfeZ4XdwcXbgXj4jclB/BhiJoo2a8b4/B2CfUg2CresiizZqRj4FsMI7cpzUWHAS\n11EE6EPr8uj0iv6PP8RH/6BNTdWP/mF1H9lU5q99QT38YrD2BbXX+G//+EPcurT2hT+/AEBrx9fo\ngG5UdxVtJUOb8HJjFeiFYaQ7yFAySuAIrhYccwKRZJ/pvtMCPd1Bplq4gJuIlEzbxJlAPGiBGjc9\nNmG0dny9r0a2I86SxZYAAJZKdWZuqfeunlHePc8wlKFwTuALxFBRx9pgYFY4nkRLlDEDDC1JS0MF\nmVm2tkZG4zHyxb49PqwY0NiE0T88S4rOpA9MtiPHJfIYvH/ml6+0NFSw7K4QaH1FnZLHftTOLETQ\nc2pfUC/Uddmv35F8ZliLeA68XuonsxGPTRhN4ftnQq/ARwkdcgqQ5cCCcAIsbLqDAki0lvvszMxM\nZWUl79TY1WfplQbzL84CYMauWmmAtgzcM+N9VsZTEwAp2i3dugHU/WhRVhMAKfKB1PURoMbj28ik\nQ5J8Zpx5FLlmxMiPBlOJwVTi0u+jTWX+qq3KYKoYkwXmH1aRdKK4w2pxVLdhpTsQEm3+wLYNpmGw\nSlWTwwCodaCA6Q4cDAMyPXu2xY3y24JV1B4DmvvttHb5Jh5qM9jjX49dqwPHDlUfP/8Nx1TaPzxL\nis6N6q4GdWdleen4ZLL3js7xDX2aWqHmnIeC+/T8ElQPexzTc+lUnW9bidVzO3FdM/NL/UOzY5PG\n+GQSVWnDBAuwCCX1QjJB6amLI75tJahANjyygJ0DS+mOgIc5/LpiZt8eX1/3q/BmTs8voV6n+2pk\nVNVqYfzRcLjUjv5Bc57r4GxoLxaYPj2Xoir7C0OR1cItgESrKArM9jU6Ovr48WPmeaQ4q9ZZZatc\nwox2m4RJEbQdBUR5GNMwzPDbW/xNeXlyYz9qzTMB449pCoPDLwarSlZnq+QfjX/8IZ7DC0ZGLWyU\nwFgzdpUSQm4kzdhV9IAky8Df5IUoI9IdeADhXW3GrlAraGDDAADg0TCgpjvIVAuXD6kVy7aOa35b\ncJi7lFroiGzzk9PqsLbAkkovxL4jz7ecBFoaKk4eqeE4Nhw/9w3WMiY+jk8mT13S3KodSo1jBgAA\ncKYanHnXcghZAN8QHsmyDKcamDKS7nVdXjY9l1r1JyY2DxBYPhe9CcnF5cOnv2pprIAeKdNzKXJH\n0d6sbC/bCgoRZYSRX1Xx+GRyfNKYnl9KLi6j4izcyM3MLU3vXirOlL2wJBi1gi5KbY3sXSFcBLrp\n8nmTaK2CC8xcB4UQZwEAVGdQU9dBjL6VN2NXbdXg5ZJ8Zvz1bBsqzso/ke9UDtS+kGaNurCr6925\n8G3E5YDDpzcn+odnqUPct62kQd3ZqO4q8uw5ZuI+CL+TJs0YSTP8Nh5pnid3ajtQ0h0UukTKZkP2\nYY5ZZuyKFGzF5cjYVbx0duiENx0E1HQHzmIEG2jForJaoqhGISctOFkgnRc6wvSRAID2ZtzndXvZ\n1mtnDzSF75Mrff/wLKZLPhvai6W1h1VJm8L3c0ismxHU7pctkv+gNPAbMq6uqrzs5JEaNG0t3+K8\nvWzrpdN1pDKPoxcnKzUUEJuJLDDnCgDA+IRhbedm5pdgInn0nNoaGVohpueXkHHyLdRPZ6zj5T2w\n2Nj52LcskwL057EfzphPaKbLAqY7KEY/WtTuD5H8B6VbN7wJwdnS9REInQCGYbYdRcUXKXRC6uwA\nsmxGPljvXj6i3f/xh/jUctpI/XR3DybOAgB8W+RPy3tGf9Swk0ng3h2+n1aAyPiEAd9emEuof2j2\n8s2Ja2cPFOfGFGLGroDE4LrMGu/DJAlJliVuFfU8Q6Q7KHiJlM2HFGzF7SRtR9M8fKLdzyIfkFd5\n0z0AKOkOWMOAXG6p51DfwX17spApqRpZJy1U7i7NXaJNv7C2hmkXYk0+/cO41EWViSt3l7Y0VpDL\nPBbY4NtWQq3StL1s68kjNfYLPXrJ+di36P33bSsZ7DmI3cbKNRdellDb0lDxyWn1fOxbO6m7bFZq\n8BI726raPXheDiuYe3wyiak2STcPVBGeXFzuvaP33tFRawCV6RX9y6UEXIjHftTgYl1dorxe6q/a\n6kp51O1lWy+dqoMeCNPzS/AVqywvrdpdalV6yrlYnSOoLmGFC+wuSok2XZwFcMHQpzyozySFTgAo\nIck+qesjM/DG6nFFsZSFUs9nZA8x0G1iRkgJ9a9eDFLP9G2R/+rF4KXfRzO22d6skMVRnqZW3ruo\nWXv06bnU4Y6vBnsO/qnNjnqIVQ7K1HXA1nZIXR95at2gu9KKWrh5JfSWFLuCbiahhw8Iv02JqwUA\nwExwXqoEqAkZaIY2crklYeVFqd0j99rrTi3Da99JCzmkSmDB8soF7EwvpEzMUpvBtErYQSw3J6eg\nl/3kXx5D/gTWrgCra4Vx7FB1g7rz1MWRjEFRxaOdteCMHAsy05wlwh4/n+Z5Aoc01UkDS6x2PvZt\nS2MFLQUPmF7RzzyKYJZS1Btw/8/UCzu7Xi91lLSLxfayrVDURp0JC14Njpaiu2CmywJItLqu67oO\nABgdzZzH0cJsOyo9+Ge31bRMVTl3vSSjMll5Fp+mVrCSJyePvgxa8NOSzwzfFvosnPxj5t2Pb1vJ\npVOU1Mfby7Z+clpFrU7JxeXeu1P/NWOL3qPWSUo1f+cgdb7PisxzCYbPkC4k2vwi9XwOiPzTgOEU\nJMmydOuGJ/1a+0ZqugNGLdyMFVBZ8tY+bmFVFKrTgsMW7ESacxKs5pccZGK7LRdaGmBhP7U+K12D\nReXuUisoamzSeLq4no+ysry0do/ML8BbQKhlw1Aa1V2ku621GSAHJyvXW9XuUqyd6bklMinv6B+0\nV/V6g7sEw2iwv6+4xVJL5Ub/8OywtjA+abCU1mikoNdP07bNygMKI9HazXWAYOo6iHxAjRHJJ6zE\n/tyE//brR5M+TFW7S7cRDgZnHkU+3d1DftHYjxo1GYJDWOlsv/yLZyD1P9f/XkKcntOPvw625L9X\nPZ8BWaa6o+U3IXEWUH2GMhVBFWSNul8auEcVajFWk594nBKYJrmyhkHGVZlV/nTfHp9NkZFlu3fS\ngh0T0749Pm8k2mzJozhYKE4eeRlLrX/q0gi5pgyPLJy6aMvzrXJ3KdX1opjJ6BG3r0Ymc3pYrxvm\ntFC1u5SV1NIqw4Z+9ZfEqIGy7HE59Hqpv7pEqX1BHftRG/1Ru/T7KGZoPbMQyZdEOz6ZPH7+m4wv\nGkwOCCMFz4b2ehokY9tm5QEFkGj9fj/MdcCpgiupdVLXR2bbUXRJM2NXJLXOY7WcHbaXbSXrR5+P\nfYspSqHLDnZtg7qz8sVgU5kftVxcM2LJPxqn/mOn5U07vaJfM2J/Z0+cTS4un7o0Qqppn6ZWsHTN\nvm0l7eyh/8njzO4NkNfB/23zzKyQun4lBVvNeN+696rsk/wH05IEewlVF5upCKogF6BQG/mAU7lD\n8h+Uej4rwLxJtdgwhgF/VebY0wEADepOOyIjmYw2Ly1k1C6zPBMKXrrTfqUlm9m7oIciljcGYscy\nngP79viunTtw6uKIZTeHLp6wAjAAILm4PKwtZHy4Yz9qt3+Ij/2oTS3rqNQl/0Te/zMVpjk/sxBB\nV59T/7HTJaN5tnDcRSAtDRXJFMVFeHwyCSP/0ITEQ9qj1o6vG9SdaBDkzNzS2KSBDoOq8jJOCbc7\nlQPozal9Qa19QX291P/K//cSelrGWKGTAUEAACAASURBVBebPE2tYOIsrAwClevby7YOjyxghXyh\n7OGlRCvJvuJJd1CMfrRWWgOps8NMDwExIx9IeUqYlV9aGiuw2R++JNauemZ+6XzsW2wCsny6r1fc\nwvIY3P4hbjOtARVYsq+lscIyq8GAMMyviFofxSKLZGH+AVZxMqeo+6VisulT0h3YKIIqyAV1vzTw\nGykxaCYGgTZiibaS/yBQ66RgawGdPWjpDujDoKWhghMfxi8WRXUSxSDzaOarhQZ1J1+iZXkmYJLu\n9FwKShjkmTZVpByZmHpj25uVyzcn0I+On/vm2rkDmFB76tIIv3bo9btTY5MGZuqtKi+DFmorqS0E\nypotDRX5irWFBSZ77+ho1hosJXBtjfzukRpqdlJYIACdw+WfyH/1YtD3k1V5DmaEtBOVUSgqd5dy\njAwwpJK6zRifNPbt8W0v29rX/erwyEL/0Cx8iJyEyrU18r49coO6k/NK7v+ZSpX1XYoGAwAkF5cx\nG077oWp0yYZDun8oLa9RcnGZtYVzBZXi4lioTO1FKdF2fbSqgevskBKDaal8DANAh9oi49iharIK\njrWrTqaWqe4vVnJs3xb5esWtv1lK/J0RYwmy+3+mHpdDU8t6xjmotkZuUHf1D1FSlAOXsnfFrprp\nGe+lro82p3cp4X9ipwiqwBboKIKzpK4DWAZM9kmd70tKNTAM00gCbWR1XyH7gKJgNfy8gHQdYw8D\najw+hJUef/VCrjRsNe5SC2QFTgzWktnSUIFJupdvfn/t7AHsNFglgdoC5qoxPZeamV+i7r3Jeo2A\nlrgKpmKFEyM80j+EJ83F+kbqxi6dUklp9frdKUssHp8wxieMd4/W5CtlwPayre8eqYHeAqToZoWL\nkUHuZILz43KI6sn2yePof30UIY8XCf9/e/cf1Mad5w3+0ySwySCM2snaYx87QPt5wDtPPGCaqifZ\nejYQ3LrazNnHTVhRa1+tXWNnxLOZ5zEX2ynpLlk79ia34onjKaduttaKkytna+w6a50c62wyVZIx\nSq4q2edx82PsZzew4waeh8UDlbhFgBkPxO774yuaVndLSEhCMn6/KpVC3S3RdDrw0Uef7+eT5EMG\ndt/atq01vgViA2zZ14PDUWtOt2pTaYrtuviH0h6clKHK+Il0kb6p0VtzEXmK/YCst+7AsJpKL4sc\nsotoM2zRvWKFGNEacWd+So1PxdUeyH3keyXzLrBZd+qQaNsGOdGbws49W01/Ep4plZ4pld4jujoX\njt5V++/I+vbqEoG9ETx4q8P6UrblQUd/9MT07IIpC5L6/71p0ZQRc3/QcAuFr2hqlFSVlBFSVU3u\n48QG1kI/tgKPzRy+v9jWDK1CY//7ASdU6yMStK6T1HWSk1qI5zVlhJN2EJEWvqJ1vcFqozmxgXie\nc7dxYgO520io1nyv6HdRkeeAXiet+V5hT9GIii6e5wzd3O6174ltF6rz3+4g3ENkk+xMFNGmsoYj\nSTSsH5CjV6jcVJqkfVKS71tX4zQ9sbt3/FBZXB0UCxkTnpIlJj4euG6NicduzSX60VjjKlNnroEh\n88KaRD+gdUjEUc822+Tr3p3V1tSAdtH2pNLWHRkfHI4ODqmJciK0mDM2rfF6/+ugaQGTbThLRC8+\n5r06Fy7YOZRJPmRgfSpS/3M2cEdW/weba1hZKhHR6IK5KiPtc80NVqwYkSeTNDJLpUtgDtn+Ec9G\nY9MVyENEGwgEgsEgEd2+fdvlWm5GnFBtU3vQ9QYntRTa9FFWuLPsbA/G2C1ldEExxams9ay1tPyD\nr4OmlWHsGMc/mt8O7ec9P1jnJo4ofjGAQvTOVHjgTtwv+qpi4Qfr3FfnVvhLrbokQZ5JbODEBpL7\nSBnRlBGO50nu07re4ARBk/tIbOBYqc19FdcmXOdu+8nLA8b6xkYLX2FFAiQ2cOJ2znskNq84eEkv\n3tCCl8j3cpGpX0EqazSTrtfMqUS3waWTNt2Rmxo2WGtSnWUlxzzblv1GbPJTor2pxMSZvMK+ncLA\nkH271iTFu7ZPPHdZichTLA5mjT+TPN26pq27d/ytmiHj2qaxW3NJYmJabFx1+sJQkgT5Mc82U/MZ\nprWpwpTEPRG4fnB3rekj6enZBfZzGTce9Wz7XpLTSs3YrbnnjnxqPIHW5gpjFRkRRWfm37s80itP\njk7MkkzniI4Hrt/8u/+Z7AKyD74O2q5VGrgj9/+mEDvyMs3iRttwrWqzQ/9vkeR9FysjvjoX1n/G\n6hKBLerSDzg65WMdhIwRbYtDevExb3Z/lhWwttSt2uxoba5wOopZNTDL0594+8aynUlyyqav4oMT\n0Xo8Ho/HQ0lXhsWx1B4Qkdbx41Vo5pWuuhpnz5kdyzb/O3W4wfibsapYqH9ENNUSXJ0LG2ueyG4Q\nw6HHvT90eoho5r2X424gsYGTWrRwDyduj/3VV1WN1fkpSjMRCf+WWEZNbGC1AaMLCpG5QmjZ9QH6\nAWOdc+e2/AkRLb2V/Dl1rt9AI+NEG4jbQFv+LW35E2o3v0LVndK9BfYfcRm269zz9AlL4eO8L5k+\nToml56UWvdkzo8n9iXpuJNpOUoupejv1I3UrrP9O8zY46tk2cCTuw8FThxtSabJTual03y4h4ayg\nFFavZ/IKe3dWn74wZP3Yl01vSf7E7l7z4K7RidnU/+5aZx8cD1zvjoyzsgHrqgBblZtKWV/6XnnS\nOMmsalNpk7ghSV/6uhqn/LM/0lOkvfLkwJCqlzGw9r2m4tq6GifLklZuKrV5t5Omyk2l8s/+iAzL\n8CPylPFHYJ84J2rF+uJjXvWuavyb8qfj7ft5z/ZHRb3oc3RB6f9NTprnZFG5o9j2Qwbj7Xflr82j\ns5n/Oxr4jxNxqSLTui7d6ILyp+OWP04F4PSFL0w3uXXQBtn1KVttlj/imqpyqnl24CrINKJVVTUQ\nCBCRx+Ph41MmSXaly6b2QFGo44VV7kOZCtb8b3A42h0ZHxxS9RoXtqg5UfXqiQ3+/bznXTWgv5tU\n76qJfte0OKRnSqUfrHPrv5vMY0KFahKqTb11k3eYGrvuKKKlzEJEnmKt+2w/7dLL0T6l2Oz1zt21\nsZRz4bXpThFn6KHBCdVsPJhmKCfQr2eR/3XN8P9q7GDIhrYjnxr/SLOhd6Y2+NGZef1PO8tVOB1L\nY7dM5YaJqsmZfbsEY9LL6Sg+6Dmw9D+OUB1rFW6sKhGq2bvEotDHca/F80kKx2Mrr49/Pjoxy7Kz\nydeEGXXurrWN3jr3bE3xI9dMXsF2qpae2U0ypujdV580zXG1StJOwTYmtpYN2Bq4I1+dC7OP3Ufn\nFedDvPP3ef4JXs/MXZ0L/16p9P5XsvGDqR+sc7MEAREdnfIREf0+0e/TvyH6N0TPlEoNWpOpiMt4\n4xklfGeVssHh6OkLXxgXrrGlS/rtykK6ys2liW5v69+Ud9UAxV+87Y+Khx73GlOYBcj6IYOzrCSV\n93LWnu4Dd+Ttj4rW7QX74xubBzMDw3HDm9iK8+QLHFeD/eyhPKRpM4poVVVtbGz0er2KorS3t4dC\noVR2rYRt7UHwEhd4pwCDCfY3tUncYB1IY1vGHttVLJzY4GdfD9yRbds469W0ZnKfaWFW6tgSLlNF\nb0SeSpJmPurZZjreuDyCKS8rZh8MWX/jR/qmrOs5/rdff5O1IUUro4ws9b71PM+JDeQ9whGR3K91\nvKDJfWxv0cXz5HmeY29Ju07e873M8jHcnxTiW/w1jH0oXLXZUSVPVW4ubW2uYPek6c5867zNiCCd\n/iydXrNLLMGsR7dynz56l3O3cZ7n9afc0ycLutu4i+c11/dtv9f3iK4R0cNEvyE6Tdppm2M4d5u1\nO2HlptJjnm2msLK+lk/lj3rmr7B3Z3WvPGn8v7tqsyOVJ5Y7it8/+bQ+YtTqmGdb8ma9K46J189/\np+i/b3mMiIgeo0Yi2vSt322vadIPeKZUujoXXvfl1h2/iTVdcmjOhjuNtPi7yrr6NnpXpXXmIq7b\nRFfnbIrBqkuETPo3HXrc+18D/5Px53KWlZh+6w4ORyPx/13izvaeyqI0tjaDnb8zvhQhtv2e+kH8\nWuTCKSFlKjeVdu7ZaryLTJNsE/nBOveNf33zg6+DbGLtyLzy55O+P5/0scIDdox6Vx2dV7Y/Khba\nT81Yeyg9d/gTWqz5WXYe4aqxnz2Uj2K8jCLaYDAoSRIrIWhsbJRlWRTFZXeZpPp21nukyGtTo5b/\nRTlq1PRepCnRkUR0m+i/xm8RG6aLS41v/ccm5rp7f030O9Zn19X+ukk0jL/TMwSeA1xmbXpZUtm4\npXPPVlOjEOa9D0ciclxI6nQUH/yjjXsfMQ2+WyDJvJKDaWrY0HT7hmnj2N9+8P8alnASkfPtG2QY\nUzk2sdQEm200rnL7b53/e+TfHYg9/Rfz9Is+lsxoEp8g+b8vPd3wmlUTtxMmqIz5Nr1ygzGmulE7\nm22XTv7hWxeG9MnsOlPc2SxudDqKjYeNTczR4n8NY7/0g3tqD+5JFn5Nzy4k+uuYsFhfEOy3q1FK\nMNgsVWKDbd0C+2DneOC6/oHP+yefTmsyUCav8JPDIi1Oh2Et/1J8Yrmj+OiPnti3s7q7d9z4G6Ou\nltd/tyTJ8i4bE3fu2WrbYuw76363s36ZGffPlErPJL4v/v5O3GvadnXQ19220ffa6C9Mi26taxvS\nctSzrfLDUr3jLOvVYDyAfXbRJG4wBbUn3r7RubvW6eCtcfZz69xVJQL/EF//iHh1LszWH39gWEPG\nP8T/kPewtWKZnHzWde6uZbUfRLRvl5DiqAgWrKt3VdY1loj4h3j1rqoXHrAMEWvWeyq++Xq9ZexR\nXuzdWV1eVsyqpY3b9YfN4sbW5orKzaWm2+PQm32nDjesXgMvuw/h81KMx2naymt+fD4fEfn9fiLq\n6Ohwu91sdILtrsnJyYmJCSK6ffv27du3iWh8fPw73/lOW1tG85Yefvjhb775ZsVPn52ddTgySg4W\nFxcvLJj/AK/mOfz617/+1re+lckJ4BriGmZ+DriGmZ9D8ms4d0dTfnXX8QhX/e2HEh2T/Bou+wpJ\nzn/kV3dn72jbqpZJguTiGk5F733+TwvKrbtzd2J/rao3PSRtL9ngtBlVuPbuQ3bl9YcbnUW2P7jt\nOfyipH/wd/qI6Jclw7ZHOu6VffubTaWa41/N13xvPvY2vjCv4fXRb5Lf/Eb6NfxFSf8vS4bnuFla\n7iIQ0ca7m779zSZ2HQrq9yH7P3fkVuxO2Ogs2sAXJf+fcQ38PuR5PlEmNJGsrQxLUinLdv385z//\n5S9/SURff/319PQ029Xc3Jx8cVgwGHS7k02TW7du3ddff51or6qqiqIkuSjT09Pl5eWZnMBjjz32\n1VdfZfIKyc9BlmVBEJJc3vn5+ZKSZHNrcA1xDVN5BVzD++Ua3jR/wrEkxWuY6BWWvYb/11/m5xp+\ni+iJdUTrFq/hXf4X1+yfvubvw8k0r+EmqtT/zdjeh1P0VZhif4sL9hpOErFbN61ruI4eW0ePUfxF\nSPQK+nUowN+H3yJiMbL2FX3xS/Wj/2eN/z4UBCFvEa2SeBYo2/U3f/M3K3tlluhdGVmWZVlmxQ8r\nlskJZP4KPp9PnxuclxPANcz8BHANMz8BXMPMTwDXMPMTwDXM/ARwDTM/AVxDe1oGrl27JkkS+1oQ\nhJs3b6ayC9Li9XpDoVC+z+L+hmuYOVzDzOEaZg7XMHO4hpnDNcxcLq5hRjlaURR5nu/o6FAUxe12\nC4JARBzHaZpmuwtWQJIkXL0M4RpmDtcwc7iGmcM1zByuYeZwDTOXi2uY0cowRpZlIrItd0iyCwAA\nAAAgK7IQ0QIAAAAA5FEepuBC6rq6utTFSWmZF3E/gAKBgF47n8Uhdg8U4zXEDZkuRVH0u459xIb7\nMF3Wa4j7MF3sGvI8r991uA/TZb2GuA9XhnW4YmvCsnsfLtPWDvKrq8s8ugZSpKqqz+cLBoP6w8bG\nRp7nVVVtb8d8r5SYriHhhkyToigul0sQBEEQXC6Xoii4D9NlvYaE+zBNiqI0Njay8j+Xy0X4fZg+\n6zUk3Icrwm45FtRm/T5EjrZwqaoqiiLe+a1Me3u7qqr6e77Uh9iBznQNcUOmi/VrZHedoijBYJDn\nedyHabFeQ4/Hg/swLexjFtY6NBgMKooSDodxH6bFeg1Z/3/ch+lqb2/XO3Zl/e8ycrSFizWc27Jl\ny/r16/FeMF2hUMj4u4b9AmJfi6Kof1QESZiuIW7IdHm9Xv0CshgC92G6rNcQ92G6/H6/3++XZZl9\nvCsIAu7DdFmvIe7DFejq6jK2OMj6fYiItnAJguD1em/evHnz5s1AIMAaR0DmUDS2MrghVyYcDm/Z\nskWSJFP6Afdh6ozXEPfhyrAIjH3Ca9yO+zB1xmuI+zBdsiyHw2Gv12u7Nyv3IaoOChf7H4aIeJ53\nu93BYBAfDGVFkvl2kARuyBXo6OhQVTUUClk7L+I+TJHpGuI+TBcbN8o+2+3o6DDFXrgPU2G9hpIk\n4T5Mi8/nU1VVr4Y3/UrMyn2IHG3hCgQC+mcZyadgw7Lcbrf+e5z9bsrv+dyPcEOmKxAIqKp68eJF\n/X7DfZgu6zXEfZiuYDCor+9kcQPuw3RZryHuw3Sxyg2v1ystyvp9iBxt4ZIkib2bURRFEARWkw4r\ngyF2mcMNmS62konjOPaQlYTiPkyL9Rp6PB7ch2lhV0yWZRaKsXU5uA/TYr2GrAsH7sPU6UE/a3TA\n7rrs3oeYsFDowuEwW1OZ7xNZCzDELnO4ITOH+zBzuA/TZb1iuA/TZb2GuA8zl8X7EBEtAAAAANzf\nUEcLAAAAAPe37NTRGmea6TBkDwAAAABWQRZytMaZZsaNGLIHAAAAAKsgCzla40wzHYaOAgAAAMDq\nyDSiZTPNrLPLMGQPAAAAAFZHRhEtm2kWCoV8Pl+Sw1ho6/P5TKNKZmZm9u/fz/K4NpQREqrT2A4A\nAAAAD6SMIlrrTDPb8JTt9fv9pu3hcNhUfavTGp/S5L6i0McktdhsP/NX5DmQyZkDAAAAwJqRUUTr\n9/tZOQGbDmespnW73XridpnhZuEeLdzDvuQ8B0iopsA7mtxHRFrXSc4Y0erbfS9z7jbinQlfM/CO\nJvdx/tfNxwQvaeEem+0AAAAAcN/KKKK1nWnGcZymaakPHdXCPVrXG+xrTmohoVoLX1ncdYUz1Bho\ngbOxL1SVC15KmKZVRu51vEBExPOc/7W47e172Bdc6KOV/cgAAAAAUGiyM2HB7/frRQX6ELKLFy96\nPB7jrhRpwUtLD/Sv1ShL0MaO0aNe3yv3uN9h/1C4h4i0rpOxgwJnSY0uPWVxuxa+QnJ/WqcEAAAA\nAAUrOxMWErHt2BUIBFiVwu3bt10ul3n3YgUCo8l9XGz7lSSH2e7SVJULXyF3W2y7IVDWgpc4cXsK\nPwEAAAAAFLo8TMH1eDyhUCgUCnV1ddnsNiRiiQzhaXxWVVNVUkbsnt6vKcrSYXrgK/drxg5ipvgY\nIGemZxcOneoT/9ef7/j3V068fWN6diHfZwQAALDW5DZHuwJafJyqqSqnRol3miNdIpL7bNp4mQ7T\nH8aHsJrcF3tZgFwaHI4+d+ST6Mw8ezgwpEbkyfdPPl3uKM7viQEAAKwlecjRLsOaeWVRqSWi1exq\nYc0B8eKzNNuAGCCXpmcX9h//XA9nmYEhdf+rn+frlAAAANakgotoNWs9AOvYZZ06ZqguMB0chxUe\nWAJlLUklLkA2nL4wNDoxa93eK0++96FdzQwAAACsSB6qDhRFYTMX+vstSVa7YbmaGuVso09DH4Ml\n1ohWGSHbHC1ALo3dmjt9/otEe09fGNq7E6PvAAAAsiMPOVpFUdi0sL6+lAoJSFFsI13bsgFrKldT\nRux7dSHGhVw6lzQLOzoxizQtAABAtuQhRytJEpsulmQKbhw1al8yq6qcaYt9Kle1D4htWyUAZMm5\ny3ZVMQa98iTStAAAAFlRYHW0tnlT23g0tsuu8MBEGbGNdDXbMlyAbHjvwxHTgjCr7t7xsVtzq3M+\nAAAAa1uBRbS2dbRyX8IKgUS9ugDyamA48dswg4g8leszAQAAeBAUVkSbi/VbWvhKwkgX7Q4gN7p7\nx1M5rFeezPWZAAAAPAjyUEe7zBRcW6lFujadvwBWXaRvatmSg9iRyNECAABkQ+FNwbVj04yWbU8x\nyYpqBFhFqcep0Zn5weEUasEBAAAgqcKqOsiRRAExIl3IBdupColEUHgAAACQsQciok1ES6VVAkCa\n0qoliM4u5O5MAAAAHhAPdEQLkHVjt+ZSLKJlBodS6ooAAAAASeRhZZg+WGFsbKyysnL1TwAgd0bT\nbDGLdgcAAACZy0OOVhAENjasoaEh09dCISwUmBW0L8CcBQAAgAxlmqNVFCUQCPA87/F4eJ437lJV\nNRAIEJFplyAIgiCwr1Oagps7CIgh29IqOWBGb81VbirNxckAAAA8IDLK0SqK0tjYKIoiEZk6y6qq\n2tjYyPO8qqrt7e3pnVPoY87zvHU7532p6MxfZXLCALk2NpF2whWltAAAABnKKKINBAIej8ftdnu9\nXiJSFEXfFQwGJUnyeDx+v19VVVmWU3xNTmwgqYXzHrHZ5T1CngPcYn43kaJrn3Pel+ye/lJR6OMU\nTwNgZWzrYp1lJZ17tnbu2Wr7FLQ7AAAAyFBGVQd+v5+IZFlmAatgiDUVRdErDURRVBN1hLWSdhAR\nCdWcIGiGEJmTdhDvJCKSWiigJHgycdIOErdzvFPresO8y3uEeKfpZQFWwbuvPtnUsIGInI7i44Hr\npr1p9a8FAAAAqyysDGMRLSswsD2AhbY+n8/lcrlcru9+97uPP/74448/3tbWZj2Yk1piXwnVcTvE\nxWVk8dW69k8Xqk2p3LiAGCA3In02y8KaxY0snCWig7trqzY7TAdMzyBHCwAAkJGMIlpZllVV9Xg8\nZ86cEQQhUWkBq0bw+/1s+O0//uM/fvnll19++eWlS5dsjtYDWTGuEwK3uJ1LHpLqz1pRQAyQdXt3\nxd2Krc0VpgOis2kvJgMAAACjjCLaYDAYDAbZ10r8R/lut1sPcGVZFpYrfl1iikSX3W6iR64rC4gB\nMmDbuqtZ3Gh8WFfjNB0wgJVhAAAAmcmojtbj8bhcLlmWWTgrSRIRcRynaZooijzPd3R0KIridrtT\njGg5QxjKCdWacZ8e0SYPbXlzuJDSswByo76WL3cUx22pwacEAAAAWZZRRCsIws2bN8PhMM/zrIcX\nEWlaLBC9ePEiS9Pqu5ZnLAkwxaApRLQpBcRixmMdABKwNqNtik/QElHlplJnWYnpyOnZBVPgCwAA\nAKnLwhRclpq1ZRvLBgIBVqtw+/ZtUxfbTKUSECdK4hqpUa3jBVKjnPdI3EoyNar5XiZlhHO3kedA\n5ucLa0yKzWjra3hTk6+BYVVfPQYAAADpykJEmy6Px+PxeIgoHA6bZ4YlSKAu24M2E5rvFb3VV1Ho\nY5JatI4XtOAlIiK5j7v2mR4Na+17tPAVItLCV4p4J7ltejUAGDWJNnFqeRnSsQAAANmUhe5dqyHd\nZWHxuLQqDeT+WDhLpKmq1nUytj3cw8LZ2C7fK2m8JjwYRm+llKO1NvACAACATNwnEW2G0unYpYez\nMcFLpEat2zVFIbk/GycHa4d1VkKKtQTWAlwAAABI3YMR0abFFLmqKrHUbNDcPdcc+wKkxlqKMDgc\nzcuZAAAArA15qKNVFIV1++rvL7wcpzJinZGryf0cz2vWiWjhK0SvrdKJrXnhHi3cY9zAeQ7c7z3X\nUF0AAACwOvIT0bIFYWNjY5WVlcZdXCqNCHJJk/tstsp9ms1W0uQ+Lsfn8+DQwj36+jyGk1rur4jW\nmmet2lSalzMBAAB40OQhopUkiTX8Sr3XQYqRDSduz/TkEkS0CXt+yf2U+TeFNSH1YbYYsgAAAJBd\n90kdbYpLuxIdlnKvA9scraaqCReBWUoUAJaFYQoAAADZdZ9EtPlmLa6NbUe7A0isrha5WAAAgNWQ\nh6oDuI90R8YHh6ODQyoR1dXyTeKGAh1tpUbtK0ZSZJwMtyref/Np40NU3AIAAGQiDxFtDqfgrj5r\nA4S1ojsyfiJww9hgtVeePH3+i/pa/tQhsa4mz2v4zOS+e65nV/zsIu23mZ9CiiNwmQJ9YwAAAHB/\nykPVgcfjCYVCoVCoq6tr9b97KjixgbMryeUEwTx+TBlZpXNaXSfevrH/1c+t8wKIaGBIbekIv/fh\n2vzBM5HiwDAAAADIumQ5WlmWfT5fKBSSZdnlcqmq6vV6/X7/qp1cXnDSDi70Ecn9WuOTcdt5nrv2\nGfFO2vL7icpq14b3Phw5ff6L5Me8+KZcV8OnmKmdnl3olScHh6PRmXlTIrOulq/aVLp35/3UpQsA\nAAAKTbKI1uVyeTweIurq6vJ4PG63m20RBGG1Ti8POM8BIiJxOyft0Ni0MMbzPOvhxXkOaL6X83R2\nOTc4HH3xTTmVI/cf/1z+2R8lP2bs1tzxwPXu3vFEB/TKk83ixrUa0VpngwEAAEAuJKw6UBRFVVWW\nkQ0Ggx6PRxRFURSVNZ2eJCJyt8W+iC8w4PTFQyn3ArsfnQhcT/HI0YnZ5LUH3ZHxlo4rScJZAAAA\ngKxImKNliVhVVcPhsCAI7GFWwll9sIJ1ZljecdKOpa/F7XGjwvRAdu1GtJG+qV55MvXjT18YSpRe\nnZ5dOPRmX3Qm1aEDqVJGbGqXc9OpYOzW3OituYg8pW+pq3FWbXIU3Ko4AACAB16yqgOv19vY2Kiq\nKqs9aGxsJCI27isTgiCwF+nv7//qq68yfLUsM84GMywO43h+aVcqo3rVKAXOamqUc7fFDRXTt0st\nq98xalnp5lNHJ2a7I+OtTRXWXecuK9kPZ4k01/dNRcycu43L6pWcnl04fWGou3fcdmEcETnLSlqb\nKzp311ai5RYAAEBhSBbR6uNqBtckzQAAIABJREFU9X//wR/8gaqqvCHUUxQlEAgQkbW+VlVVfZfx\nKXrGl4jMU3DzLlGJcNK8rOZ7Ret6g31dFPqYxAbN9SwbP6Z1vVF08XyskkGNGrdz3pc4/2tZPftM\n2Ua0+3YJrB60u3fcesDgcNQ2ojWmNq2qNjuaxA3OspLozLyzrCTV8+s6aQ5neZ7zv57q01MwOBx9\n7sgnyWPx6Mz8ucvKucvKTw6La7UCGAAA4P5iX0cry3I4HNabxbI6AUmSTpw4IctLy4YURXG5XCxC\ndblcxpoEVVUbGxt5nldVtb29Pac/Q6HRuk4ap+lqHT8mNUpEmu/luO1db1C4Jw/nl0B3ZNwayf3k\nsHjqUENrU0VrU8W7x57ct8sc8UcSVCkMDCfs1Fu12dFzZsepQw1Hf/QE+3dK56dGta6Tpm2c9wgJ\nWYspx27NLRvOGr34phzpSxa4AwAAwOqwz9EGg0EWuZpaxvI8L4qi8TC3281qEhRFCQaDXq9X3yVJ\nkl6uIMuy8YkFi8s8PFJVCpw1btBUlQucJXebFr+diLTA2ex+Yp6JweGoaYu1C8Exz7Zzl+OypAND\n9pFrkriwtbmi3FGc7ulpvpe1+HkWnNhA3iPpvk4SxwPXTaftLCtpEjdUbXYQUXRmPiJPmUoR3jo/\nhFkJAAAAeWcf0bIWBy6XKxQKJXmyHr8SUTgcPnPmjP5QURS90kAURfV+ma2VKKJNeTWYFu7RLD+s\nFrzE0rTW7ZwaTakwN/cGLbHp3l3mq1HuKG5trjDVHkT6pnIe1cn91vcD3Jm/yuJ3mJ5dMP1c9bX8\n+yefNgbf07MLzx35xBjEp7WQDgAAAHIk2cyw5OGsLhwOb9myRZKkRFlYFtr6fD6Xy+Vyub773e8+\n/vjjjz/+eFtbm+3x9zVr4EVEmtxHwUv2TzC2vM0ra3DWLG60HlZfY56mltb015WxNgDmvC/FLbnL\nmLVM4uDuWlMuudxR3GR3TQAAACC/bHK0rHw2FApxHGfdq2lxLa06OjpUVQ2FQknGLrD6WuuwMb2N\n14Mg0ZgxTe7nxIaljlRiA/FOkvu1rjeItUQwfrC+uJ3EBs57JIvJ3THLBNf6Wt62NqCu1hzRsumv\nbUc+TfF7dfeOm/LBRz3bvpfkCYF3tPi4nxMELqv1BkRUX8O//+bTpi2mY8ZuzaG9LgAAQAGyiWj1\n1KwpeLUKBAKqql68eNG6y+12+3w+9rUsy2t7zFhGVFULvBPXKoHn7y0O4NXCVzhlhDvzUyKicM89\n17OxZ4WvUPgKF/o4W0HtqCWiTdSaKlGBQeqfv49OzJqqUQ/O1iY82nZBmP+1rJdqlDuKrT/a9OzC\nwLA6OKRGZxcGh1TUGAAAABSmZN27lsVWg+mpXK/X6/f7OY7TNE0URZ7nOzo6FEVxu90PVETLiQ2c\n/3WS++7Ff1bO8TyLTbWOHy/V2iojJMblArX2PXEP2eoxaYd5u9xHXSez1f/LupCLLYeyZcplVuWy\nLatm7djlblua65YDLBEbkacGhtVctNQFAACArEsW0aqq2tXVFQ6HWacCSZK8Xq+xs6zf77fWEuiZ\n3YsXL7KGCfdFl4Ms4i6eJ6GapBZOGYkrq/U8z0IxTo1qHS/YPlcLXrLWJ2iBd0juty44o8BZylLt\ngbXRgTNxO4LVW92vjOjZaybrDWhNTrx94/T5L3L3+gAAAJALySLa9vZ2RVG8Xq8gCGxcgsvlunbt\nWuqvbhvLBgKBYDBIRLdv39Zb3q4ZnNigN0zgpBZjRLtU+uluowQRre0CMlZ7YLNdVbnwFXK3kdxP\nxniX52OrppQRkvs0uT92AryTxIYUZ5VZ62VXn92CsGw2oDXZf/xz2zLZ+lq+clNp1WZHXY1zcDiK\nkBcAAKDQJIxoVVUNh8O3b9/Wk7Jut3vLli1s1EIm39Lj8bA+tWtzZZi0Y+lr4xxdtuQrtj1hVtUm\nEcu2J1lY5m7TfC8b105x0g7uzE+1jh+bFlSx5DnH8+Ruy3po+NXVPzY+fOyZv010ZOeerdapCpql\nGFsL92jx8X3WG9AavffhiLV718HdtaaJaNZkNgAAAORdwu5drIOsscaAiB6octgs49NIeXLSDs7u\nUnOCwJk64xqGkC1RRrTGp7QEfcE0VdUCZ+9t2UqBd1I/pdVnqjcgSu8apsu66uv9k09bB/yishYA\nAKAAJYxoBUGQJEnvV0BEgUBAUZQME7RrXsIZYCnPaCjyv86FPuJu/pMpeOXcbdzNf+KufcZ5X0r+\nCpqiaKrKCUKR//Wi0MfsH877EhcfEd7reKHAg1oTLXyF7KovsmJ6ZsH4sGqzw9q8zDqFAQAAAAqB\nTUSrj0Igoq6urvXr17tcrvXr13d0dPC5TJIBEXGCoH+wznmej9u1uCKK8xxY/nXEBu7aZ+Q9QlIL\n+4fzv8bd/MIUJWu+l22HmRUsbbVC8NGJWWuPXuuYXAAAACgENnW0brdbT8Qa59xmi6IobOZCf39/\n1l/8vmfsS2Woc+UEYelhCvWv3MXzNtW6vJPzv67pTW3Z2rLgJUohRC4UgbOUpYZlJuVl5ozsc0c+\n7dxdW7m5lIjGJua6e8fT7UeL8BcAAGB12ES0uW62pSgKWxA2NjZWWVmZ0+913+ESLRpLZxWXsd+C\nmaUoQlNGbEbDFSpNVbnAO7kIwZvFjaaKgtGJ2RfflJd94vTsgu1wNSIaHI5aK3EBAAAg6xLW0eaO\nJEmske2BA/dPanDVJCq3TbkMN1vGJsyfuReIuBa/2bN3Z3WzuDH5MVWbHa3N5gj19IWhXJwPAAAA\npC4PES3kmib3JVxBFe4xbeCEarKb+2Wdi6uL9E0Z/7HWm2YLx/NFF8+bNmpyH8k5qVd599UnO/ds\nTbS3c8/WnjM7jnm2mbafPv9Fd2Sccjw7DQAAAJLIaAouFCytfQ8X+thcSqtGNctgXla5y6pFjUYn\nZhO9+HOHPzE+tO0vmx2e58ndxokNWnyTMi1wls0Tzq5yR/HRHz2xb2f1uQ9HBodijYHLy4rra/h9\nuwRWWlDuKDZ13tVZr2ESpn69ObyGAAAADwBEtGuTJvdR41Oc54BerqCFeyhw1jTBgfO/zqJep6PE\n9AqJRglE+qZycL42OLGB879GRJy7zRTRUvASLZ551lVuKjUHl8oIff5p7Gt9HlsKkrwrAAAAgCzK\nQ0S7tqfgFgJOEEhVNUWxTpFdOobnOf/r+hKruhpzdMjaV1VaPkmPyOaItknckPEp252hPh7M8zzF\n/yC5aNGgub5vnrsW+oi6TmqBd6wD2zh3GyftWPYETD1ul7bP2m8HAACAlclDHa3H4wmFQqFQqKur\na/W/+wNBqOZCH3PGebwGHM9znue5a5+ZArL6WnOz4XMf2hTjRiwdrKz53ezQmx/zTs7Y1IyIcrY+\nbImqao1P3fO9bDt/WAteutfxgtb41MoqegeG7WcdAwAAwMqg6mCNErdzoY84ZYTCPdriKjGOd5LY\nYG3gxTSJGweG4iKt7t7xzt21xtZUY7fmTMeQXX436zh3mxa8ZNyiyX2c3J96AUC69DoHThBiTYJV\nlcI9xgBXk/vI9Sx37TPWK80a2SNyBQAAWB2IaNc0oZo8B1JsN2tbeHA8cP3UoaXGYYfe7DMdY+1m\nlRPuNo7nTUXAOVofpuN4njvzU4pPD3NdJ+8ZSiA0VaWOH3Ohj8juAiaasGDtjIY+CQAAAJlA9y6I\nse3Geu6y0nbk0/c+HHnrwtCOf3/FOjSrvma1BiPHzwQmVniQyxG+nPcIWaodyHuE874UdxrhK0lq\nD2xbm1k7o6XVJwEAAABM8pCjDYfDmBlWgModxa3NFaa5WUTUK08mmf66SjlaVnjQ9YZ5a+As6QvI\nsvvteD7RK3PeI6Yz0YKXuAT1D6N2q+sAAAAgu/KQoxUEQZIkSZIaGlZ7DhYkt2+XkNbxrc0Vqxeu\nids5y+A0LfBOzr5d4pszcdcw6+q6QUvZcaKNAAAAsGLZydEGAgGPx2PaqKpqIBAgIo/Hw/NLf+kF\nQRCEWOTEkrWQob9o/0+DdUtBUl0tf3RFr9PUsKFZ3JgkI2uSbgScIWtjWk1RuHBPorVuGUk0dC0p\n6+KwqF2jruisub4WdbQAAACZyDRHq6qqz+dj/WVN2xsbG3meV1W1vb09w+8CyQ0Oqaw2gP2TSQrw\nqGXKayKde7Y2NeSkE21CllJaIjL1QMgWTVGsE4NjLInhRCUHlCAda+0XgcoEAACATGQa0ba3t9vm\nWYPBoCRJHo/H7/erqirLcobfCFZHXY3zWApBbX0t37m7dhXOJ06ixrS5WR+mdfzYJlMr95snCevt\nvYjqLFUH1oR3omFsAAAAsGKZVh2EQqFwOGydlaAoil5pIIqiqqJwMA+mZxcGhtWxibnRW3NOR3Fd\nLe90lCzbPvbg7tro7MLp818kOqC+ln//5NPGPrWrxtqYlogocDZZ2etKaYpCjU+R53lO3E48T8qI\nJvdZJztwF88nf53B4ajxmg9amtRaq28BAAAgLavR64CFtj6fj2Vq/+Vf/mVqaoqIFhYW/uzP/mwV\nTuAB1B0Zf+vCkPXTbSJylpW0Nle0NlckqRk4+qMn6mqcJwI3RidmTbv27RKOebZlPZw9dugbOvSi\nccuJDXbVse62Iu23NtsTVQisVGySsKpS1xtaomN4nrt43jjlwbYctjsyboxorWMXcjV0DQAA4IGx\nGhGtoihE5Pf7Tdv1Nl6QXcZ+W1WbHVWbSkdvzemxaXRm/txl5dxlpbW54ieHxUSxaWtTRWtTRaRv\nKiJPsS1OR3HqzQ2+uvrHaZ3zqS/Naf4TG8w3zKoSqrkzH1HHj7XwFetOjufJ8zznPWLqe2DbVra7\nd/zoj55gX0/PLlj7o5WX5SHbDQAAsJbkKqJ1u90+n499Lcuy3twAVk3nnq3GGbZjt+bOfThirCVg\nodW7x55M8iJNDRtWsPyLxW2s4MFYSNosbiwvK24WN7Y2V+SlaCE9QrV1kjARcVJLou4Ktjna0YnZ\nty4MHdxdS0SnLwxZB4lVbXZk76QBAAAeRNmPaDmO0zRNFEWe5zs6OhRFcbvdiGhX2buvPtnaFDf7\noHJT6dEfPeF0FB8PXNc3dveOR3ZNGWNWYzBqzOwSkbOspL6GLy8rrq/hEyVrp2cXTl8YOndZsR0A\ny6Lb7t7xF9+Us1u9MPDvyo+OPb2y59Y/Ip5IsjudScKJEtinLwyxNl621cnOwg/uAQAAClsWIlo2\nLkF/qGmxssOLFy+ywllRFDP/LoWM87/G+V9jX3dHxgffvjE4pMbCweafxQ76B6Jn/pbVANTV8q1D\nk8baSv3pRpH1T4xd/mJpYurbN5b2BWK9I6o2le61PNFZVmIKZ3UHd9caI1oi6u4dZxEtC0aTLAiL\nzszrIenxwPVmceO7rz5pDEmnZxeeO/KJqXiX/chENDCsGsPcc5eV7t7x908+vexKtVSod9We2YKo\nYKna7LAWH0dn5pNcWGuHBAAAAEhLbutobWPZQCDA+tfevn3b5XLl9ARW04m3b1hzk6Z4bnRidnRi\ntleePH3+i6rNjlOHG2w/0z/x9o1EARBLlGZyns6yEtsE6v5XPze1mqqv5ZvEjfpD1vVWf9grT+5/\n9fNLJ/+QPbSGs/W1/FHPNuMPGOmbOvRmn7Gi97kjn/SdfzZJpvaDr4NX58L9d+T+38SC+OoSobpE\neKZU+sE6d1VxLPe//VHxcmUotQtgxj+UzYCyalOpNaJd9ilZPAEAAIAH0GqsDDPxeDxswNhaWhl2\n6FTfucuKcYupjJWIxm7NHQ9c1xcGjU7MPnf4k54zUl2NM9I3ZXxuknwea1Ng3DJtmUoVnZnvjozb\npmm7I+OmcJbFx4PDUVM4e8yz7aCl46wp1DY+5bSltcKpQ6Ip/9rUsOHdY0+2dCz9R4/OzB8PXD91\nyKb31tW58MFbHSPzimn7yLwyMq/0zIb/fNJ36HEvW0DW/xt519gK3x21OKS/+84Ko2Grulo+9aFr\nDMYrAAAAZCgPEe3a896HI9ZwVl/erqvcVPrusSdPbL5h3MgGor51fijF7xWRp8Ym5oxbbKd8HXqz\nb2xibt8uQQ+pbYsKWpsr9u6sJqK6GmeS7gSsr+3gkGr6MeNPzJzfjc7OmyJ1fZcx9u3uHbeNaFOJ\nUFmHhKx0ReD8r3PqkaXH/AoTt+kmXJsNWXAAAABYGUS0WbBU6rqoSUzW6tW6Uf/snnnsmb9N9PTW\n5grbVzBhuc/jgev1tbzTURKdnbf2prUNuweHoxF5Mjq7wMa3pp5uNL3+wJD63OFPUnlidGY+0jdF\nj9js2s97nimVtj8qVhUL0Xvq1dnwqa+69PID5tSXXft5T4onmYxlkm13ZHxwOMquw+ituejMPMtn\n19XydTXORJXKdWnWhNg2/AIAAIC0IKIlkvv0L++5nuXEBs7zvBa+QnK/vl3rekPreoMTBBKqSWwo\nunieDONYrWvVxybmKPtDrFLF2mOdvjA0OjFrDWQTTVjojozbjlSgxWrg8rLi6ZmFdD9SX7G/2Oh/\n8TGv/tBZxP9gnfsZh7Ttn7eod+N+KGtlQiaStGtgPzv7t7OsZN8uwfqWIN2FbiiiBQAAyFweIlpF\nUdjMhf7+/mUPXn2a3Ee+l8nzPCft4ITq2MZwD8l9WvgKKQqFr2hEnCDo86L27RJMfUaPB65Xbi61\nrvp668KQqdWAtc3WCphSvMzendVjt+ZGb80NDqmsdVSTuCHRFNzuyPj+Vz83bmltrti3S6iv4Y2l\nwCfevpFiRLtvl2Cq902ivoan/2beaAxndc4ifvujYu7aGgwOR/cf/zyVpV2sfUFEnrQOBG4WN6Ye\n9zeh6gAAACBj+Ylo2YKwsbGxysrK1T+B5DhB4K59ZpoFxUktRMR1nbzne5lt0RSFXM9y1z4jobrc\nUfz+yacPnZL1hGh0Zv65w5+YegV0946b2rse82zLPJw1ifRNsVayRDQ6MTs9s7RubHBIravluyPj\nTkdxXS1vDLjfuzxifBFnWYl18oLtvCudqTp2bGJuBaMZ8ou1a7B2qzCG5qb/iAND6otvyqZrldbi\nsKw0LwMAAHjA5SGi1fvXFmivA95pCmeXLKZsGU1VOTXKvq6rcV756x3dkfGIPBWRp1jQMzCkWj/0\nJ6JmcWOTuMG4bCtzg8PRcx8qxpVbzrKSJnGDsddpdGbeFJC1Nld07t5qDaqiM/NvXRjSz3B6dqFX\nnnzrwlCS5OW+ncLA0FKFa688adtvwbbJ15W/3pHeT5sbxwPXTeHsvl2CadVa5+5a0/lbp1SkHqRi\nWRgAAEBWoI7WTJP7yPV9zt1GYkNstZAaJblPC/dQ4Kx+GMfznP9103Ki1qYKPYazXeaf6EN/o0jf\n1PtvJht/NTgcNb2Ibc3ATw6LthHzW4vzq2LfTp6sq3Hu3VVtSiuyhWXJT5WIxm7NseZTe3dWd/eO\nG19k/6uf79slNIkbnGUlsTMfUs99OGJKVJ86VBADOMZuzZk6OVRtdlibMJQ7it899mTDno+NGyNy\nXESbepyaZAUhAAAApA4RrRlb/qV1ndQUm/VGHM+T2MBJLeR5PmEqV+4nVW2y3XWb6HcbTE+cnl04\nd1mJyFN6OMhWHRFRXY2ThYPRmfnB4Wh0Zl6PulgKtrW5orWpYnA4avo+zeLGRAlga5dZImptqnj/\nzaffOj+U6ONyvQ+uKXR+7sin+pyId1998njgujEuPHdZSdLwq1nceOpwQ1a6sa7/l8a/vxN35unW\nPERk8zuQRHXAlZtKTW85nI4S48NyR3Frc0WSCo2lk0SOFgAAIBsQ0VoI1dyZnxIRR0ThnrhdojkY\nXRLu0YKXKNyjx8GctIOE6qW2popCcn/cXrGB8xwgofrcZcWUDe3cXWuNO1n2d99OgbWwZVgs1bm7\n1jTQ63jg+uitudamCmM2d+zWXESeMn22rn+w3tSwoalhA2s9q4d31orbJG1ryx3Fpw41tDZXsAm3\niQ6jxWVnWSy0PRG4borFk5ynrbRasC175vU1/LIRbdVmB4poAQAAsiIPEe39NAVXaknlKM33itb1\nhv6Qk3ZwF8/bxr5cuOee61ki0sJXKHyFAme5a58d3F1bubmUtT5ljWOPB653R8adjhJjFezgkDp6\na459ZN8sbiwvK66v4VkesdxRfOnkHw4OR7sj44NDKpu4e/r8F8lH6dbV8vt2VptSpOWOYhbaJvph\nB4ejJ+Lj76OebcbILBYZH46LjGPf1xIf586Jt2+wS1G1uZTF/XrIy5qRVW4urdpU2tpckYuRXft2\nCcvWbKTeCwIAAACSwxRcipXM6g/jl3+l9ApCtWZ8rKok99lEw2rU2PuWiIjnWRI3VoAb7iHiiNaT\n3KepA0Q0+ItHp+8+RER1pb8pf/gu/R5x/8t24nmiBRK3mYLmuhqnMbJk2VbTKZi6cS2LVQMbY9Do\n7LwpG3pwdimdzPqF6YHsYPzCuPKy4ujsQkSeWp3Q1lrSwJa4nQjc6JUnSSYiOh64bl3+xVj70aau\n3FG8b5eQpOKCiPbtTPtOAwAAAFuoOiCSWijwjv5IU0a4cA9JLcR60KrmElViUa++boyIPAeKpBYK\nXtLkPlJGNLlPcz1LrLRAp4yYSw7E7bExDYF3tMBZbTHYZWvOOLGBhOp6Y3gd7iEiLXBWC17SjyR3\nG3fmp8YkMeduIzVKROuUkT9UFGKVwVIL8TyFrxCRxla/sadLLZy7TZ8WoU/JSlRN2yxuTDTj6sTb\nN4yNFNgcB1OzhYg8ZXrxJCvYMlS1qdSafC13FNfX8M6yuG/HpgpbJx0MDkcT9VY78XbcKOOqTaV7\nLeHpvp3JItp9u4Rc5IYBAAAeTIhoiZQRY80AEVHwkqYocfEoI/dpqkpELCMba3fgOUDKCCkjJDZw\nYgOxAlyxgX5xnf7zfzE+m9teH/dqerQqtZAywgnVsaYKqkqBs2T97kSkKCyu5cQGYmvULLNbObGB\nvEdiX4d77rme1RSFAgrnbuOufRbbTnSP+x1NVSl4idQo526zThbo3LO1SYwrP2BluKcvDFnP660L\nQ6YKh1OHG6zhYJKk7Ox3tUS7KL5xxGH62eH4vfUaT/S56SndvePHA9fr42fSsnoMMtRd6D9ja3PF\ni2/Gzdc9d1mxVmWwkzH9sMc826znXFfjTJKm7bRbnwcAAAArg4jWjri9yDJkgYhIjWrrlxana6qq\ndbxQ5DmgBd4xxcSc53nO3UamEJZIC/eYjiy6eJ4EgZNaiGJVChzPk7jdvCgtpoU8z3OUtMBXTDB+\nVxASPoXoROC6MZy1ne9aual0787qys2lzx3+xLSrrpZ3lpUYP6aPyFP1Nbw1HGRpYOOWzt211hzt\nWxeGjM0fTPbtEvSOYERUtanUdmra0Skf+2L8ehn7oulZqtg2ox/wDdEVIiUq/NDpKXcUd+7ZagxV\nozPz+49/fuqQaKzliPRNmbo9sGy07Xke82zr7h23Vi907tmKBC0AAEAW5SGi1ctnC3NmGBGRINj3\nNEjU6MCCc7fZBp0ckSmi1eR+Cryjha8sHcNqCVidgJGqauEeCl5ieWKWQua8R1JcvpZca3OFnr8k\nou7ecWdZiSlDqc9ZsD69qWFD3/lnu3vHB4bVsYm5XnmS9e1iqVD9MOParLoaJ1vZxsLZtiOfGl/Q\neDJWYxNzY7TUmuAckTX+JqKBO4s513+9tPHLO4lelTp310bkSeP0hIEhtaUjXF8bC83Hbs1ZR2Yc\n82xLFJ6yYXKmOWS27xYAAAAgE3mIaAVBYDPD+vv7v/rqq9U/gazj/K9x/tdSOlRqKdJ+a94YeMe8\nNM1zwP4budvozE+51E/A9tsREZFp+96d1azr1sCwOjgcHZ2YtW2VwGI7m0FogXfWBS/9KdGfsonB\nLzdo4Z7puw8Nzj1KA7+kmn9FRORwnPrx1u9c64095f/ro4lqGuRJ3E7uNlOSte3Ip0kGydpmZK16\nZtNbd8gC0P2vfm761olmv7E5xtYKWqO6GmfPmR2nLwyxNwmtzRUIZwEAALIu04hWVdVAIEBEHo+H\nj88pJtolCIKw+Al4IfQ6yNzAHfn9r4NX58L9v4klBZ9b564qsf+U33gYMysp5qVpXSeJ58m260L8\nYjVO3E6CMF37BAtGp2cWWIev+lo+UfMvPW/aJG4wdr0tdxQbH7KuBfrDuIVWx8wnpV0c0dPMLG3M\nSS1OoqZwzz3XMbrCtr/E/fF/oD+WYk9xfV9jM9ikHdzi0rS8Y33Q3vtw5NyHim0Uy7DYtHN3bSrF\nA5WbSk8darBtpwAAAABZkVFEq6pqY2Oj1+tVFKW9vT0UCqWyq+CIDUWhj0kZ0ZQRtoETqm3KWFVV\nk/s570tExPFOEhtIqGZBZ1WJ8Eyp9EypREQDd2T1rso/xNc/Yj/clX+I1w+O+cyyNE3awYU+SnS+\nrJFC7GsiTtoRfS/oLCup2uwgItZmtbysmD3UsR4FoxOz0ZlY+61eeTIWwi52yTX6PaLfi99yL8H5\ncN6XVpAk5kIfWZPNK3Z1Lnx1Lu13Ry0OiYji/lsQEdHendV7d1azlXCjt+aiM/OsHwJ7h2BaMKcb\nXVA++Dqo3lX1aof6R8ToXdX5UOx9hX6HjMwr76oB43OTL4wDAACA5DKKaIPBoCRJrLlsY2OjLMui\nKC67q+DwzsHvNETXP0GNsQ1OR4l1mNPgcDS6Je7D7iYhFtaU/x9vNi/23momIt5JwsNEvbbfbfHI\nX5BQzbnbSKgmqdoa9umrmsy+RzT5ov6oukT4odPTHb+OynatkrOsxFh7ynRHxpvFjeVSS2T279kW\nPS6sLhGqim3SzNG7avSeOjJvXML/zZOzfzf5za8++DrIHieK5slY20r0g3XuHzo97OvB4ahxFlq6\n03HNbxKIiOjEBn/qrxDXAc37Eud/rfKRhb2PjFA13XM9G2t8MVPNnfkpqdFYJzXfy6RG2bsazv/6\nyNavRuaV0QVlZF4ZmVeZ0F/CAAADi0lEQVTYuxrnQ/z2R0Q9qGVvePSHAAAAkBUZRbSKoujlBKIo\nqqqayq7s4rxHOOPSKJZblVqWsoNsi55ztcsapjKMNMkx5nVgrFlBZtKKxg7aTc1NCwsHr86FrXGh\nifMh3vkQz4JdPeqN3lP7fyO/+JhXP2z7o6KzyBy3mV7f+HXm82A13yvGh5y7LfZfwZRuX8ysm9ik\nmXkn+89qvmEWt+vd0JhnFr+I3lX7FwP36hLBGL/WPyKy9wwtDqmqOLZre+I3AAAAAJCKrK0MMxXR\nWnc99dRT//zP/0xEv/3tb+fnY9m49vb2//FXvyLp6dihXX9JXX+59Ezp6VhyV/4HMs7L1Y+nhYpD\nL46Pj5u/5eKLqKqqqqpgbFxlfH2imZmZsrKyJD/Xstnlb3/727/61a8yeYXk58DeGyS5vA8//PA3\n33yTyQlUVFTYXMNFNtcw3oqv4f9JXeyLnFxD+R/0L/N4DT8jmRJcw38iRT/mryhQ0JU5AAAAhS1r\nEa2iJByPxHZ99tlniQ5IwuVyZfKXnnUK8/vTyHdm9wQyfwWfzydJEusOkZcTwDXM/AQyv4YAAACQ\nBKdpK1+SIsuyz+djf+m3bNkSCoX0LFSSXZCWzKMxwDUEAABY2zLK0YqiyPN8R0eHoihut5vFrBzH\naZpmuwtWQBCEJB+XQypwDQEAANa2jHK0jCzLRGRbZZhkFwAAAABAVmQhogUAAAAAyKM8TMGFFLGB\naqz6s6urS++AhgVGqbBesSTz7QAAAOC+VpTvEwB7qqq2t7frU4K7urryez73HdMVY0PseJ5nFzZf\nZwUAAAC5gBxtgWpvb9fX5quqKooiUrOps16x+2mIHQAAAKQJOdpC1NXVJUmSsRWaLMtbtmxZv349\nkrWpsF6xVRtiBwAAAKsPEW3BkWU5HA57vUsTZQVB8Hq9N2/evHnzZiAQYB0kIInkVwxFtAAAAGsM\neh0UHJfLpaoqz/Ns1prX62WflTM+n4+wOCwd7Iox7Lq1t7d7PB4MXAAAAFgzUEdbcPx+P/tMPBgM\nEpEkSYFAQFVVlrVlEyvyfIoFz3rFBEHQQ1tZljHyAwAAYC1BRFtw9BVLrNGBIAiSJLlcLkVRFEUR\nBAER7bJsrxiG2AEAAKxVqDq4b4TDYZ7nsUI/ddYrhiF2AAAAaxIiWgAAAAC4v6HXAQAAAADc3xDR\nAgAAAMD9DREtAAAAANzf/n8G9K+nYXw+wQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "'cluster 0, 53 sequences'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAEYCAIAAABdsnUYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3JpcHQgOS4xNeq0bM4AACAASURBVHic7L1/bBRXnuj7\nPZ7BmxnbQ1fmygyIu9g17+G8fZMFXJZeRvdO7ED302YUHu+GaUvwtMNOwrRXmaegAHm2lLyQoESv\nWwEicl9G6+bHCkYXnuiBFQ92WG03xs7MavOHy+AHdzf2DWVbiyCgjasJ9k4GZqj3x7HL1eecqq7q\nU1Vdbp+PEGpXV58+fep7Tn3re74/kGEYIBAIBAKBQCAQLFrqqt0BgUAgEAgEAoGAC6HRCgQCgUAg\nEAgWN197++23q90HQS1TKBR0XV+1apXvrWUymV/84hebN292OL+vrw8AZFlmNpXNZuPxuC8dI7rn\npm/OLTDfdfg5dvT19cmyLEmS155U8KWFQkHTNACgv07X9X/4h3+oQBI0TdN1vWz/y/5Mu3boPuOu\nahaYv4hGVdV/+qd/cj7ZvdQ5DKZLNE1TVVWSpG984xtBv1UBhULh+PHjf//3f19gARaR83cNKYuD\nwFcwAXm+kSm0vi8RIeCv5AgEthgCQZAkk8nh4WHfW0un05Ik9fb2Op8PAHbn9Pb2+i7/uHsu++bQ\ngt27Dj/H4SP5fL6Cnnj60uHhYetNNJVKWd/FQ42Jx+PT09Muv3p6etrlSJb9malUimjHrs9nzpwh\nFsmyHZienlYUxTw/mUzanelG6pwH0w3T09PJZJLZf9/fqphkMvkXf/EX8XkkSZJl2fyzv7/feubw\n8HBvb68v31sWhx/o129306yd8Pu+RFjxfZCDkByBwA6h0QoCZHp6WpblIFrr7e2Nx+NlPxKmRmt2\nz2XfHFqwoyoarRtkWVYUBauq+XweANLpNH6rv78fAM6cOWMYxvDwsCddH9syOTVarAzR7dj1uYLL\nF4/HZVm+efOm2RSP1DkMpkt6e3slScIDkk6nrYPj+1uVQYt6PB5nDpp5JtZ0eb7UJeFrtEyYwh/E\nEkF8qb+D7LvkCAQOfB0EgsDI5XLJZFJVVQCwGrGsR1RVzeVyACBJUjKZtG41KoqiaVoul8NLIW4N\nf0TXdV3XC4UCXvc1TctmswAgy3IymbTbqDW/i9j21XU9m83iDb5UKmV+nO4DAGSzWbwdjFd/+scS\nfcONqKqK91JTqZQsy7gR4uvcDJf1x5odwLuT1o8UCgVZlonNR7yHriiKruuappmd13VdVVVFUSRJ\non+y2RR+C4+V9dtVVdU0LZ/P4x+CjxcKBay9ZTKZVCqFL5yiKL29vXj0nAcTfxD3lriI1mudSqXo\nq2z+TEmS+vr6MpkMfY5Dn3Vdp8937jD+IB5tfBxfMvO7aKnDnaQvAT7O7JjDVSauWjabTaVSpkqU\ny+VMVwff37JeEXw5rJ10niwO40yciacV/snupxUe1Xg8nsvl8K63ucLgt4jvIi4QIecEuAPm5DUn\nqd00cb58xGy1E37ruJWdCHY9xH/Sl4YeZE8LIxNnyREIfKbaKrWglkmlUthCJkmSeXB6ehoA8K4i\nNuApioKtXJIkYUOXYRgAgNdKRVGsrRmGgbUHSZKwOQFvE+NGJElSFMXaiGmxsH4XPg3LPzYc4h1P\n3Ky5qUf3AX/WvAdYzSHmj7X2DTeCb7f4loDvDYqi4D/Nlt0MF+6J2QLM2z7xTzN382/evGm+BfNG\nEfwz8RY2saHZ29trdoP+yebPxC/ob5+ens7n81ZfAvzrzJ7YWWUcBnN4eBgAhoeHCdMdfRHNTtI/\n0wpQ2+h2fcbfmM/ne3t78Q8s22HiG/FjlV2HsdTZXQKHjjlfZfOq4aGzjrkpUb6/RfxAmFePnIfL\nsMxl69gyjYvWSeF1WmELNz6NmN1YtEywNmm2zJxlRqkUEWNi/nC7aeJ8+dwIv3XcHCZC2R7aXRpi\nkD0tjEycJUcg8B2h0QoCBK93eF0z7wrWlZ3Yg5Zl2bocW9dQszWMdWvYqk/gXTnzT3OxxvcPs3Hc\nJXwPs+of2CHSete09oH4IcTqbHaP2LYGAFmWrZvIhLrjfrhwf8ybonmLwlqv+RHsyGt+ez6fp/U8\n/BgwPDyMu2S9VxHDbtVomd9ucvPmzd7eXmwjxy2Ym+b41m693A6Dia8CPtN6Uye0QGsLdj+T/hUE\ndJ+leXCfTXcChw5jkyp21Y3H4+YzlYPUOVwCu445X2VizAk1An+p728xr4ipD7mZLCZ2Gq31YdLr\ntMLHTRcOLFf0rj3hDOMg5y412gomqVXImcJvHQ3niVC2hw6Xxvpj3S+MdjhIjkAQBCJ7lyAocrkc\n1gnwXQRvDuLj5gbWmTNnzP0yerfXNHJYWyPAkb9m7BHeWMSbcURnAMA8DdtyYH732frxVCpldpXo\nA8bcrEyn0/gu5dA9jOkIgS0i5r6hdZ/RzXDh/pivzW/Ev9r8CN7ps3Y4kUjIsozv9GaXkslkT09P\nT08PNhA6/GTrW/S3mxQKBbzDjn+CeRzvM+bz+VQqlclkcDi22Tf8wjqYfX19kiTRu5nEtVYUBasF\nDj+zLHSfsWxMT08PDw9jlbSnp8e5wwAgSZKqqlicrG4kwJI6jMMlYHbM+SoTV81hY9fHt3K5HHFF\n+CcL0T7ntAKL0GIt0MxfgdF1vaenJ5lMWuXNWc7LUsEkNbETfrCMhvNEcImdJJvvel0Y7RA+BoLQ\nEBqtIChMZywAMJdyTdMKhYJ571EUJZfLdXd3JxKJJ5980nqncWjNCl6Xrfcw5mm6ruONNvMIfo3V\n6L6+vsQ8WBumfexg3g00k8k8+eST3d3dmUzG1MLtuseEee9xM1wOxONxrD/hW5H1I/geifUt60f6\n+/uxh5yzJ5x7UqkU3jHXdb27u9t6PJ1Ox+PxdDqNBxDsBzOXy+VyOaZWivtvHT1sE3X+mV77nM/n\nzQHB9n6sQNh1WNO07u5uHIGO7cQAgJuykzoTh0vAHEyHq0xgVT6Ce8v0VzaPmJfDl8nCP62AtThY\n1xk8tn5NAWfKXj4H4QfLaDhPhLI4XBoTTwujMw5CJRD4i9BoBUFhVcVSqRROSZjL5bBjFgDouo4X\nSrzC3rx502FRdqnYOeAQ8dNrIZ1O5/N5u4SO6XT65s2b2CKSyWQSiYQZS8HZvbLD5UwymdR1Hd8R\nCVMZ7rOiKFZbI8xberyqgDRY7Tb/xH541iO07RC/yxxMHJ7y3e9+FyGEECoUCplMBr9w7obdz6ys\nz0TnsQ7E7DC9S5BKpbDKAo5SB6xL4Nwxh6ts/YjdQd/fcv6B/JOFf1o509PTo6rqmTNnvBo4K6Ps\n5XMWfh9Hw+7SELhfGJk4S45A4DtCoxUEAg4xNv/ECYnwUm4uyvhGjkNwcPCB3d2RaM2KMp8wwTxS\nKBToRVOWZTOSF2NNX28GSZgmEDszKs7kn0ql+vv7h4eH1Xk4d9bcDJcz5p4m/RE8ROl0WlVVM/Af\nb7ZiT003KqADhULB7o5oPrqYR/CVwloaczCxbdIE79TjF1blEtPT02N6mDB/ptc+08etMezMDluN\n/Rj8GkfVMKXOPI2+BA6DCY5X2QQbTYlkC/hC+P6WLMs4hN86gOYLzsnCP63MdszX2ESK1bJsNpvN\nZr1qaVboi+5M2cvnIPzW0XCeCGV7aHdpiK6C64XRDgfJEQiCQGi0gkDI5XLEypVMJnEOHcJ7zFyX\nM5mMnbGQbs0Eq8I9PT14vVZVlemghl3uzNOy2Sy+t+FwB/O4pmk9PT12zg+6rmcyGfPOgW/ekiQ5\ndM8l7ofLgXg8jjPyMG+WOMoEZwUCgJ6eHmwa7+/v1zTN6tvqFdxzswXiEqRSqb6+PvylWNc0czwx\nB9OaZh9v2ePbKtYGJEnq6+szL2I2myXUEeJneu0z1kGtxzOZDLa/2nUY983qhID9hs0O01KHYV4C\n58GEclcZk0wmzf7gElxmC/6+ZV4RfFo2mzWnMP9k4Z9WGHNh0TQtk8ngFaNQKPT09KRSKWxlx7jR\nSk3wb8GvrT/cGefL5yD81tFwMxEcemh3aayf9bQwOuAgVAKB/1Q7NE1Qm5hhyCY4yIYopxSfz/hj\nGgMkSTIzVZlBu3Rr1nwCZo0lMyGoeTKUZu8yV23Tc9H9xzF4OcZ3GvNdont0rgNrI2AJ/sWxwO6H\ni2iK+CIc3kF/xPw6HCKNg2AkS6I0M+ie+ZOhNHsX89utY0uMIVFPy/oWczAJ4qXh3jgs3bxYzLBu\n82c6DJ1Dn4njyWSybIfN9LEYM7jesJc6h0vgMJgOV5nITYbNY3EqbZbvb5lXRJIkrKCbUuFmsthd\naPpM/FwRZ6UdMGymlZm9yxxMM3NFr6WOnQluwUHOifUE5rdTrD+8sklaVviJ0XCYCGV7aNhLsnWQ\nPS2MdjhIjkDgO8gwDHpiCwSc4HTxLs/EwTGKomCfQro0gJvWTEuDw5lmWnUinMXlx60dBgCzn+5/\nrEObnC0AgK7rTz75ZH9/v79WEIQQ9qIr++1mwAozDQLzLXow3YBb8/QRT312+C0OHbb7jQ5S57Vj\n4OUq464yR8nft8zexuNxHGhlVhLmmSz0mXiE3RtusQsH9iswqwm4/KwbzLQJ7ptlXj43U4w5bmUn\ngkMP7SSZGGT3C6Nz5+2ESiDwk2qr1AKBwB96g8leDsKyEiUCusqVQVTQwNZxvMcSBeh8qFWHefnE\nFBMIfEFUwRUIFj3YKdCaP9IXVFXFEUsimCMKBHSVecDRRYlEwowcInLuCkyYl2+xTzGr0zmNWVpF\nIAgH4XUgECx6cKiHbFPevWJwkFMymRS3pSgQ0FXmB6eZA4CoiQoWYBzwV+2+sC+fmGICgY8IjVYg\nEAgEAoFAsLjxx+uA6bCv6zrOD2ItCSgQCAQCgUAgEPiLD/locZFGotyOrusdHR2SJBH1MAUCgUAg\nEAgEAn/xwUbb3d1Ne7XjdNDYYaijo8OX5EQCgUAgEAgEAgENr0aLS7DQpVY0TTM9Dcw8o/RpizTA\nMyS0CZBbPRxfzIyOF4szD80/Y43169bGqtgfz+hFUEcq/3h8o+1b/GLA2cJSkkNOFr0Ye2Ro5J71\nz5aVDWtWNrj54Oh4cfLOzOh4EQA6lWawjNVSG8OapPhYv/pbV0XUmDzX4KQYYKlbv1Za3ris4q8o\nS8hyWPFU4sdhMoI2AdpEydlKO0iuxyG426INXBqtqqqFQiGfzzuX0MSqraqqRA29qampQqFQNnP7\n0sTo+L6hjtTlLxEXde54/88h9XK1+hYE+7PXB9W75p9dyoqzB35Qxf54Rh15nHi+4k/XGb9jHucX\nA84WlpocchKoGJ+8OHFtXAeALV2rO9ubq9ICwYt7Prb+uWv7U2/99HvOHzk/dGt/9sbk7RnzyOFT\nn5qvv7jyo0W/FCx+rswWNk8lrEc2Nsb/3z/Ou2/h6m9VogVPzPwJO2D9w9Njh0+PFR/MKZo7Nsv7\nUk8HpNeGLIdep5Ivc7nsZDSyx4zM+9aP0PcCJ4K5LTrApdHiutKJRAKrqnZpZfC79Fu4yjNPB2qE\nwoBRGMAvUeplkFshe8xQRwDAyBxAVukxj/e9gZJbPTwqCaIPvxhwtiDkMMLsPjRy4sKcReDEBc2N\n7uh7C/zsP3LDessUCNxDC8+JC9rouH7uwLOBGmsjiC9zuSYnI5dGm06nsSMBTkZodSFIJpOm4RbX\nNeX5otrGKAyYj0EovhHkVqNwef6ty8iyt2tkj8690HWUOyvMY7UEvxhwtiDkMLLsP3LDvIFhDp/6\ntGVlw49fcOv1wd8CPx+eHqu9O6ggHIZG7jGF59qY/tpB9fi+Z8LvUrXwZS7X6mTkynWgKEo8Ho/H\n45IkSZKE1VaEEMxXMO/p6UkkEslkUmi0njByZxf+MF/rRcPikmJqG4JahV8MOFtYinJYGDD63rT+\nI93IQsfuXv5O9vrUndlwWuBn6s7s4dNj4XyXoPbYfdDWHfP84C3CCbWG8WUu1/Bk9CcfrdUX1izZ\ncObMGVVVAUBkOfDG/M4vxlBH0Nzxyw6nCWoNfjHgbGFJyqHVUI3B5upq9QcAPjzFvvcUHzw8fHrs\n0O72EFrgx+r+KBB44uTFCauvJ82Hp8Z88QuPPr7M5RqejD7ko3VAURRanc1ms4lEIpFIRKc6ebQg\nYgPnNQZDvWo9bOh61a1HggDhFwPOFoQcRoChkXvW8BSCExe0+zOPgm6Bn/szj4h9UoHAPSculhGe\nQfUuDtWvbXyZy7U9GYPVaJmkUql8Pp/P5zOZTPjfHn2MUv3A0HXQiwCUhsE8IqgUo+/Nx+iPrP+q\na33kFwPOFoQcRoHzg7ecTyh7c+JvgZ+yfRAI7Ji6M3ttjMz7SXN+qPZlzJe5XNuTsQoaraAMtMUL\nawyU3kBYywQ1Bb8YcLYg5LDauLGmON/I+VvwBQfDkkDgjEsNrLYVNfBvLtf2ZBQabeRghNrgTElU\nfQrQanbvQMAvBpwtCDmsOm5u0tfGdIeIEP4WfGFIXSqBOwLfcSk8k7dnKhDj+zOPhkbuWf9572BI\n+DWXa3sy+hMZJqAxOr4P2gTKXwJlA3HcKTU9rS4AGHoRMXfA9dr3HFqi8IsBZwtCDiMAzqBeliH1\nnl3iHv4W+Jm6M1urYSiCEHBvU/QkxueHbn14eszOn+GLKz9y2U5o+DKXa34yVkGjNQsrTE1NrVmz\nJvwO+A+dmj5zYC7DUfd2dPOfF86cP26Xmt5m/1cDfQPjuPBfrFH4xYCzBT/lUJuAwgDj+c3uuGAe\nlxupg+pdu3sYfwv8TIaVIExQlvszjw6fHjs/eCvWtKxTWbFrW1vEaxN4Mpq6lzRrhYLFgi9zueYn\nYxU0WlmWcS2Gq1evfvHFF+F3wHcYqennk3camoYKA2bVOCN7bO6FrqPsUejd6+oL9CJTwzB0HXF2\nXbCI4BcDzhYq+Lg2YXR839B1pE2g9LuM4+oI6v/IzZcvNUbHiy6tKXZR3vwt+EJt73IuIu7PPHpx\n78emVfLamD6k3o14wa1RFzFhXk9ejOqsX3O55idjFfxosUYbj8c3bGDZe2oAbaI0Bf38Rq161bB4\nHJakrzdhmrtYW8Dzb4kN31qEXww4W6jo49Z8EThThJE5MOd3mz1q/QrzuJE9WmMZbf1iyPVmq50H\nIX8Lglripbc/ITbZr43pL739SbX64wZPNkU3/gnnh24tOnUWxFx2jYgMCwDiDm1G2JSG2hjqiFv/\nRXXEdmNXOB7UJPxiwNmCX3JoblboeknVsfk6umD3aLfk8XQvZ/rY8bfgC8658QXhcPLiBFPhG1Tv\nnrwY3XzSU7e9KWdllbn92Rsc3akafs3lmp+MQqP1HzKR5/zN3qDv+gz/RaGhCnwQA84W/JHDwoA1\nMYJh82gHQqNlMepFxWRuNfK34Av3HwRewUFQFoeqp1EuiOo11ZSz5nd+6NYiVen8mss1Pxmr4Eer\naZqmaQBw9WqNprGktQHsSkv5IBqFATTvYuu5TcEShF8MOFvw8nGD3KywrTqG1KtEShCBm6zyJkwP\nQv4WQqBlVeOhPe2d7c2j40VPt22Be5yryE7enjl5cSK40MCKqWD3fOr2LNgXgl28XqThzOUamIxV\nsNFqmobTHYyM1KaWxk7kqRcNOm2n60SejCSgc98lfBCXEPxiwNmCt4+Xireh63MPdaLqWDm85sWk\nTVP8LYTDW6nvdbY3A8C6tbEIKlW1Qdkw+WiWJ6hAJsvYaCP5M8sS2lyugclYBRstDgsDSxqvmoJV\n497Qi4gdaiPiugS1C50YQdNA2UA/8hnahMjaYcVrzkjaAsffQjhs6Vxdle8NlK17f23dLu9SVpw9\n8INqdWbqzmzZvftB9e7Undk1KxvC6ZJL/M2c6j5dQNQIbS7XwGQUFRZ8xmBptKCOgMx44jEKl8WN\nXFCr0JsShnoVyTLjVGGjLaUCr9bR8eK6tTHrn5wt+IVDnEqXssL3rxMQuK8i++q2Nr++dMM3lAtr\n8pyNVCLD9hvuk3cWpQct+DqXa34yCo3Wb+xKkjI1XYGgRrH1Q2BOEKHRllKBlaU4U2LI4W/BLxap\nYaxmcF9rykeNNlYnPdcQ96s1Xwg06XKg+DiXa34yilwHfsNyJDAKl21dZpnFmQSCxQ7T49a+RkPg\n/VlUVBCSTFin+FsIgeVN0c3tXzO4rzUVdE+84q9ALl5lLpy5XBuTsQoabTabTSQSiUSit7c3/G8P\nGkZYGMbOZZbzXi6MWwKIZA4EO/cbO4EXmxgW7NSLXduf2rGZ5bYBUJwpue3xtxACLasaQ/7GpYan\noCKvEUhVYcdmWbuw5YsrP9qXepp+18Eg7TW1bXQIZy7XxmSsgtdBKpVKpVJQq5FhdgjVU7CkYAk8\nLofLPl+bYPqaC0z2pZ7G+8KxpvrDpz4l3nVjguJvQbC48GSrG1Lv4VD3yNKlrDi0ey4716vb2ibv\nzBIFwCqW4ZZVjW+lvhdrqofqZbLzhJjLTHhttJqm9fX1ZTIZnTK96LqeyWSYby1BPKU9qstfQqmd\n9HHU+3pd/8997pkgqvCLAWcLPB+3dSQQj3blYDr8taxqNN0cd7H8Ha0mKP4WBLWBp1JwUas+QNsm\nt3SVBON3Kr7p34f2tG/pXN3Z3tzZ3uyjPzE/Yi57gkuj1TSto6NDURQASCQS1rd0Xe/o6JAkSdf1\n7u5urj4uMZDSDvGNqHcv463evZB6mR0tLqgt+MWAs4WA5FBkVi4LM6pjhyU95PLGZcSt3fcWBLWB\npyIF0Y+dIoTWr2xTsab6yBqnxVz2BJdGm81mU6lUMpnEHrGaJfgpl8vF4/FUKpVOp3VdV1WVt6dL\nh/gmAAC5ldAYUHwTSDEAAJdlxmqI0fHi/iM3zg8tyvzYFcIvBpwtCDn0G5dizLSvEDet9Wsl4gSr\nQYu/BYL7M49OXpz48PRYBWWc/GUpLgUceKo1NXl75n7ovtTuaVnVuLyRjF5yn3PKQbzpuVCWiuXQ\n61TyfS7XNlx+tOl0GgBUVcUKq2y582maJklzo6woClZqsfvB559/fufOHQD47LPPzHMEJgt1ceXW\nkgwJynx1vyU2aB+eHnsnex2/3rFZNv2oaht+MeBsQcihv7gXY7rkT8uqRiL7/bo2p8Hnb8HK/ZlH\nL+79GOtGh0+PHX/7mWoZtJbmUlAxdpFeLasaiw8eMl0tr43rLi/uXxezEw+11nr5J7EUVy9d0xKZ\nAhAVy2EFU8nfuVzz+BAZhjVa7GDA1FDxQVVVsRF3ampqcnISAL788svNmzfzd2Bxo2lA7N6a8TFK\nO1gyJ6D54yi+0ci8H1L3qs35oVvm2gEAJy5osab6t376vSp2KST4xYCzBSGH/sEpxvS93KtOydPC\nS29/Ypr6ig8evvT2JwP9m8KvL7V0l4JKYZr3sAZmVa2sjI6V12iLj/XNU4mrv53bdz2uZy+sycfq\nSm79k4+043q24p7vb07TLhBMvW1dm0TYI+/PPKJNuc540gh55NCXqcS/GviPNsFIVlONTTwujVZV\nVVmWceKCnp4eVVVxeVsCrMji06wsrVwHdtBZvewivpdkJPj+7A3iyOFTn3YqzdWfw0HDLwacLYQs\nhzUdMeZJjOkAHeYdt2VVI3GmWSiIvwWTkxcnCI2h+ODh4dNj4dtHl+5SUCm0eS/WVI+TXi1vXHZ8\n3zPt2y8RJ7jJ+vTq7R5TnQWAq79VX73dc3L1Ges5Ew+1Q/+aqbDfAPub0xXX+3BvZq6MiuWwsqnk\n41wODiNzwMgetR5BkoSmPw/n261wabS5XM7UaLXSCgLJZLKvrw+/xoovzxc5oRe57oXBPEbU5S8Z\nubPENQYA1Ps6klsf97xi90GkLAg3klsN63umJrFkVNvzQ7eY4bcfnhqr7dsYvxhwtlBTcqhNgF4E\nZQN5HC8dla0AXmwSXsWYTqjO3G9tWdlANGsqAfwtmBw+PUZ/8MQFbV/qaTtL2Lef+yXzOM3hU58S\niYfOHXyWeeaSXQp4oEdsx2bZvGprVjZs6VpN1F8om7jqymzh3Jc54uC5L3PPFbOhuR9UER45rGAq\nAfdc5pyM7NlIQ8f1VinKgkujTaVSiUTCdCfABlqEkGEYiqJIktTT06NpWjKZDFCjVUceJ56v+NN1\nxu987AsGJbdCfCOSWxlPLel3AQBljxp2WrjVbYPQGBadJsHNkMr2AxtU74b5AFoF+MWAswWf5LBu\n+BMjd5Z2TqhLvwdKO8/MZVMYMHMmoNTLILdC9hh+gETxTSj/q4UzzeNKO8pfmot1c40nmwS/GK9Z\nxbiHrVnVAK4Dbitrwe7+DQDnB2/9+IXwFqKluxRwQCtDRLqrLmWFy4piJh98wba8HvrXTNAabRSu\ncsVy6ONU4l8NfEabMKiSqFabSJhw5TqQZfnmzZvJZDKdTufzeXzQMOYMOmfOnMG5DnAA2dIBmUHi\nxEU1n1rwCYJyOKy2Jy7aVBUOGKPvzcfoj4h/tgXhljYotROUDXT+LyRJ0LsX4ht9X/WMwoCReR//\nw2ZUcz/EKFw2+t6cO896XB0xurd7/iYvNgmvYszYLG6sp0/D2eCZ8LeAceh5yMHUEVwKog+djJaw\nI9L5XJ0v67Wv1IEZtqPgxEPtr4uVO866oay4hkDFcljxVPJrLgcIM/FilZQcH6rgxuNxnJKWRlEU\n+i2yCm72mJH4ofUfsCq/LybM+zRp3JozVCMH45bNPX4J5qAdGrnnUPjEq2nBN6gqxwvZrHyEXww4\nW/BDDucUVimGiNUtuXXuRcCrnpE9VvJ39ih+9jAyB0pOK1xmL8p2eLFJVCDGDM85d9Yp84v4WwCA\n+zOPHGZZmBMwoktB5CEGjU50tWZlg6fap7S/gZUrNspuzVCxHPJMJV/mcqAYlP8VkiSGl1co+KDR\neiWVSuXz+Xw+n8lkAMDQJozCZes/28rviwXzWpKJPC3pkLyyZDwNTOz2dzDFBw+rkJNSL9LuIihM\nhyF+MeBswdPHbQR+IVtC0KteqWOAoeuQOwt6kXZwN3JnPTTLVH9NNb2U4MSYNrB5zZDv3EJZK6xd\ncijfCXQp2H/khvVfaD8qaOh0p+yIIsop02EE/sZRKHJNigAAIABJREFUoz33Za74eJHfux2pWA5D\nmEr8q0HlUFaeKqYq9yF716KH5Xtn9L1h6DrqfR317l2wwGWPGZkDhqah+CZ05hTTMmc1YiEpVhJS\nY/omLhb1VJtgd9XuuK+UjVEYHS/6VTPGLfTUBeFDYo8pJERSv1Ay2hqFAbo+mVG4jJhn585C/0du\nW6afamTZbkbwizH/fmJlLTjfv92c4BeBLgVENAxEIReSH9C71Uzo7Fe2DT7SJh6WcfC4MlP4T99K\nummtLLHGesKozNxtd2Dr3l+7PPP84C1Cxt5KPU2fVrEc+jiVouB6UQLbylO1e6LQaOd87/BrFN8I\nenHBxy7zPgDgcC4oDFh98iDxPBr+R0Zz1hsbsRG5YLuNmEZrDdxW2kGKQWHA6N5u6DpK7UTWO715\n3F6n94uyFcmH1LvgJRslfg4eHdNxhppY4zLTaOHyHmZQ/jBIlqu1vRJxXGVLoHfqs8ese1hIboXU\nywAA2oSROQDqiKGOIFmG+EYcf+nUA+bjR2HAYBwFQ9eRetXtpfTiROtVjGnTmteCRvwtzHeszF3W\nLtLFd3xfCpYmtBkPAGJUlP3U7dl/38b4+JXZ8k4FV79S/dJo162NnT3wg7KnOWiZ7l29J2/PEML8\n6gxjCCqWw4qnkl9zOUDYVh5ho40MRt8bJX9m3kfJraBsMHp+VnJcHUGZA8Cqer/oMLLHTJ2+Ln8J\nlHastgKAkT2K5Na5n6kXF44XLkPfG8i1Wcsrk3dmy7oBXRvT3STTPnlx4sRFzbka5BdXfuSqW/Te\ntKgEa4ebbAnUE5GRO2tYl8j4JpR62cxLMHeOpkFWM7JHUXwT6v/I7vmQmU7E0HVk5zKrjrjSaL04\n0VYgxi5Na2BfQom/BQCYujNbVmENZ1vTx6UgCtyfeXT49NjomL5mVcOOF+Tg4vfLGhQxtCvC5J3Z\nf88605qD1o5rX4Udb19x2lqvVCyHPFPJl7kcKGwrT/VsdlXQaM3CClNTU2vWrAm/A05oEwb1zGFk\nj6LkVvo2ZmSP0XHcnCE1KEirp1uyR63btebPNDIHSo8fRb17A5Jdl+Yf52TadnVxKiTEHCX8YsDZ\ngg9y6JckW/ZGCIzCZej4Pspf8mQmp10R5o5rE2yHBKo/jIM2TrS+iLEd/FW7HFooa46CsGy0gY5h\nyIyOF1/c+/GcYqTCiQvaB3sU/iRohBdmy8qGNSsb6FoJnOa9qy60VTdar7/4tryXo2I5DGcqhV/D\nbw7acFBVK08VIsNkWY7H4/F4vL09clW56ZARAIDCADNwxNA0RpZ1O1xqfnYaUogPPUSEuKFpc7ZJ\nOp6GiCUPHefdHD/VWfCmyvDCLwacLfB3wOYRzquLFbE3Qr6r60b39jCzpzGcxrCjDgfOYsxMP+mJ\nCloIL6zEJ0Jz6uVh9yGVsPO9dlDljwp6cc/H1n8nLrLvSkwbtvvHADfaqv4HffJReMnUqhAcXA5a\nDv2dSvyrgb/QFsBqZaLFVMFGK8uyWXAhalVw2TuVmoZyNopRYWDOzy9ogoyhKYFliTTUq0iSGMat\nwmWAd0PqGAuHbaCTFyf8fXwPQpXxDL8YcLYQmhwCAGu5ZJyjaZA5MOfsToGSW0G9yjCuyzLIrSXt\nuyw9yHCi5Q2DcN7NdIgFIUJn7HYeK2jB5Z51dAgtV1HFfHh6jLki7T44MtC/KTouE6NjOu2+apeG\nlmbiodayLKRckxF8jKHl0N+pxL8a+Ak7E201bbTCj9YVvDuViwe2DlG4zI6nUUeQXgxbq7MwddvW\nzahsWEDLqsaWlQ2TLpyc5ghAlRG4BMnygjm81CsGHwFrThLzU72vo/S7oBfhu09ZP4JkGd38ZwCA\nxA/dKM0LsD1PeEMDHcTYGTehM5W14GarNFJUPIahYWc6nbw9c/j02Ft+R7YRipSnvLM8hGajHR0v\nnrgQueIatByGNpX4VwOvGNQ9sbpOtCA0Wl7o21sUHGF5YD11GeqIreKujlTxmcxBbaUrQJrEmurP\nHXjWW0wG084XkMuBoBSyUG1yKySeL3Hp1nWUO0vvliB8RIpBaidYKvGa7u8o9bI3jTYYzxOrGPNb\ndPhbuD/zKPomT4KQa5h5xaEIKgCcuKDt2tYWqJnWwWLXsqrRR5foshm+fAF7JIfwRV4h5JBzKkV9\nqyRiTrRQFY1W0zRN0wDg6tUo1gabu31qE487nik5LkkofwnkViPx/MIGNO3AFwFHWB5srdF2e7LB\na7Rbulbv2Czvz15n7tnZxTg73OG2dK32HGJMewtVryzKosDWcunxkW9u3lk/pWxA/R8RpWuNwmVU\nqtEipd2cdGT6sErrUfNkXnQpxnRAj1f4W7CzKu3YLHcqzXa75ybE7qfDTMT7JNYjzjlHK1sKokD5\n5PyDt/hDxCqjZWWDVaMNLXtAxXx4euyd7PUqdsC9HHJOJf65HNxkBGBotNV1ooVqabTRzXUAMJdm\nVdmAUjutgWIo/R7WYFBqp2ETfO1EuA6IoWHoxUD9Lta3Scf3PQMA5w482779Ev28W0GMcwVJqhkK\nfbUfRqOOncB7reec2slQgpNbkdJeclFo66l1bbU8TyJJckgfVgZ6l82dGAQhxsHBtAxt6Vp9aHc7\nAKxfK23suexgeSJ2P7/93C/tztzStdr9bvviGkOCsh6fJy5q1dJoCa6N6QCV7zQGmsDr/syjd7LX\nq+ts4EkOOacSP5yTkeltOId6lWH/qvZt0SnXgaqqiUQCv3jyyScRQn19ffxfGY/H0+l0Op1++WUv\nMVWZA0bihyX/AohxLrHrENfG3FsUe81WAi5ZvOOFOQVoeeOyXdsYWa9D2h5lqDLCiTYMbF07Ssff\n0HUgMiPaqdQVWxFYTrQurbw8YsxMjO8Jry0wLUO7tj2FX6xZ2bBjc0ihP1Y4l4LzQ7dwnduTFyfu\nc5u+POHGWR+nMvXxSwNy35S+Jv1GHp75E+M/r+oPon0Hpu7Mvrj346r7znqSQ9+nEv9q4Bv0vmW1\nnWjBWaNNJBKKogBAJpNJpVLDw8PZbFaj1/QQ0ItG5oBRuGz9B7Lsf0yS9f5kuSOWRLUvdk9ZF6De\n15nbByi+idQw3Ocv806sqd5qt9jSxSgwaOZGIeqzOzQ7OqYTJ9OlWUqI5MPoUsHGe4FhHA344Yrx\nVOPO88STGEcBWv1a3yZZHXXCrj7NN4aj40Xlf/u7l97+5PCpTw+f+vS1g2r79ksnbeK0gsCll+r5\nQT9zUQX0qH9y9Zn1TygA8JNY6iUpFcRXMBkdL27suRxa9lk7vMphBKeSX0Rz39LW60DTNF3X0+k0\nAORyuZs3b8qyrCiKpmmy131Dboy+NwiVAsmyXb6eQKhRnwEm8xHiexkR4vlfAXiPEK8UYr1Ys7Jh\nfZtkt6jR9dntGFTvEu5EnUrzH9ufT2cjttryBcHh5JVFv1W6wtr6A1Rqo614BfckxlGAjqrsLPXG\nW7c25m84UVkqHsOSogbzFB88fO2gCgAR2ejHOBeIOnlxYlC9a16aTqV5x2bZvd/woHrXYcfZJRsb\n4881xM0/X5JSx/UscU4QkWH3Zx699M4nXnX0cweftf754h7bSLIdm2VCwOyqUXiVwwhOJd+gn/Cr\n7UQLDhotVlt1XS8UCmYG2eoYaLUJuvBBQOqsbThLBC5VaCxEiCe3WqsqVB4hXin0stKprCCWjzCi\nQRmqjHA5CAWHJ0m6gm7QdRYq9TyJihi7ht6wpvc6O5XmMG/DlY0h3qe204TeyV5n2tiqxZB6F1he\nxVN3Zl965xPixw6qd09cnDi+75ng6ujS/KdvJa1/rn9Caa2XCRU2CI328OmxCoTNvVN1rKne5cle\n5TCCU8kftIlo7ls6RYb19vZ2dHToup5KpQCgo6MDAOLxuMNH3JDNZnO5HABMT09jP11njL43iCMo\nvikoZ9alZItlYnWFQUo7O0I8LP1+HbV8hLl8mzDKokRg6gpChe1E60oMIiLG7qFVQPp+H3Id+crG\ncPfBEQfDXvHBw/BD5mNN9evXSsyQc6apj2ljxkzennlx78cD/eE9XRMaLQA81xCfeEiaaf1l6s6s\n+/23oPEqhxGcSv4QvUy0GCeNNp1OY/3V/B+rtpykUincTqFQKF8zjFWBFqXf4++GgI3VSk0IqPkn\nLbiFASLZMkq9zC/f9GJBPyI7b9X5QPTKogiqAMcKHgkxdg0dn7S+jfGcv451MDgqGMOhkXtlk9SG\nHGYUa6of6N+0ZmWDnZ46Ol60/tKyu+3FBw93H3RX646bDd9QYnXkmMe+FrgYHD49FvRXuMeTHEZz\nKvlCNJ1owVmjLRQKVotsOp1WVVXXdcliyNQ0LZvNAkAqlSL8a3VdN9+SKrV9GpkDxBHU+7rIAxog\nNk7SzhusRmHAsGSwB2zF5NNoiUR6mDXU46y5XxOE1xQwy6KIZBdhYRQu2+aGYyXSoi+Wbz2pdAX3\nKsZVh94npXsLXrZ0+alsDD88FSFNCHP87Wdwt9etje3a1kZbiEfHdavO5Ga3PYjSEv/ffysCleHQ\n6kFrsuEJxfdvJ/A3YI4Hr3IYwankG5XmMQwadq4DVVULhUIikSiU0tPTo6oL2eY0TUskEtjLNpFI\nWL1sdV3v6OiQJEnX9e7u7gp7lztLbPgiSTK9OQW1zfImdtADc1kBgM72Zus/h5ax15T1n1OABe1y\nsJScqquPXTINWsUM1GWo0hXcqxhHELsCqhXkda6MCsZw6s4sU9Xb0rV61/anQisJa2V9m2Rdl17d\n1kYPoNXMbLfb3qWs6FJWhP8TWusZxo6gbbTnh25Fp3wd/1yu+lTyB448hkHDttHmcjmsuWYyGetx\nSZJwPi/ztGQyiV0INE3L5XK9vb3mW6aXQkdHh6qq1g+6xOh7kziCWNXbBT5iGxsXuouM3eSnl5UA\nawXpRYZxTthowyR3FlgPsQxzrLIBKA8lf+BYwSMhxl6gFYiYTa/s/EF9p4IxPMFKznXu4LNYp3zr\np9/bfWgkZJcDOk/Tlq7VRB+sFln6JxDlu0MundWyjKHRMtVcHylbmSJMvMphBKeSPzBLhUVDMWNr\ntDhpVyKRyOfzDh829VcAKBQK/f0LKZc1TTM9DRRF0XUdeywAwOeff37nzh0A+Oyzz5y8EbLHiLsI\nUtqZ9zaBn9hdkcjEzNHLSoC1giKZRHpJYWSPIbpsWGGA3L0J9DGDmaeGbwUPVYy9QGd1jayfn8MY\nDlH6wa7tT1mH99Du9tFx3VMOtfszj84P3pq8M4uD2YszD4mPY1sdUaXJhM6r0Kk0ExqtNdkTrXBb\n1VkAeHVbW3HmUWhRU0zllanm+kikNFo77ORwEU0lTxhELRuIioEWnP1ondVZE+yNkEwm7aywWG1V\nVRW7JUxNTU1OTgLAl19+uXnzZnajepGR4kAEhC0lolAchTF1hYE2XAxNg743UP9HC4f0otHzM+K0\nQEu4sZxo3X5dFMQ4INa1hWRY8jqG92ceEbpmy6pGusLnq9vaXnr7E5dt7j9yo6zu6DAasaZ62oeS\n3q02PS9Hx4uEhW/HZpkOS9q1re3EBS2cffmglVeaKRe11sIkuLkc2lTyB4YnXlRCmxgaLc6olc/n\nEWJEZRhGSUKnnp4eXdfz+bxD2QWsyNJ5EhxyHRiZA2RJheTWiATTRZD9R25Yc+Cta5PcV0sPE6Pv\nTXLDQm5F6fc8mbs6lebwkrlEeOouHYzsUdAmUOplkCRQRxiLgyQF+6QRQBhEqGLMRxQsx0zsxpCO\nyGHmnd3SuTrWVO9GHXSjzjrDjD1d3riMyM9vdoa2MTN/wvLGZbTrQs3gppBvFMoTuJ/LkZ1KHtB1\nnif8oGFotKZpllBeabLZrK7rZ86cod9KJpN9fX34taqq3sqM6TqUllRAkiQMtA6MjunRf8Izen5G\nVMpA8U1e1VkmQZkotIkoT90lxVzhaztotwQf4chE64noRMAsXvAY0lvVdtY1l+qgQ7h9y6rGcwd+\nwIxht2K33bxuLVlxaurO7JqVDXQ2NztlaP1a6YTzd/uBFHyWLpqypaG7lBXr2qQIPhnW8Fym9y2j\n40QLdrkOMLqu9/X1dXR0IIQ6Ojr6+vr0UtMIjgZD82AVFlt2FUWRJKmnpyeRSCSTSU8aLW2DgeRW\n4by4iNGLRsf3SXU2tRPlf+UwE9w/zpZd+CqDVmdRfFN0pu5SACntqJwDN1LaAy2IzRADL/bgqoux\nV9xXLwvNoYJ/DO1acJnc3sEKuKVrdVl11uGL7NIdTN0u0WgdounXrAojP/+GbwSepYvG2fi6vk06\n/vYzoXUGvMthBKeSD0TbyuPkR9vd3a1pWm9vryzLOLlsIpEYHh42T0in0ziGzIpp2T1z5gxOmOA1\nywHDMJY7C1ZHOsEiQpswurcT17Su/+eAa+16J7wKK4xoepG3K1wkCfVupV3qTZAkof6fB9sHWgw8\n7TjZsFgKBVUl0ZVL7MZwlHKitWvBznS6/8gNl30YHdOJk3e8wDC+2Omd/GLgkEt7sWONkyPoUlYc\nf/uZKOQGAdcXMcpTyT2MvTJ6C6t62Gq0uq4XCoXp6WkzHUEymfzud79LlF1whqnLeq2CCwCGrqPc\nWRGU45XR8eLouG5uYMUal60rzYkYOOpVI/G81eKOJAmdOcWzaevGIuILjL1m+llLEDS9e5FeJOp3\nYJDSjvp/HnS9lYDEIDQx5iTKmrfLMazgJ7jfyB5U7xIeX0x7W6yRnXCU1nS9blhHRKsLAjtXuh2b\n5UO7I2RcCE4OFwd2KcOrgZNGC/NpCky8ucPa4K0K7jxG7qyo1eSeoZF7+7PXmblpYk31W7pW79rW\nFvg9tTBgdG8vUWeVdnTm1CJ2IBEabTVA6XdRfKORPWoWxEZKO0purVouPyEGtUJoBk46TQGG1nRH\nx4t05lp+WlY1uteoGr8xDX/wvQv+EDV1VmCoI7aVHUPHVqOVZTkej/f19Zl+BdlsVtM09wZafzFy\nZ5FeFF6Mbrg2rjvUgC0+eHjignbigvbBHuXHrA0yXzByZ0nHWaUd5S8t6ito6DrSJhaxRr54iW9E\n8Y0RWTcNXRdrUW1gZ+D84sqPrH9++7lf2rWwa/tTdGIZ9wV47TRd9wyNuMrYuqVrtfsEOFdmCzDF\n0Sc/YP6ullWNQp2NIurVoPfKXMLQaPv6+sxSt5lMJpvNKoqC6yNUUPfLT7JHRYUFN+B9q5ZVjTte\naDUdxYbUe0TmwtcOqsublgVhDwCccYk4oo4gdcSlv0F0XY6ERisAAHeSHF0x9oNwdlFrewztIMpQ\nOeSxquGweppd29qq9dWByuGid0jQtOhqtMlk0jTEWquCVR0jdxYJjdYd69ukcweetVogOtubd21r\ne3Hvx1ZXhN0HR7qUFd8Kq1dG93Z081M3xq3IznCjMMCfi1Sw2HEpBpEVY18IxxU40DG8P2Mbe1Rd\nCP2p+ODh6HiRadCNSIoM3yGyPQBArKk+uE3FsgQqh4vFq94OQ70aEadQhkYbtCHWdJ+dmppas2YN\n8xwkSaj/o8fd260HDXUERca4HXGO72PEgS5vXPZW6mmrQ0LxwcPzg7f+PLBuIFm2BtYYug6J59Hw\nPwb2hcETpbhOQdXQPVRP5WTq9izwbbTyt1CruMnhz49D7i07aOX1/NAtpkbrkCt3UcPIyLuIUlwF\nRkTncmRui075aAMCe+jG4/H2dvsrk9oJya2ICkQzQ0MEDrSsarR75qMTHdALh1+g3tfRzX9GpRmv\nDHWELmG6mIhSXKegaoQoBvwzNLg5vigIR231F1oJPnFBoy3KH54eq3rFrNBYmv4nBBGdy5G5LVZT\no92wgW1tRbKMvQsQnbKU8s4URJO69Hs47z06c4pIkm9kj0L2WJX6xQsjWbJg6eFUwExQbYgss8UH\nD+28C+jqYhEBl7e1Hik+ePji3o+tP2Ro5N7h025D0Nxn+48swkYbWaJzW6yCRlsW1Lt3ztWS8sww\ndB2EmbYck7dnpmye5OgA0qDcg0zTrNxKVzB+3PMKUMX0Fg10yn3BEiQYswT/fKxt5103xCiHK7vM\nplE2cNJm2mtjevv2S/uP3Nh/5MbuQyMv7vnYISysAleHSFEDKjg/i2kuR+OG7lQzrGqYseRyK1La\nCfVfJKZ1w0vvfEJEhgHA/ZlH+7PXrUdwblr4TcC9Sb2M1BEi+4HRvR0N/+OiTIEUmR0WQTVRR4LI\neuGpqCmRVQpnkuJswf1nIwtdCWxIvcdM6hJZGy0A/PiF1sOUU0HxwUP31R9qjFBrA0UD/tXA7x7Z\nE410B1Ww0WqahoPDrl4tr9TTyquROytUirJcG9M39lz+8PTY0Mg9/G//kRvt2y8RNRdCKySI0u8R\nXtGGphmlkX+LBUOInwDACMsmwW9HjLIlMgjougnnB2/RjgcnL06Ek/qqYt/HQ3vKBwEJ79IlRWTn\ncmjroTPV1GhHRlz4XjDNscLxwJFYUz0ATN6eeSd7/cU9H+N/h099al2+Y031x99+JrynXimGzpwi\njhmFy0bfm8zT7XYJI0FkfIZqD5T/VZ3xO/Mfyv+q2j2yx0V4ry9i7FDdPrQWqkgFY7i8cdl6ypWW\ncDm9P/PIvRMqJxVrIZ3tzR/sKZN6yI3WW8OE5pwQkVtSdOdyNNIdVMHrAIeFgcsquHIrSm4lUhwY\n2WM+Jqa1xp8ZhQGrlyTqfX3hLYvuZT0eQdavlV7d3uZQBXfHZnnXtrawC4IrG+rS7z3ue8N6zMi8\nj+RWoEMAIwOSJINI1SQ02pDRJiB31tDn8m4iuRWSW6vvr1JtU73LYlHBtcDfgeDoVFYQq9/hU5/G\nGpe9uq0NAO7PPHpx78eRNXdZwRlY38leZ5qTP9ij2Fkl1qxqAHXhz4jGyAsAIAJz2QeqvR5iIulH\nWwqKbyI1Wk3zMzGtNmFk3q/40ziiv7qcPfAD+uDlv9o0euW/js5+01zLYo3LOpUV69bGQJsAX9VZ\nlH6XHAe9CLmzoBchvnHB3bB3b11qJxQug14EpT1Qt5svzsUhe9TQiyi5teSL9CJkjxp9/w+Kb3RT\n9gn17jUILVzUwg0NbcLo+RmRWMAAgJ5XUGonSr8Xml7LeK4Oq5p5cYZ3Z5y/hUXHls7VtL/pO9nr\nJy5OtKxsiIi9zSU/fqG1U2k+cXHi/OAtrIXHmuo7leZd257CGWqJmr0YvFNn4qC+7z9yg7B0/u/v\n+NNzge9EZC4zApzCWg+dWQQaLSS3Qs8rxDEjexT1f1SV7kSR7DHzdosTCxg9rxjqyNMAfypJkNo5\np24WBoztf/F4XhB91AmMvjfNp4K6/CWQJCPxvGnaRL2vz3VAvVpyPL4JnTkVSAeUdqPj+7i4g5F5\nv67/53NmYEsHjMz7KLXTWYqQJEFqJ5RqtACiFm4o5M4aPT8jDeTzGNmjkDuL8pfCCUegn6sBAAoD\nLqs6u4c2uTF3WgJtoQZYtzbWsqqRVuMmb89UYJplqoyeuD/ziLkn5tK0tmZlw1s//V7LyoZr4zou\npnX/waP92evr2qR1a2OclcxHx3Srir+4kiRERMMLiMjOZZTcysjYFYECWItBo5VitIEEcmdBaLTz\nGNqEacdChY1G5oCpBxi6Dpn3AQApG8gabNmjoI74X8FL143u7VZFxMi8j6QYJLda1VnAST17XqH9\na51xU7jS6N5urVX2uOeVOqUdlA1GzyslHcgeRXIrOHiwJLeCFKMdD0Qt3MBRrz4uFzg4V4IueKUW\nKe2Qepl+rubZaOOvv0p7EDJrSnltgTgY5d1q5zHcta3ttYOqwwkAEGuqdxMcNjRyb0i9R2h+mC5l\nxbo2aUvnaufBvzauuwxaYLbz4emxw6fH6K7i/rSsanwr9T1Cr6VTmA2N3GP2YTFWoDCJgobnci4H\nOpX4VwP32Bt6qp/uoAoabTabzeVyADA9PZ1IJNx8hOF4oOsoewwb3givVpR6eSnbzx7TcgZgZN4H\niYz/BbxT4HexA6PvTdquZmQOQGGAcTx31s6BxM6qUXb9NQoDdAJ8I3uU3iiBcj7ZcwXPlHYgGoyG\nF3zNoheNxPNuTjR0HXpeMZ/KGN4vmPjGOuN3zBbsjpd+fBNQJZ0BwNAmym60VSzGVkbHi/T9qUjd\nR4mNZl9aiIKzaWVj+OMXWk9c1Jw1nh2bZedkWEMj9+wCEjCD6t1B9e7hU592KSsO7Wm3K9ZoBza4\nWiEuwf2ZRy+9/Ymzm8Tk7ZmX3v6EyNZEpzCz092J48ublgG4mBRLD8657NdU4l8NeLEz9KhXq55Z\ntQq5DlKpVD6fz+fzmUzG9WdeRpRChrUWozBgZN63/ouIh3IVQZKEel8nZAsLH0rtRKmd1sH0vfqR\nwdL2DF23+yK7ysbub/lkGmpWYTkje9RgHtc0p4oJeAwVKpp4yctYoFg3GcqfrI7YZcwAgKk7s/uP\n3Nj0l5e//dwvzX+b/vLyh6fH3FtJEX7iop+TXcQIVi7GFsJ0paU1ITtCS+Za8Rge2q043NdjTfW7\ntrU5tHby4sSLez52aQUcVO9u7Lk8Ol5kvmsXkl/WbldWnTU5fOrTDx2zNzD7xqi5s3jSgdkVEgoI\nr3IY0FSquqPFgqGHwPWiHRz+aLTZbJY+qOt6JpPJZDK6L79TJKZ1B5JldPNTlH4XnTlFWK/r8pdQ\n/0eo/yOUv7RwVGcvwbx96H0dpXYy3up9HfW+XvJ8wp06gEhDbet5afNFho1Gi5R27OOLKE/f6BT9\nq0H0IvOZBKV22gmVXXFsnIP58KlPCaXk2pj+TvZ6+/ZL54duuepSKA82phjTjoxMfcghbxF/C1b4\nHSRCg1gK1q2NnTvwrJ1S65yN+/zQLcJpIdZUvy/19Mip57+48qMvrvxooD9OFKQoPnj40jufMFuj\nTWgY2m5nTaa7/8gNT0Fs72Svm0oe/YDEIwPRJLIuMXaVESqYSv7OZX/AHnf0E34E9DFejVbX9b6+\nPuxFQBzv6OiQJEnX9e7ubp6vmLozOzRy75+mTXvmAAAgAElEQVS+28F4TySmpbEkNrL6eqL4poUo\nliCdXZAkofyvUPpd1P8RqVKfOYX3hd34ztrtkflvGbJzIYhvmntBqzIgauEGRu4s8UyCJKlu+BPU\n/xEWqrrhT4gdG2Zx7N2HRpw3lIsPHr709icnL5ZZhdG8GCBqBTc0rewDoS9izNSHaFMNXVnAlxaq\n7mfJM4br1sYG+jcRakHLqsZzB5/FTqVYPTX/mRv3+7M3iKbOHXj21W1tpl/BurWxt376PUKpnbw9\nw5QoO4WDtpuaSvb9mUcnLpBLU6ypftf2p84dfPbcwWd3bX+KVtbNJLu0/wNTOaYvbqeyaEpzhayO\n889lX6YS/2rAA5LlOV3WZtu8uvD60XZ3d+u6LlG/LZfLxePxVCoFAB0dHaqqKgo7UzTT9W3qzuyJ\nixND6l2LcaUJuv6L9ZwuZcXZ3h+A/Ybj0sQ2YomplgVBcqv59IbiG80UBEiWFwztLsKqRseLFcfw\nziUx0ItmxoO540o7yl8CKWZ0b1/wdrBRShZGkjl0EXgerUloLxR05lTJM5iygZFSrTBgdbPZf+QG\nrQ0wee2gumZVg0PUzoIYML3z1RFnYeYR44VGWHduejfcweLI34LLNoOAcwzXrGw4e+AHU3dmr43r\n9x88cr7cmKGRe4T1dMdmmRlqs2tbGzEOTL2HqU3en3lEfIt1x//EBY1oan2bZK1t3tnevKVz9cae\nkpzu5wdvHdrdbrZGtH9+6JZ1JO/PPDo/SG5TxBrrp+m+RgDaf9TO8h1cB/jnMrtlL1MpiLnsgfnl\nznpzX6DaWYB4Ndp8Pl8oFGiPWE3TTDVXURRd11VVxe4Hn3/++Z07dwDgs88+o1VhANh/5MaSLV1d\nAyA71dknw7DzPh1gIzHOgyHFUOplq+pjZitDva/b+e8yYHrBu4gKElQA8aBfsrdg0rsXZY+VeGxb\nkp+Mjhc9LSC7D46o/+XPbN825ZmpuZbTaO1wEON1bRKhANGmHTt/Tf4WaL1tdMxtnH7IlF0KrMSa\n6u8/eHRtXD8/eGv3wRG7MB2cqIu2utm1vLxxGZ0OnGm0oxUyWpu0ugrQLjFvpZ4m1JR1a2M7NsvW\nh7fig4dmToOWlQ3EzxxS71l1MroDuM0rkdzMp82QEXGZsJNDX6YS/2rgLwv3d5byVnWNNozIMKy2\nqqqKi4T97d/+7blz586dO/eb3/yGPvnkxQmhzi5u7ARalj01Y7da0WUAyYdRq8u1Rb1Gsly53wWt\npgtX2iCgfDnsgmdRaZ05Q9dNq/n+7HVP32m3U8z4UnqjrZzXQeVibKH44CFx0xql7mrOAT3uW6A3\nsu0sYaHVKeAfQ+xR/dpB9cQFbVC9W0HUuZ1npHtoDZVWTcxYovszjwirW8uqRqYytKWLtBqa+jTd\n5xMXNFMM7s88eoeaKVEOC6PFIORKGV7lMKCpxL8acGHe31n3ULuglNAII3uXpmkAgD0QrDCr4DKf\nGk12bJZNKXEIDRbUAHYRneUnP/PZEexVbTfQCbyERhsEtC+HnQU0vgmgNFGdNgFy6+h4kZaQLV2r\n96Wexp6FzHxMg+pdXG60DN7FoAIxpjOJAsCQetdq8qFjYqzrIX8LVpg38jDDxSpfCgAgMpt+Jy5o\n1uxaTDdZE1rZpTVXTGd7M+klPH8dmSFxL+79+NCe9lhT/X5WZd0o31UJiXUb1ukfnHIIFU0lf+ey\nvzASYlY73UFQGm0ymezr68OvVVWVXdvnHIRjx2bZ9BDyTO6soV61HkBSzCm1vqDaMJPm0Ola1lMZ\nUoLwJEZSzCg9ImrhBoFRqtEiSbIdYdpCoI5AfCN9n+tSVhzf94z5Z2d78/F9z7Rvv2Q95/zgrft7\n2MkmS7/Us0ZbgRgzk/4MqfdetaSacn7y52mB3l5nRpSHGS5W8VKAcdibxukLaFsmrUY47BcTCbBi\njezUCsUHD/cfuWEqtYdZmbbMqCzab4Gp2WCYVdDBJsc+Doi0a8p9wqnwIcYktORxJl7l0JepxL8a\nBAhtPKp2eIn/Gi1CyDAMRVEkSerp6dE0LZlMutdoHag8Y3D22OPSej9IkiB/ye70pYZdXvr7z/zg\nmvoveOGYvD1zf++vF97bs2BcDy7fBO15Rk9+u/uHz9gFhwmNNlAcH0KIkgeGXkQAQ9Qj8avbyZyj\na1Y2EN6H4K6qU2UPNr6I8aB6d+rOrGlmpvfNy+oiLlug1frJ2zN0bvmQ9QmeMXSwkqxfKzFt81u6\nVhM78icuTuzYLNODMzRy78U9H1uP7Es9bfd1h099GmtchmWPaTZ28AOuQNdsWel56zm4QlP8TN6e\nMV2Ep+7Mugz99BdPchjcVOJfDfyBesI3CperG17ig0Ybj8fj8bj5p2HMrflnzpxRVRUA7LIcYFwW\ntoZ5n3frkfVrpW+V/Zh61aDKaKH0e1Uv1xZl7s88eu2gWrUnv3mIvRVgJrtpCiaik4Bl9xW1cP3H\nky+H3EpnXnPpfdipNBN3xCGVXSO0hIoebLyKsV03dh8cOf72M+DCUZi/BYJB9S4R5R1yLbGQl4I1\nKxu2dK22LoCTt2deO6h+sEexqiNTd2bpkdzStdpBR3kne532XsW0rGr0Nz69AvU0oJRPfrE/e/3c\ngWcBwC7vb9Dwy6HXqeT7XPYR+gkfoMqGnmD9aJm6LFEFl3jAdeDEBY24CZ07+Oyzzp/Ri0bieSJK\nva7/51AaViIgcFZniRSMwUE//tIWuNBCGegiqKIWbtSgH4/tbup03nJXsDTasg82fonxoHoXO0sw\n80O5UV9cttClrCDsmnTeopBttJ7G8NvP/dJls4PqXeJkM0/tB3uUIfWedaDOD94aUu91Ks34iyZv\nzxAn4E95LYRrEkQiWPpSOtCyqrHizvsOHeMPANfGdHnz+ar0Z64DHudycFOJfzXwgehtXYYRGUaQ\nSqVwlBgzMsxPWOos6n1dqLNloYM3TbqUFdb4hkAZUu9Z92im7szSnkwO7mU+Q1sEq+0zJCCYuk1F\nSNhoissbl+E8Td5g5XErGwxRgRjbKSJ2Od6Bcsrib8HK+cFb1ll/fuiWQztBEP5SsLxx2UD/ppfe\n+cT6RcUHDx0e9T/Yo7iKL7QhCPsoUy+0YxHVVqgW/HJYwVTydy77SUVP+IFSBY02NIy+N4hAPJTa\nyXQYFWy1+sg6+qpfG9eJk7d0rf7zYHqF7x/mTeIEK8VSeKEMtM+QOiJS0voM38M9HXjhv62CDg4r\n92BTgRhXsIFO6EM8LdBqkNWFEaoRlONpDAkDvFNaiaZ6YtyszrhrVjZc/qtNJy9OnLioMaOCzEa2\ndK3eZSknVhnOCmVljxCe5D/iLgdRwOtc9mUq8a8GQUHVhweocrqD6mu0hKXEYcNo1/anaOugcYZ9\nstH3plFa7R0lt6L5HOwCAvfP8cUHD4mTA9UpD58e29K1ennjMrtQgJAiwwCQ3MrwGSoMVJZgX8DG\nLvMaExdOt/7bKuhauC6CIbyKcQW+NIQLJn8LBPuz1y//1SYAGBq5V5WgHPdjSMT+O9xT1q+V7BIF\nmPz4hdYfv9CKS45hp8nJ2zOxpnosWp1Kc1n36/VtkoNCbJ5jVYjp7EsOBav2Hykp2GvtkifvGmGj\ndQP/LcnrVPJ9LvsIim8ii99Wdeuy+hptIGSPEfXZkNKO+n9ere4EjV2yAohvrDN+x/wIcfzcwRKH\nZDphp8n6Numt0mDelpUNcNhTfz0weXvmxb0fdyorzg+yd2fCC85lmg+F40GQOCmLepF0KArHeYup\nc6tXnSNNvYqx13SStOLC00Kn0kxH4l8b07fu/fW6Nqkq6iyEvBQUBohc8WtSL6/pbK2sCGqssb6s\nUku0vI6ysQ2pd4Hl7sWskGdqtMsbl7nRp4FSqasOUwijgCc59GUq8a8GAVLRE35wVEGjNd1np6am\n1qxZ4/8XqCNG5oD1AFLaUf4S20JeExh9b5bYq5R2lNxq5M6COgK6brpeIFkGuRWkGMgyUjZYa2sR\nZgaHp8xYYz1tk2AYL/3j2pjuoF4H+c2lMNMdiFq4vsKoFW6nLBKGAQCQWyH45wubauZa2dwpnsTY\na4Uq+nyeFhzSYIVcpYkgtKXAKAyQNpH4Rh6XmE5lRRmNtovQaGOxpnqrwnRtTLfuVpucuEhqRYSp\ntexXz3WgImV9aeJeDn2ZSvyrQYBErBZuGFVwCWRZxgm/2tsrz3jvwOO+N8jQDbBx+KgZ1BGjcHnh\nX+b9xx3PgKaB0o5699blL9X1/xz1vg7KBqNw2cidNTLvP+7ebjz5HaPvzWp3nYuQjQqITqssKof5\nC/3En2PnO2aUW+SooOEB1kpNVG/xCi3GXou/01YcnhainJTUjkjZF2mc9cUtXavp/tNFwvZnrxP1\npUbHi4SdL9ZEWhxcqqp2NcmqRZSrlzlAXEdfphL/ahAciPkkX72ty2pqtBs2hJQR1lBHoNRqW/PU\nDX+CzpxC6XchuRXiGyH1Mkq/i86cqhteSONn6LqReX9RK7VhVyGntRmh0fqL3IqIh/7cWdDJjI+g\nF6FU00VKe0hPrWznE66NeKYYezI6Mn3ZeVoIdffDD8JeCvQiZI8ZiR+W/Ot70+5evm5tzGEveMdm\nRgWiHS+QB6+N6Rt7Lp+8OHF/5tHUndmTFyde3EvmvqQV03VrY2WvJlOlri4u+0M7yjuUiAsBWg59\nmUr8q0FQsIpnMcwNYVEFjbYqGJkDjPtijTLnXcCE1hiqXYiZh7BDGSgroKHrwpXWZyzOMABgaJpB\nPY4aPa+Q+zDxTczGgojKR/R38ckAU4xpT0qnFlhWHJ4WoqbflCW8pUCbMHp+Znz3qcc9r+A9MVBH\nQGlH/R+h9LsOm6107TrMjs2yzeWL0ZouLvQgbz7fvv3SawdVwo8z1lS/axvjW2jlmO6D8wlVwY0a\nRwf1F2dsU0+GAC2Hvkwl/tUgKJg22uopFTUaGUZh6DpkDiyR1F2GpkHieZTaCUr7gsCpV7GHsVUV\nQPFNKP0e/zfyh6ZVRsjpZtjpDtQRUQvXR1B8I5GlBHs0ot69IMVALxp9b9CuCCi5FVhxGHY5j+7P\nPCJStTNTqbChXSP48rgxxXj9WumEy4/b3Ph5Wgjb5MlNGEtB9piRO2uN7EbJrSi+iU5wzsyf0Nne\nTNdeblnV6FA1d1/qabvwI7vzmfrTj19oPXx6zK42VZeyIlQdyDVu8tjQ6bFCzpRMQMuhL1OJfzUI\nDlbtoaXkdaBpGg4Ou3qVy/nMASRJdZSiZmTeBz53t8UCUtohvsnIHHjc8cxj9Edz/zqeedzzCpY8\npLSj3tfr8pdQ/le+7NXuP3Jj695fm/+IbDIV4GYV8L1oZHkC8KEUkCS30v7KRub9x0+uML77Pzx+\ncgWh7wI2miobgOVAZmejpcMyPOTnZwZDsDbaeMTYvVWm02Y7m6cFNybPcLTeiCwFRvd2bJQ1jyCl\nHaV2eqrXsy/1tNUrYH2bdHzfMw49X9647NyBZ11moNuXetqhvgPTdot5y16lri5ld8+7lBX0lKfL\nrPhCxXLoy1TiXw0ChJXuIOw+zFMFGy3WaCG4XAcA6MwpiG9E6ghhyzH63kD5XwXxjdFCklD6XUi/\niwBAvVqyBSC3BmFQHB3THSI3p+7MTt6ZjTXWu3eTb1nZUHzw0PlpuwrZE5mpZ0UtXL9B6XeN7u30\ncdISYJ7fuxe/WLOygYgQn7w9c37oFh0cQ2u67p3PkLKBXc2cgkeM162NtaxqdK75bp7pewtujHbr\n1sbcNM5JRJYCQ9eRJEF8o3lPMdQRI/E8Su1E6fcIu0DxsX71tyqjFQR/vhf+w//a9I+/ebTiO3Xx\nPzOmYfgKpYA91xA3X69bGxs59bxzWfJYU/2hPe3OEWA/fqF1UL1LN/LBHiWygYBlO7auTaLj+gNK\nx1GxHPoylfhXgwChi85A1dIdVEGjxWFhEFgV3Lr0e1jzQOn3SI22cBnlzhKOejVOuaRCQTB5Z3b3\noZHRcXaKE1ynZ12btG5tzGEVXr+2TP3GqlS4YeywCBut7yS3zqWfcwHqfd36pLGlazWxsbs/e6NL\nWWG1nTBTo3vYeGUGQ9jkceMR406l2c09zCHkiKcFu9qbJqF5JkRhKahLvwe9ewEAFQaMnp+Zi4CR\nPQq5s6h3L8w/VgHA5EPtgy8ytm1JAJvhHsD1L9jvWzVaAFjeuOz4vmdGtxXPD90aUu+ai2qsqb5T\nae5SVuCE/2V/wgd7FACwKrWcZXuDpuxl3dK5ujjDUDFHx4tBKHYVy6EvU4l/NQgIJMXYT/hLRKMN\nHDN8R25FqZ2kT17fm6jmNFqUfg/pC+spSBI2izJPdmMrLVtHx5nJ2zPr1sZe3dZm1STuzzwaVO+e\nvDCBU/HhGY733Zi+X2Urklcn3YzcShhlDU0TKWl9B/X/HLQJo1wqCaS0Ew7cnUozoa3ijOimmE3d\nmX3pnU+gFG+yxHxKtOkqjxjTv4WGUNZ9bKFTaXbueWg58COxFJi3lfhGdPOfoe9NM2GtoetG3xso\ndxbNG1OCYN3a2Lq1MWaRBZdgzfh81y1c+WzHC60Rj/9bs7LBwTAZa6pftzY2NMJwKxod14PQaCuW\nQ1+mEv9qEBTMtInqSFWqadaiRmsB9e6F3FlrLJShadD3Zq2FiCkbTl6cGFTvTt2ZvTamA0wD3NzS\ntZp+8sNlqfHWScuqxpaVDZ1K86sWF6vzQ7dGx4s4AYrdJOxSVixvWtayqtGuAmSsqf74vmeIg8sb\nl23pXL2lc7W1KOW1Mf3ExQlmRM6WztUOk9ylWcJ/mDss1UtWEimQxafQKAxAYQDFN+L1DvW+DgCg\njoA6YiR+CABzlT56X0fxjYy1T4qh/CXo3u7gkoVSO+m61ls6V9N3wWtjevv2S13KiuLMQ+a+gddY\nb6S0k9q2TTAEjxhv6VxNOFEwW3B6l6OFLV2r38led/hgaOFEEVwKUPpdlNxq9LxiioHVCUGv1wdm\nfNh+HB0vnh+65bwar2+TYo31Zbe8RseL2JyJLbsAMDlv9Vi/VqrOWuoCB8Mklltm7lU7aw4nFcuh\nL1OJfzUICpZGa+jFqhh6alyjBbkVUjuBqPGTPQqpl2spPv3D02PEhHEI3D60m52Ifv+RGycuaNYJ\ns2OzvH5tiaPS6Jg+pN4z19bDpz5tWdVIK6/FBw9feueTXdueIh6U6TLWLasa7VZhumqOlfD3VjC2\n6Q7CSe8fcbQJsp5W7uxcMKI145U2YfXcMDLvI0lC6ffIIBsphvK/QoUBI3uU8EBAya0otdPOBvBW\n6nsvvU1aYcHxCc2zcia3EkZZQ9MQKz8gpxjTThT0CQG1sGZlg0MB1TDvnSEvBZOPtOO7fw+7XzOP\ntNbLP4lRwqZsQMP/yL5tcytU92cevfT2J1aJbVnVSI/5+cFb1yz67vo26fJfLUy0oZF75wdv2Xl/\nEXQpKzqV5h2b5Uhptw6GSayXh2lmrlgO/ZpK/KtBIDCDy6uUqb0KGm02m83lcgAwPT2dSCSC/jrU\nuxeyR0vMtDiTF2XdqZDSeomPE88zzzIy7zOKZ4I/hY5e3da2ZlUDtq1iK9ThU5+eH7zVsrLBGu9S\nfPBw6vYsXvuwgdZ8sj95cYJ4+mTqxJ3tza9ua2Nu9FjBtuEX935sN/nXt0nr1kqdSnPZUjrMCRxr\nqiemrjV92NDIPRi5Nx/60wxZS4jGkRsAEGtctq5Nio3drWRnipnuoErPo4sAKVY3/Am9TY8KA9aZ\nYug69L2BUi/vP3KDSJB+9sBGFN+IYN4QLkllXcO3dK7e0rXaIZLGCo6qcXNmCSxXWlBHABjagHsx\nptm1rc3hHuZG/+BpYccL8rUxVoRT6I+UlY3h5CNt4qH25i9v6n9gKBMbnlBa67/518XsxMOFllvr\n5ZZl8qF/LfGC3fANpWWZfO0rldmO9YMbvqHE6vxx6n11e5s1ha1pSTU9yqZuz8aaSq6dWSmXVohj\nTfX7Uk93Ks1WFXB0vHj49Kd4pmBPsMOnxwb6N8G3fPkFPtClrGAqkVZTiIOyiMEjtmv7U/hPYoVZ\n3rQMAPYfudGysmHNqgbnh9uK57IvU4l/NQgIFN9EbqYtHY02lUqlUikILDKMRIrRZlojexThYloA\nYG6JzoM8WXCjseOMN/QB4MpsAcBU1H537/Pbdz9/DAArvlPX/J265xrilnX5dwCft9Z/E1jbNA7a\nHj3nz/7ZI+Pr16xH0H/YCP+hEdSRoW//6dyhkREAePZbMwCApBj8aTs8KoLe6JA+zG75YE7dkxcn\nTlzUrEub6XfRqTQXHzzE3mPnB2+Z21h4GdqXenp54zKUehmZNj+cEaIwsHBxTUUqvrFu+JOS9BG4\nWlU0xCByzOfVoo6TFi9D1xEracboeHHyzszoeBGgGQBgAmBkITcctprQAvnBHmXeA6cMh/a0V2Dm\nYac7UEcA/if6sCcxJlizsoFOYmrikJLJlxbs8pi60cX9xdMYTj7SDv1r5m++zJkK6MbG+PonFCLi\n6tpX6pXZwnE9az24sTH+2rd7mX2gj1/7Sv2PWof1iPQ16V/apl38oDIsb1zWsrLh/OCta+P6/QeP\nro3rtFa3vk0qPmBXEzhxQSPmETMZwrq1seP7noF95Me1QDbtK2F54zLmpbeKn9UsTbD/yA1iwd+x\nWd7Stdq68Tik3rOeAwA7Nst2SYIrnsu+TCX+1SAoqJu4oevMPaug4dVodV3PZrMAkEqlpNI0jQ5v\nOfDFlR9xdokGpd81dz9NjMwBrMEYpUZWAEDxjQsabWEAdN3AObCwq5zcCpKElA0gSRHZa/6bL3N/\n82XuymzBXMF3/7tevHw3f6eu+TsLWYffutf313rWamnY/e969zend21rI5SJ3QdHRseLhKcs3say\nzihs4vpf6DHEFtP4xs6FY/8zADxGfwQApjaAel/HZ9rlJKejRJl1cWi/i+NvP0Os4PjPt376PcLG\nXHzwcHnjMiN7zPwJOKGvecLCcVmG+MaFdKSFy9iLDsky+suf0v0X8LM/e71TaSbS4kzdnr02rlvl\ncH2b9Oq2NvOK40Seh0+POfi9YYeZCiNIWAuaoRc5xZjJrm1tzDT7u7Y/5VIX52lh17a21w6StiXz\n/h3Ecs0/hsf1LKGn7m9Or39CIU57riFefKxPPtLK+rxKX5MIbRhDt4mX1uca4jN/wnjkoRkdL+4v\nXbhwdtj9R24Qorsv9fS6NonweaVPqwBiPWxZ2RAdGy2wDJMu586H1PRnqvWd7c1MDz3f57IvU4l/\nNQgE2z2rsOHSaHVd7+jo6O3t1TStu7s7n8+7eYuA2Gdc3rQMO/QQl2doYR95ji2dq93fjVDvXqPn\nFesRo3AZZY8x82MbmQOQOQC6bnr9I0kCpR0lt0Jya0jl472w4RvK1a/UDY8V/Q9zeRCvzHozfi9v\nXHb2wA/MQARsEjh86lO75XJ9m7RmZcNC4phOsmbYh6fH2NUIsyre3HEZjvBW6unBnpLlA5tUidPW\nrCITkQ6p99avlehJTgvSenoxim+y/pyFoGZNq+v/54XjfXOT1tA0GBE5vALhrdTTjGneDltmVlsd\nBK+N6R+eHrPerpY3Lnvrp9/rVJrPD94i7gHr26QtnauZZpUSU73SPrcoE6Z69SoA1OUvLXysnC+E\nSzFmsmZlw77U08S9cH2b5N4kw9MCnce0ZVVjVaxB7sdwf3N6wxPK1a/Ua1+pV3+r6n/Q/6PW0Vov\nt9bLsTqppV6efKgVH89JDp049rmG+D98XbemhYp93bbGAVNzxYsMvq9N3pktPnjYqTTTcbotKxvM\nrC8mr860AYBdONS18blu0w91VnZslq+N69arZlooWlY2mEk/ro3rOPmMedr6NuncgWftfmxVWLOy\nYdf2p6x3ol3b2tzMHfc3hZMXJ4hdSoevqHgu+zKV+FeDILDdswrd5Mel0eZyuXg8jl0IOjo6VFVV\nFKXsWwT/55n/gzz0GwCLGQ/zLAA5z86AgRNXWZSPuUfev/s19T1rt1z41GXuPZR6GeesnfPeU0cM\ndQTUq497XoGeV5Asg7IBZNmM4646Lctk04SAX1z7iu2yU/yDji0TAIAX95ekFACANgHqyJ+qV/8U\nAB7o8IQOfyJP/a5+6o//R2hqmvuw6TagjkCsHX4L6L/G4Il2iG8EvTh379cmDG0CAF61K+Wgjhg3\niwAwZ+QGm7IF86xbG/tgj/JO9jpemHZtf4p5Ebd0ru5SVuBNOuwrfOKCduKChnPfmqeZa7fpRrzj\nhdZIRUIICPZnrxdnHsYa63F6DewLbqYsIHMbZ48ZpTkHOpUNnT/ZdGh3u+l9uP7f/mX5P1wxRq/A\n6NwiY022YDXV1938dOF44oemo1jd9F2Q5vRXo+P7c3b6+CaH6i0uxdgOfLL5cax2eJJbnhaseUyx\nYbsqU6aCMVz/hGKaUaWvSebe1E/wogdwZbZg1Wg3fEP5SSwFAPuz1wknVLtsGMUHD7FaaZ6zpXO1\nmYp/8s7s5O2ZllWNWJ3FHvz4U6Pjxck7s3b1wD7Yo7SsarTuhhN7UDgUgVD1AODEBQ3rrMf3PTOV\nmj1xccKlhaJTWbGQLSEyXgcY6xbijs3yq+60N+tNAT/9Ot8UsJlm/VrJOXsGz1z2ZSrxrwb+Y7Nn\nFX54CTIMV5sjTPr6+gAgnU4DQE9PTzKZxKUTmG/dvXv39u3bADA9PT09PQ0At27d+uM//uOtW7my\nw37961///e9/X/HHZ2ZmGhu58oQvW7bs0SO2M1M4ffi3f/u3b37zmzwdiP4Yzn5laJ//YUWsrjnG\nrtts14frkyW/S/7O1xqeYMyypTCGQfchhDE0ryZTEmZmZlbe+fzrMwvGrQf//X/3ey+/KOgxLCvG\nzmOIP974BGr9ztfsznEew7ItOPR/4vM/zHxlPN1SxggSqTG8uey/zaI5efisftx8jVnxh5Xf+f1K\n8/WKP3wHv47aXCYWMWcBcOgDvoLEQVDV6LUAACAASURBVOYFjeZ6eH3y925+O8ZODrH8WI/YyVJw\nc9nlVApuLruk6vcUSZLsLKF2+BYZ5uApi9/6u7/7u88++wwAvvzyy/v37+O3urq6nIPDcrlcMpl0\nOOFb3/rWl19+afeuruuapjkMyv3795cvX87TgW9/+9tffGFT+8VdC859UFVVlmWH4X348GF9vVPh\n75oZQ4cU1S7H8O5n7BOWzhg6nLCI5JApCYz+f/GvnjoQzhje5R7DmzdsT3A5hnYtlJXD//v/Wqxj\n+C349rfg20QH7sEX5ovrMDcoEZ/LdwHS+3yby8wlMbLr4V0ALLo+zmW720rQc7nsVAp6LkdkPXS4\np8iyXDWNVrOvbo/f+sUvflFZy9jQWxmqqqqqip0fKoanA/wt9PX1mXWDq9IBMYb8HRBjyN8BMYb8\nHRBjyN8BMYb8HRBjyN8BMYZsDA6Gh4fj8Th+LcvyzZs33bwl8ERvb28+n692LxY3Ygz5EWPIjxhD\nfsQY8iPGkB8xhvwEMYZcNlpFUSRJ6unp0TQtmUzKsgwACCHDMJhvCSogHo+L0eNEjCE/Ygz5EWPI\njxhDfsQY8iPGkJ8gxpArMgyjqioAMN0dHN4SCAQCgUAgEAh8wQeNViAQCAQCgUAgqCJVqIIrcE8m\nk9HnC67yO3EvQbLZrOk7X1kRO4F1DIVAekXTNFPq8BabkEOv0GMo5NAreAwlSTKlTsihV+gxFHJY\nGTjDFY4J81cO2anUBBEhk8lUuwuLFV3X+/r6crmc+WdHR4ckSbqud3d3V7dviwViDEEIpEc0TUsk\nErIsy7KcSCQ0TRNy6BV6DEHIoUc0Tevo6MDuf4lEAsR66B16DEHIYUVgkcNKre9yKGy00UXXdUVR\nxJNfZfz/7d1vTBx3mifw50cGdueAuMuTs9eIW6CsM9lRImOKF5nVxRC7Wzqv7ENrT6Ozd9do7aS5\n2bmJFZuo++RMHFuOrlvBHjmrzMmdOHv4dPhErx2xttYr0bbBeZG8SDX4kpMCIxegI2aM1q4mgG4C\nO6578cNFdVV10U3/hXw/ikZQXd1dVNckTz/1/J6nra1NVVX9O1/qQ+xAZzqHuCDTxfs18qtOUZRI\nJCIIAq7DtFjPoc/nw3WYFn6bhbcOjUQiiqJEo1Fch2mxnkPe/x/XYbra2tr0jl1Z/+8ycrTFizec\n27p168aNG/FdMF39/f3Gf9fwfwHxnyVJ0m8VgQPTOcQFmS6/36+fQB5D4DpMl/Uc4jpMVzAYDAaD\nsizz27uiKOI6TJf1HOI6XIVQKGRscZD16xARbfESRdHv99+/f//+/fvhcJg3joDMoWhsdXBBrk40\nGt26davb7TalH3Adps54DnEdrg6PwPgdXuN2XIepM55DXIfpkmU5Go36/X7bR7NyHaLqoHjx/8MQ\nkSAIXq83EongxlBWOMy3Awe4IFeho6NDVdX+/n5r50VchykynUNch+ni40b5vd2Ojg5T7IXrMBXW\nc+h2u3EdpiUQCKiqqlfDm/6VmJXrEDna4hUOh/V7Gc5TsGFFXq9X//c4/3dTYY9nLcIFma5wOKyq\nam9vr3694TpMl/Uc4jpMVyQS0dd38rgB12G6rOcQ12G6eOWG3+93P5X16xA52uLldrv5txlFUURR\n5DXpsDoYYpc5XJDp4iuZGGP8V14SiuswLdZz6PP5cB2mhZ8xWZZ5KMbX5eA6TIv1HPIuHLgOU6cH\n/bzRAb/qsnsdYsJCsYtGo3xNZaEPZD3AELvM4YLMHK7DzOE6TJf1jOE6TJf1HOI6zFwWr0NEtAAA\nAACwtqGOFgAAAADWtuzU0RpnmukwZA8AAAAA8iALOVrjTDPjRgzZAwAAAIA8yEKO1jjTTIehowAA\nAACQH5lGtHymmXV2GYbsAQAAAEB+ZBTR8plm/f39gUDAYTce2gYCAdOoktnZ2SNHjvA8rg1ljMS6\nNLYDAAAAwPdSRhGtdaaZbXjKHw0Gg6bt0WjUVH2r05p+osmxkv6b5N5ls/3ir8l3NJMjBwAAAIB1\nI6OINhgM8nICPh3OWE3r9Xr1xO0Kw82it7Xobf4j8x0lsY7ClzQ5RkRaqIsZI1p9e+Ak8x4gwZXJ\nwQMAAADA+pBRRGs704wxpmla6kNHtehtLfQe/5m5d5FYp0VvPX3oFjPUGGjhj5Z+UFUWuYo0LQAA\nAABQtvrRGisK9CFkvb29qxtupkWuLv8SuUr+TiIiNc4TtEv7RG8xRLQAAAAAkK2INhnbWDYcDvMq\nhcePH3s8HvPDTysQOE2OsaXttxx2AwAAAIDvrdxGtLZ8Ph9fQGa/MsyQiCVajlw1eci4WVNVhqYH\noFPj5isnLYkLEAEAAGBtKUBE60xTxhJ+VVWmxklw2cQrcixZRKs1/YSUMdZ/k6Qdpu1olbA+ybEn\nnj2rfnaJ9l0Wj8VkYmr+dPjLvoFJV2VZa0v1Kd+LGypKc/d2AAAA30NZmIKbZYkRLdHTrK0lol3K\n2kZva4G3+D9Lzw1f0uSYpqpa4GTCEwytEkiN5+TgARLdG43v6rjVNzBJRPHZhe7ryq6OWzNzi4U+\nLgAAgHWl6CJazVQvS0uxrGadOqYo9LRVAv+HR7TLLRGit8hQq2BslUDGxWcAuTEzt7i/8258dsG4\ncfzB3P7Ou4U6JAAAgHWpABGtoii8gnZoaMj8mN2wXE2N268Ds82zmloi6JGrMma/HSBnToe/NIWz\n3PCI+v6VkfwfDwAAwHpVyIg2FktSSGB5gm2ka78SyJTi1fcxtVCwZoIBsmpiar77upLs0QuIaAEA\nALKnACvD3G43ny7mMAU3gRq3jXQ1VWXWjaaWCNFbbGm7JfyN3sYKd8gd55g1Prtw+cbY4b1o1gEA\nAJAFRVZHa5t2tU3QLj1kKTywaYkwlGR7Bs2eABzNzC06JGi57hsr7AAAAAApKrKI1raOVo4ljT6t\n25O0SrDmaDW0O4Cc4c0NnA2PqBNT83k4GAAAgHWvuPrR2tQGpPsKijnvpSljzLY8FznaohK+ZFqu\nx4LvmtoJryED8sNUdusbmHz9YH2uDwYAAGDdK0BEu8IUXFupRZ+abUsERSFLmEtkl82FwtGUMdNy\nPaZ2FupgMpdKjpaIBuVpRLQAAACZK74puHZsmtHy7bYhrEmyhWWKYl1YBpC5wdh0inummMoFAAAA\nZ0VWR5sh21SuQy4WpbSQA4NyqhEtpRP+AgAAQDLrK6K1C141RUljYRlAxu6NJO/OkdnOAAAAYGtd\nRbTWZWFLHPp/AWRbWrUE42h3AAAAkLEC1NHq5bMTExM1NTV5eMekLRSwOAyy7d5oeqUs90bxdQsA\nACBTBYhoRVHkM8OGhoYePXqU0WvJMZIaV/1sTRnD4jDIrvGpubT2H0bVAQAAQMYyjWgVRQmHw4Ig\n+Hw+QRCMD6mqGg6Hicj0kCiKoijyn1PsdQCwVqSbo+VP2b7NlYuDAQAA+J7IqI5WUZSmpiZJkojI\n1FlWVdWmpiZBEFRVbWtrS++Y+m8y36vW7cz/ZsnFX2dywAC5Nv4gvRwtEcXnFnJxJAAAAN8fGUW0\n4XDY5/N5vV6/309EimFhViQScbvdPp8vGAyqqirLcoqvyaRGcu9ifpvu+szfSb6j7Gl+F6AIrWKw\nbVrdvgAAAMAqo6qDYDBIRLIs84BVNMSaiqLolQaSJKmpdxtw7yYiEuuYKBp7FzD3bhJcRETuXRRO\n0tMgXejeBdlmWxfbUC/w2WDHz8Xis8jIAgAAZFkWVobxiJYXGJhKaTm+MRAI8MD3m2++mZ6eJqLF\nxcWf/exnpp2Ze9fST2JdwvRafQWY3VtAkZuYmh+Up8en5o3tV2uqyl2VZUT09msvFO7QsmlmbtF2\n+8enXqrZUk5Ersqy/Sfumh5FS1oAAIAMZRTRyrIsiiIfadvR0SHLMm9iYMKrEXhC18h+Cq5Yt/SD\n1EjRW/pm9nQ7c+/SQu85HFXJF59rkavWfUqC75LU+MSzZ4W/CrJqZm7xdPjL7ut2afWnpSjrJqId\ntmvF1b5P5OEsETU3bmqoF9DfAAAAILsyqqONRCKRSIT/rCRON/B6vXrtLA98U31RPaJNcXsi5j1A\n0g5rGS4TBPJ3knsXy6DbF6Tr3mi88dBN+3B2PbKtKGhtqTb+2ixtNu2AIQsAAAAZyihH6/P5PB6P\nLMs8nOUJWsaYpmmSJAmC0NHRoSiK1+tNMaI1hptMrNOMj+kRrWNoy3gZruBiUmPCYAW9mMG9e/2V\nzx7o/NQ4p6pF2ny16+UCHg83M7d45PTn36uyUWvrLldlWXPjJuOWZmnThZ6vjVtW0R4BAAAAjDKK\naEVRvH//fjQaFQSB9/AiIk1bCkR7e3t5mlZ/aGXGGllT5JpaRJuwmzFyfRpSmwNlyJkLV0bWQaw2\nM7c4ID/koWqztMkUnq6oYZu57DvdVwAAAIAVZWFlmG3tLGcby4bDYV6r8PjxY1MX2yxYXliWkBVO\nWHAGebHWiw1m5hYvXBnpvq7oaeYLPV+7KsuOHaznjQusrBH89nqbhYy1VRWmPSem5vVaWwAAAEhX\nAabg+nw+vpjMZmVYkiLXFHvQslTaIKBVQl70DU6u6XqDmbnF/Z13rUu44rMLp8Nfjk/Nnz9uc63O\nzJp7HdTaxam1W8pNEe04IloAAIAMZLQyLH9STKway3D1pCyn/yrtyNZBgYNVDIMtHsnCWV33deX4\n+ZSqsWuqbOJU28QtAAAArNoaiWhhrVnTPVYvXBlZscFW93Wlb3DStNG4Po+zzdECAABAdhWg6iCH\nMitayIXB2PTEg3kiqqkqx5IgXfs+8djB+pot5TNzi7Y9XAtoYmre1IsgmTPhr1qbq533sa0lcFWU\nmt/0wTyhrRwAAMBqFSCiVRSFd/saGhrK01vmfTWYdVEREbkqy9r3ietmmoCz+FzSItraqgq9CHVD\nRWlagb7W8XMt/JFxCxME9vi3qztIWxeujKS45/iDucs3xg7vTfvqslYdoCUtAABAJgpQdaAoCl8T\nFouZKxGZ4Mr/8WTdxNT8/s67F3q+Ni2Nis8uXOj5+kDnp8lmpa4nDnftM7oRH71t3uI9sPpXs5iY\nmk+rRUP3jeWdrR9ri2WYAgAAAORCAXK0brebN/xKvdfBGmq5NTO3uL/zU4c+rAPywyPvfF4MExAK\nZfXrouQhTTGHm+YlgJnpGzCXxjobHlH1xlupl0+4KsrSPjIAAABIbo2sDFs7LbeOvPP5imMFBuSH\nZz78Kj/Hs55okas2W/mUuCyxLvZa+SlpBsFEtH3bergXAQAAUDzWSESbGlbozlyXb4xZV7vb6r6u\nfB9qD7Isesu0gXkPUPYqVWbmFq3FEq7Ksmvndj6689NHd356yvei9VkOqVnb1l0AAACQdeur10Gy\nVG6yYoZsS31RUXx24cKVkdRXiSXrCeCqKMtRwk+f/hqfXYjPLtRWVbgqSltbqgs2CEAZ02RL4XVW\nE7S230Y+fuclfe3a6wfr43OLpk4IDp13XZVJqwtMJbZo8gUAAJCJAkS0uZ2CWziDsekV6w2Muq8r\nK0a0E1Pz3TfG+gYmk71yi7Q5FyW5Zz78ytSogTsd/rJF2nz+RGMB4lrbkoOsLguzxqYt0mZTK4Zj\nB+tNEW1aH7ru+1xIDQAAkHVFNgV3LUu3njI+u9A3OOnQ0PTyjbHT4S8znCV7+cZY9w1leERtqBea\npc3HDtZvsDRDNVpxXNaA/HBXx61rXTtNueEfvfL3KR7ShZ6vTUHhtXM7d670LJsEbVZLDshuKkRr\ni/nT2VBR2iJtNmVzB2PTzY2bBuXpLB4MAAAApM6pjlaWZZ5DlWV548aNjLFAIJCvA1t7bCPaFmnz\nr05Ivzoh2TZycrhh3Tc4+cY5OcNw9vj52BvnZB6eDo+oF3q+3t9513k+rb6/g/jswv7OuxP5bKGq\nxq3LwrJbckB2FbHNkk2vXMywBQAAKDZOEa3H45EkiYhCoZDP5/viiy/C4bBiaZ+0nslDFOrSAm9p\ngbdIdpoHMRibtkaf7fvEq10vH95bd3hv3dWul61B7WCSZWQzc4vHz5lTkunilQOmjcMj6pHTnydb\nlHb5xliKmeb47ELmR5gGy5owoiyXHBCR6RN0VZbZFldYw9xk2VlUxwIAAORH0ohWURRVVYPBIBFF\nIhGfzydJkiRJ6y+i1Tx/9oT9gf6P5vkzIiI1rrUdetL00pPASS30nhZ670nTS9rWP7Gv5rSLaYyT\nsbjzJ8wL1JJlQ/sGJjPMzjpMChh/MHfknc9tH0p9ZRsRDcgP85am1SyDFbJfcmBJXTdss8/Fph6n\notcBAABAfiSNaEVRJCJVVSORiCiK/NeshLPRaDQQCAQCgUuXLmX+ajmhxjXPHuttbk1RnrQd0jp+\nbn2GdXlQu2U4as2W8gbLDWvbGoAUW4A56L4x5hATD8gPrY1X743G013k1H1jbDUHtwq5Lzmwju1N\nFo8WrNsDAAAAJOG0Mszv9zc1NamqyhdyNTU1EREf95UJURT5iwwNDT169CjDV8sFLXDSug5p+dHw\nRyQILHjWuNEamFoXFRFRs7TZlJe1BlJENDPr1Kq2taW6fZ/If042fWrF4oH3r4yYFqWtYriAdSlV\nTshDmmp5oxyXHJBj761Hd36a3XcHAACATDhFtPq4Wv1///RP/1RVVcHQ9lVRlHA4TEQ+n4/ncXWq\nquoPGZ+iZ3yJqBh7HcgxzbZq00ALvcfcu8gwf9WU3XQowTQt8x+Up039ocgxR9tQL3x86iXnw0sl\nxTs8ot4bjRv7FViLehvqhdcP1jdsE1yVZQPyw/evjJjC8dTnvmbCZk2Y1JjdkgOy+07icmwKAQAA\nAMXDvupAluVoNKo3i+Vtttxu95kzZ2RZ1ndTFMXj8fAI1ePxGGsSVFVtamoSBEFV1ba2tpz+Ddll\nkw603S3Upf+cixLMZJrteiasjikpa4pWXZVl17p2tjZX12wp31BR2tpcfa1rZ21VhXEfY16zRdps\n/MfhfWurKkw7J8s0L7FGtNlO0NpCTwMAAIC1wj5HG4lEeOQaCoWM2wVB4N0P9N28Xi+vSVAUJRKJ\n+P1+/SG3262XK8iybHzimsD8bzJ/JwkuUsa0wElTplCL3mLyEEk7yK5yIFkwVFQlmH0Dk/qIB+sa\nr9aWalPn2g0Vpa0t1aYc88TUPP+jTCMDHNrTtrZUW0dLaMn2VsY0a/V2XiJaAAAAWCvsI1re4sDj\n8fT39zs8WY9fiSgajV68eFH/VVEUvdJAkiQ1tcRn8SgJvkv+zqVfxDrW20Nth8xBbeQqk3YQ0cSD\nNJb857ME01VZ1r5PbJY2DcrTpkiUiMYfzOnx6Lglok2WZja/yNNXyBXbkgPRvOoOAAAAvs+c+tE6\nh7O6aDS6detWt9udLAvLQ9tAIODxeDwez49//OPnnnvuueeeO3CgSDNtTGpcDmf1jcF3zfs9Lbe1\nhoNF0oj0/InGt197oblx09uvvXDK96J1B4cxV0XSecq+bxcAAACAgU2OlpfP9vf3M8asj2pawv3h\njo4OVVX7+/tNy8KMeH0tz/saFe0UXOZ71WarWMe8B4xpWk2O2ZwgIko/HMxwhKztnu37RGM3g9cP\n1g/K06ZFY3os3rBNML2ObY42T80NdGrcZpUeIloAAABIZBPR6qlZU/BqFQ6HVVXt7e21PuT1evWR\nubIsO8S7xcjQxMCIuXeb191HbyfbueDa95rPeWtLtSmi1SPUDRWl1pYLJpdvjGXeKDc9KDkAAACA\nFDhVHayIrwZjT/EQlmd2JUkSBKGjo8Pj8Xi93jUU0TJBSBozrZ1YqraqwtiZi7O2yE2x/Vbf4OTx\n87E3zskr75pV1gQtSg4AAADAyqkfraqqoVAoGo3yTgVut9vv9xs7ywaDQWstgZ7Z7e3t5Q0T1liX\nA8k8q3aZJR2rRW+zoszRNks2CdcNFaUt0mZjntVhrtjE1HzfwKS1UCGvLEW0KDkAAAAAK6eItq2t\nTVEUv98viiIfl+DxeL744ovUX902lg2Hw5FIhIgeP36st7yF7ErWqWB7vWCKUAdj5hEPg7Hp93tG\nChnIEhGRFr1t6g2MkgMAAACwlTSiVVU1Go0+fvxYT8p6vd6tW7fyUQuZvKXP5+N9aot2Zdg6kGxp\nmrUUweTMh19Z+3wVhnVNmEP6PAdsx7kBAABAEXKKaOlp4y3dGiqHXT2H1rmqeTYYy9IsVlOTWofW\nB8cOPW8dT/B+z4hpS7IcravSPJ3r3oiqx21FFM4SaXLMvEkZy93brRjrG5358Cvjr83SJsS+AAAA\nBZQ0ohVF0e12BwIBvVI2HA4ripJhgrb4OfTkImuMld+sYepM47501sArPrfIfxiM2UxhMKmtqhh/\nMJf54a2OFr2V9KPJmG2sb7vnzNyi9UQhogUAACggm14H+igEIgqFQhs3bvR4PBs3buzo6DClbNct\nech2s7XbPyU5IQ6TC4pW93XLsNmnaqsqjh16/vZFt7VbQr4l+Wgy56owR7TWwRlcig0iAAAAIG9s\ncrRer1dPxBrn3GaLoih85sLQUK6ikwzp423NEtujMkEgaQcV3w3rhvq0v3jMzC32DUxatx879Hxr\nc7X+B/YN2uyTV3KMbD+ajFk/xPEHczNzi9ZstzV3m9YFAAAAAFlnE9HmutmWoih8QdjExERNTU1O\n32uVwh+Rv5NMNbKRq5qSmMV82rer2G5YW9ONK7KGs67KsmtdO4stVtPkGKOjOXpxa01F38Dk4b3m\n7grWHK31AuCwtgwAACA/MpqwsDput5s3sj16NFehSYY0VdU8exLWgclDWsfPTbsx927+Q+0Wc2OB\nNXfD2nrAp3wvFls4S2RXypw91r/XtoWZtaQEYSsAAEBhFSCiXRM0OaY1/YRCXRS9rQXe0jx7zL1R\nBYF8SxF5jTWifTA3YRfU2gRDdqMQ8s+aVC58yawdmwYI2VNbVWHa0jcweW80ocHF5RtjprEU1mcB\nAABAnjlNWPie0xRFC5xM9ijzdxp/bagXhhODwr6BydcP1pueZW0UsIoKgRVlJRNs2y0hWTVFXkVv\nW4e3ZUWztMlaE3L8vHytayc/GzNzi6fDX1qf5fD0ZA50fmr8tbWl2lreAAAAAClCRGvGpEZSxjSH\nrrR8n8SIdvs2c0TbfWPMFNHarr7KxZ19h9m2GSqKqgk5lquI1q54YHhE3dVxi2esu68r1nObrPUv\nOX4QpnqG7ekv5gMAAABdAaoO+DRdj8eTi0YKWSAILPiuw+NMEFhvj2mjTSntg7n3ryQMPrhwxTwH\noUXavNqjLIB7o/Hcxcqpy2nhgW2txfiDuQs9X1/o+dr2z3eoG5l4YF9ODQAAANlVgIjW5/P19/f3\n9/eHQqH8v3tKfEeZ/03bR5jUyPpvkmi+QWwbCZ0Of6kHte9fGbHeks5dZs62ipeIBmPmQl5XklkM\npvpRIuq+kbRhbV7lrCUtpf8do0XabK2iXpH1UwAAAIBMYGWYPRY8W9J/U+9mQERMaiwJvsu++My2\nH2rNlnLbFUKnw1/+6JW//9Erf2+tvySi1uZcrb5K1mzBmmVMFlVfuJIQfw/Gph1GMOSO9auFpijW\nccTZcnhvXbJWXLac188l+xQAAAAguxDRJufexfr/sUT7jv/DvvjMVDtrkm5zgNqqity1x0q2hMua\neU2mb2Dy+PnYYGx6MDZ95sOv9p+4m72jSxUTBGZ7znNZeNC+T0xxz9qqCuNyLmsZbgEnBgMAAHyv\nIKLNmvY016rntD1WsuygNdLlcZhtprb7urL/xN39J+6mvoQ/y7wHSHAxy6hhm3HE2XPsYH2KDbne\n9r2w4j4zc4vWjUXbxA0AAGCNKkBEG41GA4FAIBC4dOlS/t89d2q2lKee3nNVlh2z9PbKItuRtjNz\ni6Yl9vod9mIcpkDEeE8DqdH8QC5ztBsqSs+fsLyjRWtLdSpFI0XRHQIAAGC9K0BEK4qi2+12u92N\njSvHDWvLsYP1KVZhtu8TbRu+Zkt8dsG6/Mga5uqdp1qkzakcuXWf3C3nZ4JA3gNE+Y5oiai5cdOv\nTjjNgm6oF2x3sCZ3bc8PqhEAAACyKzsRbTgctm5UVTUUCoVCITWxt6se0e7YYbPEak2r2VKeSnqv\noV54+7WVb1hn6P0ec7Mwa/swvdhgQ0XpilUQDfXCKd+Lpo22yeDs4OEsEbMsxdNUlZSxXL0vEREd\n3lv38Tsv2Ub5LdJmfeaCSYrzkGdmzaUIuRi0AQAA8P2RaUSrqmogEIhEItbtTU1NgiCoqtrW1pbh\nu6whrc3VK6b3rnXtzMORDMgPL99YDvvOfPiVNTVoLN885XvRIU3rqiw7f1yqqTJHbAPywxz1omL6\nGAVrjpZynqYlotbm6ljPnlO+F1t+/Gyt8EzDlh+0/knZtY6qq10vp55ft12iZ6r9oGKt+gAAAFgr\nMp0Z1tbWpqqqYFm7E4lE3G63z+cjoqamJlmWJckpzltPDu+t21BZevxczNoqq7Wl+lcnpJzWGxi9\ncU4eHlVrt5QPj6q2yVTjvCteP3rknc+tu7kqy6517eRRl6uyzPR3DcrTttO2MqVfVGIdEwTTFDdN\nHmJPk7hZoXn+TIve0n9l7t2s/x83jHz1i49P/mfDdvpvpJ0UyXuA+TtJMIeh2+sFU7RqraNN1ioY\nAAAAVi3TiLa/vz8ajVpnJSiKooe5kiSpjkNl15/W5uoWaXPfwOTwqMorKbfXC63N1flPxTk0kW1t\nqTbF1q3N1dfO7TzyzufGmLWhXjh/XNKP/P4//IccHaoTqZGMYSXlI0dL4UtPOv7GullTFAq9R+GP\nWG/PivN447MLE1PzxikM1kYHKbZWAAAAgGQyjWhTwUPbQCAgyzIRffPNN9PT00S0uLj4s5/9LA8H\nkG+Rq1r09rNy7C/l2F8aNjOpUZMamXsXZTW5uGq287GaGzfFevb0DUzyAtDt21y5GwORBktEq0Vv\nsZy+ozKmBU46PK6pqubZU9J/Mu8ycwAAFDxJREFU0xjU2g5g6xuYfN3Q18KatbVW3wIAAEBa8hHR\nKopCRMFg0LQ9Go1Go9E8HIAzFnyXqYY2/qYKCjVuTgc6pOUiV7XAW5pinxbV5BjJMS38ERNFFjyb\nu7jWWhhgu0+ypWAbKkr1wQF8woLx0ZwUGKyESTs061Z5yHZ+W1boHyITBHLvIlEkOaaZ8sREWtsh\ndv9rvfzAtq1v32BCRGst/9hQmacqFAAAgPUqVxGt1+sNBAL8Z1mWRTHVRq0FoKpPPHuMG5j/Tebv\n1EJdFLlqG54yqZF5D5DvVWMlpRZ4Swu9l8obaoqitR1ivlfZxQ8yPHZbDduE8al55xZRDu3DLt8Y\nGx5VB+XpZK9QW1XRLG1qbanOX3SbbHFYziJajvleZcF39U+ZKWNa2yHN8A1HU1UKdbHgWf6rbcuC\n4RF1MLZUavz+lRHrlw1UHQAAAGQo+/1oGWNEJEmSIAgdHR0ej8fr9RZ1RGslx7Stz2uh9xyyrU8C\nJzXPHlKfDpUNdZnCWSaKJRd/XfL4YYn2XcnjhyUXf80ST4IW/ohCXbn5A1YYSOaqLLOdcNY3OCn9\nxT+9cU7uvq44BMTjD+b4OLEDnZ+mPlY3I2KdzeSwHJfSMqmRXfwgYfmXWMf6b5qPJHJV/zFZnfSR\ndz7vG5y8fGPM2kCNktQqAAAAQOqykKPlzWX1XzVt6f5wb28vL5xdc10O+M1lJjWSezfxW97yEKmq\nFv4oYTc5RoGT7OIHpMa1xNiUSY2s/+ZyMCS4yHeUeQ+QZ09Chi/UxRITvdly7GB993UlWe1B+z6x\nxlK7efnG2BvnZOOWhnqhfa/YLG3iO09MzQ/K06fDX+ovOyA/HO5Ub1/cbX217Mv74jAWfNdmq+Ai\n36tk+PaiKQoz1D/UVlVYvwzEZxdsm0hwtrUKAAAAkLrczgyTJMkazobDYY/H4/F4/H5/Tt991Zgg\nlPTfZF98xoJnecErC55lFz8o6b9p2nMpxo1cNfWWYr09NnGq4GK9PQlPV1Vjhi+LNlSUWqchcC3S\nZut8h4mpeVM4W1tVca1r5+G9dXq0WrOl/PDeOlMz3fjsQveN3A47WGIpPMh1jjZZwbRN1zBDqL2K\nZV5YGQYAAJChfKwMM/H5fLxPbZGsDLPhe9U+mkkS4miJ86uY1EiizT19IiKxjkmNCWlaZSzzNftX\nu162bjy8t258av5Cz9fGjbwhrnVn63Kl9r11toW227e5Ht35aQYHu0pMrLNZHBa9vWL/rFW+nXt3\n0sdsZpjF9Q/R2pJ2RfnIcAMAAKxrBYho1yFTstBS8en0qByj8CVTTPzozlmK3tait80vLjXS/WGK\n7iKpMZVahbdfe6FZ2tQ3MDnxYH5DZWmLtPmwXfksEcXnzHNZ07sVrowtj6WVGklwPfobpslDRMT4\nbXr9aCNXNfl/aQFigou8B5KG/lZ2i8O06G2Wm4h21dItirXtoQYAAABpQUSbDZkUwgouLXLV3BYq\nclVTFCaKywGfMqYpCr+7zZegMe8B5n/TdrH/YGz63ojKg1Q+hbWmqtxVWTY+Nd83ONmwTUglKTjx\nYJ7sGgzY0sKX9IVxJb09WviS/hdpRCzUxYLvkveAZigj1ogocLIk+C75O21f08y2rUGSpXtZoCQv\npVCdFsOlWxRrHSwMAAAA6UJEmw2mTg7O9Z2mR0XRZn9pR0lvjymGY8qYFurSV6dpkata5GpJb4/e\n13Ziav7ClZG+gUmbBWEJJbLUIm1+/VC9sfdWa3O1qT6h+4ZiHSrG3+X4uYQDbpY2/cLwq9bxc/PE\nWlWlwEkKf2StfH0SOFkiNaZYOcDcu82hvzyUyhNXQVMUpozZp5AtXWmNeeJ0O5qhiBYAACBzuV0Z\nZktRFF5BOzSUq3Akz0xLhXiPUvtdQ13mNWR2cxaYJZwlIhLr2MUPWOLNdy18if9wbzS+q+OWQ38D\nowH54f4Tdy8bVnRt3+Zq35cQlw+PqPs77/YNJtTX9g1OHjn9+YD8UP9neFQ1dQrTVJWJIvO/afzT\nNFXV5BgTBOZ7lfleNTbAMnWQcGJdHKYozhnTTOjnduXtiQfWkE6aFo0OAAAAMleAHC2PaIloYmKi\npqYm/weQfdIOU/rwSeBkCZH5fnqo60niYFXm3m1/Mz3ZNCw1br4b/jSJeOT058ZY1lVZduxgvTFa\nmngwb2y8RUSnw18ay2rPH290VZYZM7XDIyrvOeWqLHNVllmbUjXUC+ePSzVbyo1rtoydy1jin8z6\nby79Xb5XtaaXlv+o1CRZHHYrR9PXtNB7zHvA/EGEukx5Ymv/tWZp8/CIedRtMgWZwQYAALDOFCCi\n1fvXFm+vg/Sxix9Q00+M+dcngZMsfGk52LKMH2OCkGxmmObZQ94DzL1reRmZqmryEIU/Mr4F8x7g\nPVMHY+b5Xqd8L5oXgTWSqfVBfHZBn2XFvf3aC+1767pvjPUNTBpfMD67YEr9trZUJ1tnlhDhGZKX\nCdHh6mZ92S4Ok4ds89xZ8aTpJeZ/c+mDUBRe6WHah1nqgJPNWbDCsjAAAICsQB1tloh1rP8mdfxN\nYmcuhZLMxWVSI7v466Qr/X2vUvTWkyS34/noB2OA2Ny4ybmjFl8r1n195XVUNVvK337thbdfe2Fm\nbnF4VI3PLhingjVLm1wVZStEbEk7l2U8N84+n53brrRa6D2H4cbM/6b17009Tm2WkKAFAADIAkS0\nRGLd8ugEngWUY8Q7ZxGRWLcUsqhxkmPLewqCOcCSdrAvPmPhS1qoK9n4XCJiosj8neQ76nBELHiW\n6CwjInmIjHW31jdNNDE1Pzyq3huNjz+Ym5ldHJ+adxhmuyx6+4lnj2lbJRFvcrvPsvuTxF9LtO9W\nfosssVsclpOIlvejNb+XaR/fqyx41rp9Q0Vpi7Q5la60zcjRAgAAZAMi2oTOUzYBEw9uxDrrAiYm\nijZLuHxHme8ok4dIji11mZVjPFBmYh1JjendcE9553uj8QtXvrYOStAlq4VdYyyzcDVVZQ6dtjLA\nenso1GWboGWiyIfJJXtus7RpxYi2tqoi9foEAAAAcFCAiDYcDkciESJ6/Pixx+PJ/wE4EetK7n/N\nk7Ja4C0ezWjRW0xqLOm/udRk6mlGU1MUCpxk/f9ofZn4jtqh5x8R8XVvLcIzQsMfLk3qGv6drP5+\nOe1aVybWSI0Zjg27Nxrf33nXtDKstaW6dkv59npBrxM48+FXphZdaw4TXPaTw1Kf1JA6wcWCZ5n3\ngBa5upwJFuuY1OicYiei9n3i6fCXzvuYekQAAADAqmEKbgJmmGLF3LuW83Pu3cs9U5M0T40/UT/5\nNnJnLnpnPmqMWXX7n/W+UuH+5NvI7bnlv/r4c/4zwaBpz/FFZWxh5ZpXPVC+cOVr08qtWM8eayvZ\nVBp7FTvbxWHKGMtFRLv0jjtY+uvYNlSUtu8TnQuX25PMbwMAAIB0oeogO/4uHn77YcAYyO74ofRK\nufuVcjcRxX+vDv1OvjMfvfagI5VX+1gNn//n0Iq77apw/8Mf9xPRzKx5hq3VvdG4Q01Cwf2Pf3d0\nfOt/1H+t3VJ+2G0X8Ll32Zft6nXPRaN9r1NE275PTGVyGwAAAKQCEW0WfPJt5BeJoerfVl38a5fP\nuOXPn/XyPf9qss30dFMdAhHVlYnHn/Nb34jHxzrhmaXeXhsqzenY/Z132/eKfMLqxIP54dGUGh0U\nUN/ApLHwlLcGuzcaj8/Z55UbtgnWJHRR4UMrkp32Ywfr83w8AAAA6xgi2iz45NuIaYspnNX9+bPe\nXRVuY9UBETVcHjZ1OU2ozVXGzFMVLB0Pjh18flCeNhYVDI+owyOJo2+JXJVlpsKDoq1DGJAf7v5P\nt3grgNot5TVV5fdG1PjcYnx2YVBebr7bIm1ulja17xM3FPRokznle9F2KPGxQ88jQQsAAJBFBYho\n9fLZIpkZxoJnWfDsYGx64sH8+Ng8ffgVEY0/mJuZLa0595mrsoyI7o2o1PmpPoLL1fO/t9cLeprw\nlQr3tcSg9u/iYdugdvh3simcJSJNGTOPoYre1vTb6HzQqzJGvFUCERNcSy29pEY+y2D7Nte1rp1n\nwl8mW1/f2lLNh9zuP3HXuP34uRgRta58kvLNVVl2rWunMQurT4KYmJpvPLTUQ41P4iWi1/91/o9x\nZRsqSq917TQt2mvfJ7792gsFPCoAAID1pwARrSiKfGbY0NDQo0eP8n8AJpdvjL1xLiGdecr34sen\nXrLuaboJPjyq8jDrr12+sQXFWPn6iwcdd+aiO34o6S0O7sxHxxeUa5ZsLhGx4Nm/3f5X8TlDLewY\ntR/7L6Y03sTUfPeNMX0HImr9Y9r+dKbY9m2uq10v6/1o9Wc1S5uMN+iTDGKoTr2nLJ+8YNzSMLe4\nIXjWtjNr0rLXFLrY8gG8RKR/kbg3osbnFviA2dqqCt7JobW5evs2F0W/SfH482z7Ntfti7svXBm5\nN6q6KspaW6ptB60BAABAJpim2XRDSp2qquFwmIh8Pp+gj2xd6SGOJ2v/K/1Abymw3CGLEtr+M/+b\nxoDpCfuDpe3u3ay3x9xjX78pr8bt2+8n3rWfmVvsvq4Mj6ozs0tTsmqrKpqlTTw7azQoPxweUV2V\nZQ3bhA2VpQ3bhPZ9oh4sji8qH6vhO/PRof9nvt3P8bViph2OP+c/Ivg+VsPGPevKxFfK3bbtDoxF\nt7zXwY4fSjMPy8an5ruvK/oSMT0KdNYsbTJOwTXRg1fjPoOxaVOi99q5nXwHvv/Eg/nxqXn+0L2R\nhNh3Q2VpbVWF/ta1W8pTvPnOX3nlcWWZSHOYhTNrbbRRXZnoekYwXSd1ZWJtacZj1QAAAL6XMsrR\nqqra1NTk9/sVRWlra+vv70/loSyTY6Z5V0wQyHuArDG0qlLkqmaIWph7Nwu+u0Ha8XqKy3SS3CyO\nP1F5dKI3NxhfVEzRyVLTgyeqqehWeEaoHRw/HV36IJjvqN4+rPb/Mi18aWn705m3r5S7SRl7un2W\nuUvILbj+z+1/49nzcuJRLY83e0qL3iZFSZhGe5/o/g5y754pLe8bmOTxKL+PrydBiWhQnqalSoxF\n26Va90bjppqH1pbq1pbqpQQqERFNTM2PT80PytM8zOX/W1NVfsr34oaKUgpfWi4mNrbokmNE9Kzg\n2imKRKSp6tInq39XkRqZv5ME14HOT40HcOzQ82+/9gJ/U+sB28Txei0HPwBVTeifoAe41rLmp9/B\nhn8nn//nkLF3G+/XZo1T78xHTUl94n3cNpn7uAEAAEAqMopoI5GI2+3mzWWbmppkWZYkacWHck5q\nZBc/sH1EEwQyjIDSorco0jjw/KM789FPvo3wnCjPpNo+3RSCzP14Ob39ybcRY55VeEb482e9dWWi\nXnXw9nQg/nv1k28jxgzrXwu+N37kJzcx2x63Yp39rXzrdmWM+d80bmDSDr3Kdnkfsc6YkGeCi3yv\n8n2OJIaDtVUV8v/89zZvTXT5xph1zdng03pWXYu0ubU5YYJAzZbymi3ltVvKxyWbrLCxmLjE32mb\nqi/p7Vke06Vvj96ipbnBCXirsu3bXMZce3x2gXcx42vLeLr98L661ubqhNFx/jf1T0SL3jaOlGP+\nzqXXUtUnbYeW9w+edT0j1JaJO55IRMSrpYd+J9eWiba59njyDC4AAACkK6OIVlEUvZxAkiTVkP50\neKjY7PihRESvlLt511iyNMni4r9Xjz/n3/GHkusZgQyds4jIVSK8v+Ximc1BHhYP/04movFFZXxR\n+eXDABHVlYl1ZSJ/r9pS0fWMoGdzl4S6NDVufDtjsnbJcmr26T6Ci3iAJTUmjBgQ62xmaIl15Dua\nbDjZx++8xPtnzcwuDsgPxx/MSX/xT3qOlnPI0b5+sL5Z2tw3OHlvRB2fmh9/MPfGOfnClZHaLeX0\ntASCJ2VNCeBmaVMaTbjsaleScVWWEpGxpJiLzy7wdVoNfJpavWAtL2HuXXpIzYiWB21IjfbzNeQY\nEdWWiq+Uu4VnBPX3Kv8mw68EW/Hfq7sqli4AfknY9msDAACAVGRURxsIBIgoGAzyn91uN1/yZfvQ\nL3/5y9/85jdE9N133y0sLEVFbW1tv/3tbx3eYsXkbnV19eRk0sEBqqqqqiqKScsTZ2dnKysrMzmA\nP/qjP8rwT3A+Bv7dwLYQmfvBD37wL//yL5kcQO7O4QJVfqc9Ozr6m23b/u0z7Lt/Rf9suxvOIRHl\nsDIHAABgvctarwNFSdrAnz/02WefreJlPR5PJv+l54vPgpYxs3k7gMxfwfRVIf8HkKVz+N9X/XTC\nOQQAAABHGeVoZVkOBAL8v/Rbt27t7+/Xs1AOD0FaMo/GAOcQAABgfcsoRytJkiAIHR0diqJ4vV4e\nszLGNE2zfQhWQRRFh9vlkAqcQwAAgPUt0360RCTLMhHZVhk6PAQAAAAAkBVZiGgBAAAAAAqoAFNw\nIUXRaJSIePVnKBTSO6BhgVEqrGdsxSF2AAAAsEaVFPoAwJ6qqm1tbTyoJaJQKOS8P5iYzhgfYicI\nAj+xhToqAAAAyAXkaItUW1ubvjZfVVVJkpCaTZ31jBVyiB0AAADkGHK0xSgUCrndbmMrNFmWt27d\nunHjRiRrU2E9Y2toiB0AAACkCxFt0ZFlORqN+v3LM1FFUfT7/ffv379//344HOYdJMCB8xlDES0A\nAMA6g14HRcfj8aiqKggCn7Xm9/v5vXLOOF4YUsHPGMfPW1tbm8/nw8AFAACAdQN1tEUnGAzye+KR\nSISI3G53OBxWVZVnbfnEigIfYtGznjFRFPXQVpZljPwAAABYTxDRFh19xRJvdCCKotvt9ng8iqIo\niiKKIiLaFdmeMQyxAwAAWK9QdbBmRKNRQRCwQj911jOGIXYAAADrEiJaAAAAAFjb0OsAAAAAANY2\nRLQAAAAAsLYhogUAAACAte3/A/y2rlpGA/2UAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "'cluster 1, 50 sequences'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAEYCAIAAABdsnUYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3JpcHQgOS4xNeq0bM4AACAASURBVHic7L1/bBRXnuh7\nigyezNiELnJlFl9rbFfus3mrsDYu/5HV1cQOdOspK3ythWlL8HTjvZBUrzJPQQEit5QRvzSj260B\nIrhvoutOYGVGDyR6YOUFDavthtiZtxqeHuUfC1rFfqFs7/PDgbu42mDvZO0N9f44dlE+51R1VZ+q\n6mr7fIRQu7rq1OlT58e3vuf7g9M0DTAYDAaDwWAwGCXLumJXgMFgMBgMBoPBoIJJtAwGg8FgMBiM\n0ual48ePF7sOjNVMNptVVbWqqsr10pLJ5K9//ev29naL8+PxOABAEARiUalUKhwOu1IxpHp26mZd\nAvFbi59jRjweFwSB53mnNSngptlsVlEUAAB+O1VV//7v/76AnqAoiqqqeeuf92ealYPXGVZVMUD8\nRTiyLP/jP/6j9cn2e51FY9pEURRZlnme/8EPfuD1VwWQzWYvXLjwd3/3d1kSwNDl3J1D8mLR4QsY\ngDR3JHZa16cIf7A5kBkMKjQGw0ui0ejdu3ddLy2RSPA8393dbX0+AMDsnO7ubtf7P6yezbpZlGD2\nrcXPsbgkk8kUUBNHN717965xEZUkyfgtbGpIOByemZmxeeuZmRmbLZn3Z0qShJRjVucrV64gk2Te\nCszMzIiiqJ8fjUbNzrTT66wb0w4zMzPRaJRYf9e/KphoNPoXf/EX4WV4nhcEQf+zp6fHeObdu3e7\nu7tduW9eLH6gW7/dTrFmnd/1KcKId42MD0AGw3WYRMvwkJmZGUEQvCitu7s7HA7nvcRPiVavns26\nWZRgRlEkWjsIgiCKIhRVM5kMACCRSMCvenp6AABXrlzRNO3u3buOZH2oy6SUaKEwhJdjVucCHl84\nHBYE4cGDB3pRNL3OojFt0t3dzfM8bJBEImFsHNe/Kgy8q4fDYWKj6WdCSZfmpjbxX6IlQuz8XkwR\nyE1db2SzAchguM73iIpbBsMV0ul0NBqVZRkAYFRiGY/IspxOpwEAPM9Ho1HjVqMoioqipNNpuIjC\n0uAlqqqqqprNZuG8ryhKKpUCAAiCEI1Gzfa29Hsh276qqqZSKbgpJkmSfjleBwBAKpWC28Fw9sd/\nLFI3WIgsy3AvVZIkQRBgIcjt7DSX8cfqFYA7esZLstmsIAjI5iPcQxdFUVVVRVH0yquqKsuyKIo8\nz+M/WS8KfgXbynh3WZYVRclkMvCHwOPZbBYuY8lkUpIk+OBEUezu7oatZ92Y8EJYW+QhGp+1JEn4\nU9Z/Js/z8Xg8mUzi51jUWVVV/HzrCsMLYWvD4/CR6ffCex2sJP4I4HFixSyeMvLUUqmUJEm6SJRO\np3VTB9e/Mj4R+DiMlbQeLBbtjJwJhxX8yfaHFWzVcDicTqehvYQ+w8CvkHshDwjp5wiwAvrg1Qep\n2TCxfnzIaDXr/MZ2yzsQzGoI/8QfDd7IjiZGImYDkMHwhGKL1IzVjCRJ8AWd53n94MzMDAAA7ipC\nBZ4oilDLxfM8VHRpmgYAgHOlKIrG0jRNg9IDz/NQnQC3iWEhPM+LomgsRFcMGO8FT4P9HyoO4Y4n\nLFbf1MPrAK/V1wCj1kH/sca6wULgcguXBLg2iKII/9RLttNcsCZ6CWBZ9wl/mr6b/+DBA/0rsKxO\ngz8TbmEjG5rd3d16NfCfrP9M+AG/+8zMTCaTMdoSwF+n18RMn2fRmHfv3gUA3L17F1Hd4Q9RryT+\nM40AbBvdrM7wjplMpru7G/7AvBVG7ghfq8wqDHud2SOwqJj1U9afGmw6Y5vrPcr1r5AfCJbFI+vm\n0gxj2di2RB2ecVA4HVZQww1PQ0Y37Fo6UJrUSyaOMm1lL0LaRP/hZsPE+vHZ6fzGdrMYCHlraPZo\nkEZ2NDHmBTAdLcN7mETL8BA438EJWl8VjDM7sgctCIJxOjbOoXppEOPWsFGegLty+p/6NArXD71w\nWCW4hhnlD2gQaVw1jXVAfggieurVQ7atAQCCIBg3kRFxx35zwfroi6K+REGpV78EGvLqd89kMric\nB18D7t69C6tkXKuQZjdKtMS76zx48KC7uxvqyGEJ+qY5XNqNj9uiMeFTgGcaF3VECjSWYPYz8V+B\ngNeZXwbWWTcnsKgwVKlCS8FwOKy/U1n0OotHYFYx66eMtDkigMKbuv4V8Yno8pCdwaJjJtEaXyad\nDit4XDfhgP0K37VHjGEs+rlNibaAQWrs5MTOb2wN64GQt4YWj8b4Y+1PjHZgEi3DB1j0LoZXpNNp\nKBPAVQRuDsLj+gbWlStX9P0yfLdXV3IYS0OAnr+67xHcWISbcUhlAAD6aVCXA5Z3n42XS5KkVxWp\nA0TfrEwkEnCVsqgeRDeEgBoRfd/QuM9op7lgffTP+h3hr9YvgXvExgpHIhFBEOBKr1cpGo3GYrFY\nLAYVhBY/2fgVfnedbDYLd9jhT9CPwx3qTCYjSVIymYTu2Hrd4AdjY8bjcZ7n8d1M5FmLogjFAouf\nmRe8zrBvzMzM3L17F4qksVjMusIAAJ7nZVmG3cloRgJIvQ5i8QiIFbN+yshTI26Uu/5VOp1Gngj9\nYEHKpxxWwNBpoRSox6+AqKoai8Wi0aixv1n387wUMEh1zDo/MLSG9UCwiVlP1r91OjEyGEWHSbQM\nr9CNsQAA+lSuKEo2m9XXHlEU0+l0Z2dnJBLZtGmTcaWxKM0InJeNaxjxNFVV4UabfgR+hmJ0PB6P\nLAOlYdzGDiybgSaTyU2bNnV2diaTSV0KN6seEeLaY6e5LAiHw1B+gkuR8RK4RkJ5y3hJT08PtJCz\ntoSzjyRJcMdcVdXOzk7j8UQiEQ6HE4kEbEBg3pjpdDqdThOlUlh/Y+tBnaj1z3Ra50wmozcI1PdD\nAcKswoqidHZ2Qg90qCcGAMCizHqdjsUjIDamxVNGMAof3n2l2yvrR/TH4cpgoR9WgDQ5GOcZ2LZu\nDQFr8j4+i84PDK1hPRDyYvFodBxNjAxGQGASLcMrjKKYJEkwmGU6nYaGWQAAVVXhRAln2AcPHlhM\nyjYFOwssPH66DSQSiUwmYxbQMZFIPHjwAGpEkslkJBLRfSkoq5e3uayJRqOqqsIVEVGVwTqLomjU\nNYJlTY9TERAHit36n9AOz3gE1x3Cb4mNCd1TXnvtNY7jOI7LZrPJZBJ+sK6G2c8srM5I5aEMRKww\nvksgSRIUWYBlrwOkR2BdMYunbLzE7KDrX1n/QPrBQj+srInFYrIsX7lyxamCszDyPj7rzu9ia5g9\nGgT7EyODEQSYRMvwBOhirP8JAxLBqVyflOFCDl1woPOB2eqIlGZEXA6YoB/JZrP4+iQIgu7JCzGG\nr9edJHQViJkaFUbylySpp6fn7t278jL2FSR2fiCxuazR9zTxS2ATJRIJWZZ1v2O42QotNe2IgBZk\ns1mzFVF/ddGPwCcFpTRiY0LdpA7cqYcfjMIlJBaL6RYmxJ/ptM74caMPO7HCRmU/BH6GXjXEXqef\nhj8Ci8YElk9ZBypNkWAL8EG4/pUgCNCF39iA+gfKwUI/rPRy9M9QRQrFslQqlUqlaKQ0/KFbk/fx\nWXR+Y2tYD4S8NTR7NEhVge2JkcEICEyiZXhCOp1GVqNoNApj6CDWY/q8nEwmzZSFeGk6UBSOxWJw\nvpZlmWigBk3u9NNSqRRc26C7g35cUZRYLGZm/KCqajKZ1FcOuHjzPG9RPZvYby4LwuEwjMhDXCyh\nlwmMCgQAiMViUDXe09OjKIrRttUpsOZ6CcgjkCQpHo/Dm0JZU4/xRGxMY5h9uGUPl1UoDfA8H4/H\n9YeYSqUQcQT5mU7rDGVQ4/FkMgn1r2YVhnUzGiFAu2G9wnivgxAfgXVjgnxPGRKNRvX6wBRcegnu\nfqU/EXhaKpXShzD9YKEfVhB9YlEUJZlMwhkjm83GYjFJkqCWHWJHKtWBvwV+Nv5wa6wfn0XnN7aG\nnYFgUUOzR2O81tHEyGAEhWK7pjFWJ7obsg50skHSKYWXI/7oygCe5/VIVbpvLF6aMZ6AnmNJDwiq\nnwxWRu/SZ23dctH+5RC4kMOVRv8WqR4e68BYCDA4IENfbPvNhRSF3Ai6d+CX6LeDLtLQCYY3BErT\nne6JPxkYYh2Y3d3YtkgbIvm0jF8RGxMBcfeGbun6wyK6des/06LpLOqMHI9Go3krrIePhejO9Zp5\nr7N4BBaNafGUkdhkULEaxsJmuf6V/kR4nocCut4r7AwWsweNnwnfK8KksAOaybDSo3fpjalHrug2\n5LHTgSVY9HNkPgHL2ynGH17YIM3b+ZHWsBgIeWuomfdkYyM7mhjzUsAlDIZTOE3T8IHNYFACw8Xb\nPBM6x4iiCG0K8dQAdkrTNQ0WZ+ph1RF3FpuXGysMANDraf/HWpRJ7zisquqmTZt6enrsq3XtwHEc\ntKLLe3fdYYUYBoH4Fd6YdoClObrEUZ0tfotFhc1+o0Wvc1ox4OQpw6oSW8ndr/TahsNh6GilZxKm\nGSz4mbCF7StuoQkHtCvQswnYvNYOetgE+8USH5+dIUZst7wDwaKGZj0ZaWT7EyODUXyKLVIzGAx3\nQEJ+ugVgypUg4dFTLgwkgwbUjsM9liCAR9ItOsTHx4YYg+EKLAsug1HyQKNAY/xIV5BlGXosuavZ\nYhSGR0+ZBuhdFIlEdM8hJOYuQ4f4+Ep9iBmNznH01CoMhj8wqwMGo+SBrh5m6d0LBjo5RaNRtiwF\nAY+eMj0wzBwAIGhdBXZg6PBX7LqQHx8bYgyGizCJlsFgMBgMBoNR2rhjdUA02FdVFcYHMaYEZDAY\nDAaDwWAw3MWFeLQwSSOSbkdV1ZaWFp7nkXyYDAaDwWAwGAyGu7igo+3s7MSt2mE4aGgw1NLS4kpw\nIgaDwWAwGAwGA4dWooUpWPBUK4qi6JYGepxR/DQXHDyVcaCMrzgiNgM+5KAENQfkwcIrEN5h+pUy\nDoQ6B8fdvTwIFVg7BLYX0ZewproB3XwyMpbLzS3of4YqyhrrncxFpcbA4GPjn7Vbymu2lBerMozg\nkHuuDv3BVhI1Im+VWwkGsNc11fMbK9YXfIu8rJ2xPDKWm5ieGxnLAQBaxUpg/LGU8pV3y6IJVBKt\nLMvZbDaTyVin0ISirSzLSA69ycnJbDabN3K7NVrqvJb8pfHIusxNZw0hDz6PvF1wBdZp/0quWMuf\navIgXpml4z2fAumARbGUlwehAmuLQPYi+hLWWjegnE9Opu71y4/0P9vEzVdP/ditul28MT48pgIA\nOtqqW5sri1ICwu7DXxr/PLhv69H3XqcvllFcvpjPtk9GjEd2VIT/5kcZ+yUM/UFGSnDE3B+THdbP\nXR49e3k092xJ0OxqF45J2zySaz0dy/S4Mpb7BqZOpu5PPJzTj5y99JX++ckXP6GVr7xZFi2gkmhh\nXulIJAJFVbOwMvBb/CuYSpumAkEhe1vL3oYfOekAEOpA6rwmDwIAtOQpzvj49ePxj7nonqV3HcrL\ng1ABBj2sGzDMOXRmsPf6kkag97pSgOxIXwKDUUROfnbfKG8BAHqvKyNj6rVTb3qqrA0groxlvD1X\nAVQSbSKRgIYEMBih0YQgGo3qiluY15TmRgFHy97W32O48A4g1GnZW8tf3eIMm7Na6vOlD6rKpa9C\n/Rbl5UGoAIMe1g0YZpz87L6+gEHOXvqqdkv5O7vsWn3Ql8BgFJGBwcdE8Wt4VP3wtHzh2Bv+V6lY\nuDKWz10eXX3iLKCMdSCKYjgcDofDPM/zPA/FVo7jwHIG81gsFolEotHo6pZocbT01Rd/6J/VnGaw\nKdHFBdcvD0IFGPSwbsAA5mv5idS9yel5f0pgMIrLodOm5ph9/VOIPXcpcvKz+8Z/Zr/IlbE8OT1/\n9vJo4XUNMO7EozXawuopG65cuSLLMgBgzUU5WN66hWjyILd0/JbFaa5dHoQKMOhh3YABAADg3CXy\n2pN7tnD28uiZQ80+lMBgFJGLN8aNtp445y6NumIXXkRwOZX4i1wZy0Zb5FWGC/FoLRBFERdnU6lU\nJBKJRCLByU7uMohz3/KSr8lDxsOaqqJehK5cHoQKMOhh3YABwMDgY6N7CkLvdWV2btHrEhiM4tJ7\nQ7E+oV9+BF31VzeujOXZuUXEaGE14a1ES0SSpEwmk8lkksmk/3f3AW3lAq+pKlBzAGAiAvEI9eVB\nqACDHtYNGACAvv4p6xPyLk70JTAYRWRyen54FI37idM3kKefrwJcGct5CylpiiDROqVvYOrQmcE9\nR35n/HfozODJz+4Xu2om4CoruORjCz+i7nLn8iBUgEEP6wZrHjvaFOuFnL4EBqO42JTAVregBtwb\nyxZa3lVAoCXakbGc+L/+7f7jd3qvK/3yI+O/3utKYD31CL4yMNQRlmACKIQOSnl5ECrAoId1A4ad\nRXp4VLXwCKEvgcEoLgOyLa+viYdzq7sbuzWWbbZniRJciXZkLLf7yJfW9uBBBF/vAdDUHNmBRsVM\nfygvD0IFGPSwbsAAAEZQz4vFEkVfAoNRXOzrFFd3N3ZlLE9Oz69WnzBIESTabDYbj8fj8fj58+fN\nzpmdW9x95MtSbHqTDVyFKCLY3v+1e3kQKsCgh3UDBrC9kWqx5NOXwGAUEUdhuSbWvI4W5BvLq7uJ\ngFvRuxwhCALMxTA0NPTkyRPiOSdS90pRnDVFzRFFBE1VOR8uD0IFgo8hYxZkKW9WcGDdYC0xMpaz\nOQeaeXnTl8BgFJcRGz5hhZ1cWrg1lle3GhsUS6LVEy4Qs+BOTs+XsPstUV9F1GwtfbWy/xVwOZKD\ntOgVKE2MGbMgMG9WcWrDusGaZ8C23hRaENZsKXe9BAajuDjSKa7irQY2lm0SRDva0nZaJBogyoOm\nO7PIccrLg1ABBj2rphuoOS3yZ9qmPwKYcnfpeMrU9GiN42gtJ9rY0ZfAYBSXyYfOdslXq3OYW2O5\n9ByTHBJEibakFeManYRHeXkQKvACNYfLMVbHGcuUajdIndcifwb/wUesJU9p2Vuaqmqd+1aUH//Z\n0vH4xyxBA5ERJyImcauRvgQGo7g4VbuuVjtRt8by7LNVnk6lCFYHiqIoigIAGBoiizWrc++AUkah\nFzR9roCa017bqqnqup5PgXQAP851f8Qlfk5VpTVIsLuBpozrMb849QgAAKSvLn+lcOmrILpn6VT9\nuKqC1HnWE3DsRJXXIVoQ0pfAYBSRAhSukw/nwWpM6uzPWK6tqjhzuLm1uXJkLOdIhg4ORdDRKoqS\nzWaz2ezgIGF1dOTbWEIQonjC48RwSG5f7nUFtPjPnnPfh//A0pGP4SVa/GOjjeaL48lfMk2tUwLe\nDVDkIc0QqvbFOdnbxuO6dMvQcToN4qop+hIYjOJSQJ9cld3Yt7F8VHq9tbkSANBYH3pnV5C8om1T\nBB1tOByGsQ6gXIt8y1QFqwSDEo5LX11S06o5LfW5foqW+pzr+VVRasfwAyRHQ/oq6PkVwMRfTVE4\nZTxYYSWKjdNIL7h5HH0JjII5+dl940LW2MAffe/1ItanRFlV8Y4o8G0sd7RWF3ZhcCiCRGtNbm6V\n23msCbK3jco8LXuLgxItoo1bFnG8In1Vk4e47iOoGz48HrTgXKsOxBhXU9UlyRU3XcjeXmGasuYp\nwKp1ZCzXWB8y/klZAqNgRkbV1Wk7Z5vtPxCv12QoCymkD9vWiA0MPh6QHyNPqraqonZLOQDg6qkf\nO721d7g4li2cxtrEzU7vEkACJ9EyVcEqAFXCpa/CeKUEEUceAuJ2F26pjL9wMBKbAR8C6avPoTeS\nPMhlfvviTP14+ip39/cs5pSH4FYl8iAQ6vD8upoyziLaGilgGszNrVDk0JfAYBRMaB3/Vnm42LUg\nMzu3uP/4HeIrx8TDuQBKIC6O5VWv9g6cRLvqffHWBEQlXHgHIYdq9pYrEq2WOq9Hk12XuQnCO7Tk\nqaWvsrc4eHf4Z/xnSx8UhUt9DrqP0N+dQWSFsSw8Ig9xy7GoV8BiwK2kgGlwZFSFNnBuleAdfQNT\nUO0ENWqNDbz+1dH3Xr94Y9xoCFi7pbxETfoYlHhhggjTkTpytCo6/ozljRvWO71LACmCRJtKpdLp\nNABgZmYmEok4urapgb9w7A0YPXiV+JDJg0CkcM50xfnd9QrgB+VBIDYTRByPlHPykFEfrKWvclCi\nRXyVUue51SHRBq8bkH3FFAVgfYB4+RrHbM/64L6tuWcLxAQ0iL0WfQlecPKz+73XFURRZKzq0fde\n7+ufMh5pEzcziZah09UuHJO2baxYf+7y6InUPeTbvGGV9x+/U1riLPBrLNdWVTiuWfAogkQrSZIk\nScDEM8yaM4dEPRmGP+oEhmOUcdwjXlNzHFFq8SgWqZlP0kpDXuaT5CHEqAgsjy4Fx6RtH+xtAACE\nNpSdvfQV8q2d/UT6EgrGYquXwbBJm7j5zKGlF+8P9jZMYOlFrfvwwODjVdMDiziWgwxt9C5FUeLx\neDKZVLEFTFXVZDJJ/MoCC1uu2qqKUnFcWJe5yUnv4se57o/W9Xzq9eXFrYBGFFJN0k3hJpWugBvs\nLtl04rcLcOioku4G5HcVeZCsowUko9u1CtERpLaqAi5gAICDyx+MGLMr0ZfgOidS91aNMMHwB7zD\ndLStcMZvFZ1ptYjqzIATwLEcZKgkWkVRWlpaRFEEACD2A6qqtrS08DyvqmpnZ6f9Mi12BGpLJFUx\nJzaD8A7idjbXfQRIB8imhC5dXvwKEHWxqqqpJg6bZsdpwLe85UFASoVFlr8DQKl3A+K7iqaqpo/b\nyXvv6ob4Vt9l2HnfWLEeWdpdL8FdBgYfl6IwwQgaSKd1FG1qdm6xr3/K7Rp5TtDGcsChkmhTqZQk\nSdFotLu7GwCgGLQv6XQ6HA5LkpRIJFRVlWWZtqYlRHgnAAAIdciSz4V3LnnWL3speXJ50StAEk00\nEx0tAB7YUBLNHpRxgpgLPDN7oKfUu4EZZo8bPrLUeS3+M/0fSJ3Xv9fiP9Ne+5+fc9/XNv2RFvup\nJy9CHjMyljv52f2+gTzLKlG/gixaTfU8coJRoUVfAsLs3OLFG+PnLo8WkMYJAHDu0mgBVzEYRmqr\nKjZWoN5L9mNOubtFYHMs0+P6WF7dUNnRJhIJAIAsy1BgFQwrn6IoPL/UyqIoQqEWmh98880309PT\nAICvv/5aP8cORpfYIMPpK71Qt2KPVfe8sfzVlJcXvQK4HnQJv5RwpmYPpEBdWvZWMC04S70bmGGa\ndUwe4qJ7tPTVFcrd8E4YyViL/VTPzaGpKkh9DtJXucxN+4EyJqfnoQd9Uz2Pr4s+YHRk6WoXdHNA\nHDzlT21VRc3KHSrryZC+BCNG9/Czl0cvHH/DkQ/D5PT8ml1fVzF/lUuNLyh1ZcJ/CUn+3JFyk7aA\nqK5m2B/L9Lg7llc9LniGQYkWGhgQJVR4UJZlqMSdnJycmJgAADx9+rS9vZ2+ArYwxivVKUzJlBfd\n00hsNhpucsvHufAOPdSU+5cHoQIkTCVdeTD/g1BzMJSpLS8uExc0K7OHAEalXaXdoAC0+M+MqeaW\nDqoqiLxtR6i9eGP87OVRY0zHpgb+g70NVAlyHM4nfQNTRr/s3utKaEOZ/TxS+Fru1C+WpgSje3ju\n2cL+43du9+yssS1eDMirIigNY5ncc7V9MjL0h6V91wtq6npNJrRuxdI/sahcUFMF3+JkZQIXQIly\nW2MDj7wvzc4tEl9Z3Qo0SzmWIWaVtAP9bOA+fspXllBJtLIsC4IAAxfEYjFZlmF6WwQoyMLTjBQQ\n66BgtOQpZFHkeJ6b+caTm5lJXTZ96ikvD0IFnKCpOQ4AkDpv1K1yQt2LxLmd+3S9HRfeyXUfyTNU\nSDpaTVHIwRaAPZHaf9ZYNzBFGTeTmzVVBbH3ubu/N7vULPbk8Ki6//gdGuWK0/nkZOo+cuTspa9a\nxUriUoQvvcS1vLaqAjlTTxREX4LOxRvjiMSQe7Zw9vKo/aYrOMs8I5h88DCmi7MAgKE/yB88jF2s\nvmI8Z3xBOfPPyYJvcbIyUXC+j+ExcijWvFFdu9qF0IYykC8OrqOxTLj8s/swNEGbuPnC8TfyyrUu\njmXv8FW+soRKok2n07pEq6x0YY5Go/F4HH6Ggi/NjVwAt6H0RojhDEE9OaFOM36niwLmMgHl5UGo\nQGGQt5vVnPbaViShrpa9ta7nU4ukqXjU2yVKJ+jpmu0GOJrBlJbwrTzIJU8R02TkDaUOfZUKFGqd\nzCd9A1NE/dC5S6M2l17ifmvtlnKkWF0IoC9B5+xlggls73UFxgTFv8LxIk4+o1h8MZ+99jSNHLz2\nNP1WLuWb+YEXXDj+hp1NG6djGUEXZwEA/fKj3Ue+vHbqTetxRDmWX33rN3lrBTl76SskCti102++\nafNiv+SrvFB5hkmSlEwmY7EYDHQAFbQcxwEARFHkeR5+FY1GiyzRKuO4lMPRxJO3wGh3gSz5dkQB\nysuDUAH30Dr3Ec0un8feB5aCDrk0MwtOosdYcVmD3cDsfQOzN0AwE3k/PC3nDaXee105R5LY8uBw\nPjHbdu+XH9m07aupIqxhxIPulmC2fgMA3HIbbxM33+4JP/niJ9dOv3nttN0FlFEsPnlC1rzSaGRt\nQqlxtA4MatMGiWYsDww+RkTG4VGV+MZoDf1s4DJ+ylf5oJJoBUF48OBBNBpNJBKZTAYe1LQlhc6V\nK1dgrAPoQFZMiCILdOVmFB0zUQbR2q7keez94IYpYCzDRfcQpzZObOaie/JermVvmb2HvDhHUfCg\nwn0DUzZFrrOXR2ed5tdxOJ9Y1KT3BmE/Ad+mD1WU4afBHVIi9CVALGruirNXaEPZheNvQEmltdnu\nvi2jWAx/K9+eIxsKji8of5Ur3HDWDnm7qzWuBAZ1OpaNnMQynAEAeq8r1vOPW2PZQ4IkX9FmWAAA\nhMNhGJIWRxRF/KtUKhWJRCKRCIz55QO48zvH8/a9pJ1h8mqSN3qoO5cHoQKW53M8b7Mo6+1mAIAW\n+6mjKpUSq6IbcGIzd+USR8rFwF25xF255LRTmYFrwEIx4gAAIABJREFU2XFbNzOgVaiz2zmZTwYG\nH1vk7yEukATLOXvaKf1G9CWAfPE77etoLWTfYsWdYBQGbm9g5AsTYTf42IwVUMBYNl5LFKlzzxas\nL3RlLHuKr/JVPlyQaJ0iSVImk8lkMslkEgBw8rP7xn8WF46MqsjJdoMj4qo+/408KLdo6Xd4fawA\nx/Pc3d8T00pxVy5xmd/mL0IZz5tOTMveckdNW0Kx/UurG0AtrLgdjWgb3bNUjpNhyIV3ct0fkYXg\nlTpai71yIo6D/zuZT6w9/XPPFgoOaYknTHIan8i6hLxa2IFB2iAGxdwqZTjnry0l2mtP07nnpTOX\nOodmLFtMMq5sd9DPBoUTBPlqGReid1GCpyQ2o19+hDz7VrHyR3kvU3N43CiOmRx4ivQu4ENAOsDF\nPzbuGsM0VAAAGHnUogBT7y7ktNR5LvFzyso6E4uzt3GNoAt1WJXoo0zcviKi7bJUyonNGnYRkRe+\ngImfA0NsWoimqpw8pGsFnIaLgkuR3WBeDueTvH5RI2M561vT7ycWVkLeZqQPy1XMrVKGQyYWlfGF\nPNPyF3PZP38l6srtQhVlSPYE4m67nxQ8lvNvdxyzW4fADZmAyVfFl2g9h6jqC2C0plXEi+D8K0OZ\nvhBxHG1eCwIQ6oA8SDCpTF8FJGmS43kucxNkbz2Pf4x8ta7nUyA2P295w34FjGjJU4jymBObAWAS\nLQl94wnNOmbI3WADLrrHGNqCS/wCpK+inSF7S78dUR3S1S7ARDu91xV8dckrVq64EY75fDI8lmcV\nHJAfAUMwS3zfCU8IZA19CcsVyyOwuhXgk+EzULnu1Gr5i/n8RgVD38puSbSN9aGrp36c9zQ/I2k4\nHcs6eU10zLY73BrLHhIw+Wr1S7SaPIQcWZKQGN6hW2EiwfmXZQ77wfk56V2u51cAAKDmQORt5HVQ\nUxSjcu4F0rtA3A7E7Vzy1AolsSBA2SivkpiMmiPYQjB9PwmjeQBl/C+u+6MVf/MhIL0LVvYfTRmH\nud+Ia8MxadsHexvg59bmyv3gDrLGmC1FOI7mk4np+bzWbMOjqjHcuv3orWbuLPQlAJhiLZ/A6t+2\n5sqbTkzPhTaUlagb2chYrveGMvlwfuOG9V3tgm+/YnJ6vvfGeF//FJJqpKO1uqtdsGPNbIxBa8bw\nt36nuy84bK1TChjLOvkNeEzeHl0Zy54SNPmqCBKtnlhhcnKypqbG8/vhrvRevkBwdNmnKC8PRgV4\n0xRcekwoewlUufDOJXEWAMCHuMxNsDI8LQArlHOGC02UxMv+9ZzYXIhES3ofteOz75RV0A1WTGoU\n8b84sZnwfKUD6BvRsukIvja0iZt1cRZyTNqGSLR543y9wMl8YlOLaRYT3hr7WbsKKCGvOgr4rqOd\nnVvcf/yOLhzUVlVcOPYGfQx55BWodks5fcOaMTKW233kS10w6uuf+uSw+M4uz5f/izfGT6Tu4QLZ\n8KgKA0jZyWw8ZENatSP1uouDkUsHzVjOu91Br2n2rtPmwV/5Ki9FkGgFQYCRa4eGhp48eeL17XCl\nmreR0swKt/nWQnl5wCqA6mJfCJq2HCG5xC9W/G2pnFuBiUSrK4lNf6YlBAtaQfDEqXMVdAO3EgsT\nVeBCHSc2GxX2WvYW7Ab42gCNDYzUbClvEzcjipOBwcd2xEov5pMB2erW9O5TBZRQFP2rNUi+jImH\nczBAPaVQu/vwl8Y/D+7b6jSjqU1m5xb3n7iDiJUfnpYBAJ4Ktcao/kRyzxZ2H/4yb4oBO9Kq+p06\nsajUrvcp/Ly1VyVlcoHCqoSP5ZGxXH7lro0XSEjQnCn9lq/yURyJVk+44HkWXHKktGK8Q9jTSnp1\neRAq4BC7yjncLN24382HVu53L39V2LYI3p08UNBaUULdwCx8m0MjDc7shSG8E330ag7wIXxtwL2A\nASkdvK1gN97MJ9a3tvAFQVxnzHYeCyiBRmnkhSRx8rP7uDYu92xh95EvBy+9XRIhwM5eHiXq+U6k\n7nW0VXv0Ey7eGLfpe33o9GBTPW+m6jMLQ4szvuCfREvvm+g6+FgesBHKwH6kLfrZwE2CI18ts8rt\naMlKNWZE6ylmoUydvrrZVM7Jg6iO1vh8kZu+8FVy3gfkIVJmlOJE3VtDmHUn5F0FACAPgvAOZG2o\nraogLtKtYiWy0ttxDvNoPpl8aNdaDsGO60xhJdhXGvnA7NyiWfCj3LOFD0/LF44V6OhZcH2Gx9SR\nUTWHxcZvFU3zRFj8hBOpewVmY7Zkdm7xBCmqv1k1Dp0epO9RE4sOY+EVyshYznHcPe/Bx7J9W1hK\n6J+dUwIoX61yiTZoRh5rGofaQc7sSeHKOST8lsmI4ijVk/j2Cs/7raNdg5jNjyRJF3cLM1NUFOgy\n7M18YtQW01vU0ZcwO7foW3h2O/ReV6wj2w+027IYoefijfHeG4qF7ebZS189+eIn+PG+gSmLn9B7\nXTkmbXNdTUu0nbWgX35k0/bGgrwRvlwBWiT7cCOn4E5gIxQvh35GciiE4MlXRZBoFUVRFAUAMDSE\nesm5D74lXVQjD4YDTNNW1aHKOUSiNZNc6R49/j7KxFmvcfYSoqpgE3rMLBvQxor1B/dtNR4hGieg\nUMwnHW3VXe3CydQ9ojyku0jjaj+n0JdgpqDtahdaxcpzl0d9c8eB5E1C0dc/5bVEOzu3iBjyOiLv\n/njvdQXxX6SEGAM1tKEMPkQAQF//FK7j9KEl6Tl3edS+7tkLbI5lCM1goR/LiCmCRdSF2qoK5P0/\nfwDg4MlXxZFofYp1IA8RIpgW+x2CYRcz16KibGqQ4nYVffQGGVMVu6PHZ9HCWPmaPDTybw58ehw7\nAFHMJ00NPNwZv3bqzeZ9Nwle5wWFO/AIomaoo60a7ow31fM7Yrd8U+JO2Igj5pGO08j+43doRJO8\nEUl7b4y7K9H29aNa4dCGMqMjXWtzZe2WckQ07OuforR/8DSAF7SjKK6xgaOxbOZhCcVHV7KFWYOY\nIljYuHe0VeNTolUGnEDKV1ZZcGVZjkQi8MOmTZs4jovH4/S3DIfDiUQikUgcOHAg/9k04CJIsY08\n1gKmpqVOnN+thEX8CbqSC9caYhxppqMtAC9dDHGVBn10pxdQzCddu5Z8ZTZWrD9IElwsBERbymNL\nnJZA1Awd3Luk0q7ZUt7V7pPrD7AdNSmvyEjDxRvjNMLH8Jia9wVg4uFc3qTuk9PzF2+MG/PA9w1M\nzZqo8fAKd7ULyHD4YG9DbVWF8Uju2YJ1mAv+Jf7/FO7O/bH236p6rGvrOpPT87uPfFl021lHY3li\nmtB7a6sqbvfsvHrqx58cFp3enX42cI1AyldWOtpIJCJJEgAgmUxKkhSNRuERwUnCp7x4pxXHk7MV\n/QViTWAmsjjqNhZyDzZmtJUSLefBoCKYwEf3uBagiuEZLiaNLHg+CW0oM4Zn6mirxvdMHSQt8x5c\niGxq4I3CUEdrtf3s5f4wPKa+A7xaTSn95Gzqs/v6p8zUtAODj89dGjVbHLvahYN7GxAPSNzOoYsU\nI6xrVx3SGyem517596aVvFh9pellEQDwX0LS0B/kC2rK9FRXQUL5FgunY5n4enBwbwPcT3hnV11f\n/5QPmlovCKZ8ZSrRKoqiqmoikQAApNPpBw8eCIIgiqKiKO5KtB5qxXEphG0TrwWc+BLZhfUlRqF9\nAAmIW7OlvKmB99kU1RGzz3AX/hV6h8b6UG1VRaCy4NJvl1tgHYzimLSto60aCpRm6UztYOYUnzeg\nbO91pfe6YkzWMIkluGpqIEfmahU3A7BCJhsZy/24hXyjHRXht8rD+p/7eQmXaL3wDCOG8i0KTscy\nXufaqgqjTPxOe12JSrTBXBNNJVootqqqms1m9QiyCha9KLgo4wE08mCUJKS4XczkYG1BMZ/gcRVa\nxc3IKhgop2Y7MX1bxUoziRZxubOQxtrEzYjrnnUQzWPStsYGfkB+jJeZe7YwOT1vkTlpcnoeJjIt\nIIOuhY4WyUhHYwxN9B47dGbQ5j67MVkDLhw3mgT3aKwP2Y9j+uevRI1/Nr0s1pUJiAjrhURrFsrX\nGiS2MZJKw0hXu4CIqmaxUJyOZfxdCLlRR2t1aENZEIR1ZwRVvrKyOuju7m5paVFVFdoetLS0AABg\nui8aUqlUOp0GAMzMzEA7XU8IXqQ0RomC58vlxGbWl4qM6m9SK4r5BBcm3LTu9QB8fcUFNQu5B9lJ\ns5BoGxt4+/55ug4SVgYvdnhMJUq0I2O5k6l7Rk1YbVXFUel1+2YeLgocUIgfkB/hir2Jh3OIm/y5\ny6OOzEZPpO61ipU1W8rxFyQL8xs8jukX8w+IZyISLQDgrfLw+IK3hgeT0/OFmbjYf7uw/5LjdCyT\nXi3Q8zvaqotuHOyYoMpXVhJtIpGA8qv+PxRtKZEkCZaTzWa9yxkWTCMPRkmCu4U5THzFKAw9ty0B\nPHBMeAfwzEWQZj7B1zBc0+NbGPa84J5GTaQIaGZh0TyiTdxs3Ks9+t7rff1TiN6OaIvcNzB16PQg\nIpJOPJzbf/yOcZveH9rEzVB8nN3bQIwFZnSTn51bPHt5FDmhtqqia1cdbPwB+TESqTf3bOHs5dEz\nh5qJqR8oK7/9B2JoHfrQQy953g3wRigiTscyrlpGNOLAn+RebhNY+coq1kE2mw2Hw7pSNpFIqKqq\nrlQ1K4oSj8fj8ThukKCqajKZTCaTKq6d9gH8HSIYLc6wBT5gdHx+smoOH70cMzlYaxTa6/AFDACA\nqxKDY5OK77CT7S/9jTWG7NUSj+CKyZGxHC7O6pxI3csbXsBdzhxeMjTcWLH+qLQNP8H4E85eHsVt\nYW/37Pxgb0Nrc2Vrc+XR916/dgpNGtx7XTGLfkCJ0YJWZ/vLjr31neJpFAtHOB3LxJdDPMaczy+H\n7hBU+Yos0cqynM1mI5FIdiWxWEyWX0SbUxQlEolAK9tIJGIUalVVbWlp4XleVdXOzk7PfweCMk4w\nfGR6tdKBYKNTLHCTA0EALPmtb8jkPCyEhBfeQTGfbNxADpJKXB2DCRLgScfFOBJ5IUi0mDo2N4dK\nrtbuRDD9LPGrV9/6jfGfRcX65UfIyWbOYbr3GKS1uRJXfht1q7gkdxSLudtYH0KsloFnGYzrygge\n4V7raK1zrfmM07EczJdDFwiwfEW2Okin01ByTSaTxuM8z4uiaDwtGo1CEwJFUdLpdHd3t/6VbqXQ\n0tIiy7LxQs8hprJgsZZKC3mIKDgSRBkvQ5wGdntlrSAPkt8fiH4Jn91Hjk0+nAf0DrgU84mZOIiv\njogNZbHABYiQSa2a6nl/3LTbxM0EzRYWbwHZxD/52f28mm8/9X9EodzMqWgSyyvR1MATRR88klre\n/GSFUbueINESxVwX8ei3FAb9WLZ4OQyO4J6fAMtXZIkWBu2KRCKZTMbiYl1+BQBks9menhchlxVF\n4ZflDFEUVVWVZRmaH3zzzTfT09MAgK+//pr3RhbRcL1OMF4gGA4wE2Xwt0NxO65JdQ1cR8skWh/R\n5EEOkFKxrHyxgflycdnLFftUL+YTfG0LSNowPIJm0XdFzSrQWB9CxD6jJBE0bxtck4dHztLVzKRw\nE2RFIK6mbRUrvRAEicIrUcx1kUBJtGaYjWU80IGZyaxvL4euEGT5ysozzFqc1YHWCNFo1EwLC8VW\nWZahWcLk5OTExAQA4OnTp+3t7U5rbAtCwlK2TVxiaNlbnGRDlHE1OjIKluiP43kWt8tXiNYFeDw1\nsRmQRB8LzQeym3xw31ZTv3uK+SRAOX7cprHBp2XYTA6weCu4eGMcf/Rt4uYP9jU01fN9/VMnUvf8\n1IqRDSjrQ4hyTlfZ4u8V9oNLAG8EQa+FVxxcUV1cnI5l/HW6por8EM3sGQJKgOUrgkQLI2plMhmO\nI/gZa9qKnAaxWExV1UwmY5F2AQqyeJwEr2IdqCpppzgo7xAMu2RvAzWH7mWkr6Imtl6OJTxuFzM5\n8BlNUbj0VeQtQkt9jp5nEtx7xMSm0EEkfG/mk1axMmhpt8wouubYTA6wCJyEi9odbdUXjr0BP7+z\nq66xnvczB5VZOFj7yjmzRrDJyGggdgAcYccgOAiZPuyPZbMsp2bWCEEk2PIVQaLVVbOI8IqTSqVU\nVb1y5Qr+VTQajcfj8LMsy+6mGbMGV4kHx8iDYR9NVUHyFJf4+YqDqfPoeZ52LfxlNDBDd+2gJU+t\nCC4hD+ESLVQS4Gv28KhKtGnDNwTNxCPf5pNSMqTzF7Nw97hrmi63IQayoQ1lnxxesYXYWB86Jm2D\nWQlwnnzxE+OfFs5hekAuI+cuoQGnzLzocD33yFiOPlwxXgIez0vn5Err81axEmC5eHnvo3ThEFPI\nGoHBfQP4Zmg2lgMeiNoOAZevrKJ3qaoaj8dbWlo4jmtpaYnH43jornQ6zS0DRVio2RVFkef5WCwW\niUSi0aifEi0h8BOTQkqU1OcrXN2TpzRcxPTOBoD4MspMDnxHkwe12E+XUioo41rsfcJJy2Mc13YQ\nvX9w9Y+p5z7dfGJfMZZ3/fYH+9nLfDOoMHOYwyVdKLfhCviOtmq8kI62at/CNdhvKzxiQwHgv2vA\nRBM8MpY7e+kr4z+ixcL2H/jo2L2MtfK1qYG/cPwN3yoDnI9l+++opRSSNtjylZUdbWdnp6Io3d3d\ngiCoqppKpSKRyN27d/UTEokE9CEzomt2r1y5AgMm+BrlAABc6CH4EjFKAU1VQeRtIL3LhXdo6asE\nzRzPe2d1gAdV4MI7g/MyuqbQUp+D9FUgNhNG90olAe4t1Nc/hQTSn51bxMVcs+XKo/mkVNawIO+H\nmkm6uFBOFCg3VqxvFSuLG+7UI+MT4mYFMUswLuk21ocA+Mb1KhXA7DNTvXKbuPnC8TeCEBsEmI9l\nfCPIDEqTEj8JuHxlqqNVVTWbzd69e1eSpHA4HI1GM5kMPGi/dFEUcXEWSsaRSMQYKsFbFM9SCTE8\nRlNVLfnL55G3CaaTwGONKe6TZGKsyfABTVWJ4ixYqafH9Xb98iNEaYdkWgImabFMcWM+IUamDCBF\nl7wLUKPiO+xmCW/N7Blcx/6NoDiOR+2wrzuH4KEVem8Q+i1+0Lc2yYuZhXFXu3D11I8DIs4C22O5\nhEJQOyNI8pWVRAuWwxTouGI8IElSJpPJZDJIsFvvIOwdM1YFnPSud4UTgkizjuQvnM3ofoZuQAxy\ntP/4HX1Pf2DwMZ5X08xxhwibT/ykAAELEf4s1My+BSYzE7/wFwYojuMVM3OTmpyeR1I8QLtYXC19\n9tJXiGXLucujyIZGbVVFwN+1utqFM4eYZiFABGo+NJVoBUEIh8O6dxcAIJVKKYqiJ8UtMUwyDzGC\nCRfemVea4cI7fc7dZaYjZHiF2Jw3OhsnvWs0BYGB95Fzcs8WdsSyO//y1s6/vLX7MMHD3bFJKJtP\nSoeiq5ktMBMfcbOBvv4pYs5e3GoCuh/hCR0AALuPfHnu8ujIWG5g8PHJz+7jKdOIVxUFYjSS2qoK\nJs4GkcDMhwSJNh6PQ6sAAEAymdy0aVMkEtm0aVMsFvMoIYIfBMnUg2GLfPpXrvuIPxVZQWCG7hqB\nHJPYeALWDcxW5eFRdZi0dRvaUGa2K22KvfkkyEao9ARZUrRJkANa4d0YF0Bn5xZxswG4u12zpRzf\n5oaJf3fEsrsPf0m03+1aaXEeNA7uxaIw+IWnY9ksqlfJEBj5iuAZFo1GdUWsf6auHqPJQx46xTM8\ngOs+AlKfo9FnX3z7UXFCw5plMmN4hPQulzxl1Q0EdA3u2lXnyNumq92xMZXN+WQVyHwWBHx7Ojg4\ns9JepqtdQPSvff1T+8GdY9I22PKT0/P7T9xBzAaMUR2OStv6Yw5SYHS1C8F5prhbVWhD2TvFE7g9\nHculHtUrOPIVQaL1OjSBnlhhcnKypqbG03u9IDDvEAy78CEu8QtiqCZObEbi1PqGpowT8o4wvIMP\ncT2/0jr34d+YdYOaLeVd7YLNJKihDWWF6KV8nE8mH84Duo1W+hKKiCt5jItLYRq41ubKNnEz4h3V\n1z9lHZzh4N4XGXFhgly7wf83lB2TthVQT4/An/sqTr9nn4CO5cDIV1bxaD0CWuiGw+HmZh+fTJDc\n8Rh2kQ6s6/kUOcZJ73KZm0WpDgDMOawYRPcQukF0j0U3OLi3waaPfIF6KR/nE3qRrqSFQk8zQgUk\nBrAZZw43Owr1cHDfVkTbd/S91+2YxoY2lF079WZwogcQWd02PDYJ6FgOjHxlFY/WIwRB0GMmeJIF\nl4QmDzLVWkkiHVgX3gHSVzU1B2CcpqJu+mvZW6wjFQHpwDqxWUt9DpRxINRx0T3WNic1W8otMkLp\nNDXwR997vYDqsPmkhLAQAlxJZ+AdNVvKr51602a23q52gdiZLxx742TVfQtNbW1VxYVjbwR/45vp\naANLcObDIki0RUMeYhaQJYlQB7qPBGTAAMA6UpEQt3M9v7J/OjS5sxBqmxr4a6feLLw+3nQDenO9\n1W28a4To+w+w1LITD+eImZCB8yCv/tNYH7rds/PQ6UGz4KwAgNCGsjOHmy28G4++93qrWNl7XUEs\nFmqrKjraqg/ubQigdjb4j8YHSmksB2NZXEsSraIEocUZJQ9zDisR3tlVt3HD+kOnB3EVV0db9SeH\nRaqF3Jv5xFH2oFff+o3xz4P7th5973XKEuxf6xsjYzmiBhFXvkIJAE9P0C8/Igp8ZkFeA0XNlvKr\np348MpbrG5gaGVWHx1TYn2urKhrrQ23iZjv+Uq3Nla3NleAY+O3fP3wwNQcAaN666T82/jvPa+8e\nQQ5M4RH0s4HbNTInGPJVESRaRVEURQEADA35GggpOO54jJKGOYeVEB2t1R2t1RdvjA+PqdB7urGB\n72itpt9j9W0+oTck9dQU1QfMbANwd3goAeDpCQbkx7hES0yG7AUW6lX7NNaHiJ12cnoeplTQ6dpV\nh5uGz84tnr082tc/ZewMtVUVXbvqutqFAOpoGUQCO5YDIl8VR6ItQqwDECB3PEZpw5zDSgg1B1Kf\n/2c19450AAjNyHFNzXHhHQWGgbMxn7giylhkt/ethOIyMqoS9XNmBrL4yb3XlYN7GxA5D08dV4pM\nTM8jNrKtYiXyS0fGcnicLwDAxMO5E6l7vTfGS8KOlohvxgmujGUzZrG8zaZnBnYsB0O+KkKsg3A4\nnEgkEonEgQN5Yqe7TGDc8RglBCeiETlY5rDAosV/9pz7PvwHsreBmtMibz+Pf6wlf/n8ta0gfXXp\nPOPxyNsgeaqQmxV7PiEmVfKzBPoK2MRMcsWlGV2WxR3895+4Y5QbRsZyjoIWly4jY7ndR7600O1N\nPJzbfeTLgId9WN3QW7/4NhhNKfZ8CCmCROsPBEGEqdYYziFnJmOZw0oBLXnKOOq12E+BmsOPP49/\nDLK3rYsq4nxC748fcI/+vAzI5NXaQg7A02UNj6q7j3zZNzAFE8DuPvKlm1UsFK/lyNm5xf0n7uQN\nlZB7toBI/IxgEpCxHFj5avVKtESTDiaIMJzAic2A3JECMXoZVqgqSH1uPKDBI8q4lvwlcq628kwc\n3+YTfMecmLnX0xKCxsTDOTyswchYDhHUjFJsR1s1Hsl1eFTdf/wOTABrJx6Wi5hJrriA4q57+9nL\nozYtLycezpWiGUZAJDyPCOxYDqx8tTolWo7ngfQu4YtgmHowSgU4bgnvo8HYYWFYoGVv47lztfTV\nF7YHyHHVVFvmxXxCrw/D99ydmkLaKSEgEd17b6AjrvcG2vhGx/CNFesLSG7sHWaCFy5YO3Jvt2YS\nM7GFmGVtOHvpK7OAaIElCBKezbHsqSUu/WxgnyDLV0WQaFOpVCQSiUQi3d3dXt0jugfwIY5HPV61\nALxDMEqJ8E4AAMAkWqajLQGIkqs8qJGOA2D5TCnmE7PVzpHlHFHDl8NKtsgvVXAJAfGt7uufMrbk\n5PQ8HqYA0W7ayRvnm9SLh2WA2LE6mJ1bPHd5dM+R37361m/0fzv/8tbJz+5by1L4a0BTAz946e0H\nf/Ofnnzxk2un38TbB7+EoeN0LNt/OXG0Y0A/G9ASYPmqCBKtJEmZTCaTySSTSY9usaRUwwURTGfD\nYJjBCcJSgD186DLnsMCDK2iXjptIrpq5KS3NfGJfcrXYbvbTlBYPfWWGmXmrF0CvfP3PE6l7uBCA\n1Hxjxfozh60SrYc2lB3c2+BiJS0wU3XjvwLpBhdvjDfvu3kidQ/R8A2PqmcvfdW876aFsz8i9MNU\nt3oYhNbmSjzDSO/14qvZ7OOzRtnpWLYvUzoypy66oUWQ5St3JNpUKoUfVFU1mUwmk0nV/98Jw/EI\nWNxptlnMsM+yqRBHjO4UgPdRhptYTFO+zCe6Rgf3aiJKLRaiDH0JRgLiMNR7Xdlz5HcnP7u/58jv\niHFkcaPDjtbqTw6LZoLFmcPNeNxWjzBr6hFMSDJW6dzl0Q9PyxYKvNyzBaOgv7LkHKJfx+PONtaH\nEC117tlCCQU9CIhJDI6ZdraAtnV3LLtDgOUrWolWVdV4PJ5Op/HjLS0tPM+rqtrZ2Ul5F0dwgrDU\n1ky1xqDghSCLv4wCZnhQAnA8vy7xC6ITA9f9Edf90YpDJtMx5XxiJo44UnDiW4qApKppqjdVr9KU\nEJzEWv3yo7OXviLaI+ILP+SdXXW3e3YiclubuPl2TxjmXHjyxU+M/zxKs2TWhogZqFH47huYwqXV\nrnbhk8PitdNvHty3tbaqwuKOA1grEbOmtYroa0DfgB9ZJ1zB50y59GPZTL3qyLaHfjagIeDyFW2G\nhc7OTlVVeey3pdPpcDgsSRIAoKWlRZZlURQp72WXZUGEC+/AnZqBMk54t2AUHbGZW/lnsSpCgA9x\nPI/sYrPMYcGH6/kViO7hAACRPzPOtpz0Lpf4OfxMmCIQ6OaTkbEcUZJwBHHlxn1iLDI/0Zdgs8xi\ngUtmOjVbys8caj5zqHlg8PHjJ99qHPjmf/ygq69aAAAgAElEQVShb2CKKLodfe91oIwjrzdProUB\nT+VnA3WfiLMOXgFdCpmdWzx0esU7M7QZ0Etoba48+t7rh84MmtkJIPrL0IYyoqsQ3jknHs79OM+v\nKQ54AxJlO08r4Ggs43ZEkw/nAWllc5Q3wYux7IBgy1e0Em0mk8lms7hFrKIoupgriqKqqrIsQ/OD\nb775Znp6GgDw9ddf46IwPS8804mFF7vFGUT+Yf+RXOeLt8xQRVljEWuDIzYD5AWU6WiDDScIRrsR\nRKJd/nAgr0Tr0XyCa2V0aaaxgUeNJjENn/X2JU0JuNxjlrIrUOApFYxMTs/DHLB5XXCOvve6ljqP\n9Ip1mZsFJpYzMCA/QtoW1+3pu9V4VY9J2/BHc+ZQ84D8mKjhQ3zRLDR2TQ28UR4KbLgDXA0ZkHcq\ns7GM2x6YmUlYbIPQzwbuEnD5yo8suFBslWVZURQAwOTk5MTEBADg6dOn7e3t7t9Pb1Do1rMSLXub\nbBbJKConV7o+tImbr54KkqYAk2i17C2mo3UdLvNbtFWzt7X0VSAP6h5dnNgMwju56B7iAH+BcZgb\nVP4cz7+40M7kSzefmC26uFbGQqeCa/hw+0vrPWj7JeBWp2aaME+jEekg8haRNnGzhUUsTJrlcwBa\nnN4b4x8YHNFm5xZxa2C98ZG2ra2qeGcXua927aojmtIick9ubsFmWqnhURWAIGbExd+s/OmBxgoQ\nj9sfy2bWBY46J/1sQEWw5Ss/JFooyEILBCPZbDabzXp6a05sRl2bA+COxyg5OHG7hh+Vh/IIVQwa\nlHEt9lPcNkuTB4E8qCV/yYV3clcumW4Hm+3/UBi0FDCfmFnOWSzGIdJyiGj4cGWPcYuTvgQjxIXc\nN3exUEVZR1s10RVMx1pBe5IUGEGnq13wMM6RgYmHcxdvjOuC6dnLo3itdNsJREiyiINhFpsCKXx4\nVN19OBBp0goG6bH+2/s6Hcv4UyMqU63fNNwdy+4SQPnKq+hd0WhUlmX4WZZlQShSsGt8VQuAOx6j\n9CB2YGZ44B3ykNbyp9auBlr2lvbaVrOgE5yZ/pXGINL5fELUL+Ibu00GuYQooyA71NYSHk0J+PY0\ncavUT3cxM68viIX+EmLx8tAmbj5zqPnoe6/r/wqvpQ1OpO5B8aVvYIqY+8BMEHEx7YIdlKkgGh4g\nHdjP4HEQp2MZ3zeYeDiHvwpa207QzwYeEjz5yn0dLcdxmqaJosjzfCwWUxQlGo0WTaJlm8UMVyDu\nsDDnMI9Qc1rkbbOAskY0VQWx97nMTYKcaibR0sxFBc0nuEcLLg6GKvKoCfvlR5PT83CNHBgkmE7m\njSNrswR8wxQuw8hxP+WJd3bVWWRzPSp5K4aakjqP5A7k+BDoPmJxRe7ZgoWitLaqwsx2wixBg0fM\n/WER+KG2dsbEw7mBwcfQ8GByer4ooXPpx3K//AhxLyvg5ZB+NnCH4MlXLki04XA4HA7rf2ra0vbs\nlStXoJrWvygHGBwfImwWF9t4mVGKcOGdqMqQ6Wi9QYu9b0ecXTpZHgTJU3rsAk8pbD7BXYLwzceN\nG17Ii2ZuWIdOD144/gYA4KRJCFIXS0DAl2Gfc4kdlV7ff/wOfryjrRp3P3/1rd/YLLZffoScfO30\nm2jWARw1p8XeR5LPcdE9oOdTm/clYuwkiD9Qv/wIf6mA+K+qLCInU/dgVoj9JwidwQecjuU2cTOy\nRYAHTLB+gq6PZRcJoHzlrR0tUZZNpVIwfu3MzEwkEvG0AmSbOSbRlhojYzlow1RMn2uszxT9fXR1\nIg/hiWq56B4uugfwPFBVLXUeebXQkr/kpAN+DOqC5hNcB4PHCrXjydEvP2redxOY+JHYSeNuswT6\nZZgGoktoR2t1V7uAqOWaGvhPDvuuLsne1jr3Gd+4OJ6HceIoCzYaV3S0ViNmCSdS984cQrvfyFiu\ntLJ82Qf38QcADI+qQntfUeqzVAHqsdzXP2U0bukbyB9/gwj9bOACwZOv/PAMQ5AkCXqJ+eAZRmzx\norvjMWwyMpY7e/krxEioqYHv2iVYW855ASfUMecwH9BSnyNHOOldrudXL/6M7gGxnyKnaanzfqhp\nC5pPBuTHRgXb5PQ8bpCH+H/gMiXEYvFD3JvoSzDi1jJMw5lDzbVbyntvjE88nAttKOtqFw7ubSCq\nLRG7WysnvA1liN2w9ZaxFv8ZEtiLi+7hej6ljFYLMYbUbawPIU+w97qSe7bwyWFR/8kXb4wTswET\n6WoXrP3njDyrHgJrSPPrAKdjGZfLEQfBi9fzG566O5bdJHjyVREkWl8hTjTFdsdj2OHijfEPT8v4\n8eFRdXhUPnt59MKxN3x6E4WYZQ5jEq27IJu5gmAUZ5cOJn4Bsrc1RVlxlQ8SbUHzSe7ZQl//lL6G\n9d4grGGI3Ztx49ImiGRGUwJxGdZNGIFDBe2TL37itCZmfLC3wRgAywxEy2thhNBUz+MqYcKLKwBA\nHtJi7xs9u+2rZmurKvIaaTQ18IgR7VFp2/AR1Si19PVP9fVPNTXwoYqy4THV0UtFaEOZ/Q2uL+Zf\nsl/ymsLpWCZGKjh7ebSjrXpjxfqLN8btBCCjnw28InjylVexDoIDF96JHiq2Ox4jL8NjKlGc1Zl4\nOLf7yJe+piAnvXdqrC+5izyEWNByRFcbPoRIEpqi+DOuC5tPzl4ehT7OZh4tiGqwgHCSiLaSvgQE\n3VxvYPCxizvdr771G+O/k5/d97+EvGjpq1rk7RXirNjMPfjKpqVB7ZbypnyeOrg1cGN96NqpN3Fl\n2/Co2i8/0sVZsweNHA9IMoJVgKOxTPTQmng417zv5p4jv7Ne43RcH8suEjT5avVLtETzx6JUhGEf\no/qhTdzcJm7Gl4Tcs4XdR770LS4mgGmoEJhzmLvg7WkiNHD4cX9m0oLmE/gCdvKz+7uP/M6O3ZvT\ncJJ4fCuaEogZZYdH1T1Hfnfys/tED63VjZb6HE2CLQ8CzNrbglbLAGTAJKRuY33ods/OrnbT6BwH\n9209c5gcX9mfiKTeYZHWuLg4GstmTyH3bMF+egj62cBDAiZfFcHqQDefnZycrKmp8fx+gczVxrBD\nUwN/4dgb+mbcyFju0BnZaLeUe7Zw9vKo11EkXyBuB8qKl3LmHOYuaDgksdnUQhEz9tCytz2q1QoK\nnU+GR1Wz3Ff425rT+KP4+TQlmNmS9suPfM7SFGSex95fBwCQDtg5Gff0WvFtW7VZ3K6aLeVnDjUf\nk7b19U9NTM9DVWtjAx+qWK9fRbTrwKMlmN395Gf3jRrcjRvW/2erEGSliovWL/bHcs2W8tCGMkqj\nc/rZwEMCJl8VQaIVBAFG+xoaGnry5InXtyNne2ISbeCpraq4dupN4+4J3IZr3nfTOEH0Xlf8k2jJ\neRaYc5h7IDZYZnm/AADEeGre48V8gkszTmN64FocmhJ8NU8vEbjwTk46oMV+alTW2hdqcU8vIxZa\nWMjGivVOfWHxh2h0SNKZnVtERG37DmSe4rqOGaYd1t8KJqbnc88WoL1pYwMPHxD9Zj0+lpvqCUEb\nHEE/G3hH0OSr4ki0esIFz2MdALIUwsIdBB+iI/PGivUH9zYY85jnni0MDD7OH0LSDUxy4TLnMPcI\nvl2yB/MJ0U6uqYE30wPhEM31aEpwdG1eBgYfG53JCpAe6Euggev+CEbS4AQBrMz98Tz2/jqx2c4M\n8MG+BqJk09UuWIssk9PzA/Ljien5iYdzSHZcqKxtbODxEvCtZ90hyXjwBBbNtE3cDICvwYaJmCmt\nEXAN6MioirTG7NziidQ9os0rfCLwf+sAGjbBxzIxDJlT6GcDrwiYfLXaYx0AcrYnFu4g+JjpJDra\nqpFZeED2SaIlBythmcPWFB7MJ0STwcZ6B2sYUSSiKaFmSzm9RDs5PX/28mhfPznUV1e7cEza5nUJ\nrvBieRa3c4lfaLH3jd9qkbe5zE1jxyCG1G1triSG1LX4CQODj89dGrWQh/SvaqsqOtqqjbtVGyvW\nd7RVG0MfQgNQ3Y6LKOeFNpS9s6vui/kHZnf0EztiHK4Bza30rBgZy+0+8qWdff/cs4Wzl77q65+i\niaKDj2VXNKb0s4FXBEy+WgMSLQCcIGgrzR9LQBW0trHw7iS+u3OJn5PDkYZ3rNP+lViO2XErhDqO\n59F0Vsw5zEVKwRbI9fmEGGqnqZ7vtXm5iUqGpoQC3KsR8kZL7b2ujFjm/6QvwROkA+sAeG4QajVV\nBZhQS+SYtA2Gf4J/Qj8BM42gWfhCIhMP56DxgFGo7WoXkGDew6Nq876bMP6XmcLY5h19IG9qaEDS\ngBo7DFGc7WoXWsVKGEQCPg5E7j90Rr713zEXfnvgY9mOi5uFRYpeLOVs4B2Bkq+KINEqiqIoCgBg\naGjIp1sKdcyhp7Sgf6+dnVvsva4Mj6mzzxatJ4s2cTNRp0ImeJmsVxWI4azlu37RnGptzyd2ApHW\nVlUQZZpG2xElzfzoaUpoFSstPJkgFr+OKI11tQu1W8prqspHxnID8iML9xpXSvAQ6QCnjBtTLdgU\najdWrL9w7I2RvbkB+RHRVEBndm4R+fmImywAYHJ6fv+JO8YWOHvpK6NE29pcSRSVzBqttqrioI1w\nv76Rd7++TdyMrxSTD+f1zyexN6JPDovI7l9Ha/XJqvvG3j48ql7EAs0WPJZrtpTnvTbvL6WfDTwk\nSPJVcSRaX2MdAIIUAgBzDgs09IZH+4/fMSukqYFvFTfrr87OHFGJfUn2691stYMkCtfkQU7NkcMd\nYGoATtyu+fMgbM8ntVvKc88WrDuYmQqnsT5kZxEF5o5cNCXY2bhsrA8RC4fb2cYjiDTW0VoN3nvd\nQgdJX4LXcImfA1U1Jq4zCrXD38pHH8dNL34ZgP8IsgCc/ify9ycrE/yzrQf3bTUe7NpVh2xP1Wwp\nx41DjIkwAABHpW39MbtzqYXCuCjk3fpvbOBxv3592h8ZyyFLQJu4mWjMdnBvAxKvd2J6HjmHZix3\ntFlFugB2fin1bOAhQZKviiDRhsNhGOvAjyy4AABsmVyCSbTuwUX36JvvWvIUSJ7iontAeAdQxrnu\nj5a+kge1yJ+9uKT7I06oA9E9ZuGZJqfniQYGA4NoviL4mo4ct5CJG+t549QT2lA2O7f4iuUPfFFt\nci7cQdaXgFk3iO4ByjgnvQuUcaCMa8lfQuUWJwhAqOOkdzmx+UU3CO8E4OMVhaavEn3JtdR59JDY\n7M+rhaP5JK+ns0V2n1ax0s4aZhF+kqaEvDuhZpYJMF+r8QiiXIS8s6tueEwl+uvQl0ADl/h5x/v/\n18pj//VvAOrpwvX8Cs9mBwm9xDe9LBZcgdBLfM2WciSEy8hYbmL68eTDeShsTTycGxnL5X24jfWh\nTw6LduT+Tw6LQYtxkTfxVUdrdW6OIGKOjOUa60N9A1PIcTOJc2PFenybbs+R3+H1KWwsW8duA/Yi\nyNLPBh4RKPlqTdjRmuYvZeEO3EJV0S1geVBTVSi1rDhNtzrN3tIAALH31/V8ShRZem+ME8Ny4QsY\nnKd2H/7SZmV7rytIIddOv2nXt4w0SjVlnGMSLSB1A1UF8Y9Ry2MAwFKWLwUAoAHAxT/mEr8A0gEg\nbkcslbXkKQ7vHmoOGNRjYFk+duln5MPJfJJ3P9EiWFKrWJlXXLN2+acpoVWstK65mWUCkiO3Tdxs\n5rfe0VZNrB59CZTcnkNVLROLyviCMvytrH5H3rLf/rIYeol/qzwMABhfUM78c7Lgu79VHq5dLwAA\nBgYf9/VPDciP7YgyZkCtpIVFcmhD2YXjb/jqTmQP6/360IayxvoQruAAAIyMqUTpnDIIQMFj2VrD\najNqB/1s4BVBkq/WrkSrqTlm/ughQt26K7/HhQxOGX/+2ordtOex99eRJNqzl75qrA8hySEv3hhH\nfB301Q4JoG2RzP3gvq24rKxdMVSy+yOgKFrnPl20gtEoAc9rqc+NIhcnNnPRPaD7CPAnvH+pocmD\nnPTuuvAOEN75QhkvD2npq6gZYvzjJck1uscorWqKAmI/RZRhGi4l28tH6g5O5pO8ofUtVqCO1uq8\n4dmto4fSlIAHFUGgl4HsuP7Ql3DttNXr6sDg49ot5XljRV1QU9tfFhHN68SicvRR3Cjj8i/x12sy\neauUl9m5RdxuKrShrKmer6kqh15NrWLlgPw4r7kzAOCdXXWtYiUeNQJGSKCMV+UpFopJ2G+JHhe4\nzYAr0Izlrl11ZqPJZgBg+tnAK4IkX60NiZa4r81c1D0lvJOsM3OiSNt//E5Xu6CP0r7+Kfwl9YN9\n7rsyaMlfctK7QHqXAwCkr2qKomVvQe0jF92zdFwe1LK3NHkQ2nqy8MZEuOgews6suJ0Tt4PsLc0w\nBjVV5bK3QXgHF92jrdS/aqnPgapy0rtAqAPyoJY6j/uEEfS43uFkPmmsD1msQ3m3CPPqIPOuYQWX\nULOl3CJ8kitrJ3HLmL4E6BU6ID9GglsBw74z3L4fGVX1c5oa+MZ6/pi0jSiXnKxMECvw10/TRoWu\n+p1qpsR1xNnLaNCuY9K2DzC3LUSZbQHMPXbmULOu1AxVlAXNzADHQjEJH6XFq0gIe454qFpH0Izl\nrnbh7OVR/NrQhjL7Q4l+NvCEIMlXRZBoU6lUOp0GAMzMzEQiEX9uSkgvxCTaUgC3EDBycN9WLzbL\nVhhChHdokbfhRz3QOkTjvr/0iVmwmEHMsgYxywcGhdr0VeMxLX0VOWKE6/7IZ5stR/OJ2TpkZzE7\nuLfBov93tQt5tWs0JXTtEoZHySaYFus3nn/VzCYe2W9xq4Te6wqiDztzuBmdKJoBAGB2bnHY//hf\nNhjBXiRwcRYK7tblfDGfhfYSAIDhb2UAAPh3AABQu14IvcRffQzeKg8Pfyt/Mf9CKG96WYS2E0Gg\nTdxMFCJrqyr07Tuz9y58k6H3xjjejACAyen55n03jUfMopgVPJY3Vqw/c7h5//E7yHF9ANpJ0ks/\nG3hEcOSrIki0kiRJkgRMPMNcTL68Auw1QlNVUzdqRrGBQfWsQ/N0tQte5b9lRrFFhev5FGRvE61v\nCSeLzVy373nozeYTEmaroJ0VqGZLOR6WX8dOrCWaEt7ZVXf28ii+7Wu9fnftqkM2Z/efuIO7dl28\nMW5WK8oSPtjbACN8jYyqMNXW7sNfNjXw0C5TP21kVB0eU3PPFmqrKmq3lDc28LVbyqHgO/fHqK/L\n5PQ8cS/7MPg//htmtGAUEN1i/4k7Xe0C9D0aHlNHRlWizg8y/K185p+T156m9SM7KsJ//kq0dr1Q\nVybUrhdyz9WhP8i579Qv5rN/paYQvXJwJFqYJwJ/ysbuZxY7tmZLOeLdOPFw7tCZQUQNPzu3uP8E\nKmh2tFWfuzSKl0kzljtaq5GR2NTAOwqXRj8beIWT+dBTaCVaVVVTqRQAQJIkfqXSxeKrvPynf7Kr\nu019V2NLR0fUFTHVWlAJVZRdOP6GWQSu2qqKo9LriIktY/XAh7jMTSTdKBFOELieT4vwXmoyn1w9\nRZhPiGFBQxvKbK5AB/c2EJNmHdy31WamUJoSDu5tIMaFtVAs1WwpPyZtM6rHhkfVHbFbejTZAfmx\ncbvfixI6WquJ88PIWA4aKuTd27l4YxzqhuF7dWhDWatYiYd3mHg4Z8yY0FjPd+0S3vqndU8jhZsI\nr9PCT9unkF+HJAKA4PpL+OcX81mjOAsA+PDVbqOcGlq35MT2VkV4YkFBTg4UuGLS/ti5cPyN5n03\njU3Ue13p65/qaKs2ZlhA2hBu/RF7COVYPnOoObShDL6ttYmbLxx3HC6NfjbwBDP5yneoJFpVVVta\nWrq7uxVF6ezszGQydr5CUcaR0JI5bu7D9f+LrRps2LDxpf/HzomcuJ0cdIlJtG4w8qPmnPz/Go9Y\nLBjEZF3EHAdXT/14ZCzXNzCl78E1NvC4uxhjFSJu5+7+HsR+apFGgYvuKY4463w+wcOCmtlr4kDx\nDo+3b18lQ1PCO7vq+uVHRlnKThz+D/Y25OYWjXpWmGIUOc3CAZyyBKiDhJ91jSn/Et/070V4ZOap\nGHqJR2IXvFUehnLeucujyIb1MWmbWV5ucAw7YhJo1j4drdXXTr9pkQK3o60a7owjMV4OnR4MbSj7\nsLm76WXxi/ns8Lfy0B9k9Tu1fTJSVybUla2QPNTvVP4lHtokBJaaLeUH9201Pnr7rmwbK9bf7tmJ\n5KHIPVuwtmSz3vpzOpYRy5ZWsVI35iZavFjbN9PPBl5gOh8SwyB4CZVEm06nw+EwNCFoaWmRZVkU\nxbxfIWip80avZwDAKwC02qsAF94JxGZCU+KQlMQs3IFbnEzdQ2beg/u2Qjv6kVHVmGgbBqmefbYI\nANi4YT00h2qsDwFlXEudB4oC4FaFUMcJdYDn/0QZ/xPwop9yoe3azSHt58svf2IzDGo78j9A38CU\n8YUbiU+OVviz+3jEckawEOq4zG+57G0tfRVkb+uJFjmxGYjNnPRu3qSjHuJwPoFhQfUISgf3bTUV\nj0ggAZiaGvhrp950pN2hKeGTwyJYtlitraqwGYf/6HuvQ7ceM2PZrnbhmLRNaO9zvYS/fpr+q1xK\n/W5JqK0rE/bzkjFMARRbh7+VL6gpRJ6DX+F2Cx+elntvKIjdgjEobJu4eeOG9U31fEdbNX3eoNxz\n9XnDP/xvJ8Dup9pv/2/lsfLDl9e9vPmlLQCAP2n6nvAfXiqvmHsO/gEA8HmfNrGoGOXy5+U/BCA8\nsagAAJoM8Rn4l3j9NF1fO/ytrH73QkFbVyb8+StR6uq7DMyAAJeYrnaBaAtrRs2W8lv/fefFG+O9\nN5S8ZmwH9zbkXRTsj+XJ6flDpwcBANC4BQDQJm4mujKPjKq6k19jA983MGWxPNHPBu4TGPmK0zRb\nAiGReDwOAEgkEgCAWCwWjUZh6gTiV48ePXr48CEAYGZmZmZmBgAwNTX1ox/9aM8eqrA73/ve9/7t\n3/6t4Mvn5uYqKqgymK9fv35xcTH/eZ7V4V/+5V9++MMf0lSAtSFrQ/o6sDbMW4f5bzXlm+82h9ZV\nhtYRT7BuQ3h5xctc3R+9ZHaOdRvmLcGi/uPffDf3rbatNo8SBG9DeNN74y9qJfzRS9vqvlf+Mnm9\nw+vgqATYhvPc3IP1+bfvvi4bm+fmAADlWsV/WKh/bfF/KtcqrNsQtgOsA7ECLvZDm79C508WtiN1\n+IeypZwjI98nbwHDH45cHsyxfG/i36w7vxHiWH6ce65Mf6d88x1yfFvd9/CO7elYtoN3Y9kmRV9T\neJ4304Sa4ZpnmIWlLPzqb//2b7/++msAwNOnT2dnZ+FXbW1t1mnD0ul0NGr1yvjKK688ffrU7FtV\nVRVFsWiU2dnZjRs30lTg1VdfffLkCU0J1nWQZVkQBIvmXVhYKCuzstlibcja0E4JrA39acNH1G34\n4L7pCTbb0KyEvG34v//XAttQN0JKp9OV0ejv/z/TEszqAEuAbTj3HW9WgqN++Ap49RXwKvz8GDx5\nDJ4A22346Gtn9SdWgEjB/TALsmZ12AJeKI6RsQx/tfHywI7lRwDArkvThrAjGUt49DXAn6Y/Y9ni\nBK/HckDmQ4s1RRCEokm0imJqmAK/+vWvf11YyVDRWxiyLMuyDI0fCoamAvQlxONxPW9wUSrA2pC+\nAqwN6SvA2pC+AqwN6SvA2pC+AqwN6SvA2pCMRsHdu3fD4TD8LAjCgwcP7HzFcER3d3cmkyl2LUob\n1ob0sDakh7UhPawN6WFtSA9rQ3q8aEMqHa0oijzPx2IxRVGi0aggCAAAjuM0TSN+xSiAcDjMWo8S\n1ob0sDakh7UhPawN6WFtSA9rQ3q8aEMqzzCILMsAAKK5g8VXDAaDwWAwGAyGK7gg0TIYDAaDwWAw\nGEWkCFlwGfZJJpPqctokeiPuNUgqldJt52mS2K1ljG3IOqRTFEXRex3cYmP90Cl4G7J+6BTYhjzP\n672O9UOn4G3I+mFhwAhX0CfM3X5IDqXGCAjJZLLYVShVVFWNx+PpdFr/s6Wlhed5VVU7OzuLW7dS\nAWlDwDqkQxRFiUQigiAIghCJRBRFYf3QKXgbAtYPHaIoSktLCzT/i0QigM2HzsHbELB+WBCwy0Gh\n1vV+yHS0wUVVVVEU2ZtfYXR2dqqqqr/z2U9ix9BB2pB1SKfAeI2w1ymKkk6neZ5n/dAReBtKksT6\noSPgNgsMHZpOpxVFyWazrB86Am9DGP+f9UOndHZ26hG7XF+XmY42uMCAc6+99tqmTZvYu6BTMpmM\nca6BExD8LIqivlXEsABpQ9YhndLd3a03IJQhWD90Ct6GrB86JZFIJBIJWZbh9q4gCKwfOgVvQ9YP\nCyCZTBpDHLjeD5lEG1wEQeju7n7w4MGDBw9SqRQMHMGghxmNFQbrkIWRzWZfe+21cDiMqB9YP7SP\nsQ1ZPywMKIHBHV7jcdYP7WNsQ9YPnSLLcjab7e7uJn7rSj9kVgfBBQ4YAADP89FoNJ1Os40hV7DI\nb8ewgHXIAojFYqqqZjIZPPIi64c2QdqQ9UOnwHSjcG83Foshshfrh3bA2zAcDrN+6Ih4PK6qqm4N\nj0yJrvRDpqMNLqlUSt/LsM6CzchLNBrV53E4NxW3PqUI65BOSaVSqqpeuXJF72+sHzoFb0PWD52S\nTqd1/04oN7B+6BS8DVk/dAq03Oju7g4v43o/ZDra4BIOh+HbjKIogiBAm3RGYbAkdvSwDukU6MnE\ncRz8E5qEsn7oCLwNJUli/dARsMVkWYaiGPTLYf3QEXgbwigcrB/aRxf6YaAD2Ovc7Ycsw0LQyWaz\n0Key2BVZDbAkdvSwDkkP64f0sH7oFLzFWD90Ct6GrB/S42I/ZBItg8FgMBgMBqO0YXa0DAaDwWAw\nGIzSxh07WmNOMx2WZI/BYDAYDAaD4QMu6GiNOc2MB1mSPQaDwWAwGAyGD7igozXmNNNhSUcZDAaD\nwWAwGP5AK9HCnGZ47jKWZI/BYDAYDKkKWDIAACAASURBVAaD4Q9UEi3MaZbJZOLxuMVpULSNx+NI\nqpJnz57t378f6nEJKONAqHNw3N3LGaWFmgPyYOGXh3e4VxUGg8FgMBh+QyXR4jnNiOIp/DaRSCDH\ns9ksYn2ro7X8qSYPrsvcRESNpeM9nwLpgEXFKC9nlB7y4PPI2wVfvU77VxfrwmAwGAwGw2eoJNpE\nIgHNCWB2OKM1bTQa1RW3eZKbZW9r2dvwIycdAEIdSJ3X5EEAgJY8xRlFUv14/GMuugfwIRcuZzAY\nDAaDwWCUOFQSLTGnGcdxmqbZTzqqZW9ryV/Cz1x4BxDqtOyt5a9ucQYjAS31+dIHVeXSV6GelfJy\nBoPBYDAYDEap4048WqNFgZ6E7MqVK4UlN9PSV1/8kb4Kuo8AAICa0wyGklr2FmciklJezvCI2bnF\nfvnRyFjOeLBVrAQAtDZXAmUcKOMrLhCbmR6dwWAwGAyGHdyRaM0gyrKpVApaKczMzEQiEfTrZRMC\niCYPckvHb1mc5trlDG84+dn9s5e+wo/Dg0+++ImWOq/r2iG4GTSDwWAwGAwGEW8lWiKSJEEHMrJn\nGOKxvix6avKQ8bCmqhwxagHl5Qy3mZ1b3H3ky+FRFr6NwWAwGAyGV7iQM8xdtJVbz5qqAjUHACaq\nEo9QX85wnQ9Py0ycZTAYDAaD4SmBk2hRY0qwLHpiAiiidnXncoar9A1M9fVPFbsWDAaDwWAwVjmB\nk2g1xOAVLAmjGp51TFFcv5zhLucujxa7CgwGg8FgMFY/RbCjVRQF5lwYGsK0pKRkuZqa44iOXGoO\nO0J3OcNVRsZyzN6AwWAwGAyGDxRHooUOYZOTkzU1NcavTAwJFKBuJxy3a4dg93KGu/QNMHsDBoPB\nYDAYflAEiTYcDsPsYhZZcFeg5oiiqqaqnJ37UV7+/7d3/zFxnOe+wJ/XjVEjoN7JqXCNUIFxBfkj\nOdgMV7enUgKB4Y/0xrIaziLZujdWgzPcJFKs2kSL5NRJLEfaVYgr5yq9xxunlfOHc+W9pKKJkj92\nTdj0j0RXGX7UUa+h1wPoELtGsd91DDoJtJ77xwvD7Mzssnh/Gn8/qip4d2b3ZV2pzz77vM8Ddyqu\nXyv2FgAAAOCeUGJ1tJ55U69agtWHkisHsrwdcufmwjJKDgAAAKAwSiyi9SyE1UdTVgg41rO8HXJn\nfArhbJL46LxjXhoAAADkShGqDtIwswsxs7wdcmgCCdpVx9/+8uwHRuLWEhHVVVcc0x7a21pT7E0B\nAABsKkWIaNeZguspy1AVkW7BJRaWi72FknD45OjZD9b6xM1cWXj6lc9/c0R56gnMqwMAAMiZIlQd\naJoWjUaj0WgoFMrwFo9usmLdsy1Xrm+HOzBzZaHYWyg+kZ11r//qDT0+Ol/4/QAAAGxWJVZHC5vF\nzVv3eo529uriqXOXUj16+A18bwAAAJAzpVVHC/eIXY3SMe3h1uaqianExCY9Q3Yq7by0mSsLb743\n+cK+xoLtBwAAYBNDjhaKQISzRNTU4NuUFaWzVxc96w3szn44XZjNAAAAbHpFyNFagxXcM8NKh9n/\nEhkGO/1bknwe64EXSfGaQwYZ8FWWiXB2E8skWp25sjAUn0PfAwAAgOwVIaKVZVnMDBsbG7t+/XpW\nz6WPktKc1e1EFBu2jogxrYfkegoNmKHXiYiMafbFZ2vXW+uxYXb5kiPYBbuR1APDdjVIhdxJUQyN\nZDQBOK7PI6IFAADIXrYRrWEY4XBYkiRN0yQpKVLhnIfDYSJyPCTLsizL4ueMpuDmmRkbXolTiZja\nTnK9GRpYeUgfZeF3SOshIuKJtXXOqf8oO/1WMfYLpS4+Op9hq4ehkbmTh7P4SAYAAABElGUdrWEY\nLS0tiqIQkaOzLOe8paVFkiTOeXd398b2FP2YaQfd6yzw4pbTv8337RQZtHf7MmMXPNcpMrj+U4GX\npsZNnqON65l25krcWkIbLwAAgOxlFdGGw2FN0/x+fyAQICLDWDsKE4lEVFXVNC0YDHLOdV3P8DmZ\n0kxqOwv0eTwU6COth63md/NxOxGZ+ljSr5FB4gmyh7ZinXMEteApnrriwutiRLQAAADZyiqiDQaD\nwWBQ13VRXSDbgkXDMKxKA0VReIoZBx7UDiIiud4RejK1Y6VuVW3P4+1ElBy5Eq2V2zqWHbEvABHd\nXFge38gEYIwLBgAAyF4OTobpuq7ruigwcJTSCmKxv79fZGq/+uqr+fl5IlpeXn722WcdFzMr4pTr\nyZb0XTsB5vUSubqdODddI3PN2DCTJI/BYxiuCy7jG2yvu9HrAQAAwC2rHK2u65xzTdNOnz4ty3Kq\n0gJRjRAMBsXw27/85S9ff/31119/PTjo9a29vNqdNLmJAVtdZ+mTrNnd7p12NQzv4BURLbhstIog\ncWtp9upinjYDAABwj8gqoo1EIpFIRPxsL6IlIr/fbwW4uq7L61WvrpFT9NtPtZ7b2w2vrvjGtGl4\ntBc1ORcltgCWDLscJN2CiBYAACA7WVUdaJrW2dmp67oIZ0WXWcaYaZqKokiS1NvbaxiG3+/PMKJl\ntsQqk+tN+2NWSJo6Ns3ydiIirxytqY+yVLUK+uj6hblwL5mY2vCHnLg+v+lHTgAAAORVVhGtLMuX\nL1+OxWKSJIkeXkRkmiuR5Pnz50Wa1npoffbA0RF6ZhKSZnk7kemZoyUirxwtFJ7Z/5LVPNiyxfyu\nKJvx5JmjPbBHPnm4+ebC8qvhi+tOxwUAAICNysHJMJGa9eQZy4bDYVGrcOPGDUcX25KVKtI1Y8Pr\n1PXeM7r6/pThlUMjc44D/se0h/85w5tdnSiY6G5RGjwTtG3KdjFGYVvF1pe1h4dG5hK3lpLuQrsD\nAACA7BRhCq6maZqmEVEsFnPODEsx0nbdJrK5uR2ykGbsrcPMlQVHIvOFhcaM7uQJdyeKkvpEkVhY\nci8+tWfta4FtFVsP7JFPnbu07l0AAACQuaxOhhVOhue68nQ7lAh3q2Ba7UBcGtyNDnyVZXtba+wr\nrYqzZHZD/WsBAADA7S6JaEtWqrpbyAN3bzUmSaTsLspmMuSOX3EIDAAAIOcQ0XpgaodnoQKTZWfV\nJrp3FZI7R1tKJQfkVRFbV13hvmxXo7N1xh10SAAAAABLEepoDcMQ3b7GxkpxiixTO1j0I4oNm52P\nOx+KfkSSRDsf9JgfBvnmXURbQiUHntw5WiKq3VHuqDRAKS0AAEA2ipCjNQxDnAkbHXUFKJIvm2fO\n8vaVJ/F3ERGp7cwxdUw7SHI9ST7SDmb/KrBh3kW0pZWjdc9K8FWUuS/zTNwCAADAHStCjlZVVdHw\nK/NeB5ke7cry9pX9rQZJaod9zq0V4DJlt+m+C/LMo4hWlkvtzJ+7GW1Tg8enLF/FVsfK7JVFSvE/\nXgAAAFhXESLaO5FqZFeub2eStP4c3Sw3A3cm30W04Xfss46ZXE9aDxERT1D4jBkbXnlAaWb+riyP\nozW56mgxCBcAACAbd0lEWzD2Obpqe9J4qrXcbWl9031PyH8nWjMyaNqDZrWDaT0UGTR7n08qm45d\nMEOvM38XO/1bSq5ymXVFpW3K9hzuEAAAAFJBr4NkuajEhdwrSifa2PDt7v2epwDNyKC580FKLoTI\nPM+6qwFpfgAAgFwqQo62pKfgppguVvpn6jc3jyJapTm/Hz84N3ufT7clzql7P/viszTb2FbprJdd\nWXfV0QIAAEA2SmwKLoAnjyLa/H7GcBc5eFxjGBQaYMETqS5I09PAUZBQt6N8Q9sDAAAAu3QRra7r\n/f390WhU1/XOzk7OeSAQCAaDBdsc3EXef+NR+69PHvk01ZUH9sh725IGw67zLXz+i2jTYGoH83eR\nXE/6qBkacBQhmKHXWaDvDrLFgwOP5G6PAAAA97p0EW1nZ6dIpoZCIU3T/H6/WJFTfDW/CbBUZ9hR\nX7uezIe7+irL3Bena4hWvE60TDvITr9lvSLTDlLn487wOnyGAn1EFNfnC7AlAAAAcEt5MswwDM65\nyMhGIhFN0xRFURRFjPvatFJ15tq8QXzp8yiiFVMw8ozJMgu+lrQk+djp3zouW2vsBQAAAEWSMkcr\nErGc81gsJsuy+DUn4axVPjs7O1tbW5v9E8Im58rRslSjNHKKaT0euXllN/N3mZFBa8GMXWApnsFz\nBC4AAADkXLqqg0Ag0NLSwjkXtQctLS1EJMZ9ZUOWZfEkY2Nj169fz/LZYJPzKqLNe98uIUUmmKkd\n9oiWiCg2jC7FAAAARZQuorXG1Vr//bOf/YxzLtm+mjcMIxwOE5G7vpZzbj1kv8XK+BIReh3AOtwJ\nWlnOcmRXJjKaHmfx6lkLAAAABeNdR6vreiwWs5rFijoBVVWPHz+u67p1mWEYnZ2dIkLt7Oy01yRw\nzltaWiRJ4px3d3fn9W+ATcxdRFugbGiawgbXBjw2CQAAAAXknaONRCIicg2FQvZ1SZIURbFf5vf7\nRU2CYRiRSCQQCFgPqapqlSvoum6/ESBTRSqiBQAAgLuId0QrWhx0dnZGo9E0N1vxKxHFYrHTp09b\nvxqGYVUaKIrC8bXsXejmwvL41No/XN2O8toCDwLwLqJFxSoAAAAkSVdHmz6ctcRisd7eXr/fnyoL\nK0Lb/v5+kff96quv5ufniWh5efnZZ5/d8JYhn24uLA+NzI3o1+L6fOLWkvuCNmV7q1K1t62mENGt\nZ4I2VXlrbhnTmT/ECrMlAAAASMEjohXls9FolDGPrkSmmdQLv7e3l3MejUbTjF0Q9bXuYWOYgltq\nJqYST7/6+cyVhTTXjOjXRvRrp96bfFl7+Kkn8hvJeRXRFqTLAZFpGIwnvCdruNPGiGgBAACKyuNk\nWDQaFdlZ04v9ynA4zDk/f/68O5z1+/3WGTJd1zfxmLFNY2Iq8WTfp+nDWUvi1tKv3tCH4nP53ZNH\njjbvXQ7WOFp0rfIYqYDSXgAAgKJKV3WwLnEazErlBgKBYDDIGDNNU1EUSZJ6e3sNw/D7/Yhoi0kf\nW2kvlbYC9fBJ3VFmcGCPXLejvKlRIqKJST5zdfHsB0kjNt58b3Jva03uNywY00XrREtERGZkkGk9\nzlVj2gyfsS8wpRlDkgEAAIorXUTLOQ+FQrFYTHQqUFU1EAjYO8sGg0F3LYGVxz1//rxI06LLQb6Z\nnT83belMpnaw6Eekj5mh1x2zAJjSTGoHC/Q5grCJqcT4ZNLpvUP7Hzz2zEPWr63NK+Ov7EGt45bc\ncoezTO0oZOxoxi6w0AAF+pIW+486d1WQkbwAAACQRrqItru72zCMQCAgy7IYl9DZ2fnFF19k/uye\nsWw4HI5EIkR048YNq+Ut5Fj4ndu9z7mXTX2U9FEKn2HB1yg5AdmmbLf/msfka4ZK4Mv92/1HGU8w\nrYfkeooNm6EB01UIkWq0GAAAABRMyoiWcx6LxW7cuGElZf1+/86dO8WohWxeUtM00acWJ8PyRR+9\n7Q68bEzOzd7nthBZQW1Tg29w4BHPi0UPr9kriyP6taGRPBfO2jdpGM4ldxFCAbYRet0MvZ7qURZ4\nEcfCAAAAii5dREurjbcsKIfdAFG96i5dFev5LL40V7v/Mu0gU9tJksiYNiODjvzi7d7ntsj17h0O\nxecmphIzVxZu3loe0a/laZN3ooARLZNl4txM20eZyTJLrkkAAACAokgZ0cqyrKpqf3+/VSkbDocN\nw8gyQbspmf0vWWm8LdGPiXOz/yUrxcgCL67UrUYGk9bVDnb+nHdcGxteO1Cvj4pv25nkI7WDMjvs\nzySJRT+2X8y0HuYqRTBDA8wW0R5/+8uzHxiebWhLgcl5yo5aOSfXM7XHXTVrYZKU8p8PAAAACssj\norVGIRBRKBQKh8OKoui6zjnHGa91mbFhx5fUZuh1MgymdjijydgFavkX9sVna1GRMW2GBhxH6YlW\nmliZRERHmSSRv4sF+tb5sls76BH7aj1MH7U/vxm7wIxp8VSHT446WhkQka+ybFeDVFtd7qssa1Wq\n4vr8qXOX0r1uvumjhZsZFuhjPOFZcsBkmZ0/t+6ni9kri4S+XgAAAPnnEdH6/X4rEWufc5srhmGI\nmQtjY67++Xc/zwDIjAyaXs1NTcNg4TPiNL090Zvu+Tmn8BmKDLqPdtml+jacaQedEXNsmLSedz+c\ndoSze9tqDu17sKkhKQcZ1+fX3WF+FTKiJWLBE0xtN8NnrH8+pnYwf1ead95u5upiPncHAAAAKzwi\n2nwnYg3DEAfCZmdna2tr8/paRcH8XczfRTxh9h+1F2IypZlpB0nymaEBqzWVGRtmgT53OMv8XUw7\nuBK98QTFLiTdJY52ST7Pg/bpOqS60oqmMc2IHEe+fJVlv3v5p+67M5y/kD9itwWltjO1vdAvCgAA\nABuR1YSFO6OqqsgBb8peByvVseJnyWd271/9WWLRj0WgydQO8wFbqyxj2hHObgm+ltQGVfKRiJK7\n99tzvWbv897NUJPP8+XKxFSikL0OvBnTRd5Aaq1KVeYlGV19f7L/uretJt8jhQEAADYxjym4kI2k\nENMeWarta3nT5ASqGX4n6RlkmVLVDARfS7qRc4+mrZS2JwBPpHzIJnFr6fjbX95cWLZW3v1w+sm+\nTzO5N6882sGWsDQp7RH9mv0/qE8AAADIRhFytJtcqgNbaRqfORqvpjlvJNczpdk+TMuMDTNXXanJ\nOYsNe9ebusp5xe1NjZKjUdepc5dOnbu0q1GiPM8G27DVo2yl7+atZc/1WcSvAAAAOYUcbelJn0bN\nLMlqhgY873WsM0kSge+hfY0ieHUYn+RWOOurLHPMFSOiN9+bzGQ/uVTChQcZQkYWAAAgt4oQ0Ypp\nup2dnflopHA3Yo7hrvpoyrDVmHZM0nInaAUzdsHs/HlS8BcbNjsfd96+Wt6wrWLr+wOPHtiTMpF8\nYI88eu7xF/Y3OtZfDV8cihe0uNb0LLQoAbsanB8JSms+BQAAwOZVhKoDTMF18nex0IDVFcHknPqP\nstNvOS/jCeucmcBkOU0rKzN2wdz5IFOaV2aGuYbKMrXDXrC7rWLrycPNh/Y1Do3MzVxdnL2ySERN\njdLS8u2fNf2w/P77xqd4a3PV9U/+NYs/NRfc03FLw7aKre7FmwvL7nV3E7RWpSpf2wIAALgHoI62\nBMj1LPiaaZu/YIbPkDHN/F2kNJOym2LDpI+a4XecGdbVpgoOIukrym3NFKfE7D0Z7Gp3lL+wrzE+\nOj80MhfX50WW8X9GpqwL6qor9rbV7G2tcbSqLZy7qupAfAwo9i4AAAA2OUS0pUHr2UJk719rxi6k\nOde/zswqMaC19znPsQ5MkligL1U7hYmpxPHwxTRfl89cWRCHxva21fzmiOKZmMwhpnY43gdTH81H\nd9iVzw/Wr3d0+GxXo+Q4RTcx6RHRTpTUSTsAAIC7HyLakqH1MLWdwu9QZNBdIWBhSjPzd5F2MOUM\nBUHysfPnmDFtht8hzlfymkozU3Z7DmUQJqYST/Z9mri1lMl+h0bmZq8uvj/waF6DWubv8ojs9bF1\nJ9BumNbjCJStRLW9CdeuRqlV2X7gifraHeXu5/BVlDlWPA+BuRfdNbgAAACQuSJEtFb57GadGXbn\n5HoWPEHBE2x8gqIXzNEx+v73aftKewGmttNPdtL/u0yU8TBY8YSZubmw7A5nRQAnqjzj+vzQyJw9\nvBuf5E+/8vngwCMZvsRGMVkmrYds9RgrDCP3Ea3N7NXFw2+MeiaqRfOHU+cuHdr/4KF9jY5ovra6\nnPSk690lszcXlt19avOd6gYAANjcihDRyrIsZoaNjY1dv3698BsoNfYRuFvOnzP1MfsIsZUCA7ne\n7D9qhs+srUsSC75GWk+utvFq+KIjnD2wRz55eO2L+NbmqkP7Gp/s+9T+xfqIfm1iKpGvmlp/FxEx\nWXYkrU19zHtYWi5kmKg+de5SXL/mSFH7Kl052isLs1cX7Qldd6BcV12R3ZYBAADudbnp3hUOh92L\nnPNQKBQKhThPqhoUEa2qqrt35zHNdpcye593TMQ1DcPsfNzsfNwezhKRyfnt3ufcExPuzM2F5bMf\nJEWNddUVL2sPOy7bVrH1mGsxf927mEjEukta0wxFy45nojqV8Un+qzeSUrJ1XqUIZz9MOsrmztp6\n3gUAAACZyzZHK8JWXddFQy77ektLSyAQMAyju7s7Go1m+UKliyeY2p7UF9YaaiXXi5yrWDb7X2KS\nj5RmUpq3mN9Zl5v9L639zDnzdzGl2eQJq6DW5Jx0zpRmUjuYXG9GBq3SUjP8Tk6yle7E4d62Gs+v\nwlubqw7tf9C+kseATO0gIlKayVFKm7d2B0+/8rlnOCuSr+6Hhkbmhtrm9rbWiF9rqz3eiqGROas+\n4ebC8tCI8wOA510AAACQuWwj2u7ubs65JDnPtUQiEVVVRZjb0tKi67qiKFm+VonSR293Pm5fYIEX\nmVxvhs+4O2eZ1jX+LhZ8zZ19ZNpB0YmWEZHabq4+M5NlFv1YnAZjWg898KOVrgg5iu0mppwzHdIU\nEhx75qGcvGh6TO1Y+XvlejP5IdMw8tHuID46747s7fWynvW1b743aUW0nge8Zq4svBq+ePJw882F\n5V+9obvDYnetAgAAAGxIthFtNBqNxWKhUMixbhiGFeYqiuIoPNjkwmdur/f3mpFBig2z6MeOE06p\nZoCRvyupucFq2lLEdmk6T01MJRILS0TkqyjbULVr8cMs6y/ybKQVG87obNxGuLOnh/Y/aA/fa3eU\n/+6Vn7b3XnAcj7MqZbdVbPVVlrlj1rMfGOLJPRPARevsCwAAsFkU4mSYCG37+/t1XSeir776an5+\nnoiWl5efffbZAmygwEzOmdrBtB5azTISEUUGzdCAPWtrck6h151jDlzZ7oysdp4SX2qPT/GJ/35h\nPEXT012NUu2O8jZle6q6ghKxFtw7pgQLGXZ72AiPiHafc+rvtoqtB56ofzV80b4Y1+efemIl7N7V\nIHk2SUhTm1u3AyfDAAAAslKIiNYwDCIKBoOO9c06BZepHSz6kXPV38XUDvOB7UmLseEcvu7xt788\n+4HhiJzalLVXFJGW6D81NDL3avjigT1yqhICz9EAxSH5mCSZyWlvkydyW3gwMZVwv3WeEf/ethpH\nRGvvL9vU6B3RpoEcLQAAQJbyFdH6/f7+/n7xs67rsizn6YVKkWdOkcg9E8HkPFdhWVffnxyB1Mva\nwy+4UozH3/7y1LlL4ufErSXx87FnHmpVqqx1Ia7Pu28nopsLy/KeIfuK46v5vHAfDst1u4OJKWdK\nu6nRO19eu6P8/Tceta/Yz8Zt9Jyc/SMHAAAA3JncR7SMMdM0FUWRJKm3t9cwDL/ff29FtAX37ofT\njnD2wB7ZMx4Vwat9RYy5am2uchSAjujXhuJrp/gtp96bdKwUovlU/iNa9xyvNKnTNNlrx9u7rlRx\nMwAAAGQuBxGtaC5r/WqaKwfTz58/LwpnN22Xg5Lhjsb2tjkjUUuqaOzQvkbHl+lPv/K5/aT/zYXl\nU+9NOlK5ddUVVglp/jDJ52x3wDnjiXVGAWfnzs7G1e4or6uucE8FSwUlBwAAANnLbx2tZywbDocj\nkQgR3bhxo7OzM68buEf4XOWecX0+VeRqdT+wiCtf2Nc4c3XRMWfh1LlLp85dqquu8FVudR8181WW\n/e7ln2a7+0wU6nBYTrQqVZlHtKg6AAAAyF4RpuBqmib61G7Wk2GFd2CPfOq9SXvNwNkPjKYGn7tm\n4N0Ppx1jrg7tf9CKfcXMW0dQS0Se8Zmvsuz9gUcLlGL0imjN2HDKZmdF1apUud9DT6kOnwEAAMCG\nFCGiBQcWPMGCJzweUNsvTl5b6yZrvyX6kf1I2baKrcOnO+zN/xO3lp5+5fO66opWpcr69jyuX3Pk\nWd2Huk4ebt7bVvPmuck0B/Z9lWUH9shWNUIheFYXlGqT4zZlu2dXWreNFt0CAACAJ0S0JWStm+wU\nT9NNtqlB2tUgObrJ1u4oHxx4JD46PzQyF9fnRVZ15sqCZ3p1V6PUqmw/8ER9rdehrtbmqtbmqtmr\ni3F9fubq4syVhZu3lomotrrcV1nWqlQVpasXUzvMfM7C3VDlRnx03v5r3Y5y+zu5rWLr3raaTNK0\nB/bgxCQAAEAOIKLNmtq+xfzOuWhMr8RbxrRpTDO5Xgy+2nL5kvcErA12kz1L9Gr44qF9jY6GBiIY\nFT/HR+eNuYWF//j7n6c4Ef3X/1JvXZPJn1W7o7wAR742wPW+mbELOWxJ6+45ENevkVdXstmri08e\n+dS+4k51ZxLRHtgjo+QAAAAgJ4oQ0RqGIWYujI2NFf7V84gnKDJoxi6YkUHHI45z+szfxdQO+2Db\nTLrJOloNJG4tidYE1mVD8bm4Pj97ZdGzYOD94X8XP9RVVzQ1+HY1SHcWUcVH5x3x3PtvPFqIrK3n\nNDVjOtUnhI1y/wn28bZ2Zz905obdxcStzVVtyvb0oxbS9KMAAACADSlORCsOhM3OztbW1hZ+Aw5p\nyli3mN8RT6y0PrXme3kmZSODZu/z9rlWTJbJ37WSnTWmTWOaIoOmYRCRGRk0I4Os/yg7/Rb5u9zd\nZA/tf9DdTXZbxdZU3WRvLiw/2fepvVChrrpib1tNU4PPVkQ7L+poRSnC0MjcUHzuwr91ZPguFR1T\n283Q685VfTRXES0RHdgjOxKrh98YHRx4xL5yc2HZnXz17Ffwwv7GNBHt3raaUhnJBgAAcPcrQkRr\n9a8tlV4HseHbnY/bF1jgRRboo/AZMzJoenXyZ0oz0w6S1rP2DN377RdsCb5Ggb6kW4goeIKFBm73\nHxUrJudm9/4tX3w+c9WZKE1zYChVGHRMe9j+664GaVvFVnujLned6Pgkj4+mLBWdvbpob3PrKBUt\nAq/I1dTHmL8rV6/gLhUY0a919f3pmPawyMLGR+ePhy86KkNSpbpbm6sO7X/Q0b5X8FWWvZz87wUA\nAADZQB2tF8MwW/5F5FM9mfqolMnlAAAAC5FJREFU2fscC59h0Y9J8jnKDJjS7Ahn1wT6WHKUbEYG\nfU3/zXHVxCTPsJusr6KsqcG3rWKrr6JsKD43MckTC0vuU2W7GiVfRVni1nKqv8giEsZxfd7zqP7e\ntpq66op1nyQvPHOxqf+N7oBnqcCIfm2kN13xwCGv2WzCsWcecveXIKKTR5qL/PEAAABgc0FE60FE\nqEySSGle6YRqGKSPOWJcUx+l0IB3xULmOHd3kz313mRTo+QOaj27yTY1+I6//aUjF/ibI0ptdbnj\nGdyX2Q3F546Hv7T3RhCdDawQNq5fGxqZ2+Cfl0v5bndARCePNLf3Xsik8ZbwsvZw+tj0wr912N/2\nuuqKk0eaUW8AAACQW4hova0UHjjaoPa/5CzlDJ+h4AmmHTTDZ6w1Ux9loQHvNG1owFHGwLSDnt1k\nnzzyaebdZN0tumauLtZWl1tNpmavLI5P8TSn74fic0+/8rnnk6955qGJqcThk3qqzmJ55+pKa+qj\nOWx3QES1O8rfH3j0yb5PMwlqPcud3Y4989ChfY3jU5wybjQBAAAAG1KEiLb0p+Ayf5dn5pUFTzgi\nWpNzRkTK7i3Rj83e560k7u3+oyz8DjlKPFdPhq08myyz02+Rspuy7ib7myNKXXXF0Micdb2YXmu/\npalBcpd1nv3AEAWy736QlOzc1Sg5w1kiImpq8L2wr9ER+xaO7NW9VR8T72GuNDX4HB8w3HyVZSeP\nNLtHstl9shgb/1bn/1iN/muIiG58o+y+X6nbKv8+EZ5eWvsfQ32Z/EuflpP9AwAA3IMwBdeLZ+SU\nntrOLv9fFn7HjF2g2LDJuWkY5D6bL4oZ1HamdqwdLFtldZOdWTb++H+mxOKfx/9ORP+86z4iKq9g\n8k++R2QS/c2gv/FvpV3fV4ho5spiq1IlzpP9+a+Jivvvk2tWSgVEoa31Ep5xqltpVnkyZbfpXtVH\ncxvR0uoHjImphChNtkJb0fisTdnuGG9h98li7A/fRH7Hw2mev71CnV4y7BFte4WKiBYAAOCOoeog\np7QepvUQEbN6fjkozd4DXZP9jodPSqGVXx4jIvpf1mOza5e1V6h//HGUiI6HL9oTim3K9hf2NxLR\nxCRPLCwPxZOKX61GCvZvwJ/aU29/hqGRuTcbJt1fqc9eXXzzvcl1958vXp80TGM6t4UHlqYGX9Ot\naapfpoF/dT5mTNPn0+5/zWPz/Se/DtlXnpa0X/zAv/t+xbdFotXE7cmvQ2u5WwAAAMgaItocMDt/\nbj+xxNQOcZ6MKbtX5gJwbupjRETd+0XPWqZ2kFzP/F2ktud8P+NTfPbKYm11+d62GivbKpokxPWk\n+Qi7GqWTh5WmBt/e1prfHFFetbWmejV88eyH0/YpAKKLbc53uwGeuVjPTw4bZ9qKpFngRYpdsFc8\nM0kS3YXdDd2Yv4sFXiRl9+8TYUc4+z+qTzsyr4+Vq4+Vq7+UtEeMFnuOFgAAALKBiDaPTH2Mqe3i\nB/s6E7nG1SFYjpJKIkr8g7dXqJ7PKcoMhN22nx1mri7OXF2Mu9bj+jUi8lWW7WqQaqvL63aU11Wv\nhLxPPVHfqlSd/XDaOoI2c2XBUXcrSnjTNEzIN6Y0OzsE57rdARFR7AIL9DFJIiIzNmyGXjc5p/AZ\nkiQWfI2JPmLGtNl/1OTcjAySMc2++MwdoaYqJPBtkX7xA78j/AUAAIA7VoSI1iqfLZGZYTmgNNu/\n+Gb+LkeNLLMSscET7q/If3n5PxH/SdKSuF4fI+713bQrreuYa5VOijradz+ctuYptCrbDzwh11Y7\nS2mtKoUMi3HzQq53JGVNw2A8kdsXYcHXrDeZEa0dB7SP1SCiyCDFLtBqywX3B4xj8/3Hq4Lu5x//\nVv992kJbAAAA2JAiRLSyLIuZYWNjY9evXy/8BnIuy5a0Zv9RR5tVph1kcv1KK1yLKF2wNUwQ5Q0s\neIKM6bVUpVzvkbZcTSt6rMv1RDQ0Mmevo/VVlh3YI9ftKK+tLhfFuEQkxi74KssmVrt3NTVKdTvK\n0xyTyj3vdge5KTzI0i9+4D/8w4A983ry69Afvon84gf+3d9XfN+TEv/gY9/qM0vG+99EirhPAACA\nzSfbiJZzHg6HiUjTNGn1a/T0D8myLK/GJSXa62CDuvr+ZA8HxVfzTQ0+q5WsYIWGJIbKVpenHC0r\nSSZPUGzYuc65yNoyWRbBqPgG3Ay/Y68BXUsJ66PW0F3m72LaQet5rLG97oG9RCR2PnN1cVvl1qZG\nydo/ESVuLYk/tk3Zbq0ULKJN3e6g2b1ceMergk9L2u94+JPF2Nh/6EQ0vWQ4qgvqy+TDPwxYFwAA\nAED2sopoOectLS2BQMAwjO7u7mg0mslDm97MlcXWFAWuiVtLYsyBGEtbW11+aF/jj12XpUv6nn4r\n/dF+prZ7nzaTZc91kydYZnULVtXBycPFCx+TPzUJ4k8oEXVbZavSIKkfLRERWU0PHplusa+LRQAA\nALgzWUW0kUhEVVXRXLalpUXXdUVR1n2o1JixYaZ2OBf7X/K8mPm7aLVqk2k9IsA6eaTZKkIVHF1g\nBREReoSD0Y88AzLRnWDd/bc2V7HgCXsQbI0KowceIv3f1y4dnbe2scX8zv4kf/gmMvatPv6tPrwQ\nI6Ld9yuPlXsfTbNnHK32YWRMm+F37Jd9/Z9T7/jyuNmftMC0HvEn3FxYFrO17BtOkvwXrb3P7nz2\nBjnewzVqu+O9Wrsl+R8ucZs/Ndct3kBB+p70S0kTJQdi5ZOF2Ni3+h++iTia0b5ZfTrL/QMAANzL\nsopoDcOwygkUReG2Y0xpHio1Hi20NthRq3ZHOZcu2bNxN4gStxVH4u2TRWeJhfQ9aZdXv4J/eux/\np3otj+G09hCWiIjs/bkcDuxx1qGKAPexCtX3PemxcvVX/xQgovFvdc+NJf7BP6hdS7dLq4EaGdPO\n+cAbwdT22furDr8xSkTjU1x0ELO66jpMTPK4vvL3NjVKQ/G5A0/U5+CAoTFN+uhaVwrDEDW7bLXU\nmIhIHzXF5xlbnQNTdpPSTHK9b4v0xx9Hx7/VP1mMTS8ZM8uGu+RA2H2/0l6h1m2V68vkX/zAX7d1\n4xM9AAAAwIaZpkddYob6+/uJKBgMip9VVRVHvjwf+vWvf/3Xv/6ViL777rulpZXUY3d399/+9rc0\nL7FucrempmZuLmWTVM4551xOPQPs1q1blZWV2WzgRz/6UZZ/Qvo9iM8Gkte37cJ9993397//PZsN\n4D0s+ntIRPdUZQ4AAEBu5azXgWGkbBcvHvrss8/u4Gk7Ozuz+X960SlMBNZ3JssNZP8Mjo8Khd8A\n3sPsN5D9ewgAAABpZJWj1XW9v79f/D/9zp07o9GolYVK8xBsSPbRGOA9BAAA2NyyytEqiiJJUm9v\nr2EYfr9fxKyMMdM0PR+COyDLcpqvyyETeA8BAAA2t6xytIKu60TkWWWY5iEAAAAAgJzIQUQLAAAA\nAFBERZiCCxkSA9VE9WcoFLI6oOGAUSbc71ia+XYAAABwV9tS7A2AN855d3e3NSU4FPJoawppON4x\nMcROkiTxxhZrVwAAAJAPyNGWqO7ubutsPudcURSkZjPnfsfuoiF2AAAAsFHI0ZaiUCikqqq9FZqu\n6zt37nzggQeQrM2E+x27i4bYAQAAwEYhoi05uq7HYrFAIGCtyLIcCAQuX758+fLlcDgsOkhAGunf\nMRTRAgAAbDLodVByOjs7OeeSJIlZa4FAQHxXLtjHC0MmxDsmiPetu7tb0zQMXAAAANg0UEdbcoLB\noPhOPBKJEJGqquFwmHMusrZiYkWRt1jy3O+YLMtWaKvrOkZ+AAAAbCaIaEuOdWJJNDqQZVlV1c7O\nTsMwDMOQZRkR7bo83zEMsQMAANisUHVw14jFYpIk4YR+5tzvGIbYAQAAbEqIaAEAAADg7oZeBwAA\nAABwd0NECwAAAAB3N0S0AAAAAHB3+/+XR3E66ZrEWQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "'cluster 2, 77 sequences'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAEYCAIAAABdsnUYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3JpcHQgOS4xNeq0bM4AACAASURBVHic7L1/bBRnnvD5\nlLP4TRYTusgcLAiN7eIVzq4SYVz+I6P3Ejt29WmzgkGBbevgbmEnZLrnMtqgEKLuU/KGhJvouhVg\nRO5mNO6EzAujBck9MPLATlbbjWNnZrW5E2XDJtqN2VC230UQuImrAXuTNRvq/njscvXzPPXUU/1U\ndVe366MWwtXVTz31/Kj6Pt/n+0MwDAOEhISEhISEhISE1CwN1a5ASEhISEhISEhICBehRBsSEhIS\nEhISElLbPPDGG29Uuw4h9UyhUNB1fd26dZ6XlslkfvGLX2zdupVyfiqVAgBIkkQsKpvNKoriScWQ\n6rHUjV4C8VvK7diRSqUkSRJF0W1NyrhooVDQNA0AgF9O1/W///u/L2MkaJqm67pj/R1v064cvM6w\nqpoF4h3hqKr6T//0T/ST2UcdpTEZ0TRNVVVRFB966CG/vyqDQqHw/vvv/93f/V2BBLAMOW+fIY5Q\nBnwZE5DnisRB6/kjogLAqVHJTgxZohghIX4Si8UuXrzoeWnpdFoUxWQyST8fAGB3TjKZ9Hz8w+ox\n1o1Sgt23lNuh/CSfz5dRE1cXvXjxovUlGo/Hrd/CpoYoijI9Pc146enpacaWdLzNeDyOlGNX54GB\nAeQh6ViB6elpWZbN82OxmN2ZLKOO3pgsTE9Px2IxYv09/6psYrHYX/7lXyoLiKIoSZL5Z39/v/XM\nixcvJpNJT67rCOUGvbp3lmLtBr/njwgrnjfy1atXrVPD1fQPCXFLKNGG+Mj09LQkSX6UlkwmFUVx\n/EklJVqzeox1o5RgR1UkWhYkSZJlGb6r8vk8ACCdTsOv+vv7AQADAwOGYVy8eNGVrA91mZwSLRSG\n8HLs6lxG9ymKIknS1atXzaJ4Rh2lMRlJJpOiKMIGSafT1sbx/KvywIe6oijERjPPhJIuz0UZqbxE\nS4Q4+P14RCAX9baRkakhimJlOjFkafIHICTEN3K5XCwWU1UVAGBdqVuPqKqay+UAAKIoxmIx61aj\nLMuapuVyOfgShaXBn+i6rut6oVCAz31N07LZLABAkqRYLGa3UWteC9n21XU9m83CDb54PG7+HK8D\nACCbzcLtYPj0x28WqRssRFVVuJcaj8clSYKFIJdjaS7rzZoVgLuT1p8UCgVJkpDNR7iHLsuyruua\nppmV13VdVVVZlkVRxG/ZLAp+BdvKenVVVTVNg68r83ihUIDSWyaTicfjsONkWU4mk7D16I0Jfwhr\ni3Sita/j8Tjey+ZtiqKYSqUymQx+DqXOuq7j59MrDH8IWxseh11mXgsfdbCSeBfA48SKUXoZ6bVs\nNhuPx02RKJfLmaYOnn9l7RHYHdZK0icLpZ2RM+G0grfMPq1gqyqKksvloL2E+YSBXyHXQjoIGecI\nsALm5DUnqd00oXcfMlvtBr+13Rwngl0N4Z941+CN7OrBiAMfg/39/ebUSKfTiUTC7vyQEF6qLVKH\n1DPxeBxqyERRNA9OT08DAOCuIlTgybIMl/KiKMLVvGEYAAD4rJRl2VqaYRhQejCX+3CbGBYiiqIs\ny9ZCTI2F9VrwNDj+oeIQ7njCYs1NPbwO8LfmO8CqDjFv1lo3WAh83cJXAnw3yLIM/zRLZmkuWBOz\nBLCg+4S3Zm7nXb161fwKLKjT4G3CLWxkQzOZTJrVwG/ZvE34H/zq09PT+XzeupkI786siZ0+j9KY\nFy9eBABcvHgRUd3hnWhWEr9NKwDbRrerM7xiPp9PJpPwBh0rjFwRLqvsKgxHnV0XUCpG72Wz12DT\nWdvcHFGef4XcIFgQj+jNZVjmsrVticpF66RwO62ghhuehsxuOLRMoMhllkycZUbpKELaxLxxu2lC\n7z6WwW9tN8pEcKyhXdcgjezqwUgE3oK1o2G1KT8JCeEhHFshPgKfd/ABbb4VrE92ZA9akiTr49j6\nDDVLg1i3hq3yBNyVM/80H9bw/WEWDqsEn61W+QMaRFrfmtY6IDeCiJ5m9ZBtawCAJEnWTWRE3GFv\nLlgf86VovqKg1Gv+BBrymlfP5/O4nAeXARcvXoRVsr6rkGa3SrTEq5tcvXo1mUxCHTkswdw0h692\na3dTGhP2AjzT+lJHpEBrCXa3id8FAl5ncQFYZ3PPlFJhqFKFprqKophrKsqoo3SBXcXovYy0OSKA\nwot6/hWxR0x5iGWymNhJtNbFpNtpBY+bJhxwXOG79ogxDGWcM0q0ZUxS6yAnDn5ra9AngmMNKV1j\nvVn2ByMjSCEhIZ4TRu8K8YtcLgdlAvgWgZuD8Li5gTUwMGDul+G7vaaSw1oaAvT8NX2P4MYi3IxD\nKgMAME+DuhywsPts/Xk8HjeritQBYm5WptNp+JaiVA9iGkJAjYi5b2jdZ2RpLlgf8//mFeFdmz+B\ne8TWCkejUUmS4JverFIsFkskEolEAioIKbds/Qq/ukmhUIA77PAWzONwhzqfz8fj8UwmA92xzbrB\n/1gbM5VKiaKI72YifS3LMhQLKLfpCF5nODamp6cvXrwIRVLrPimxwgAAURRVVYXDyWpGAkijDkLp\nAmLF6L2M9Bpxo9zzr3K5HNIj/JMFKZ9zWgHLoIVSoBm/AqLreiKRiMVi1vFGH+eOlDFJTewGP7C0\nBn0iMGI3ks1v3T4Y6eRyuc7OTl3XXU3PkBBXhBJtiF+YxlgAAPNRrmlaoVAw3z2yLOdyub6+vmg0\numrVKuubhlKaFfhctr7DiKfpug432swj8P9QjE6lUtEFoDSM29iBBTPQTCazatWqvr6+TCZjSuF2\n1SNCfPewNBcFRVGg/ARfRdafwHcklLesP+nv74cWchRLOFfE43G4Y67rel9fn/V4Op2GVnSwAYF9\nY+ZyuVwuR3ztwfpbWw/qROm36bbO+XzebBCo74cChF2FNU3r6+uDHuhQTwwAgEXZjToTShcQG5PS\nywhW4cO/r0x7ZfOI2R2eTBb+aQVIDwfrcwa2rVdTgI5j91EGP7C0Bn0iOELpGhNXD0Y6mqZFo1Fz\njgQtslhIPRFKtCF+YRXF4vE4DGaZy+WgYRYAQNd1+KCET9irV69SHsqMgh0FisdP0kI6nc7n83aP\n3XQ6ffXqVagRyWQy0WjU9KXgrJ5jc9GJxWK6rsM3IqIqg3WWZRnxyYCCmlsREAeK3eaf0A7PegTX\nHcJviY0J3VM2bNggCIIgCIVCIZPJwP/Qq2F3m+XVGak8lIGIFcZ3CeLxOBRZAHXUAVIX0CtG6WXr\nT+wOev4V/Qb5Jwv/tKKTSCRUVR0YGHCr4CwPx+6jD34PW8OuaxDYH4x2qKra2dkJADAv50n9Q0KI\nhBJtiC9AF2PzTxiQCD7KzYcyfJFDFxzofGD3dkRKsyIvBEwwjxQKBfy5KUmS6ckLsYavN50kTBWI\nnRoVRvKPx+P9/f0XL15UF2BXkLDcILG56Jh7mvhPYBOl02lVVU3Hf7jZCi01Ob2PC4WC3RvRXLqY\nR2BPQSmN2JhQN2kCd+rhf6zCJSSRSJgWJsTbdFtn/LjVh51YYauyHwL/D71qiKPOPA3vAkpjAmov\nm0ClKRJsAXaE519JkgRd+K0NaP6Hc7LwTyuzHPP/UEUKxbJsNpvNZsuQ0kzwTqfj2H2UwW9tDfpE\ncKyhXdcgVQXMD0YKUDXL08ghIeyEEm2IL+RyOeRtFIvFYAwdxHrMfC5nMhk7ZSFemgkUhROJBHxe\nq6pKNFCDJnfmadlsFr7boKeCeVzTtEQiYWf8oOt6JpMx3xzw5S2KIqV6jLA3FwVFUWBEHuLLEnqZ\nwKhAAIBEIgFV4/39/ZqmWW1b3QJrbpaAdEE8Hk+lUvCiUNY0YzwRG9MaZh9u2cPXKpQGRFFMpVJm\nJ2azWeRNidym2zpDGdR6PJPJQP2rXYVh3axGCNBu2KwwPuogxC6gNyZw6mVILBYz6wNTcJklePuV\n2SPwtGw2a05h/snCP60g5oNF07RMJgOfGIVCIZFIxONxqGWHsEilJvBe4P+tN06H3n2UwW9tDZaJ\nQKmhXddYf+vqwWhHYSHvXaoUV4WEhLig2q5pIfWJ6YZsAp1skHRKykLEH1MZIIqiGanKdNrFS7PG\nEzBts8yoh+bJoDR6l/nUNi0X2X8OgS9y+KYxv0Wqh8c6sBYCLA7I0BebvbmQopALQfcO/Cfm5aCL\nNHSCES2B0kyne+Itg9LoXcSrW9sWaUMkn5b1K2JjIiDu3tAt3ewsolu3eZuUpqPUGTkei8UcK2yG\nj4WYzvWG/aijdAGlMSm9jMQmg4pVBQub5flXZo+IoggFdHNUsEwWu47Gz4TrCoUUdsCwmVZm9C6z\nMc3IFUlLHjsTWAJlnCPPE7CwnWK98fImqePgR1qDMhEca2jYj2RrI7t6MBIhNjIIpY4Q3xAMwyCO\nuZAQHmC4eMYzoXOMLMvQphBPDcBSmqlpoJxphlVH3FkYf26tMADArCf7zVLK5CwBAKDr+qpVq/r7\n+9nVuiwIggCt6ByvbjqsEMMgEL/CG5MFWJqrn7iqM+VeKBW2u0fKqHNbMeCml2FVia3k7VdmbRVF\ngY5WZiZhnsmCnwlbmF1xC0044Ja3mU2A8bcsmGET2Isldh/LFCO2m+NEoNTQbiQjjcz+YAwJqT7V\nFqlDQkK8AQn56RWggpk/QxzxqZfLA8mgAbXjcI8lCOCRdKsOsfvCKRYS4glhFtyQkJoHGgVa40d6\ngqqq0GPJW81WSHn41Ms8QO+iaDRqeg4hMXdDTIjdV+tTzGp0jmOmVgkJqQyh1UFISM0DXT0km/Tu\nZQOdnGKxWPhaCgI+9TI/MMwcACBoQwUOYOjwV+26kLsvnGIhIR4SSrQhISEhISEhISG1jTdWB0SD\nfV3XYXwQa0rAkJCQkJCQkJCQEG/xIB4tTNKIpNvRdb2zs1MURSQfZkhISEhISEhISIi3eKCj7evr\nw63aYThoaDDU2dnpSXCikJCQkJCQkJCQEBxeiRamYMFTrWiaZloamHFG8dNq1MEzJARFLwJ1tPyf\nKz22X2kTQGp1cdzzEvgrUENoE0CbKDkidwAxUqXaBJ2R0VvWP1vWLm9eu7wmSrh8pTh5Y+bylSIA\noEteDQCINDVu2hgBIBwDHlC8r499xZREjcjTy2mCAezx9o3iyqZlZV8ixMTHueDfa9EGLolWVdVC\noZDP5+l57aBoq6oqkkNvamqqUCg4Rm4PCakB1NH70WfK/nWD8e/E40bndwx1tCH/ATK354/3/xTE\n99JL5iyBvwK1hZE9bmTeth7B771anDw/cemKDgDY1r2+q2N1VUpA2P7yR9Y/9+169PXvPxbwEgZH\nrh3Kfjp5fcY8cuzUZ+b/v/zwz4M8BoAPnYjz4Wxh61TUeqSnSfn1t/PsJYx9pSIluGLmT8gO6++c\nHj92erx4dw7+uWerdDD+eCjXlo3vc8Gf1yIFLokW5pWORqNQVLULKwO/xb+CqbR5KhASUj8UhozC\nEPyvEN8LpFaQPW6oowAAI3NYsD5EzOOpV4XYjsUVM2cJ/BUI8Y39R0dPnJvXCJw4p5Uh+fGXUAcc\nevdT6zu75ljKnYj33Ylz2uUr+tnDT4VCbRnU+lwgwiXRptNpaEgAgxFaTQhisZipuIV5TXkuFBJS\n9xiFIXM1LCg9QGo1ChcWvrogWLb4jex78//RdSF3xtSScpbAX4EQnzj07qemHAM5duqzlrXLd29h\ntfrgL6EOeOf0eE2/wpdyJ46M3iL23aVx/aUj6vsHn6h8lbyF3/zGFbU+F+zginUgy7KiKIqiiKIo\niiIUWwVBAAsZzBOJRDQajcViS1CiNTq/Y6z6I6CO4cfvC/8J5M5UpVYhNYRhHSTm//WiYbFMMoVO\nP0rgr0AIP3bv8jezn0zdmK1MCXXA1I3ZY6fHq12L8lninbj/iK055uDwNUQcrEW2v/yR9XPi/ITz\nb8ql1ucCBW/i0VptYc2UDQMDA6qqAgDqP8qB/XYtSL0q5H+zeKa5XZv4oaD0htu1IbYsjCiIoY4K\n88cvUE7zsgT+CoR4wTunyO+e4t25Y6fHj+7vqEAJdYDV/rIWWcqdePL8hNXWE+edU+M+mRTXJbU+\nFyh4EI+WgizLuDibzWaj0Wg0Gg1OdnJO4HYt/EDHQOt2rdVV0LpdG6ppg0X2uBH9M+sH169XFMRF\ndEFwNEprZeg66ovqVQn8FQjhZmT01rB60+7bE+e02zP3/C6hDrg9cw/Zr68tlngnnjjv0HfD6k3o\nqs/I4Mi1Q+9+eujdT+tAueuWWp8LdPyVaInE4/F8Pp/P5zOZTOWvXhnC7dqaw9AmjMIF6wdgweYq\nXJ+SP3Ud6EUAMEGTeMSLEvgrMP/D1GtG367531rJHDb6dlV52RB4Boev0U9wfDnxl1AHODZCwFnK\nnTh1Y/bSuPOjeHCEqYtvz9x77s2Pn3vj42OnPjt26rPtL3906N1PuetYS9T6XKBTBYm2/kG2a80/\nw+3aEHZwxScUHDHx0bATCjlLKOPn2gQoDM1/oAgLty9yZ4zUqyW/KQzdT71q5M4YiRfIla9NTp6f\ngLof+DnJZwzHok2hv8j5S6gPKArO4LPEO5FRAmM87c3sJ8iZx0599k6dGpUSqem54Ego0XqPgYiq\nCxIAYbs2VFCF2EBQ4UMLbFxzrJHfdpwllPFzI3v8fvQZ+Jk/2TSzyb5HNr9RR+vJ/GZw+BrU/cAP\npzqE5eeXxnWKYxB/CfXBiFrDm8tLvBMZ+27y+oxjCwyOXCOuDZaIdx2kpueCI6FE6wOl8sGioaHL\n7dqQpQvJ4MHQi2S9Pr6hz18CfwXgT+zMbyzHjTqSaL0FBtJ3hPKK4i+hDpi6MVvTfjBLvBPZdYqO\nLXAoa2tgQImlUE/U+lxwpAoSbaFQSKVSqVTq+PHjlb96JcC3a20kWqMCLjW5M0bqtVAZXFvYmAFo\nZNNeohUsXwn8FQCAEC1h4XhofsMEo4qX8srnL6EOmKxx9dtS7kRXnlv0jqYHTBhWby4FNW2tzwVH\nvIne5QpJkmAuhrGxsS+//LLyFfAbA5cPCkOC3EHYrvVVR6uOGYkXFnI+vS0ovcLAqTBeWA2jF4mC\npqHrQmVKcPlz1PzGPlqCoI4BeTNLFZYOl68UGbUpdl7e/CXUBzWtvFzinXiZwSeM8WTHgAknzk/w\nJGCrcIqE8ipQ03OBhepItGbChTrMgssYSslv9KIRfcYqQxuFCyD6jJD/IBRqawDiaKHEXtCLaLeW\nUYK3FQAE85v5xGNE85tQoi1lhFnlBi0ISW8v3hJCqs4S70RXOkWKlvrylaJjwIQT5zQeiXb7yx9Z\n/6x8guKqVyAIhHa0HkM2JFBHiZKufwG8jL5duErYUEeNzGGfrhjiJUQzVnXUdl2EH+csgb8CwDZa\nAj7sK2F+U2u4epcTTS35S6gP6MH5A84S78Sp6+52ye0sB1hiQRTvztV9eNqangsshBKt19g5nlfy\nnV0YspOVjczbodli8MENVypcAn8FiIUY6hhTNocQAC67kU6IO878JdQHt+/WcPaBJd6Jbo2D7RYA\njKruut+Ur+m5wEIVrA40TdM0DQAwNlaP7kpEv291FEit5PPhPqyn0BWxRvY9Qenx9opAmzCy5fv5\nCekfeViXeaDdhTraMHAKxHYQjvf/FMT3en9dX+GX/DhLYP+5nd0CUaKtajKLYMISVd6EaEHIX8JS\noGVd09GXO7o6Vl++UnQlPlaGpdyJZbhqTV2fBVg+YMYcDQAKvktvp94k4HOBhepItNB8dmpqqrm5\nufIV8Bei4zm0ICTiuUSrjtGNGYzcGcHzi2oTRubtsn/tgUSbPW4GgRLSbwF5s5E5PO8Vl/ihoPSa\nVp7m8fuJFxqUHs+XE75CcC6ExwtDjKsUSgneVsAgLu20CeKFDHWU1bltaeB29xNXTfGXsER4Pf5Y\nV8dqAMCmjZFNG4PlY7DEO7GM2yH+hF3zemlcvz1zb2XTMrfXrQ+CPBcYqYLVgaIo6XQ6nU7v3Vtr\nGjIG7F75th5jnleAIbonjz61OqhjIHeGEoPMmsN2XuFnxvDXdWskVPM4cFJmh3Dh1rcsxILbmJG4\neRx/CUuEbV3rq10FW5Z4J3oVOXWJ2yKzE+S5wEgVdLRLE8PGvtZ7SdcisdmSOwP82OjnIXvcamos\nSK2mSYCR+KGZYoo1BllhCInzIMDScmdKlhy5M6D/J55UPwTFxrdMEEXy+YUh4LkxTM1ShkHk5StF\nq1qFv4S6gSKjdMtrKlkTt9RuJ25+SD7XnOcspJzbJ1kXsMeLAACMqLegnrIuqd25wEgo0VYZQ5sg\n7rcW7+s/17P6N3pro/S9SJy1OHXMVklcclHNe8MDPozcmRJjCaUXyqBG6jXDqlUtXACd3xEu/gNd\nqEW2to3cGdjIiK+SoetCKEj5gye+ZUuWMpRtxZkShRZ/CXVD7SZJqt1OjDSITy9Xql2LeVzZIteZ\nnhuhducCI2GsgyBy6Wv18X/Z8F9vpo7+PvNX1xO7r/WZX71+K/Xd/x41Pz8vZq0/dJFQtCZSjxaG\ncPNcQ9OMvl0OP8TFKSjjYkacjPajIV5ha+QdGiRYKMMlGdFO8ZewFFi5ItAWk0u8Ez25F7e2yPUX\nL4KRgM8FRqqgo81ms7lcDgAwPT0djUYrX4GAc+lrdetUVP9mcTKfvZNruZU6tDoNvx2aWUxL0f6g\nXPJjZsVYTfjiGDYWFEbhgpA9TolUQBCb1FEgdxBsP+ysQWoLT2IgyJiTcAUrYKhjgjUkxdLGLmjR\nvl2PFu/OnThHGLTFmRLph7+EpUDLuiY/it1x4LfW9u+W15w5/GQZ5YSdiLNnq3Qw/vjKpmXvnB5/\nM/sJ8i2+q+42om1962gp+DQXKkwVJNp4PB6PxwEAhUKhDnOGcfNXNxJWcRZy9PeZ58R4yzKJ/lsX\nKRuCr5vUJigqZyNzWLCTaMnhJooCYxaAkJBAcjD++Is72wAAkRWNx059hnzLsp/IX0JI1VnKndgt\nrzm6f37h/eLOtskbs4hYj99+GQETAmKLHFIGvFYHmqalUqlMJqNjm4a6rmcyGeJXIYuUilk/L2bH\nvlKJJx79fcapKBfxfQ27yKDBgWoXYWgasInYQI4bpY7axY0qq3KVoCH/gRB/Hj8uJF9p6P9pBUrg\nr0BIGRD3PVvWNUE5BgCwb+E/Vqy6KP4SQqpO2Im4inpbd4kzfpfs7MJVhulCQGyRQ8qAS6LVNK2z\ns1OWZQAAYj+g63pnZ6coirqu9/X12RQAAACgMGSkXrN+gi5p+QlFbH1fzxbvUyen25y6ARbmAIOF\nq61C2q0uNpDjTZA7gNIjJA8QvkoeAPG9guSgsOcsgb8CIeVBfKHu2bLox7myaRnyave8hJCqE3Yi\nDnK/LNGmyhBP6z5zWB3DJdFms9l4PB6LxZLJJABAs5gk5nI5RVHi8Xg6ndZ1XVXJekcAgFEYMjJv\nWz/uJIzC0H3hP5X94bh7Gg3pt4hGgUL8eSH5it2vfnUnNzFHM+v81Z0c5VuybpJyvhudbuVxtKAw\ncmfIGdpI48fQNFsJPpASLVB6AQBAakUEx8VsEY4hGjhL4K+AK+rDoNkLiGo25F3evhENgmZVaPGX\ngHB75t7J8xPvnB4vI41TcEqoLTzvxFqnZV0TnvvAMeYUMdBBe5s4euqZ0VPPtLfZBBMMqU247GjT\n6TQAQFVVKLBKljefpmniQuBJWZahUAvND7744osbN24AAD7//HPRLjhlJdEmFmUauQOIEaCOGdFn\nDF0Xkq+UpLMyj1OjogpyB0geENQx3AxUSB4AUivIvkeMsUUXWJ1PcKtzDbAMwWoQXLgAsJWDbejf\nYOukERZTcEmtJT1l+m85zR3OEvgr4A6X67E6Brf8a1nX1Lx2ufXIJuqbmL8EK7dn7m0/8BGUDI6d\nHn//jSfcBuwMQgk1h7ed6Dk/L2Yn5jR3wSX5aCm9dxZuk/zkIisa3z/4BGzJ1+OPb3/5I+SEeooX\nsdTwwDMMSrTQwIAoocKDqqpCJe7U1NTk5CQA4M6dO1u3buWvACdG9rgZIqoh/wGQO6DYCgAwMm8L\nYgTAjVe9uHi8cAGkXhXsgvND5Za8WRBFq+QqyB3zIWCVHtxItHhfP+sk0Q7NFDY/JNt+7VqiDaRu\n0g2uHOT5U8hWFDNasNxhtScRFo4LSo9D5mHOEvgrAEBD+i1DHSUs7eLPA1HkyZxcZazLYBPfRhH+\nLncrz/GU8NwbH5uKruLduefe+Hiov7fZjXgRhBK8p7JjAHgxDDyheF/fOhU1/T3e17PnmvORhpJX\n/+Q97X09S/o1E4dWp3EzYqL4vqlNRNTS1jS2xIQC27rXmyOnq2N1e5voKmAtJ7dn7g0OXyvenbNW\no+ap+Fywg0uiVVVVkiQYuCCRSKiqqiiEoMpQkIWnWQlorINSBaqRPQ5NCY3M4dLj780rXDEWxaNS\nUWBe0gUAkAwQP5xhago7vzGgF4kSmxB/XojtMLLv4VJFTQTwcqBwAYCAJT/zCrv8F+x5MThL4K7A\n/GYFKWaFkH4LiBGQO2OrUCeSPW5oE4LUCmI7nPPG+YmROYyElhNEUZj+wpPC8fhBxHd5y7om5EzT\nR5u/BJOT5ycQiaF4d+7Y6XHT5dyRIJTgB76OAeBpJ3rLi9cT1tfQ2Ffqi9cTJ9cPWM+ZmNOcXZnt\nObQ6XbZ71qUruinoEyM/YO5laxCJtozwCIwgWw0H44/v3hKgPEdl4/dcYIfLjjaXy8HIsqDUiBYA\nEIvFTNtZKPjyXKiSGKUe9IamzetTsdioho2vfYlyy4JVuYX/6MNZPuGepKAVlF6h/ydA6REGTpH9\neGpBTSskX2nIf0DUxQY5UgEPgmXkCIgEaf5JlSw5S+CvAABgvsvcWOIaqdeM6J8tflKvzX+hjhkb\n/vh+4gUj8/b9xAvGhkftIl1UCNxt0TuFBB5Xn7jfih80hQD+EkyOnR7Hf3jinEbczyVS+RIeefqX\n1g+t5FOfISe7CMjv5xgAnnaih3w4W8D3Es/eySG5TT83AgAAIABJREFUfgICruiNrGhEFNt4wAT/\nQtKa4iwAoHh37s3sJ34bhdfHXGCHS6KNx+OZTCaRSMBAB1BBKwgCAECWZVEU4VexWKxmJFptAlca\nGeoYyJ0haEDtwkuVpdyyk2hbG9majqygXYzYSnRaD75E25B+S0j/aF4oJxoY8AfWDWB0Oav1TnkC\nJWcJ/BUAlhUdcubCcVRWBjDI2gXzM79OgwY/lolp6Pr9xAsgc9ihAj5BekoITvkppm7M7j862vuD\nC8+9+bHbvETN6wiiDPGgtyUMjlyze7sPDl9juW4QSvCFssYAJ/zDgJ8ff0nWvPJoZBnxRPGM+9JV\nzHLjndPjiDIYbjVU5uo+Uo25YAeXRCtJ0tWrV2OxWDqdzufz8KBhGPA/AwMDMNYBdCCrCcgOSYUL\nxLAAhqbh7ixMyi2ss4v3dTzKgfiA+Dvp4if/+ervpIviAw4eAHgNBVEs8ZoiioPBlmgFSQIWQVxI\nv0U4if8W3JRgpF4jRMwIvZqIWM1vLAjyZuJxO4zEC0SLmvupV6uTzJm4iDJtikjcnrnXk7hw4px2\naVwfHL7WkygMjthKY/imZ6SpET8tsoJw0KsSIBSRkdGnPggl+IL7MeAWrzrRQ5CMlVYm5jS/1bRl\n3Cm75QZyxA/Vqd1WQ83H7vB/LrDDm2EBAKAoCgxJiyPLMv5VNpuNRqPRaBTG/AoWdkH42UOfsii3\nMBNAonXs/m8lYZLb9gdlxEqJCUSEFSMCNsiMgEu0SFYwqRVX09rdAiWAWgNRMmYEGwmLe+geYiPq\nuQgBy1kCfwUouAqSQIoZYmIkflj55QQ+5ARRBKaYTuK5Nz5GTPr2Hxm1e5MRXsNs2inzEvwlgAUX\nFrszWfSjQSjBJ8oYA27xpBO9he67zOgKUklwy40IFv8LkCw3KKa0MIrcyfMTriTRk+cn7PrF7TAu\nrwL+UYG5wI4HEq1b4vF4Pp/P5/OZjO/7FG6xdYe3s9f0yI4TNzlobZReemRR4n96udLTRPC6o9SE\noPav0kZA+WAiKS6UE2OQCbEdIHkA1+kKoiik3wLJA2XuiehFwkioZKuyu4X5VAK7W5ilp1DDcfNP\nBlsrA7NfL/lW143K2x7g61vqjYyM3sK1icW7c/uPcD09cPs/t8YM9BIcNaCOZnZBKMEvXI4B/+Af\nBuzQw0eevZNzyAEUAIg6WnbLjctXij2JCy8dUV86onbs+uDkeVaV0Inzti6wlO0aDyvgI4GZC6Aq\nEm09QUhqUJZyaxIzOXj24ZjjEQewmhA80gLsWSVIEkF+wm+BpKITzOwASCOYPvLl7YmQVPXs4cNC\nysHRroAq8gIApm7MHnr30x0Hfrvhu7/e8N1f7zjw23dOj7O7JaGQVjWEhZYFOx3MsHqTRSDj31Yu\nrwTHzEk1cYIvuB8D/FTSuoDI5D2NngAIeKqmjTQ1dstrrB+i0QUdPHoXj+XG1I3Z7Qc+surOXzqi\nskzhqRuzlABhl8Z1xsdR2RXwkWrMBQoexKNd0rDHHqIqt/Cl7dPLUY3ssw/H/up6wrYIgu4QU/vX\nlo6WuM6TWpEov2ShfFEL2Gs9YTHchLzZcF8jsrFylbZXgo7NgBfcmBywJNowdF3IHgeIgcoCh979\n9Nipz6xHhtWbw+rNY6fHj77cwZJFE4VYJXudxO2ZeyfO2atnhq8hjin4TiLuy0KHvwSIo7Do6BIe\nhBJ8weUYKAOvOtFDWKLxjH2tuta82LBpY+TM4ScdT6NnQ8A3+nksN/YfGcWP7z8yqv71n9JLc7Qr\nYLQIL7sCPuL/XHBFqKNFEUSxof+nZBPM5CtoDluPbPhwc3tcoo00iBTDA8RegrxIEiOoPBFkO1o7\n0adULicbititHzjzXQVpeyXosHWfJ9gZBe0/OoqIsyYwSn8Ze3aEVQ1xM2EB+rsKD0HFHgvTLoUS\nfwkAgKkbs47CIn13Owgl+ITbMVAGnnSit9iGQrdw6Wvnc7zFk1BlLJYbRNshAMDk9RnHxwgx0QP9\ncjg8FfCPCswFV1RBR2smVpiammpubq58BRyIPw/ie4X4XrDhj60xKQSldz4jrq7Tbfv4sZNc2x+U\n7VxNUex8lUqTPhiaNp9kQR0rCWJlqh71IsidMQoXoOwuKD0gtqMy49U2jxeStwKg64oSC05EF2uK\nU2VIohXcXhG4Xc04S+CvgOcISi+QO8hJGXJnAJbA79C7n1KUo5CXjqjN65a7C9+DS890I1onLePg\n8LXyoqzzJxyilOD4DgZO+tEglOAXLseAFTgsoaZtz1bpYPzxlSRfJXYqlndqjEFaZZF6vcVVuq92\njqTB75yyDbPlOIUddbQseXd5KuAjHHPBD6og0UqSBCPXjo2Nffnll6w/I6ZZ80Hfsxi3NbYDWLJ0\nmn73gtLjrUSLr2tblpGNbjc/aJMCFw8uZme2ayOMGqlXrTu8gtIr5H8D1DGjb1dJHFCY/jf5yrxw\n7yvsalSKNTBSCI+gVsntFbuBzb6W4CyBvwKesjjkkgdA9BlkaWHouqCOWc0/pm7M2mlnEdzu2eGG\nEHQvQ0eJdli9SX8b8QccLaMEft1nEErwCbdjwGT/0VHrKuvEOe3yFf3ofpllK7zCcWdxWKRV/Rt9\n8p5m9/7yHLpPFW5gWoYlLmTqxixls2VYvUkJO8Bi5+podcBTAV8pey74RHUkWjPhAnsWXCPxQ6Tt\nBEkSrv6zt3UT5A5T6EHVe6Y2jqqWIwSNd0L/BrNet4k+a3cczxFgq2NjFxNhWHvSnr6ReRvouoBp\nxTzGxj5VUHoMy0qD9ENfIk8FYnulPGMJD0vgr4B7FrdHAABiRBg4BTq/g45MddQ6YNjDCMA9O1YN\nBznyou2qpjgz56hEHBy+Bg7STqC4rXTLa6x/2m1Al1ECi9KIThBK8AWXY8Dk5PkJfNPg0ri+/6h6\n9vBTjppa/mHAA+veIAATc5WTaL3yC3TcpTnhtK1PqYknw5inAj5S7lzwjxrxDFPHCEsBYhIsTqzC\nkOXlLUjSonqPrudztODEKGISrZ0uFjeutcVOqhMjqEdUYYg4BI3Uq3axzACMqSSKldDUegin9Inr\naMMoB/aUsbSzLQoLSwziz4PSVY2hTQgL/6frM3COnR5nlGgN7AlOX9UwbomOjN4qL3ERi+tMeSWw\n7PjTCUIJfuB2DEBuz9x7M/sJ8atL4/qx0+Ovf/+xsqvEOAymbswODl+bvDE7dX0WALCpTWxZu3xb\n93pOsweEyXvM3tJ8XL5SdDQrQli5osw7HXF6nlDGKrtJtE8V8I/y5oKv1IZEi+/yC5Jk593MhZ0K\nys9Owu2TbHWx/DDuCGgTjm7mRuZtQenxaUHmyiO+EhCNaMMoBxTcL+2IoKnv4MHYDlRPb+kdR30G\nwuT1mctXikxO0P4YjY2oixJtEFSbt2fucUbpD0IJflHWGBgcvka5nWOnPtuzpdVqEeutfhrK04j8\nB1d9b2Y/2bNV4pGnERwjfHnC5SvF7Qc+cvsrPDcYC/TYWxCajpZb1uSsgI8EzIgWVEWi1TRN0zQA\nwNgYIbUs6QcTBInWDwVtYKDkvO1pUggbQF5bGBOcb4inZd+z9d/ihFJ/7Ct8peg9ZCPaqkXdW0IQ\nFeHyZkoQN6IfRsu6pm3d6+G3uCXA4Mi18iRaT4zGrPUplh0o17sS7PQ9e7ZKXfJqPD190EpAduEp\nCvuWdU3IHr2zqWVZY4ASYB9y7PT40f2L5fB3ogkU/uzk6eLduWOnPhtRb7JYPgSEd06P2ym8y+bL\nD//c7isWYZFiXOTKd83zCgRwLvhKdSRaV7EO8JxAfilo6f71FaTdzgPMBkImWDvTCJfKZkHpFZIH\ngCgCddTIHEYkXSN3RtAmKm5L6iB52KpOOdzCCNsrfiS/DcGwfUQqPdbkC4auQ6uDy1eK+MN9z1bJ\nFBf27WzbfuAj5DXDpBJTxwh2OF6s6AKSzdKE2BrbutfDNmzfKPYkLtAVqNUtAdmFf+TpX9pdZVv3\nelw9SYtUXdYYKM7MOYo1g8PX+OMe4MCY/I7a7kvj+vYDH134mQdLdF8DeBGVzXZA4wp+eDb07dzC\noPjIaBzFU4GgzQW/ocWjVVU1Go3C/6xatUoQhFQqxX9JRVHS6XQ6nd67l0Eq1Yt40qD6VtD6ixvp\nU4jtEPK/AUoPkDeD+F7h4j8QnKscUzpVHlvTEQ5/BVwNXO3F6FLBbsTivamOAZLBWcu6poPxx80/\nVzYte93yJ4Tp1YKb8rs0GrMLHkQXd/BgmW5xWwJRQbhv56PwP81rl+/Z6jCVglCCL5Q1Bli0dMW7\nc/QYT+UNg+fe/JjReOPSuH7o3U8dTxMfEH8nXZz5E+P/WtdfRn14gNI5u+2sJwasgG9Dn9j4Leua\nhvp7zxx+8v03nvC7Aj7C/Tz0A5pEG41GZVkGAGQymXg8fvHixWw2q7FnyfICI3MYzR3gm4J2aWK3\nZS+IotD/05JDYgSPb2AX3L6u0CZwM4ww+W2FsFn0EzTxug5I+ow9W1oR1VdXx2pcuHSMFUUY6swK\niciKxqF+5cLPen/8Mnn7JVCRqnAld3ubaLXKcMy1FoQS/IBnDDjiuXPPyfMTrra88XwfhDLXD8At\nxO9F4s+Jca76ueHylWJP4gL/Dr5bbs/c44l5TJzXr8cfg0+kbV3rEasAzyvgH77OhbKxlWg1TdN1\nPZ1OAwByuVw8HpdlWZblCku0eNL2UEHriDdh/+PPE3bVlR5UTVsBG9aqg5schMlvq46NJh5/hXSR\n3hn4QefkQ/gwYNbT79kqQWls95ZWonLRk9RHXnH7LirWIM21aWOE7mQThBJ8gWMMOOK5Ku7YaUJM\nfmhQ3i2vwcOBFe/O0TWgPU2KNd4OUaL1wzPs9sw9dmUzhTL03MRlRmRF449flkdPPeO81YDVuWVd\nk3Uxtnurk4KfrwI+4udcKBtbiRaGjNV1PZfLmRFkKy7OHl8KCtrKZw5kwdakuFQ3aeh6oFPpekEw\nF6NLAdojEpdotQmA6fYiKxqJLl/4QQd5Qpso22gssqJx384280/r/1mvXlnwlyguCtCFgyCU4D0c\nYwASWdF4MP742SNPHcTsXgAAk9dnPLSoHhm9hev2DsYfV//6T98/+MSZw08S5SF6zoJnH45Z/2x/\nUG5tREvwQ6I9dnq8WnpK4sTct7Nt95bW5rXLj+7voCtZcVte6J+6+GfXekqkYf4K+AX3XPAJmtVB\nMpns7OxMJBKxWAwA0NnZCQCA6b54yGaz0Wg0Go0mk0n6mQSfsFBByw3rQop9t7feJVrCYjSMclAZ\nKEHcsHFoaBO4grZ9I7kEu+O2cEReREJ+Nq9dzpONswLgiiU8XC49jH8QSvAe7uibR1/ueHFnW1fH\n6hd3tu3b9Sh+goeGB7gktK17/YuW1dTKpmUH448j4tSlcZ1ieIBItMBViPRyYc//5wdEJau1GV/c\nRVigmuC2vPhamr4w46yAXwQvEi2EJtGm0+n+/v6BgQFoe6AoSj6f579kPB7P5/P5fD6TydDOyx5H\njBfrUkEL3Ec24IUh1CstvRb+VX1LtCQj2iAsRkNw8L37TTayY/Pa5d3yGuuHLh7x6Olx6Rm3eQhO\nfixcoCHK33YNG5AS/IBzr6ZbXmPdbn79+4/hVhMemlPjfmamX53JyqZluJrWTqre/JAcaUAb3MfQ\n6QsQbScqhqOStatjNcX6BVct4ypV+uqaswI+Edh9S1r0rkKhYNXIptNpVVV1XRctIpGmadlsFgAQ\nj8elUllH13XzK9F9wHwjDHHAjufuWZTFFkk35mGCqHkod0Qw39mMp6j1jKAuRkNwXMXrcZdwi6Cn\nZ32CE7fLq6h2ooMLNM0kWZ+S5CwIJfgCxxgAJIvJPVtakbiqXi1scHeilnVN7OY3T5K0fkR1rF16\nSw+hh4DwG3wo4i6J27rXE6czvjBrWdeEB2ijL8x4KuAjfHPBP8g6WlVVC4VCNBotlJJIJFR10ehT\n07RoNAqtbKPRqNXKVtf1zs5OURR1Xe/r63Ndr8IQkrOKmDoopF6hJOAl4GeCMcJiNByHQQXf4/Nm\nY5qsp2eyPImsaMSlMVwUC2bGV4idBohu/xe0EnjhGAMQoiCCHPEq4BQ+nOwSiLBbYeIms8B/He3g\nCC3XWgVArk60y7drW7wXiI8juo6WpwJ+wT0X/IOso83lclByRQwDRFGE8bzM02KxWDweBwBompbL\n5UzT2FwupygK/Kqzs1NVVesPHcGThJFd7+uUyXtay7Lq+TCGWCGphKtSkZAyaF7nhURLTI3D9jiy\ne121rGsqSRUWmIyveE0iNmH/2zeKxDi+QSjBezjGALARHJvXLkeGgVf+T/hmhd2SYGXTMjxd1oez\nX+BnEl9JRDHXQ6rrMclol89ulE9Ux65sWhZZ0Uh8AnheAW/gmwu+QpZooeFsNBqlG85aXbsKhUJ/\n/2LIZU3TTEsDWZZ1XYcWCwCAL7744saNGwCAzz//nGyNoE0gJgeCKC4pk4OJOVuJduyragdG0NE5\nJvg0lNUxYoSsSuS8NQnwYnSpg41D/yDYtDCPAbstxZa1y4MZZhJ/ibo1Vw1CCZ7DMwaAff275NXI\nMJi6MUs0sXAFi0OSW4jCq9+al+pKtIx2+c1rlxNFUg+WdnwV8AnOueArNM8wRj+wQqGwYcMGRVHs\ntLBQbIWWDIVC4W/+5m/Onj179uzZ3/3ud8Tz8RAHILYjICuAqqN/U4ndSQNLB7IIvgvvUxQ6dsMD\n/8Lghclvq4qrceijIReeHYdbT4+/mewSZgYWfikzCCWwwjcG7ARK3GrCK8MDxwu5pfLbhlM3Zqu7\n6iOoum0WG0QtKf/CjLMCfuHD89ArCDpamPk2n88LgoB/axglmX4TiYSu6/l8XrL3jof2tdACwQoU\ncAmXwLVidR3GHzeu/3C2QDTDr2jkWm2C7P9UqSRhRmGILKPgFfBNxCRIVAEIIh1SUXSd5NjLqpOo\ndMxUH+B3wApCCVzwjQFgL1AG2Uew6rAYlyNmG96Cry7srJia1y0HHC/nTW1kHW3FKuAC7rngKwQd\nLQytBQAwSFjPzGazuq4PDAzg4mwsFjN9yFRVpci7LBiaBvxzZq827Mb1fgSvtgWLNQGpXNgOOx1t\naQUEP93CCDra0C2swthN/IqtrLAKeGI0VgeS7tKBfwywS+SByrVhIvofpQvHMZZZt7wG967zFTsV\nKaMKnH9hxlkBfnx6HnoFzepA1/VUKtXZ2SkIQmdnZyqV0kuFDOgNJiyQSqUAAFCzK8uyKIqJRCIa\njcZiMU6JFpCCedUxdrrYsQrqaI3sccJR3MS5gjv+8xVAJF3/KqCOoinrwuS3lccmT6GBR0H2aWXF\nqZxrYn3TuAo95h/sAaTshPIglOAxvimlqqx7ZmbzQ5UNmg4AcPKTa28T33/jiYpVBsJv4kzEzr62\nYhVwQYAVtIAu0fb19eVyOZgQIZlMqqoKDRJM0um0VX0L/clMPe7AwEA8Hk+n0/A4L/Ur0eIGBkMz\nBGMMUFmrA0PTAGbQbKReRc/zbTQbmkbI3YAPA99CwwY2iPSSwjbScOWsXzDLEzfJwNk9cnwyoOSE\nP3h7EErghHMMhJTH7bu22cu65TVnDz+Fx3b1Fs6VFfvP7exrA7e0C/xcsM2woOt6oVCYnp42wxHE\nYrENGzYgaRfoEH3FstlsLpcDAExPTyMiMgVD0wQ7y856BDelLd7X7SRdn7iferVBFM08bUbih4S0\nF77uwufOgNIYF4RAB/5ZHVTyWiF2FC4A8CP0oDaBrDfs8hL74v/rRZK8WlHO8Qf0DUIJ3uNmDFRd\nIgdwB6DWXADs4rLt2Sod3V+Fm+FMXs2f+zqg2bODlDTUVkcLDQyQ6Fr8xgOAPQsuTv2qaXua0EXC\nh7Oo8PqrOznb3/u2834/8YKx4Y+N6J8Zq/4IDxIsKL2+7sKjlg/aBL5A9M/LkpDlIUhTd4lgqKPs\nqnp8887DtKIlVQpZ2rgaA5WXyPGdAcoOwKF3P7V+Ah5zo1riLHBjQeTHzz0pwQ8C9Ty0lWglSVIU\nBZrGQrLZrKZp7Apaz6ljU1o8X/bP9WzxfolEdfT3LhcAHmFomlG4QEzi5XeQYMTywUj8kHBSBYMP\n0IJJhfgGHs4PN/KGeZjxzTuKjvaRp39p/Rx691MXdapfR9UQVgI8BnA/Ibv968tXisdOfWb9BMQ1\njShYt6xrqpY4G0IjMHOBINGmUqloNArtATKZzKpVq6LR6KpVqxKJBDkhgj8IyVeQI2RtTV3QggWv\n1r/RrSLsj7/MeBbogGFFJSi9gpM+XojtqIBd6f3Uq0bqNVAYMvp2ERS0olhpQ5Q6HYFBxsi+Z31i\nGqnX2NNe2Llb8epu2UzHgrDd7B9BMCeopkFCkMwHEXCblmH15u0ZglnqCLazX+mUqm7Yt7Ot2lUg\nU3XDmCpXIDBzgWBHG4vFTEWsNStYJRGUXiH9I5B9D1UNYoaV9cHTyxVcBQuPPL1c+XC24KGClqht\nxRH6f2JEn7H9Vu4Q+n/qVZXoGJm3jczb5O8q76qlji4dY+7gYESfEdJvAanVKAzhg8GMQUF8kRML\nvMyWct22PuoYiwV51d9zvsLvdh2EEsqGcQxUi/Y28VKpXvbY6fHXv/8YctrgyDX0hxvFIIgn+Fo0\nsqJx95aAPns5xyG/VX11YyAEZy4QJFq71F9eYSZWmJqaam5uJp4zv52t9CAGc0ZhqC7T4drFRjn6\n+0w5sqwndi1KT0P/T+8nXsC/EeQOIf9BEELQ+Rg7zIbgTN0lhaHrBmkozmPpETwb5ODItW1daNBK\nPHi7XehyMhXUSfD79NSiV1ANwDwGWDIFOOK2E7vkNYhEe+Kctq1rvVUFOzhyDTmnZV1T89rlWgCi\nbuCGv2EI5+ASGB0tLXqXT0ALXUVROjrIE1RQeqHuDfdfNgoXKpnPvWJEGkQPA/4xamEhAkUwje9t\nGDhlNT8QJElIvhIQcRaAakTCC8zUDTGx5pbDX3uDw6gWinjQXRrJChqf8Ef1CmZcsJqHeQx4EnDD\nbSfuwdSZxbtz2w98dPL8xO2Ze7dn7r1zenz/EVT3UeGEBa7gt+EJiIlwHRIYY7xqSrSbN5O91IWF\ncFGAqAyrU/8wYtpb78HXA3Q1Z2yHcPWfG65+1pD/oOHix8LVfxbSP6qAOMuifBUkqQr5DgJjAr8U\ncDTmBtDkwPKgwF97g8PXEC+Tk+cnECGjZV2Tq9iWgXLvDakKAR8DzWuXd8trkIPFu3MvHVGlrYPS\n1sE3s5/gojYuBweHUEcbWIIzF6og0Tpj+p+JEVyyqVd/880Plq+jpelZEcobeVIrUHoqKj6KorNQ\nW43df4JPUoh/SK3OwyD+vPUv3MAAAPDcGx+brmCXrxTfzH6CnFDOy9KftU1tO0stNZjHANErC9h4\n9AOPOvHFXe78qPZslaqfkmoB9uQCIYEgGLoe2wwLQUHpRYQwI3dG0ItB2fX2jmcfjokPiPo3tGks\nPiBufkgm5FnA3/qFoVpPcCXEdtBXfou6/ApT+21bQwjx5ykWtIIoIob1mzZGWtY1Ifkzi3fnehIF\nqLIi+oqVI9Fqmh9rPFfmvI88/Uvrn/t2Pfr69x/jLIH9tyHsY+DSFZ3R+wcORf5hAADo6li9b9ej\nx059xlJIZEXjwfjj7BetPG7dp7rk1Yz3DgBAgvd1yatrJQdKUPDneeiWKuhoNU2DzmFjY85CPdkL\np07VtN8T4/QTnn04xnuNwNi7OENVwQpKb9ViDtRQG9YB8b0U2wMheQBf3NrZAg6rN4nibGRFI1Gz\nS8c2Pa8FT1yC6NntK1NCCBGWMQCxiyLHbtlZXie+/v3HcNsDnMiKxgoklQ0ynEF5/cjkUlsVYJ8L\nvlJNiXZ0lGEHXN6Mv88IqVDrguecJNr932IOpmYjdRn48cDGopJa7VKbAv+TO1AgtGGInwhpLAsu\nPK70EmP5ubUFLNMbhsH+xBOXIEp2+4qVEEKG2QbJzq8LHyF29gZld+KZw0/SVe8t65rOHn4qyGFo\nKbgyTvDPkqE440O27ZqqQEB8pqsg0SqKkk6n0+n03r1su8b4Dm+dOoe1LJMoQm1Pk9KyzEZZhWW+\nsJW68DAIgZVo7cXWyiR3sCUwVvBLhdiOBiz4saD0CgOniKc3r12+Z6uLfN1lhm2v9sKGP1spZwlV\nr4AnJXDBPAbsZClcF+jWkpWlBV7//mNnjzyFr9xa1jXt2/XoUH9vjYqzXlF1BWfVK+AB1X4eQgJv\nRwuAoPQY2fesRwxdF3JnquIY5DeH1qR/dSdHtKZ9Z22/7c9w+xW7AF7BGHasKD1C8hUkon4lkzuQ\nCSXayhPf2yC1Gtn3YLAOIbYDUK2o9+1sGxy+xqIi3bfrURYZQpA7EKtuQx0VHH/mBfzal+rrb+oC\nnjEAU3Yh2/pTN2YRW4J2LI2zCWcndnWs7upYDQ6Cn/9am/nqPwAAax55sE/5Nk+ZNYddGzK2rSdG\nRMGsgFuq+DykE8hYBwikred6NTyINIjnmvPiA+hzbf+3krYKWiJ2kmutSWNC+keCxZldUHorHA2X\nkI1Z1+syKHLQUXqEgVNC/jdC/jd0cRYA0Lx2OYubS3ubiGdRIkI26OcwHbPTyuD+KJdcbpXylxBC\nhHMM4CGQT5xHn9Lm4srzTjx5fqL3BxceefqXB348+sbP/vGNn/3j//bW//vI07/cceC3J7Fq1BAU\nWRCPMO22DTeVLjAoK2Q7O2lOql4BOzx/HnpFLUi0YoTQfN4ZHgjJAw35D+AHAAAKQ/MfAMzjgtKz\neLwwtHjcB2vO9gflc8351sZF+XX/t5KHVqcd7qLU8IAc40wvIskXKIaqwUHo/8liQNz8byoqzooi\nOaJCrS0MliC7t7T++GVaRLz2NvHs4adYihJEEYkRNg+D6Zid5Iq/iSMu/XLwjWy3e8csJQQhv0MQ\nMkTwjAEILtHiR8pIIuDYiVM3Znt/cOGlIyqjc47RAAAgAElEQVRRnhtWb750RO39wYUa3fimCKns\njm7sU8kuChvLEPVkGPNUwCv454J/VMHqIJvN5nI5AMD09HQ0GmX5iSB3GEg6XF0X1DFvokWoo/ej\nz5T96wbj3z2oQyntD8qf/Oerl75W9W/0zQ/JkQaGbEZyBxoCQptAbWRrVw6TWqtj76v0EK9rFIaE\nMIBX4Nm9pXXlimWHsp/ifuJ7tkoH44+zvvNiO4AYEUQRWRCypERm3yzeZL/jfPlKEX/FFrF3W2RF\no+clBCHSQiBiNXCMAciwevOd0+MvLhhtH3qXMCzpUeTK6MTLV4rbD3zkaH5zaVzffuCj2vUPY2dk\n9Bau/2afSuxR2HA8GcY8FfAM7rngH1WQaOPxeDweBwDAiAdMv4ntAKlXkWNG7owQgPhn/tHOkXMB\nAAAKQ8jmLMFUY0FcE/K/wY1gvvvfmdYb7Q/Kh8D/VFYVgw4M7y8ovajO202e4ZAqsq1r/bam/+/k\nkDH54P9weeorAMCmNnE+u706BnSdZbE0n+UBXzRyDANX4YEqaUq7qU0kxjjDsbuFIJTgOZ6MgTez\nnxRn7nXJq0fUW8RQqfRUzG6Hwe2Ze/uPqowBN4p355578+Oh/t4aiuE15aSYjKxoZLl9u3PwbRO7\nM4mef+zD2M5xkLMCPuHH89ArvJFos9ksFFKt6LqezWYBAPF4XMSc8d0htQqShKZryp0BNmF96hjb\nFAzY8DLUUQGU7pjjOlpqvxBSOdhSnxLtvPchLvHUloPd0iF73NzMEdJvAanViD5jqKP/KzQgSb81\nv8bTi0bnd0zPBiH5il2AsHmgPr6sYTCiEnRCdLrlNciL8PI4QTFDeYfxl2AFd2lySxBK4IVjDFiB\n4U6JX7W3idZ75O/EY6fHkU35bnnN7q2t27rW3565N6zeRLYvJq/PHDs9zmhZHgQct9rbN6IyJXE+\n2hmh4tsml68UibGrGTf97YYxriT2qQLe4NFc8ANeO1pd11OpFLQiQI53dnaKoqjrel9fH+dVACDE\n2zc0DVoiC8lXrJ+Gq581GP/O+PGgYpVl7CuV9VREI6sXceNaF+lzlx6CJM1PWjw4Wp3m+Kh1DG3C\nKFyAH6DrRt8uU2w1dP1+4gX4xIBi7uKvMm+DzGG7Mn0aBvgWJEU/R3zh4Ro7n0rg97AOQgk8VOZR\n4Jjmw1Un3p65d+JciQ6ovU08c/hJeJWVTcu2da0f6u9FLHePnfrMzlIzgJShmCTqOPHRZbcKJVoO\n3J65x2hRwD+MOSvAT8Bfi7w62r6+Pl3XcRVsLpdTFAUqbjs7O1VVlWWuPXRB6UGiOAEAoD4Gje5k\nY/sYWC59rb5+K2U90v6gTHQFm7yHWl6bUREEqdUo/crQNMGar5XoS4enz7XAmNDB6sRWVywsoohj\nD3hlxh3iD0ZhCH/CGpm3BaUXz65sZA7benkuzCDyMMCt1Uuxe+niG6YUHSSxENwnxtcSGMt0RRBK\nYIJvDDDS5ZTcy1Un4tHrXseif6xsWrZvZ9tLR0q0JCfOaY9/l7HKFQU3I7ZTbZqsXIGO58uYTHl7\n5p7dVj6+wCP6z/HLqXbDuGIVcEFF5kLZ8Eq0+Xy+UChkMhnkuKZpppgry7Ku66qq6roOAPjiiy9u\n3LgBAPj8889FURTSP6Jv+V2+UizOzIFVjwH1X5GvujpWG6nXOG+h6ujf6Iz7+x/Ooqct2toSHZgy\nh00HJoOohaJaHTgGWLBQh8HUFq20iVM0GGmsQ2wpDWINMXJniCFmKCGuBXPVR5wsTk9wu5cNIohY\nPVFw8zu8ELpnOk8JuG8QcbObdvUAlOAtnGOgvU10jBvV3iYid805DJCTW9Y1ERtw95bWN7OfWEW6\nS1d057h31QDXRjuuZ/DYEZfGdWTrnyIO4gu8yeszUzdmkQjWdsbcXfJqxMLErQ0SZwX8gHMu+E0l\nPMOgaKuqqqZpAICpqanJyUkAwJ07d7Zu3Ur8ydSN2RPnJ0bUm/QHwZcf/rn31a04mx9Ctdd2Ai5u\ncrAYuZakbTUKF4TMYZA8YCR+iFohz/+KJpM1/RNTyOSeJuXX4H9nObPGMGcscbUQAL/OEAqGjZsC\neSJQOtTsfdJkcYx6Ubw7R3gDYXmeHFyC7s4hCipc1UQP/MReAu7lbacJs/N6CUIJHsM3BiJNjdu6\n1+Oxuqzs2eK80+VqGCBf2SXXBZix6Yh66y/AHzpWpvLgq5ryen9YvWk18MDFwW6LsrxlXROyoT84\nfO3F0iyDI9yDkHIjlamAC/jmgt9UQqKFgizuOmYX6+DQu5/a2c7XJcTgXL+6k3v24Zj1SPG+/r6e\nRU5b1NHaWMTeT72Kh4mACFSTgxArhHAHAYi9F0LHjJuI747NJ87Ivrco+DLEtsMz5bC4946ot3Zv\naUWOUM4nBqYdUW9aRRncEcQqsvCXYIWoCXNlbRmEEryivDHQLa+hSLQt65qQEQK4OxFRBg2rNx95\n+peO9QTzlqZBlGiRmx0coa0QIMRgZCPqrVKJliYOtqxdjgqUIyUC5eUrRfbEDcRhTI/Y4G0FvKW8\nueArfmVYiMViqjqvUFRVVZJYTS0HR64tKXEWgpui/ryICq9Hf4+adiDKXdfpEjgDUCwpcDVtAPKj\nhNAR8h9AoyahNB54Q/qt+ePpt9yViE8ZBvdefFsTf4lanZqJgWkRIZiu8OMpAdcWE92oKXu1QSjB\nR8oaA7u3tFKU6PtKVW4Q/mFQNv/4L0HMtoDcO8tWOzGs7ODwNXMtNHVjFhcH6ZPx0rhu3WM5dtpW\nXCEkfiONWPow5qmA75Q1F3zFe4lWEAQAgCzLoigmEoloNBqLxdgl2pPnaC3SLa/Zt+tR8+NBdYMB\nLtEOzRSsQu3Pi1mCRIsErHVrvxLqaNnB/TpDHW2wEWI7zH0xqzmBIIrAdAJzyqaLgk0ZFvde6xsU\n2LxEHROGDas3TV3OyOgt3LWZkqDBVQlE0z1cG0qRJ4JQgo+UNQYAAK/HyVGxtnWvxxW0dvAPg9pl\n8vqMKclN3ZhFIjkQIRrzFO/OvZn9BP7f/I8dxIn53BsfQwvmd06Pu1pUQBsk5CDdJt7bCnhMuXPB\nPzywOlAURVEU80/DmPe5HxgYgGpaV1EOKOuVbnnNmcNPllvNQNP+oIzbzv7V9cSv7uTaH5Qn57Sz\nd9D4aADX0WLhDujUd34KbyH7dVpDSYQEDbtVNMdCThAjhCnm5AxRvDtnDfN57PQ4fo5VELHzHdl/\nZPT9N54AABxyeg3zl4CAmB4C9wmQglCCJ7CMAeJ7alvX+j1bJTyill2uZm87sWVdE8WUFqHpoWnw\nDXvZleNQ9hOYufq5Nz9mOd8udseJc9rlK3rxLjnolbWhiCuE4t25nkSBJX0DbgWL2yDR/ds4K+Ar\n5T0PfcVfO1qiLEvPgkvpofJXn3oRiUAJABDizwv9PymzQK/Z/nAMV8ECAIZmCpQwCIihretXdaij\nZYcc7qD6AaVD7LB1UOAZ9sTfMjzBT5zTYKKywZFrRN0Si7QxrN7s2PUBsHlIsuQvZSyBENsfi+tO\n148GoQS/KHcMAACO7u9o3ygeOz0+eX0msqJxz1apjHQG5Q2Dbd3r2a/14WwBTLmtl8cQE25dGtel\nrYOuyrELNEGxPW1etzgZaTGeGaRJ3Ar20hV9N1gcKjDVBaUEzgr4C8dc8IkayYLLR8DFWQBA+4Ny\na6M0MediI3v7wzHUpcyNvlAQxdqK2ltliOEOtAmmYBAh7MgdQumf1aoIGXJEEWf3XqhTsXu5RlY0\nIsEQcHnOLMfuEojJIH8JVgaHr1nlocERNNapI0EowRtYxoA6Ztj44/4FAH8BAPgDAL4CYAAYA4Rz\nhPRb0GCGpxMR7WBV9NlBoHntcreOU1YhcmXTMpbga3bgAXFPnNMOxh83lceONgOcFfCXcp+H/lEF\niRaB0QETkPIHnj3y1FNOvzISP0TFWbkjUOIsZP+3kn91PcF+/vdENHYEILrk2xFul7uE4NfJ4B0f\n4gpCaGq9CNvZWMiBN/+4lDvs4nv4CPGKzO69dq8lXA2DvwgdQQrhKQFXj0ETRnMf3FE5GoQS/IJl\nDOg6j0GhoM/beXN14saIVYqlGGvOR3y3QnBUq1XoUe1wIisaEVuFTRvLFyiJV3e0QULgqYC/8D0P\n/cCvWAcBwUj80CgNtC7IHUL+g2rVh8KzD8fYk2/1NClPL1cIXzDrtMLQXa4hhDsIJVrf0CaM1GtG\n53fur1pzP/rM/egzRuZt+IF/3l+1xtjwx0bqtQrbfhAiinBXALencvsaBpjJIH8JCKbV5sjoLRan\nnGCW4Al+jAEiPJ3YXZqBzOpWZeX2zL3tBz7a/vLip4oN6wcs1jhW8OUlPVY0HaI10YlzGuyL/UdH\nWXTnPBXwm4rNBUbqWqLNHCaLs5VX7TAQaRAZc3SJD4jvrO0nfuVC2x9mB3AL5mlk6HpoSusLmcNG\n53eMzNt4ulorhqYZmbfvb3i0ookDsYUNv3sv/tJld+KBdGMJVHlK6JIJPkmXxvUdB3576N1Pn3vD\n2SknCCX4iA9jgAhPJ27rXo+YkZgO8iZQnEVsGPZsDURWc+IAKIOWte5WBfjykqUm+ASEWE1yTYp3\n57a//NEjT/+ScfHAUwHfqdRcYKQKVgem+ezU1FRzc/PZIyWGA9tf/sjuh3u2Stu6SzwDaGuX7PH7\npZZMQRZnIc8+HHtOjONpFBAOrUm3LLN56Cg9gijaZUsyESQpNKJ1iyBvDppfZ11ipF5DwkoI8eeF\n2I5FOxl1zMi+Z12sGpm3ga5XyJTIh9yP+NuI+CKkgJ/PU0KkiWxQO6zeZMzSFIQSfKRS+T95OnFl\n07I9WyWrnR405t6zVYKSbvHu3OAwaou8rXt9V8fqD2kh/2sMtzpafBXRvHa5oyUr0Y8NeKRe5amA\n7wQsF24VJFpJkmC0r7GxsS+//JI9zXFkRSN+MjleVe7M/cQL1gPBF2chUPlqJ9SKD4iH1qS/FyFY\n0C4S20HMaI+eE+IWUjSoqif9qzfUMUScbUi/tRg+FiJvFvp/Isgd1jluZN+rTFJiVwsbFpeO9jYR\n3+53lfwdkF7DPCW4FQJwglCCf1Rsccs5DF7//mN4JnmKXpASSqzyuNVPU7BzsCOyiSSDbutaT5/I\n27rWEzNDrWxa5kmMrbIr4DdBU/RUweoASrSKomze7E88VHXUSPzQeqBWxFnIO2v7f7F+AIk1Kz4g\nPifGfytddBBnS4PJ257jNrC8/wixHULylcVPAGVuYvjeaif9qzOM3Bnrn4IkoeKsSXwvYguO/NYv\nbBY2xHMjTY2OppBdNtuF7W6CFRIjG/KU4Oq3RIJQgl+4GQOccA6Ds4efYiyhvU08e/gpui11JWlm\nk2jxAB14eFf2uJ+RFY3EpZSp2CbSsq6JsgDzRE3LUwF/qeBcYKEO7Wjvp15Ft931IOb0o/Dsw7Hf\ntl689uj0ueb8ueb876SL/9o2/c7afltjAytKj0DN0CYovQHcKN9xZeO3/p9287PjysZq14gAwZ0u\ndA7zFqQ96QMV6Y7K2DS7XNg42sAhMVZNiLoi26uQlHk8JTDKExSCUIJfVHBxyzkMVjYtO3v4KXp+\nzciKxn27Hr3ws97giLMQFlkclxeLWG45dpNcuzOhCYfdrxBjSARPsrjxVMBfAqboqX70rgpgaBrI\nHCYEBgoy6lhE159WsIAG6hjQdXrsLSF5wCg1ukC+9aSCgUJI/4jcv0rPv16fhknhi3fnLr/76eJX\nWdX87+uMl5FaEZHLUEfDkLReIncAq2MBXUhFxN9KbcIIkoTmQLavZ/tG8YR9URTlCv2HJWfavDJ5\nSijDyz6AJfiHqzHAA/8wWNm07PXvP7ZnS+vg8LVLV3QzCXO3vKZ53fL2jeK27vVBk2UhdrbUVnD7\nUXyLn914g6JP3bez7cQ5DS88sqJx305atDMW7SmLZULZFfCbis0FFqog0WqapmkaAGBsbKxiFzUy\nb1vzvAcKqyuMkHwFFC5YXbwFUQTx5wEAIHfGOm4EUQSxHUL6LcKLPL5XyJ0huhyWeNhQKd6v7f30\nqRuzx06P464PRFiz6RCV3+pYMMdVLYJkGzY0TcgeB0QjmexxNM600mtU5kkqtYLSJ7hRuGC3sNnW\nvf6lI6rNlzTlCrtyzs5ugaeELnm1o1kenuEzaCX4iJsxwAP/MJi8p304W5h4QJt8Uiv+F305AP8F\ngPYHZfEB8dmHYy3LWn9ezE7cWrwXclzIauDo7dQtr8HNbaeuE/zatnWvd8xlAKjzcWXTsqMvd+BB\nNvZsleB64MsP/9yuko7Xbd/o7NdVdgV8p1JzgYXqSLTWWAc+XQV3+TcSLwgX/8Gny3lG4YKQPCCI\nIgDAyJ0xsu8Zug4ybwuSJCQPCHATVh2dt6zIvgcAILp4C+m3QHQUaQFBkoT+nxIve+lrVf9m8eQP\nZwuXvrZ9DVeMwZFrl68UEbuoTW1iy9rlXfJq+qbkc29+bGdK37Ku6fX4YxSzJDtsrOC1UKL1DKVH\niD9vjWNwP/GCoI4KyQOLFgjahJE9jsdDAPG9oDJhvBBF8kKtiDYSK5uWUd6me7bYmlVs2hhhFNfs\nlEA8JbCotZAY/gEswUfcjAEeeDrxV3dyR7/MjH1FeJLD5Or/9Waqp0mZmNOQdJUBEWodtZub2kQ8\nHARRNOyW1zhKtO1tIv2dsq1r/Y9flq0LVJY8xixJvxgjFZRXAd+p1FxgoQoSLXQLA35mwRXkDmHg\nFOj8jlWkM9RRIXPY1tEkGAjpt0wdqgDA4qs9tmNRU6X0ADMwmZ1SSt4s5D8A0WfMFhAkSRg4Zbcz\ne/ZO7ujvM+XVGTqrCclX5i8E61kYggozQYwApXde5lPHgDq6eFzusFMYT96Ylf+XvyU+x82Zv617\n/b6dj5pPPSR+OOUJElmxDBFnb8/ce9j5Rm2s4NWxIPqx1SxC/0+AKJZoaktjdRF+knylkjZFghhx\n5d67Z6tEfJvu2SrR36Bd8moWUYaiBOIpwdFD3NEqIAgl+ITbMcBDeZ344o2ENWaO+ID4PTH+nBg3\nnTEm72m/upM7+vuMVZcRKBx9qrZ1rUeznQEAALh8pYhIw/StErM0xyrt3tK6aaMIMzC3bxR3269I\nrXTJaxwkWma/rvIq4CuVnAuO1KEdrRnZQEi/hZiTGpnDQmxHAP2ifEHeLFz9TMi+Z+hFQWoFsR3e\nGhrCTatnH449vVwxCpYYoqXWEQYAALwKI+BaDSHgHBBEUch/gOs44RO8ZV3Ttu710Fq/eHfu8pWi\n1ZBocPjaiHrr7OGn4OOAEskY4dK4jpzMkk4ZABsr+NA5zGuE9I+E+F4jexwZS+hpkgSUnhL1bWUg\n5ttTR4HSc+bwk/g3XR2rcckssqLxYPxx+nW65NWOMdi75TUUI0ieErrk1XRp0tEqIAgl+IX9GPD8\nUmV04o+/zCAhIM8159sfLImf07JMeumR5PfE+OP/siGYQm3z2uUU/TSMS0BMhHb5io7IiNCzit6M\niMnBoXc/tW4PbmoToTZ008aI28ACjqG1WCwTpm7Mjqi3Jm/MTl6fuX33HgBg6vqsdakMdy83bRQr\nHfeggnPBkXqUaE3T0vheIfue1djO0HWQelUYOFW1yvlE9rgZukiI7zWgKrRwAcC3vrwZSK1A143M\n4ZLjUqug9ID480CMsG8ztTZKLcsk+C/5DKWnIf0P812QOQzzXBiaJoiRhqufzQsf6tj9zicA7JHM\n28Qe2bNVOrq/ZKps61q/b2fb9gMfmevd4t257Qc+Gj31zMqmZeypOtrbxNdLhQn2ACuC3IEmsgrT\nhnnHyfMT0I0PAAA2/M8tx/bu/hMAtAmgjhoLEUvmtftSa9WWpqQnuKEXKaZj77/xRMeuD6wm3e+/\n8YSjO862rvWOLiN0N2eeErZ1r39zIessEUergCCU4Bfux0DZlNGJuKUBIs6aRBrEzQ/J0AghgFD0\n0/CWiWFrF58hFqBnld2F8A2Ty+O6VzkL6KYjjp55J89PHDs9jvy8vU2EnnPFmTn4QjRr27Kuad/O\ntsqpbys4FxypQ4nWipB+y4g+Yz1i5M4IuTO1l2Lg5k1QGLJ7ixvahKn+NAoXBKUXyB2C3DGv4tI0\nKO8KkgRiOwS5Y975TNOMwgVBHRWU3u7cmW4AAHTN0Yslekco+AIABWUA/nH+QlKrIHfgXjuCVRls\nHevWqGFWZScptlpkRSMizkJWNi17/+ATHbs+MI8U786dOKe9uLPNRaqOJuZUHTh4uANNC8MdeMXg\n8DXrW6RbXrN7y5NAagVKT4AambjXQVXVr2xaNtTfe+z0+OUrevPa5VZrGTrbute7Uix5WAI9UxFL\nwKAglOAX7scAD2478dmHY2fv5KxHXr+VImZZ/3kxG1hxFlD103Dvjj3EW/Pa5RQ1LUu4gJHRWyPq\nLVNFarJyxTIYtISyYbJvZ5ud2QNdQdv7gwvI+D8Yf9z0BjN55/S4ufabvD7z0hF18sZshUxsKzsX\n6FRBos1ms7lcDgAwPT0djUb9vZjSI8R2IKHXjdRrgtIbnIQLVv/u+9FnwILoaR0Txn87afy3kyW/\nkjuA3IFbcJbkWEoeMFatMc+3OMb9CHR+B+oajdwZIEmL9gBixIyHYGTfg01nZN8T5A4h/vz88cIQ\nrLABQIOu+2GaTFGa4o8wPAChjxDDHVQvoHR9U5yZI3oHQmCgxy55deUVdYLSi8YSWZitho132rcB\nOAIAiADwFQDvnyeuoASlB9mqc1QsOSp6eUrYs0W6NF7OazhQJfgEZQx4jttOfPbh2P5vJa2uEUd/\nn/nVndyzD8fg9trkPW1iTvtwtkD0GwsO3fIaon66ZV2TafbKkpkPcjD+ODH6zb5djzpKxjD9cre8\nxhpftnh3bkS9Nakuak+3da8/GH8cL21b93pczwoAiKxopCzM3jk9jtzavl2PvkgSvl/c2dYlr7Fa\nFbPEPvOKSs4FOlWQaOPxeDweB356hlkR0m+BwlCJi1jww9PqOrR8FeTflBzPnTFSr0HLQkMdBeqo\nkX2v4WJpOA+rWtQqtSP5l4npmKHPuNU1zVwMKL2mOtYqgvu0uTCs3sSt+yGDI6iTDXsAbX4EqZUg\ni6ijZFuiJYaQPFCSE7gwBEQRGr005D8oOb5AQ/6D+XNIXBrXD2U/3da9fvfWVtOZb+r67OSN2RPn\nNKjNPXbqs8iKRujzSwlL3GD8O/ESdscdwNbDhq4LehGIESQIg1uQpMr8iiWeEnZvaS3jNRy0EvzC\nfgx4fqkyOvHQ6vRzYvx9PWuKrRNzGuL+u/kh+f9Ykz57JxdYuRaGCsFv3Nr1F37Wy17a2cNPbT/w\nkVWo7ZbXsOgyIysaTZ8NhP1HR80aQu+Oof5eRKhd2bTs9fhjbmNv4coayt5ONRNH282FisMr0eq6\nns1mAQDxeFwsFZIoX1UUqRXEnwelr5kgh6cFAADSbj4AAMR2gOxxJPZbvSZife7Nj4++3IGo306e\nn0Ds6vZslSqqoiNafVTJZihwqKP3S418oPMWefkEI9OZZ8L4JKW0rGtS//pP0R92AADAvp1t0tZB\neKB4d+7Yqc8iTcte3Nk2MnoLirymWhfP2WP10oisaOySV79/8AnGW5yHHJnYF2eIfTvbylYs8ZdA\n3C11FQIzCCX4QgXHACirE1uWSaalwYezqPII+k4U7+uID5n4QLCSD+P6aZ6cAps2Rs4efurY6c8G\nh6+ZK2GWH7asW24nMiKmEcW7c8W795rXoqdt61qPLEva20T6jeCOj++cHifaNtyeuffSEdVqDmG6\nslUCu7lQcbgkWl3XOzs7k8mkpml9fX35fJ7lq8ojJA/gTtO1EZ62Rrjz2sHB/3HvvD3+BACLqblW\nW1NzFY+OAjMTd1ZtWbucYr0+eX1m+8sfRVY0mhYIuJ3+vl2P+jFpheQrghgxCkOgMAR0HYaOEuQO\noPQKYsSMUwa1cfScw0sdqZUYLxnATQZr7At1VNAmACh5Uk9enzn07qd7trSiThtXioiqvmVdU5e8\nBnGhMAdPy9rlzeuWw3AZLWuXWyMPFO/ODQ5fu7yTvCFgBzkysT/STPPa5QfjjyMineO70KsSdm9p\nHVZvWl2qod8J46UDUoIfVHIMAJedWLyv777WZzWQhdG7Nj8oRxYE1l/dyY19rf7qTs4ajHb/t5Iv\nPZLExd8q0rx2+b5dj1oFu30721iSnCFhEAaHryGSMVwJw5KRRMG4w9mlcX3Hgd/u3travnExbC20\nrEWK3bfL1kr+6P6OyIpGeMVuec3RlzvoN9LVsfr9N57Yf2TUXMlcGtc7dn2wZ6sEn2mAFAUIANDe\nJrIEI/MK27lQ8a1LLok2l8spigJNCDo7O1VVlWXZ8asqIEbwxLAehqcVpFagzG98GJnDIHNYSL8F\nFcDIZquROwNd44X480AUBakVxPdW3QpTSP9IiO1Y1PWam8VY/c2HNbJXC22Mbt+9Z/pdIvZGAABo\nUI9IpXaJEuDPB4evTV6fwQVZuOG4b2ebT5nfoTnjvNq1MAQlWkMdFZRekDxgqmPnjYk1TahSpJK6\nBzoI9yQuFO/OQd9ec4BB2tvETRvFLnk1fHxv2hhB1khTN2ZNx2eojgUAvLir7cVdbQBKuuUNIZLW\n2T9VPbypN7OfwJdWe5t49vBTrjKX8pTw45dlAAAUKFvWNb1/0DlKQwBL8J7KjgHgphMjDeKvv52/\n9LV69k4O5soZmikQI463Nko9TQoMX/PswzHbCDZVZd/ONjPywJ6tEtGQFAfZu3vn1DjlZFwzgsSQ\nblnXtHLFMqtwaQUunrvk1du615uPlKkbs5eu6JevzG++Xx7X4TvxB3++cVNbZM2qBydvzE7emB1R\n5yXvSNMyeEKkqdGUibd1rd/Wtf7k+QloiTd5fQYK4sS7gM/Dbd3rK+1aUPG5YIdgGKxO3jipVAoA\nkE6nAQCJRCIWi8HUCcSvbt68ef36dXdBt5MAACAASURBVADA9PT09PQ0AODatWvf/va3d+zgCjvw\nB3/wB//xH/9R9s9nZmaamrhidC9btuzePS7PJM46/Nu//dsf/uEf8lQgyG14q3j/ZvH+Lf3+zeL9\nNZGG1WLDmkjD6kiDt3Wo7zasTB38bsOJL76Z+XrxYfV4C7oar/s2nP3a0L74pulBofWPHrA7h96G\njiVQ6g/bH292BEobMpbAWYe6n8sswyDgc9kRYv0/mfwP+l1b8W8uw/a3HiEOSP/aEHkSQvCWqYPn\noSiKbjWhnnmGUSxl4Vd/+7d/+/nnnwMA7ty5c/v2bfhVd3c33Tksl8vFYjHKCQ8//PCdO3fsvtV1\nXdM0SqPcvn175cqVPBV45JFHvvzyS54S6HVQVVWSJErzzs3NNTbSvBrrpg2NL8HNLwExQmDYhktt\nHN78HD1h6bTh1U9tT2BsQ7sSHNvw//4/edvQsQTHNvwsSOMQp2LjkDIMamsu49jV/yYA8K4DNZfx\nZxGo/PNwoWUY689Sgao/DyVJqppEq9mn9oFf/eIXvyivZKjoLQ9VVVVVhcYPZcNTAf4SUqmUmTe4\nKhUI25C/AmEb8lcgbEP+CoRtyF+BsA35KxC2IX8FwjYkY3Bw8eJFRVHg/yVJunr1KstXIa5IJpP5\nfL7atahtwjbkJ2xDfsI25CdsQ37CNuQnbEN+/GhDLh2tLMuiKCYSCU3TYrGYJEkAAEEQDMMgfhVS\nBoqihK3HSdiG/IRtyE/YhvyEbchP2Ib8hG3Ijx9tyOUZBlFVFQBANHegfBUSEhISEhISEhLiCR5I\ntCEhISEhISEhISFVpApZcEPYyWQy+kKYWH4j7iVINps1beeDksSu1rC2YTgg3aJpmjnq4BZbOA7d\ngrdhOA7dAttQFEVz1IXj0C14G4bjsDxghCvoE+btOETjeoYEikyGEBM7hAVd11OpVC6XM//s7OwU\nRVHX9b6+vurWrVZA2hCEA9IlmqZFo1FJkiRJikajmqaF49AteBuCcBy6RNO0zs5OaP4XjUZB+Dx0\nD96GIByHZQGHHBRqPR+HoY42uOi6LstyuPIrj76+Pl3XzTVfsJLY1QhIG4YD0i0wXiMcdZqm5XI5\nURTDcegKvA3j8Xg4Dl0Bt1lg6NBcLqdpWqFQCMehK/A2hPH/w3Holr6+PjNil+fv5VBHG1xgwLkN\nGzasWrUqXAu6JZ/PW5818AEE/y/LsrlVFEIBacNwQLolmUyaDQhliHAcugVvw3AcuiWdTqfTaVVV\n4fauJEnhOHQL3obhOCyDTCZjDXHg+TgMJdrgIklSMpm8evXq1atXs9ksDBwRwk9oNFYe4YAsj0Kh\nsGHDBkVREPVDOA7ZsbZhOA7LA0pgcIfXejwch+xY2zAch25RVbVQKCSTSeK3nozD0OoguMAJAwAQ\nRTEWi+VyuXBjyBMo+e1CKIQDsgwSiYSu6/l8Ho+8GI5DRpA2DMehW2C6Ubi3m0gkENkrHIcs4G2o\nKEo4Dl2RSqV0XTet4ZFHoifjMNTRBpdsNmvuZdCzYIc4EovFzOc4fDZVtz61SDgg3ZLNZnVdHxgY\nMMdbOA7dgrdhOA7dksvlTP9OKDeE49AteBuG49At0HIjmUwqC3g+DkMdbXBRFAWuZjRNkyQJ2qSH\nlEeYxI6fcEC6BXoy/f/t3W1sFOfZL/DrdorPeYRpdjgICkK1d5BwFTUyePwhrdTgmlmpqeBBT9y1\nlHwIKtCx2h4lKiHalZKGFBFpVyFUREp12JJI5OgByXvcihKFD7u8uM+H5kNmDadVT0zF2JYoBCvx\nLLWtJLjNnA+3Gc/Om2d39s32/6eosudld3xjqZevve7rYozxb3lJKH4Py+JcQ0VR8HtYFr5iqqry\nUIzvy8HvYVmca8i7cOD3MDgz6OeNDvhvXXV/DzFhodnl83m+p7LRD7ISYIhdePiFDA+/h+Hh97Bc\nzhXD72G5nGuI38Pwqvh7iIgWAAAAAJY31NECAAAAwPJWnTpa60wzE4bsAQAAAEAdVCFHa51pZj2I\nIXsAAAAAUAdVyNFaZ5qZMHQUAAAAAOojbETLZ5o5Z5dhyB4AAAAA1EeoiJbPNMvlcslk0ucyHtom\nk0nbqJKZmZkDBw7wPK4LbZzEaBnHq3s7AAAAACwToSJa50wz1/CUn02lUrbj+XzeVn1rMnq+Y6iF\nltwlkvtcjp/+DSkHfR4s5O0AAAAAsIyEimhTqRQvJ+DT4azVtPF43EzcLjHcLH/FyF/hXzLlIIlR\nyrxjqAUiMtInmDUkNY8nX2bxfhIiVbgdAAAAAJa5UBGt60wzxphhGMGHjhr5K0b6Df41k/tIjBr5\nyw9PXWaWIgEjc2bhC11n2WGeZw15e+0YPd8hbZzlLpG003bcUAstQ+co3l/TB6iW994fv6beI6Je\nadNze1CwUQmsIQAAQE1Vpx+ttaLAHEI2NDRU2XAzIzu8+E12mBJHiIj0Is+wLlyTv8w8QtKQt1fC\nO09MyZdZ7oPFK8088eDPmby7yfPE92fnnz7yx+tjC7v6Lly7ff2mfvJwd2OfannBGgIAANRBdSJa\nL66xbCaT4VUK09PTsVjMfvphaMgZaoEtHL/sc1nVbq9I0+aJQ/rFm6oZinFnL2qRda2v/uTbjXqk\nZQdrCAAAUAcNmIKrKEoul8vlcul02uW0JZNKtBh6Guqo9bCh66SNV/9284Ke7xjrv0Gld/HjX7H/\nRpl3fO4lZ56Yc+SJ/V+ksd57f/zCtdvO46fOfXzjZrH+z7McYQ0BAADqowERrT+jNNA0dJ30IpEj\nVHU9Utnt+StG8hX+30KYm3nHUAuGrhvJl0tusewtW3hZV7Y8sfltLfPEVXfq/JjXqWOZP9fzSZYv\nrCEAAEB9NF1E65I65aGnIyQ1HAnUym7nNQP8P377Ym1A/rI1TWutGSBrFtb2yrZQ9eFbu+SJXX+E\nJvDe++MTd2a9zl5T703enavn8yxHWEMAAIC6abqI1uWzeJ4WdU4d07Sq307kqA0wI1dtPGjNQOkr\nL1Y4BEszN4Oz73sszuIFfjUbQFhDAACAOmpARKtpGp+tMDrqyFC6Dcs19KL7B/TOz/1D3s7ZQlVL\ncULJy3rnaF3yxB4RreFby9sok3fnbJuZnFzLQ8GENQQAAKinRka0hULAQgLNNVQNXIcQ9HbXF1ns\nWuC83qMQ1nmlkb9CetElT9yUOdogkdbEnVnsbfKBNQQAAKinBkS0siynUqlUKnXwYLDeVXrRNVR1\nCRCrcrtLbcAokXeFro1X2rUpg1dXI+pUkMsujCDF6AlrCAAAUE9NVkfrGvb5RK62yoGQt3MuNQMa\nuRXOGm63uxcSqAXXSLcJG3jdn53n062WdGOpT9VXLawhAABAndV2wkLZXAth1QITBPfrbSFsBbfL\nffbrHTvGDHWUuU7xdc/Ruu8Has6SWaeAoVhZV642WEMAAIA6a64crUutah1vJ/LO8romet0PuuV9\n1YJnqrjJIt2yKjtHCoE+W19tsIYAAAB11oCINpPJxGKxWCyWSCSC3hMyVA18u2shAWnj9haz/GLX\nl3Wd++AzoqzZItpyPgfHh+ausIYAAAB11nxTcN147eJyDTRD3V5uJW7g9yovctWLC+N2bT3CzONL\njeGt2PWbZfywE5gR4AZrCAAAUGfNVXXQeB6VuJ5Z3sCTbJ3luQu0ccq8Y8R+yP/jfRWM5MsL43YH\nf24tYzCPfzX4s1okdyfvzhVnHpRx/R1EY3ZYQwAAgPpDRFuiCpW45b6jNm5o40b+Mv9vIaR+mJot\nGberF80xvERkpE9U/WHKzRdiY5MT1hAAAKD+ENEG4tlmq5yChKCyw9bShcXhZLYKBJ+hZZUK2EXV\nahIfmpfCGgIAANRfA7p38YFhRDQ5Odne3l7/B6giQx1l8f6qv2bJt/nLbOF4Sf7Y0HWWv+LsPhZG\nWR+XcxN359o3r63iMyx3WEMAAID6a0COVhRFWZZlWe7u7g77WvXqgVBXXuN2HTW7ATfGBVdBTSfK\nQG2whgAAAPUXNkeraVomkxEEQVEUoXSQga7rmUyGiGynRFEUHw4s4MnaVU0tkFQS2bsMJ8tfYWLU\nZW+Z126zSnlt0t/Xu/X+jPscLGzVt8EaAgAA1F+oHK2maT09PZIkEVEsFrOe0nW9p6dHEARd1wcG\nBsp7ptwlphxyHmeJl1pO/6bWtzeYV/sw9+G6oy4HQ3D9xPyo8vi7R58YPvG9F579VsBbVjOsIQAA\nQP2FimgzmYyiKPF4nM9K0Cwpw2w2K8uyoiipVErXdVVVA74mk7pJ7mOJIy6nEkdIOeg+kLZKt5fN\nI0vaknrdtb6WKYdY4iWf13Mflus14qGqOVrXSVcdW9qef6aTf/3Cwy+s8Im5FdYQAACgIUJFtKlU\nKpVKqarKqwtES7CoaZpZaSBJkh68J4C8m4hIjNpCTybvJiFCREvshQp5e7ncZowxqZsSR1wjV5Y4\nwlLHWWl5Rgn3XGw9hugWZ10yhfv3RM2vH21bs693a7XebkXCGgIAADREFXaGqaqqqiovMHC9gIe2\nyWSSD7997LHHNmzYsGHDhv5+tyymGXGK0ZITZrGpTzgY+vaFF1EOMcll1xqTugN1NuBRtbTTFrky\nqXvhqbyjatc2YfUZouuaKbSFX73SJtsFVWunahkzYR02sbw0eA0BAABWq1ARraqquq4rinL69GlR\nFL1KC3g1QiqV4sNv//rXv3766aeffvrp8LBbR1UzEi2NKdnD48w/yRrydiImiuz02yz1usupoXNs\n6JxfhtX2FrawmEe6RFR+5UMdGuI69yd1bGmzdZXq2r703wOVsY6ZKBk2saw0dg0BAABWrVC9DrLZ\nrCiKiqJQaREtEcXj8WQyyb9WVVUMHsPZcqtLHq/u7UTEs7ByHxME66SDkgyr/3QDa1RtiUStUbWR\nfiPo8/iqRUNcU9f2yJJHApq8O3f9pu5aZkpEr/7k25W9bPOr4hoCAACAl1ARraIosVhMVVUezsqy\nTESMMcMwJEkSBGFwcFDTtHg8HjCitX7Wz8SoYT1nhonesWnI2xdutGZYrZnR4BnW8FF1I9wYs+dE\nO7a0OS/b0SlcL71ypDC1q3uj18teGLn91vmx644Xt1oxEW2N1hAAAAD8hYpoRVG8detWPp8XBIH3\n8CIiw1iIJIeGhngdgnlqadYP9G3xX5CQNOTttgsqyrAGiqrdinSbUIfbIKtIW2vwVzh8snD2YpWb\n5i4v4dcQAAAAllSFKbg8NevKNZbNZDLZbJaIpqenbV1sm0LIDGuQqFqo3ufO1R6yYNW+xSUa6+oU\nAu5kOvbbv6zycJZCryEAAAAE0YApuIqi8C1i6XTafs4jeRm0iWzI2x0Z1pJzdcyw+mw+s59yax9W\nGWeM5ZpfDGjy7typcx+He6Llp7prCAAAAAE1IKKtRMgK1OC3h8+who+qBYHd+th1vFlL7hL76E8B\nXye8dvdPzNfYjjiLR4nowrXbNXmm5SbMGgIAAEBAyySiXQGCR9XKIRIipBx0aWcr95EYrV1zgyC6\nOu354+LsvPOyEXXK/3Ui61p7pU2RdauxojTgGgIAAEBAVaijXVG8Mqx13Mu12GzB1ibsYbMFJnUb\n/u3DqmGHI+qqol+/KD23p6k7P1RFTdcQAAAATA2IaDVN492+RkeXz1CoAJPGqmZx7FnpIF9p58JX\nNQivRwr2lGrI/fjXb3p+jN4rbVqR4WzV1xAAAAACakxEm8/niWhycrK9vd16ioVrAhDy9mZgLbdl\nQqSk+ZcZyDa0r23AtqnFmQdep5yfua82aD0LAABQXQ2IaGVZ5g2/8vk8D20XeWUfA8ZwIW+vBnuH\nhHJZb7f9OMFb6q5cxuDPjcwZ6xEmiuyjP1WzIZoXvViPdwEAAIDyLZM62pAf+tezZsAr3AxYKuBx\nu08/rxppxkxq/ootnCUiljpelUDTSL5CamHxe6mbpY4TEWXeMTJnjIenmChSvJ8ljgR502ZcQwAA\ngJVomUS09bK4K8umbmlRr8jVPyDOvGNo4+Z3TIyScpCISBs30icoO2zoOhGxeD9TDpHXzxjY7958\n0votb7nqrCL1Upx5YLt4x3bh6wFuNNInbEeYvJt45we9WBKPlkvuI7VgWEfE8Xd0pIQNTaP0G5Q5\nw1KvLyxyRVzXEAAAACqDiDaYuqdIy2Jkh63RGMm7mXKQ1FEj9hSPZRcvyw4z5RBLvW5LMU7emQv+\ndq5loE+/+MeAt5+9qNlmif3uzSef9LraZPsZiYiInX574Su18FXsqYAP4NRifOk8aCRfcaaEF07p\nujH4sxYia1Abfg0BAACgMg2IaJt9Cu7KoBdt4azJyJwhtWCb1DBxt4xorCGM5Cu2IyzxUg1z59q4\nM4C2+WrwZy1i1Mx5N/8aAgAArFRNNgV31Qu7sewhI/myazi7cFYtOAPEppY+YWglaV0miixxpHZv\naH07JgjsYTNg+2WOQggAAACoP7+IVlVVnkNVVXX9+vWMsWQyWa8HW61CbizjtHGvj8tNRvoNspTe\nOnVtb5p9/XrRpYK2ShvC/DFBaBk6x6Y/YbkPWqbvscRLtguM/GXKX/G6vYnWEAAAYEXzi2hjsZgk\nSUSUTqcVRfnoo48ymYxWmiqDJmQE+zfyzy82z3xaI33Clm9e3BBWY2zo3OIbCRGWOu4S1HrPb2ue\nNQQAAFjZPOtoNU3TdT2VShFRNpu9deuWKIqSJGmaJpbOsoKmxQSBlENM2mm49b2i7DA5tohVzLZ5\n32ej2P694r7erdYjO7Z7b7zTxo30G7ZjixvCasm1LwRLHafscMnfDNlhqsvzAAAAgBfPiJaHrbqu\n5/N5URT5t1VJ0JqDFZwzw6CKrKMHWLyfyX1fDTxrvcDQdZa/XK1kZ/DN+5F1rc6LDddLXTt21XRD\nmPWNvFYm3k+WINvQdaaNr+axFwAAAA3nV3WQSCR6enoGBwfj8TgR9fT0EBEf9xWGKIp8bFh3dzm1\noVAmdvrtkvxrvN+tDNSzBrQpOFLLTBBquiGshEfjXpemxb4VyQAAAFBrft27zHG15v9+97vf1XVd\nsDRn1TQtk8kQkaIotmoEXdfNU9ZbzIwvEdmn4EKVMHm3yyfmiSP2T/DDTCWoPbcNYVUrk/DHfLbi\nOU+phfBzKwAAAKBi7jlaVVXz+bzZLJbXCciyfOzYMVVVzcs0TYvFYjxCjcVi1poEXdd7enoEQdB1\nfWBgoKY/Azi5Dz8TIrZP0o0mjmiN/BVbR1gm7w4zpqs8PjM1HCG1oRdr+zAAAADgyz1Hm81meeRq\naxkrCALvfmBeFo/HFUUhIk3TstlsIpEwT8myzE/19PSoqmq9EWrOo38qk7rte/PzV5ozv+jcEAYA\nAADgyj2i5S0OYrFYLpfzudmMX4kon8+fPn3a/FbTNLPSQJIk3bvbP9SEtNPj+DKuXTbyl+u3B8vn\nN9aRkWV1KYQAAAAAL347w/zDWVM+n9+2bZssy15ZWB7aJpPJWCwWi8Uee+yxDRs2bNiwob+/Hi1F\nVyG/GlBnOLisdjUZmXfq9EY+9RjOU8v57wQAAIAVwCVHy8tnc7kcY8x51jBK+iwNDg7qup7L5Xya\n1PL6Wp73tTLbeEGV+dSAOiJaQxt3+WduWtlhSh2v33u5NfByaRCB1l0AAAAN5ZKjzeVyPDtruLFe\nmclkdF0fGhpyhrPxeNzcQ6aqKoYyQFUYmkbeM7qq/F6ub6QXydZQTBQR0QIAADSWX9XBkvhuMPZQ\nMpkkIp7ZlSRJEITBwcFYLBaPxxHRQrX4TJ2t/hs53stIvmwbyVufebwAAADgwy+i1XU9mUz29PQw\nxnp6epLJpG2DVyqVsqZveV2BmccdGhpSFCWVSjnrDaBhllufKZepENnhuv0UXw08S+kTC2+njRsD\nzzqHCbO6NRQDAAAAD34TFgYGBjRNSyQSoijycQmxWOyjjz4K/uque8UymUw2myWi6elps+UtVJGR\nv+xZGuvY1eTeubY5sHg/Sx2nzBl7WjRzhuo1Oeyr5MuUfNnrLFMOoeQAAACg4TwjWl3X8/n89PS0\n2YQrHo9v27aNj1oI85aKovA+tdgZVkN60X221vLpbMAEgaVeJyKK99tKV43MO7WehctE0bBMDHG/\nxnxCAAAAaCjPqgNeYCCU7ppHOeyyUTpty+TSlKppO089TH8y5ZDtjKFp5Gw4UF1i1FnwYMUEgeUu\n1WckLwAAAPjzjGhFUZRlmW/24jKZjKZpIRO0UB8uHaa40q1OTBSbNiZbLIeQdjLHn1J12B/GUse9\nglomiix3yXOMBQAAANSXS0RrjkIgonQ6vX79+lgstn79+sHBQcGn0Sk0EyNzxqXAIPOOvSC1iYto\nSzj7CdRlfxhLHW/JXWLxfvbwN5/Ju1tO/4bd+n8IZwEAAJqHSx1tPB43E7HWObfVomkan7kwOjpa\n9RcHkzH4c5b7YPF7ddRw7HDymy7WTJhy0Ei/YT1i6DrLDlMd+gzIfTxbvJzmUAAAAKwyLhGt1zDb\natE0jW8Im5ycbG9vr+l7rWZG/jLFfsiUgyTvpuywSyNV8uulOqJO7ereWNtHDE6MMqnbVgRsZM40\neees5lpDAACAlcuve1eNyLLMc8DodVBrRv6y4bFFjPiOq2YtonVi8X57RKsWmDaO5lkAAAAQamYY\nNCcWrNy51g2wqszR8YCIjMw79X8QAAAAaDYNyNFCzUndjFcdeGOJl6zZzV3SxlPnPg748v1H/sv6\n7b7erc/tqX2iVIiweL+9xUHmDKWO1/ytg1kGawgAALBCIaJdmVjiiF+9gdTNQgSC19R71m+7OuvU\nAYPJu20R7cL+MO9q4KbVqDUEAABYkRpQdcCn6cZisVo0UoAFcl/L6d+4nmFSN8tdWvIFbow5tpE1\nnKWLlqkOjWkr1oxrCAAAsBI1IKJVFCWXy+VyuXQ6Xf93X0WUgy1D56yzCZggsMRLISdd3bhZ8y6w\nnoSIMx1rZIeX0WhfrpFrCAAAsBKh6mBFi/ezeD9TR4n37SpnnkJx9kFZx+uDyX1G5oz9aHY4/Cxf\nlnqd6ZatcoJwYeT2jZtFa561q1Po2Lx2l7SxffPaIK/ZnGsIAACw8iCiXQUCTLfasd3+af71+n5i\nzlLHA5X2xvtbjC9djntN/Q3OskpvnR879dZYceaW7RKz+HX/XvGo8vijbWusZxu+hgAAAKsWIlog\nIrIFZz6ctaFd211qGD67+qPJu3Nn3x+/MaZfv6kT0Y7tQlensH9P1JngvDqX3zsZsx7pa5P/8M1c\n0KevqsMnC2cvav7XnL2ojahT7x59wvqzV30NAQAAIKAGRLTmYAXMDGtyN24WnZFWcXbediSyrtV2\n5P7s/KnzY7ZWVtfUe9fUe6fOffzCs9964ZnO4PFfPR377V+WDGe5iTuzh0+ql//Xbv/LKl5DAAAA\nCK4BO8NEUeRjw7q7w9Y+Qk1VVu55f3b+6SN/9OnMeurcx08f+eN9R1TXcJN354I3lCWi62P6e+8v\nsSkNJbMAAAB1UJ2INpPJOA/qup5Op9PptK6XfMZqRrQ7dy5d3wl10yttsh0ZUaecly3ZkerAax8u\nWT96fUw/8NqHZT1eHZxdKjx1unDttvXbaq0hAAAAlCVsRKvrejKZzGazzuM9PT2CIOi6PjAwEPJd\noHlM3J2zHbHuiHrr/JhtdoCXa+q9t86PVfPJQrOFp0S0f69YOPfUZ1d/9NnVH2kX9x1VHrddEPCH\ntfFfQwAAAChX2DragYEBXdcFR9/7bDYry7KiKETU09OjqqokSSHfC+rMNZU4cWfWdsSsiOXls8Ff\n/9T5sf17xeoU1Mp97j0QArs/O2/70XqlTScPLxbGPNq25vlnOifuztkKbe/Pzvv8COWuIQAAAFQg\nbESby+Xy+bxzVoKmaWaYK0mSrfAAmlBXp2DLODoTkP6jAS5cu12cKSkbjaxrPao83rVdKM4+GFGn\nbFWqxZkHZy9qzz/TGe7B3V3/Qn11Khnkyv/4evzHEYU3ZLDa17vVebFzC9f1m/qu7o386/BrCAAA\nABWoR68DHtomk0lVVYno73//+9TUFBHNz8//9Kc/rcMDQMVsW/VvOMK+HZ2L6fmz79u7BPzuxJPm\n7bu6N3ZsXvuLN1XrBWffH69RRKv/S78ymw9y5Y7/LhFRpK3VVgXbVaVKgLLWEAAAACpQj4hW0zQi\nSqVStuNmGy9oBh1uc7AujNy2RmPORGakbSFnOXl3zrYhbP9e0da46rk90QvXblvTlhN3ZifvztHX\n/R5sYl77/T+y4w+0iXmtY40YbRX/4+vxjjWi3z1E0Vbx8IaE/zXc99fKRNS1PTJ84nv+V964WfTv\n7RVyDQEAAKAytYpo4/F4Mrnwma+qqqK4RPwBYbDcB8x5lA+/lbpJiLgcF6MkRq2H27e4RWPXbr/6\nk29bv7Vd8Oi6hQJQ56b+/Xtc/tGf2xu1fRB/4drtx//deeGCV6eSJz+117T88l7ygKAc25SKtHhm\nNyOPCDxUXVK0dYlfzpHC1Ig6NXFn1vnj24RcQwAAAKhM9SNaxphhGJIkCYIwODioaVo8HkdEW1NG\n8hUj/Qb/uiV3ibRxI/my8bB2mcm72em3SYxS+oSRPrF4XBTZ6bdJ7uPfumYKJ+7MjhSmeJ3oW+fH\nbGWyRNSxpW3hSsf+fdc5WM7+VhN35+wdBB763njP6Oeq66l39czoF+rF9pxXUDv6uWqbQ+bl8IbE\nsY32DxAujNweUadu3NTLmmQbcg0BAACgMlWIaHlzWfNbwzD4F0NDQ7xwFl0O6snIDhuZMyVH8pcp\n9kOS++zHNc2IPdXy0Yck7STvQawHXvvw5Ivd92eW6GNg29TvjFy5R9vWdGxps272n7xjD4W5V6eS\nXuEsN/q5+tztgaoPy33r/Ngpt7gziJBrCAAAAJWpbR2tayybyWR4/9rp6elYLFAWDYKzha0LBzWN\nMu4FoEb6DTZ0jn8dWdfqjOSKRvGLBgAADAtJREFUMw98piHskha2+TtztF46Nq+1RrTX1Hv/k+yB\n4OjnapB9XVdm81fn8gGrC4I4fLIQcAqulzBrCAAAAJWpx84wG0VReJ9a7AyrBSYIbOgcryWwViMQ\nUUvqdUocISLKX/kq9tTC0fwV84Id2+3Np5Zkfs5u67F6Tb33P77/fyp4fk7/V9DP+n//j2y1Itpj\nv/2LTzjbsaWNh57+IW+YNQQAAIDKVGcKLjQR5ZBZGst4/Mq/lrrJ/FbuY/Ju/qVhaRXsurHJn9fn\n7GWZmv7C9Xi0VfzfW4dmHzNmHzNuf2vatXfB6Bd+lQnB3Z+dd4aqkXWt+/eK7772ROHcU+p//uDk\n4W5nP1qbRq0hAADAataAHC3UFHsYzhJRSZcDx1w3pyXDNZtqbWn65LMvyPHO0Vbxv8SPzI1fkRbh\n2MZU8V/6u3rGepl/rW1wzvEQOzqF3514stxpXo1aQwAAgNUMOVpYVG5BZ02Ti4c3JJx9DA4ISo3e\nzlkq8O7RJyoYTttUawgAALBKNCBHq2kan7kwOjpa/3cHHzvKnJJV0/zijyMuwSuf71UL92fmbUfa\n3cYl3FiqmVdTrSEAAMAq0ZiIlm8Im5ycbG9vr/8DgJdH29a4btX34pNf3L9X3Ne7NeDrzGwdpdL5\nDH1tVWtfUEX3Z+eX3PVVxTUEAACAgBoQ0Zr9a9HroAntkjYuORnL5JOPjKxr5TMFgrg690jAK+tp\n8u6cLU0bsJtstdYQAAAAAsLOMCgR/EPwji1t1oDPNjfB1syr1ibmtfEHJZ0Kfv+PbMjXPHV+7OTh\nbvPb994fP3Xu4yA3VryGAAAAUBlEtI3HEkdKGhTkr5AYJTFKcl/L9D1SC0b+ChEZyVeIiAkRkrpb\npu+V9DGonl3SxoBxm20LlG1ugrMstabe1TMnP01XcGNfm/z01+PEu26Vdk04e1EbUad47cSIei/4\nONyK1xAAAAAqg4i2CaiFxXkHRETEEi8xuc/InDGyw7ZrDfMa5RBLHCExWt1n2dW9MWAZqO3j8q7O\nkskC1296xn/vvT9uHTAWaVvz+L9X9KwW0VYxYOltxxox8ohARN9fK0dbxY41Ij++Y7tw1nHxxJ3Z\ngLGpVcVrCAAAAJVpQESLKbhLy1/+yjLry5WROUPZYZa7RNLO6r55wDJQW37RtsOpOPPgwsjtfbvs\nm8Puz87/KvNna7S3r3fr4yGelht/oAWZmmtl5nT72uQ/fDO3r3er7cFc7egUbMnayTtz1G2/rLI1\nBAAAgMpgCm4zMtQCEwRSDjFp5+JkBLVgpE9YR3wZuk7Jl1nug/974Ehx4HnzeORm0YwvW4wvXd+C\n5T5gHu/eK21aMhrb0SnYCkB7pU22a946P+aMaE+dH7NFjb3SJqKwRbdhBuFGW0UierRtzckXuw+8\n9qHPlS88+62u7RHbNafOj+3r3WrrXFvZGgIAAEBlUHXQjJgostwH9ooCuY/Ju42eJ6zHjPxlRnQs\n82frJ/690qbhE9+r+N2DZCudoeqjbWv29W61hnHXx/QDv/rw1y9KPNq7Pzt/6vyY7UP8yLrWfb1b\nC3Sr4qflrs7lK6ujJaK+Npn3vt23a+uvX5R+8abLELLIutajyuPP7Ynen523VRRM3Jk9dX7s1Z98\n23p9ZWsIAAAAlUFE25Ti/e4FssEKDCbuzh377V/4LICJu3Pmhq2OLW0dm9cSUVenEGlbs693q2uO\nkMemZy9qzlOm/XtF50FbREtEF67dvnDtNk/funZy3b9XfLRtDc05zzTGc3uiXduFU+c/Nn8QHnO/\n8EwnX6tH29bc+sPSZb8VryEAAABUABHtClScedCxee3+PVFbwDpSmDp7Ubtw7TYPLn+V+XOvtOnd\n11xmvb7wTKdPNLYQhjrs27W1V9rkjFy9phJ0bGl74ZnOID9RPXVtj7x79Ak6SjduFju2rK1gEC5X\n2RoCAABABRoQ0Zrls5gZViORda27pI3O/Ouu7o0jaslsrus39eLMA2do1b557f69oldA5hOGvqo8\nfm1wialappMvdjdhVHfjZrE4++DGmF6c9WtAxjd1+UyRqHgNAQAAoFwNiGhFUeQzw0ZHRz/77LP6\nP8CKV5x5cPjNwsTduY7SoNbMlfZKm9q3rN2xXXBuaTK98EznhWu3nZWgLzz7LZ/9TF3bI16lqDa/\nflEKPlSsDm7cLJ46//GIOmX+yL3Spn29W9u3lPywxZkHI+rU5J05XtTx1rmxXdLG5z3C08rWEAAA\nAMoVNqLVdT2TyRCRoiiCIAQ5JYqiKC5UEKLXQVX47AObvDtnNn91LTDw0r55rXPv/45OYcnk4nN7\nokTksy8qsq715Ivd1d0XdWxj6tjGVJhXGFHv2YqAn3+20zXm3rFdsPbT9VHxGgIAAEBZQkW0uq73\n9PQkEglN0wYGBnK5XJBTzYbF+0kt8K+N9AlKnyCpm6WOkxhtyV1avI4P7soOkzbO5N0kRIjH5dp4\nAx7aJn/FyF8hXafssKHrTBQp3s/PfJPom5YLjfxlQy0Q/6lFkUk7zSud9u3a+rs3nzz8ZoHvLdu/\nVzyqPB4kJn5uT3SXtPHU+TFbhrJjSxvfZVX1YgMj+Yr5j8ix3AdlvcLzz3R2dQoj6tSNMZ1vp3v6\nxT/u6BQiba3tW9ZG1rUSEc/L8lQ332bX1Sn495SteA0BAAAguFARbTablWWZN5ft6elRVVWSpCVP\nNR1pp3v0w0fRlioZV2seTB1nqeMuryD3ebWDLTmevxL0Ub3IfQsPdvpts8vsSGHK5UpL21pux+y8\nT4C1q3uj+p8/uO97jav2zWtPHu4+ebibl6USUcfmtTX8qF0tGPnL1gMsf4W0cYP/vcGDXbVA8X4S\nBD5JmIhI6l4YJqwXSS3sItoVJYoSUSvRev46k8UvJ4qf86/37WBd33iEfrD+4ZvME03R9BRpURKj\nV+fyV+dKPnMQHhF+LCi2Nbw6l786Zf9oItoq8g5iAAAAUIFQEa2maWY5gSRJuqX5v8+ppqMXjfQJ\n8zsmROzNs/QiZYcNSy6WKQdLLtDGSS0Y6ujDbzWevmXWmFgtGHqRf7EQThExaaf5dRj3Z+dtU2cj\nba1lVany4gRz31ikbU1Xp31Aq21XWcfmtbzAgIgm5rXxByVboHb+mxRpEcgxS4y7/oWq/2vxgW89\n+FvwRy2DGGVilHTdICK1QIJgZM4wqdsQBNKLjP/T8L8EeIxrzfIKAu+V1k60uHtRGy9JyZf+zbPz\n31z+Zhv9/GFJMSOzSZltHoR1GC8AAABUgBmGUfHNyWSSiFKpFP9almW+5cv11C9/+cu//e1vRPTl\nl18+eLDwSfTAwMAnn3zi8xZLJne3bt16+7bncCZd13VdN8t2nWZmZtatWxfmAb7xjW+E/BH8n4H/\nbWCrUbb62te+9s9//jPMA2ANG76GRNTMlTkAAABNrmq9DjTNs/UmP/WnP/2pgpeNxWJh/p+edwrj\ngXVlQj5A+Few/alQ/wfAGoZ/gPBrCAAAAD5C5WhVVU0mk/z/6bdt25bL5cwslM8pKEv4aAywhgAA\nACtbqBytJEmCIAwODmqaFo/HeczKGDMMw/UUVEAURZ+PyyEIrCEAAMDKFipHy6mqSkSuVYY+pwAA\nAAAAqqIKES0AAAAAQAM1YAouBMQHqvHqz3Q6bXZAwwajIJwr5jPfDgAAAJa1lkY/ALjTdX1gYMCc\nEpxOpxv7PMuObcX4EDtBEPjCNuqpAAAAoBaQo21SAwMD5t58XdclSUJqNjjnii2nIXYAAABQJuRo\nm1E6nZZl2doKTVXVbdu2rV+/HsnaIJwrtpyG2AEAAECZENE2HVVV8/l8IpEwj4iimEgkbt26devW\nrUwmwztIgA//FUMRLQAAwAqDXgdNJxaL6bouCAKftZZIJPhn5Zx1vDAEwVeM4+s2MDCgKAoGLgAA\nAKwYqKNtOqlUin8mns1miUiW5Uwmo+s6z9ryiRUNfsSm51wxURTN0FZVVYz8AAAAWEkQ0TYdc8cS\nb3QgiqIsy7FYTNM0TdNEUUREuyTXFcMQOwAAgJUKVQfLRj6fFwQBO/SDc64YhtgBAACsSIhoAQAA\nAGB5Q68DAAAAAFjeENECAAAAwPKGiBYAAAAAlrf/D4ZQvCOmULq5AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "'cluster 3, 90 sequences'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5sAAAEYCAIAAABdsnUYAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAA\nHXRFWHRTb2Z0d2FyZQBHUEwgR2hvc3RzY3JpcHQgOS4xNeq0bM4AACAASURBVHic7L1/bBRXnuh7\nijy8iWxCV2aE136+Y7uywuwKLsbFH6zuS+xAW2+zwmMNbCPB1eIdknSvMm9jxRC1rzKXH34Zya0B\nR/DejNZNwsiMFiR6YOSAJlfbDbjJXd38QfnHg7sb+w1le9fCY2viaoP9krU11PvjmKJ8zqlTp7p+\ndLWpj1oIV1efPl116pzv+f7kVFUFAQEBAQEBAQEBAUXLukJ3ICAgICAgICAgIMAWgUQbEBAQEBAQ\nEBBQ3Lxw8uTJQvchYC2TyWQURamsrHS8tUQi8ctf/rKlpYVyfmdnJwBAEARiU8lkMhwOO9IxpHss\nfaO3QHyX8nOM6OzsFASB53mrPcnjSzOZjCzLAAD86xRF+ad/+qc8RoIsy4qimPbf9GcatYP3GXZV\n1kH8RTiSJP3zP/8z/WT2UUe5mIzIsixJEs/zL730kttv5UEmk7lw4cI//uM/ZkgA3ZBzdg4xhTLg\n83gA7XwjcdA6PkV4gP3BHBDAhBoQ4CaRSOTu3buOt9bd3c3zfDwep58PADA6Jx6POz7+YfcY+0Zp\nwehdys+hfCSdTufRE0tfevfuXf0iGo1G9e/CSw0Jh8Nzc3OMXz03N8d4JU1/ZjQaRdox6vOVK1eQ\nSdK0A3Nzc6IoaudHIhGjM1lGHf1isjA3NxeJRIj9d/ytvIlEIn/zN38TfgrP84IgaH/29vbqz7x7\n9248Hnfke02h/ECnfjtLs0aD3/EpQo/jF9n+YA4IYCeQaANcZG5uThAEN1qLx+PhcNj0I15KtFr3\nGPtGacGIgki0LAiCIIoiFFXT6TQAoLu7G77V29sLALhy5Yqqqnfv3rUk60Ndpk2JFgpDeDtGfc7j\n9oXDYUEQHjx4oDVlZ9RRLiYj8Xic53l4Qbq7u/UXx/G38gMf6uFwmHjRtDOhpGvnSxnxXqIlQhz8\nbkwRyJc6e5HtD+aAAHb+FxAQ4BqpVCoSiUiSBADQK7H0RyRJSqVSAACe5yORiN7UKIqiLMupVAou\norA1+BFFURRFyWQycN6XZTmZTAIABEGIRCJGti3tuxCzr6IoyWQSGvii0aj2cbwPAIBkMgktaHD2\nx38s0jfYiCRJ0JYajUYFQYCNIF/Hcrn0P1brALRO6j+SyWQEQUCMj9CGLoqioiiyLGudVxRFkiRR\nFHmex3+y1hR8C14r/bdLkiTLcjqdhj8EHs9kMlB6SyQS0WgU3jhRFOPxOLx69IsJPwh7i9xE/b2O\nRqP4XdZ+Js/znZ2diUQCP4fSZ0VR8PPpHYYfhFcbHoe3TPsufNTBTuK3AB4ndoxyl5G7lkwmo9Go\nJhKlUinN1cHxt/R3BN4OfSfpDwvlOiNnwscK/mT2xwpe1XA4nEqloL+ENsPAt5DvQm4QMs4RYAe0\nh1d7SI0eE/rtQ55Wo8Gvv26mD4JRD+Gf+K3BL7KliRGHPjMEBDhPoUXqgLVMNBqFGjKe57WDc3Nz\nAABoVYQKPFEUoZaL53mo6FJVFQAA50pRFPWtqaoKpQee56E6AZqJYSM8z4uiqG9E01jovwueBsc/\nVBxCiydsVjPq4X2An9XWAL06RPux+r7BRuByC5cEuDaIogj/1FpmuVywJ1oL4KnuE/40zZr/4MED\n7S3wVJ0Gfya0+iEGzXg8rnUD/8naz4T/wb99bm4unU7rfQngr9N6YqTPo1zMu3fvAgDu3r2LqO7w\nm6h1Ev+ZegBmRjfqM/zGdDodj8fhDzTtMPKNcFtl1GE46oxuAaVj9Lus3TV46fTXXBtRjr+F/EDw\nVGqhXy5V9yzrry1Ruah/KKw+VlApCE9Dnm44tDSgNKm1THzK1NWjCLkm2g83ekzot49l8OuvG+VB\nMO2h0a1BLrKliZEIZTAHBLhBINEGuAic7+AEra0K+pkdsUELgqCfjvVzqNYaRG8a1ssT0Cqn/alN\n1nD90BqHXYJrmF7+gA6R+lVT3wfkhyCip9Y9xGwNABAEQW93Q8Qd9ssF+6OtENoSBaVe7SPQkVf7\n9nQ6jct5cBtw9+5d2CX9WoVcdr1ES/x2jQcPHsTjcagjhy1odka4tOtvN+ViwrsAz9Qv6ogUqG/B\n6GfivwIB7zP/FNhnzZ2A0mGohYKuuuFwWNtTUUYd5RYYdYx+l5Frjgig8Esdf4t4RzR5iOVh0TCS\naPWbSauPFTyuWb3huMKt9ogzDGWcM0q0eTyk+kFOHPz6q0F/EEx7SLk1+h/LPjGagg/mgAA3CLJ3\nBbhFKpWCMgFcRaBxEB7XDFhXrlzR7GW4tVdTcuhbQ4CRv5oZCxoWoTEO6QwAQDsNqgrAU7uY/uPR\naFTrKtIHiGas7O7uhqsUpXsQzRECakQ0u6HezshyuWB/tP9r3wh/tfYRaCPWd7i5uVkQBLjSa12K\nRCKxWCwWi0EFIeUn69/Cv10jk8lACzv8CdpxaKFOp9PRaDSRSMBwbK1v8D/6i9nZ2cnzPG7NRO61\nKIpQLKD8TFPwPsOxMTc3d/fuXSiSxmIxeocBADzPS5IEh5PejQSQRh2EcguIHaPfZeSuEQ3ljr+V\nSqWQO2L/YUHat/lYAd2ghVKglr8CoihKLBaLRCL68UYf56bk8ZBqGA1+oLsa9AeBEaORrL1rdWKk\nYDQzBAQ4SyDRBriF5owFANCmclmWM5mMtvaIophKpQ4cONDc3PzKK6/oVxpKa3rgvKyfJYmnKYoC\nDW3aEfh/KEZ3dnY2PwVKw7iPHXjqBppIJF555ZUDBw4kEglNCjfqHhHi2sNyuSiEw2EoP8GlSP8R\nuEZCeUv/kd7eXughR/GEs0Q0GoVGRkVRDhw4oD/e3d0dDoe7u7vhBQTGFzOVSqVSKaJUCvuvv3pQ\nJ0r/mVb7nE6ntQsC9f1QgDDqsCzLBw4cgBHoUE8MAIBNGY06DcotIF5Myl1G0Asf7r2l+StrR7Tb\n4cjDYv+xAqTJQT/PwGvr1CNAx/T2UQY/0F0N+oNgCuXWaFiaGE0xmhkCApwlkGgD3EIvikWjUZjM\nMpVKQccsAICiKHCihDPsgwcPKJMyo2BHgRLxE9fR3d2dTqeNFAnd3d0PHjyAGpFEItHc3KzFUtjs\nnunlohOJRBRFgSsioiqDfRZFUa9rBE81PVZFQBwodmt/Qj88/RFcdwjfJV5MGJ7y6quvchzHcVwm\nk0kkEvA/9G4Y/cz8+ox0HspAxA7jVoJoNApFFkAddYB0C+gdo9xl/UeMDjr+Fv0H2n9Y7D9WdGKx\nmCRJV65csargzA/T20cf/A5eDaNbg8A+MRJhf8oCAhwhkGgDXAGGGGt/whwucCrXJmW4kMMQHBh8\nYLQ6Iq3pEZ8mTNCOZDIZfH0SBEGL5IXoM35rQRKaCsRIjQoz+Uej0d7e3rt370pPYVeQsPxA4uWi\no9k08Y/AS9Td3S1Jkhb4D42t0LmNRQSkkMlkjFZEbeuiHYF3Ci5sxIsJ1Tka0FIP/6MXLiGxWEzz\nMCH+TKt9xo/rY9iJHdYr+yHw/zCqhjjqtNPwW0C5mIB6lzWg0hRJtgBvhONvCYIAQ/j1F1D7j82H\nxf5jpbWj/R+qSKFYlkwmk8mkVSlND37T6ZjePsrg118N+oNg2kOjW4N0FTBPjEbQB3NAgOMEEm2A\nK6RSKWQ1ikQiMIcO4j2mzcuJRMJIWYi3pgFF4VgsBudNSZKIDmrQ5U47LZlMwrUNhjtox2VZjsVi\nRs4PiqIkEglt5YCLN8/zlO4xwn65KITDYZiRh7hYwigTmBUIABCLxaBqvLe3V5ZlvW+rVWDPtRaQ\nWxCNRjs7O+GXQllTy/FEvJj6NPvQZA+XVSgN8Dzf2dmp3cRkMomII8jPtNpnKIPqjycSCah/Neow\n7JveCQH6DWsdxkcdhHgL6BcTmN1lSCQS0foDS3BpLTj7lnZH4GnJZFJ7hO0/LPYfK4g2sciynEgk\n4IyRyWRisVg0GoVadogl2Qv+Fvh//Q+nQ799lMGvvxosDwKlh0a3Rv9ZSxMj5ccC6mAOCHCYQoem\nBaxNtDBkDRhkg5RTCj/N+KMpA3ie1zJVaUG7eGv6fAJaWRotIah2MlidvUubtTXPRfaPQ+B0DFca\n7V2ke3iuA30jQBeADGOx2S8X0hTyRTC8A/+I9nUwRBoGwfC6RGla0D3xJ4PV2buI366/tsg1ROpp\n6d8iXkyE8OpwbxiWrt0sYli39jMpl47SZ+R4JBIx7bCWcROiBderxqOOcgsoF5Nyl5HcZFCxGsbS\nZjn+lnZHeJ6HAro2KlgeFqMbjZ8J9xVhUtoB1eCx0rJ3aRdTy1wRJ6VEhS1Qxjkyn4Cn5hT9D8/v\nITUd/MjVoDwIpj1UjUey/iJbmhiNoA/mgABn4VRVxR/sgACbwHTxjGfC4BhRFKFPIV4agKU1TdNA\nOVNLq46EszB+XN9hAIDWT/YfS2nTZgsAAEVRXnnlld7eXme1IBzHQS8602/XAlaIaRCIb+EXkwXY\nmqWPWOoz5bdQOmz0GymjzmrHgJW7DLtKvErOvqX1NhwOw7gfrZKwnYcFPxNeYXbFLbR6Q78CrZoA\n42dZ0NImsDdLvH0sjxjxupk+CJQeGo1k5CKzT4xG0GeGgAAnKbRIHRAQ4AxIyk+nAB5W/gwwxaW7\nnB9IBQ2oHYc2Fj+AZ9ItOMTbFzxiAQGOEFTBDQgoeqBToD5/pCNIkgQjlpzVbAXkh0t32Q4wuqi5\nuVmLHEJy7gZoEG9fsT9ieqdzHK20SkCANwReBwEBRQ8M9TAq7543MMgpEokEy5IfcOku2wemmQMA\n+G2owAEMA/4K3Rfy7QsesYAABwkk2oCAgICAgICAgOLGGa8DosO+oigwP4i+JGBAQEBAQEBAQECA\nsziQjxbWtUMKgSiKsnPnTp7ng6p3AQEBAQEBAQEBruKAjvbAgQO4VztMBw0dhnbu3OlIcqKAgICA\ngICAgIAAHLsSLSzBgpdakWVZ8zTQ8ozipzEGeI6M5SamF0bGcgCARnETACBUVrJ9c8hm5wOeN2gD\nSR4H8viqs8UGwDOPMSUHpMH8exbebfiWPA6EWgvHHW/BfgcC1ijZwVn9nzUVpdUVpYXqTIB/yD1R\nhr5hKqJG5I1SmmAAR139Zn5j2fq8vyJAoyiXRQNsSbSSJGUymXQ6TS+hCUVbSZKQGnqTk5OZTIae\nVro/O9WVvD/xcEE7cvbSV9r/v779V3l2PcASmVtq5hYn1ILoW4XuSp6YDiQ1+ama+Kn+I+vSn1t4\noqTBJ81v5t29deq/E4+rO/9clQbxnqwc7/256R2x2YL9DgQ4xcUb48NjCgCgtamqsWFTQVpA2Hf0\njv7P9kNbjr+z1X6zAYXl9mKmZbJZf2R3Wfiz76XZWxj6RkJasMTCn5ED1s9dHj17eTT3eAn+2dYi\nnIhuC+TavCnSZZGCLYkW1pVubm6GoqpRWhn4Lv4WLKVNab/r/H399Q1wEWkI6DXoPA/EHSv/T376\nJPYuAEAFgJMGud6fFaJ/tiiOgZS5pWZuwf9y0beAUAuSn6rSIABATZzm9JOIdrzzQy6y/9mO2WYL\n9jsQ4BodPYN911c0An3X5TxkR/stBAQUEHwa77suj4wp106/Hgi1eVAcy6JFbEm03d3d0JEAJiPU\nuxBEIhFNcQvrmlpt/NzlUabLrVuGISuLMTNd5++PjD4T5rbX8c/hRK92fqhmbmp/cuE9XPo3AACQ\nuQXF2ZXTkp8Anue6P/K+h3nDOpAKjZq5pe2GufBuINRqd0TN3OR0Jn41+cnKfxSFS13VtKQ2W7Df\ngQCX6Dp/XxNGIWcvfVVTUXp4L+tEZ7+FgIACkh2cJU7jw6PK+2ekCyd2ed+loqZYlkWr2Mp1IIpi\nOBwOh8M8z/M8D8VWjuPA0wrmsVisubk5EolYlWgnpxfPXh5lORMuw/oX6vZhxsioMiDNaC+9dBug\nJk5jR34KpKGCdCYP2AeSD1FTV5/9of1fyak6zyT9PsTxFux3IMA+Rmv5qeS9yelFb1oICCgsHWcM\n3TH7B6YQf+4AOkW9LNJxJh+t3hdWK9lw5coVSZIAAHlkOdD7ygQUDGmIKK+onR+uaHB9TxEPpNWW\nB1Ua5FaO36Sc5mQL9jvw/LH/2BcD0oz2Z5NYfvX0azbbPHeJvPbkHi+dvTza09HgQQsBAQXk4o1x\nva8nzrlLo474hT8nFPGyaIYzEq0RRFk2mUxCL4W5ubnmZoLz+PzCMmIgCygImnEZPZ65yUlDzxxt\n/UpxDyQkRPSp4KiuVpCrisIZ5Ryw2YL9DgTYJjs4qxeREfquy6aRMfZb8JiLN8YndJrjwDUioO+G\nyTQ+IM2MjOWC9EcsFPeyaIYDFRasEo1G0+l0Op1OJBLEE/oHpjzuUgAZY/WbkbDrK4p6IKmrnWdU\nRQFKDgBM0CQecaIF+x0IsI/pGDZdnOy34DH9A1NnL32lvYr6KQ6wz+T04jCDK2B/NhgnTKztB6oA\nEq0pFI1CgHdIQ6psvNTpPSz9SnEPJNwdHAqOmPioGrk122zBfgcC7MGiTaEv5PZbcIP+7FRHz+D+\nY1/oXx09g13n73vckwD/wyiBrW1BzUGKe1k0w12vg/zISmvHy/vijfEBaSa0oaRR3NTaWFXo7liB\nHnKkKFzmVh4JkI1wI+NEUQ8kggezNAjCu1WsTAkw2HjYbMF+BwJswrJID48qk9OLRnUN7LfgLCNj\nuSOnviT7REoAAPAc5pkJoMM4jU88XPBsGBc1Rb0smuI7iXZyenFt+CzPLyzvO3ZHM5f0XZfbWoQi\nCsJQzVJGqJlbnHMSLcw44VRroNgHEi41AqAqOY7oBwKdAZxtwX4HAmwDqyGYkpVmjTxN7bfgICNj\nuX3H7hTxUxlQCNjXBW+GcVFT3MsiAwXwOshkMp2dnZ2dnZ9++in+7sRaySajF2chfdfljp7i8Tg0\ndY70d9qmoh5IBm4AMlHQJHvB2mvBfgdWUHLqzj9XX/lj3Cdb3fnnT7g/AknCJBAAYTSkUpZ8+y04\nBdzhr+3V1DOyg7OwZumax1JarqKe871hzV+iAuhoBUGAtRiGhoa+/vpr5N21oRLvOn+f6Mzed112\nqv6k26hmEu2zdE6+ZG0MpFUoOaKgqSoK642w2YLpxwlVxz5ZGUixH3EP/uXZRzp/HFQdozMylmOU\n/4yEG/stOMip5L1AnLWPvgxsTWVZz9GGolhN8sZSevggl7wpa3BZXE0BdLRQog2Hwzt2+D39U35M\nTi9SojEomaL9A2va/CAXqUsQtxNE/ejKW5hEYrOFvD6uL3cCA8vUpypYVZYBqV6DqiigGPJmeE+W\nWW8KPQjdaMEp6FNiACNd5+/rNwYTDxf2Hb1z8Ya1ikLFhSWd4tqOeQpgwXe5DuiJlIuCvhvjFG3E\nxMOFtTMH+ThtU3EPJKIbqzRoeMHx4zZbsN8BAIA8rk+X8Uy/uzqNhuqrvBnJT9Xmv9S/ClUhz9Ja\nTvSXtd+CUwRx6Pbpz049h4XfJh9a+2lr+FI4QnEviwz4TqKdf7xc6C7YxVQbsWa2kqqPQ4KKeiCZ\nuny43YL9DgCAqfA1vexqEVaVBv0TW6bK42rmpv5F00y7yYgVEZPoNmC/BadY87ZOt5lfWDYy7uUe\nLxWF3S8/rK6Va95P1CZFvSyyUAA/WlmWZVkGAAwNWVZ+aJ5DI2M5S/O1Z1ykKmgh/QNTk9E1kWeE\nQe6ZnF7MPV72WzUX/w8kMvYFTZstWPk4IharsswpOcCHCNm+MjdBZL+tjq05WLLKaxA9CO234BRr\nZg9fKOhlSwekmezg7NpzqM1D4Tr5cBEUTT4h31Gsy6KOAuhoZVnOZDKZTGZw0PLiejy6FT632zeH\n/Jmng3HuLi6lBScaTBLG8s38wnLX+fuvfv+zhkOf745lvvPGrzp6Bv1jEvL/QCJCyAULjzM7NNts\nwdrHjWo04HkPghoNq7EU4g1Iqin7LTiF1Z4E4Jja/dakm3IeYzLQ0dqhSJdFPQXQ0cKwMAAAlGst\nfdb/RQoYRdUBaaYoRgzH81z6cyDu4JKfPom9i7xrFCOP5OKF9F2X+wemrp1+3Q/6Wv8PpDUAuUaD\n2BDUaDDFaloA3D3OfgtO4c8I9MnpRUT6qako9afd7Pmy++kIkmN4zBpYFn1XYYESoNAklnvZkzzI\nDs4yPoT9A1PghNvdcYLo20DcAQAA0be41FWCjEKqHHbk5JdEi2fu8dK+Y3e8EWqLeiCtBUgVOlQl\nxxnEkLnen6IiD6/WkbGc/rGy34JT5BZ85Lo3v7B89vJo/8CUkQT/9e2/sv8tI2O53MKzhSBUVmLn\nwjLa/foHpt47WJf3tzjLjpfE69Vpm43kM4Z9uX3yD2t+WfSdRFvU2zJLvgQurR/OwsWPPft/9C2W\nrF7nLo9SpuDc46Wu5L2rp19zpn/GFPVAWgOQa85Jg8TUsz7Pbew9eWhM9SKUIy04hX/Cq2k1eB2l\nK3lPPwc2ieV5z3jzC8uMmSKy0qx/JNrQOv6N0nChe1Fghr+Vjs925v3xz75nd0uAs+aXRd9JtBQ2\nblhf6C6YYGmDmJVmWCVaJQcyN4E8DsJ7VjSmnoCmvifF7iC1cKEKhN7sgDRz8cZ4AZ0u/D+Q1gIG\nPtZ+zo/hH/IISR4ZVfSxQfZbcAqfhFdPTi8WY9Ey9qC6tRd+V+wKV+UPyq0Fa36VBWRtLIsFkGiT\nyWQqlQIAzM3NNTc3s3+wprLMtU45g6U55ZkXlzyOWl2FWiA8FfikIbX5zaeuhx9y0be53p/Z7yoL\neEAYF9lPzx7aPzDFsmb0D0wVUKL1/0CyjCM5EIzi//LrADGjbeamoS6W5L7y3GI0k7Qf2pJ7vEQM\nA0KM+/Zb8Ib6Ov7CiV3QAdTVGLKOM4NFJ84Ci5b3NZnxAKGtRTgR3baxbP25y6OnkveQd11Nq7y2\nWRvLYgEk2mg0Go1GQV6RYX7GqtOPlh1DTX6qJn6qf4uLf8B1fwQAAPK4TpyFJ38CAPBIqA3vQY8I\nAnpkteDSd4MpxGdAmpmcXmtxDAF6nMloG6DjRHQbNCuHNpTgyfZZxDX7LThOT4eozQPuSWPZwdki\nVWGyF34DAGSlNS7RNonlPR0rG+/3DtZNYLXoinHTEuAgdrN3ybLc2dmZSCQUTCWjKEoikSC+tSax\nmr+NJVukGvsRHhiuJj/xqPws5uHA4Vo0nXZ5cnqRPQVmUEbIlHXpz7no2/hxLv7But6fe9CC/Q7g\nGLpiPx+zBAvEvXFNZZnmJdlOcpfUV1ey34KDUNxzayrLvIklKNLkVvMLy/5JKuw9+CaktWlVMH6j\nuJbF94A8sCXRyrK8c+dOURQBAIj/gKIoO3fu5HleUZQDBw7Y6mORkEcmPBO1rjRktPyrsR9Z/S6r\nkHPQUg3TlgLjiisjr/dwYgMI79ZH5j17K34MRN/icH25oy3Y74AlgpS0GkQRsE3npbOxbD2ytDve\ngoNQZLIar6w0Rbp/tmpDX/M2d2TQroFsUwHOYkuiTSaT0Wg0EonE43EAgKxLKplKpcLhcDQa7e7u\nVhRFkiS7PfU9eeyP6cHF0MGA/JYsu66mFUh+rnigus64bGk+LVIjoHdAlw+hFhEcufCelbtg6nVq\nswX7HQjIC6KuFFnL6zfzyAn6B8p+CwjzC8sXb4yfuzzqnyIp7Fh2z01+qjb/pf4FCrTdsrrtzz1e\nmvdTrjRnqaks21iGRi+5l3Nq+Fvp+//arH/ZSVwQ4A22/Gi7u7sBAJIkQYFV0K18sizz/MqMKYoi\nFGqh+8Hvfve76elpAMBvf/tb7Zw1QB65b0zcnqgxWGrqKsEHwEEMNHBceI9ec6wvsmB1/i2K/GWF\n4tnNFWpXFSDQ1ORmz47NFux3ICA/cGtPTWUZ4nS+vY528e23oEdfMOXs5dELJ3c55azJ3gc7WJ2X\nVHkcMY5xCsFS4QF5eIUOj7mSsALnF7nk+JJcWyL8MBT14OuAhxp9SHFlKgiAOBAZBiVa6GBAlFDh\nQUmSoBJ3cnJyYmICAPDo0aOWlhb7HXCP+YXlU8l7I2NKdUVp+8EtdPGLaFxrEssvnNyVe7x05BS5\n6IAhqatGFUe1E4Cb8WEcKW8ohfmFZauJHiemF4pPosUTUwB3tJWajlxsALr1lXt6nAvvRgIKHW7B\nfgcCHAJfy61KLXZa0BdMyT1eOnLyy1u9e4KwTg/Iw7PZpRRsenJPlJbJ5qFvVuyuF5Tk9ep0aN2q\npX9iWb6gJPP+iq5N3bhLHnH/s72OR2wL8wvLuCo3wF08WxbNsCXRSpIkCAJMXBCLxSRJguVtEaAg\nC0/T4/NcB3rNxPCokpVmKcWuiMa40IaSCyd3bSxbv7Fs/YUTuxoOfY6cQHFUMHUrVBWFk4ZcTE9r\n5DK7Wr4BAAAlB/hQHi5cI2O5onOEUhOnEW8Qjue5ud85/01Erw/KccdbsN8BSzwHuRHOXR7NSrPb\n6/j2g3WURRffGRLX8prKMuRMzehhvwWNizfGEYkh93jp7OVRLeTc/xRvvBTRDyS0oeREdBsA4FTy\nHq7E9SAF23sPY5o4CwAY+kZ672HsYtUV/TnjS3LP7xN5f0XXpu686314pqUO0PBuWTTDlkSbSqU0\niVZeXZk9Eol0dq44nUDB16iR77zxK8avO3vpKyTjzLUzr7/O+OHkp3giVS79G9rXXR7Va1WhnvVW\n7x7iUkQMC2trEbSTqytKW5uqLAQoMFTnApmbXhZcMEQaBOHd+bgRO5ppxaOBhLsvu7AT1YflcUKt\nqn9PEyipkqXNFux34Fk78jhubeB4HvC8KhdlBHp+7Pnbm3A+GZBm+q7LlO0xXpKAaG+tqShF5FFN\nCLDfggaxYErfdRnmBCX03k2g0Wzy4eLGDetNjWaMQDMa/C2uJsS1ipFHrDZyqitL9x29g7zrdkW0\n24uZa49SaJcepd7IJT1zPwhgZy0tiyzYigyLRqOJRCIWi8FEB1BBy3EcAEAURZ7n4VuRSIQi0XqD\nmrqqZm7qX/RsQZPTi3i+xomHC0YFscihGI0moRgUKKvtiQAAIABJREFUvSZLOk9yoVGnMNDRGnkj\n5KEbYLepTU4vZgdn8yjz7TDyOC6EkZNC2ETvvYMIjowCpc0W7HcAbtPTnxNzJ3NXLnF3/wf942uJ\nrvP3ke1xR4+FYNnqSoI8SjzobAv92SkjCcn77AHQaNZ3XR6QZvoHpvYdu+PIhKCJs8DNhLh5QFwd\n2loETY5vbNhUj6ne3a7Q9vHXZM2rHY0sI8Xnovac4NmyyIAtHa0gCA8ePMhkMjzPwxxeAABVXVHo\nXLlyBUaMaW8VEEIaLLx8gI6+G2Rhse+6TLQYEkMxkCewUSwHYFWNE0MlJYuCFgCC54qDGPnRGoxU\nIx1tfR0fKishms8Y7UoXb4y/f2Zl+W9rEQpp7iTml6AOpOea6NuAD4HIfo7n9WpamBcMMJSgWxsQ\nt8fDo0rX+fvH39mKn49PJqGyEvy00AbCQadagFDE1gFpxuOyf6eS95Bdwb5jdwYvvWmqKqYoDprE\nct/6XBJXh7a9q3RDrY1VSHiGqwm8hr+VjIKlxpfkX7ispjUdrn6Df4HfXUbww1xr+GlZdCAyjOg7\nCyHKsnlXwc0f0hXnqPZ6o6kcFpB8j5SfHAHfULJvMRnrLdFqivqA0IYSzUA2Ob2479gXiL6HJVSu\nPzulibPgaab0Qgm1uFKc43lXHD+MFOTstg6bLdjvgP4RQ3yvtcmu0KYbb7C8Pca9YNmmDk0Gst8C\nAGB+YZki0fYPTIETLE06wyRWHQoAkHu8dCp5z3Q2KNI6UrgG2paWxAlwfwM9txcygeOBnvoXxc++\nly50L1zHu2WRAbs1w/IgGo2m0+l0Op1IuG6ngKgW9xCT04sUbyTi+oRrKIlVknEjkV3PLaXQhvin\n4LoBvYGsuqL0eJSgjqIzv7DccQYV7vuuyxcNRATXIWj6vfUWsh+VZbMFSx/XHrHV8rE+W4KtzhQJ\n9O1x3s3iBZOsWuHpLZhmjDaau7rO39e/KC2MjCrIyUb5bo3cvfquy3ZS5HqTPswp7GhJHOHXVIn2\n2qNU7kmxBuEF5E/Bl0UdDuhoiwBM5fksSzwJuovYxMMFlkSqxBOItj9bSIOuRCZZUp7J44CkG0Aq\nbbY2VoU2lFhSIfRdl4nnn0rea22q8tpcqORw3TkXuBxQMHrEXMqW4EtGxnL07bGpwce+sTW/FkzT\nuBqdgLtYGDEgzSBys1FdU8qc3HdjnOi8Ueywa0kQY1d2kJrmPF8mluXxJZMN2O2FzA9ejjjydaGy\nEqR6gvOrZ4B9fLYsPhcSLcGJluq2bOqK1J+dQgRW3CWUuIrgyfN8CkXmwARoVR7HnR/q63hc4qzf\nbO3nG5lr2X0/nITo3Px8aBnzQD+pceKOVdkStKeveK9e5hZu+eG6P8JPzFIHPL49xjWOeEQpHfst\nQEwlWrfD6p/1ZHCWshPuuy4Xl0Q7Ob04Mb0YKiuxqmElivvVFaXWMp3ny+1F81SbQ99KTkm02zeH\nrp5+zfS04k3Ntkbw2bL4HEi0pMSudHOnqfEOf4rwOSW/VcQqauaWH0y3+CK6nfTzLWXDtq/cchY8\nQzAnCM+VujF/kMIrFot3+BA1+QkS08aJDQAQJFqr22NiHkAiRiWU7LcAzDyvIJ7lHqHL1rnHS/3Z\nqaLIbD2/sPz+GUnTNzeJ5cej24zkWsb7SFTcuoE+B60Rw996Xe4+77S1AY7gt2WxAH60mUyms7Oz\ns7Pz008/9eT7rO0hcgtLplM5i6KRKKjhkxd9suYi+9fNzaxT/31d909Mv7GAEGKr2QydlPXeVLnl\ndfJIPFzPtb2E1YJtjrdgvwNGkxq3BmrnKjlCigYDQ5up2Ecf5xTsV+2itMASMu+ZjtZUD2e1zm2h\nOHLyS737xIA0Q8lBhl9eRl8Cl4LDhhikVRap11m80U8HGOLhsshCAXS0giDA9AhDQ0Nff/21219H\ncPKI7Kecz/iE0H2VjOQ5Sw5tnCBwvT9fUWjFj3HSYBGlOrJfg5vFjc/L/JG474qLKfeMWmbf+9ps\nwX4HjCTXAuUpdBLSJpk4q7Bsj4dHFXrdTkt5Z51qofC5n3WYx6gVg0SLV18DZoV7WGgUNyGOyy7V\nYmSRVpU/KBPLcs16j3KY9Ge9TopsiduLmZbJ/LM5LfyZih/sz05lpdnJh4vDY0ru8VKTWL5xw/om\nsbwAgSUAAI+XRQYKI9FqBRe8qIKLu7s5ccX15bPx2d8RlwOu+yO9fZaLvk2QaKl1IgqI/WXYdBnr\nH5jyzn+OnC7D882ofQWnzRaKUMN67vJof3ZKv1OFC0De6VQJHrSCQMxWw7g9ptftpGyDkdAZo21k\nHi34xz2RUVs8Ob2oqZz3H/uCsfH+gSnklx6PbvuPVrvIhlG6Bli4x3Qqw/PkeIlRGlqc8SXvJNqi\n2Mk4xchYrqNHQqYUuEr2D0ydSt5rP1jneWyJP5ZFHWvdj1YawitwOpL7V29nZ3flYZd0OUEAiNYn\nvBvJVA+Ay0UWCkcey5irkIWYwInW34yM5Y6c+hLXksIQ+/6BqZ6jDfmMH3xjSTX7mJK3tYEldCa/\nFlxN1G8JRht6VprVtijs4acTDxeQ4fHegisywcUb4xRt/dlLX7XtrdUPRdylyijS328ZACaWPSpt\nPTKWs5P8rrgYGcvtO3aH8izA3MwT04teJmv34bJYAD9aT8FV4g7l/mWv4KrHgl2AuNHxQRCYN7Av\nY273ZAWfeQsFmNKfndp37A5FjBiQZnbHblrOZkraJNMdmUzRj3b7ylH7LcwvLBddVQL2eLiCYCpk\nG+V1McVqwoT5heXs4Gx2cHbeet1yFkwzfDkClPA8+CIKtxczh6cOfP9fmw9PHWBJBJE3sP4zyyPZ\nd1321BPDf8tiAXS0sizLsgwAGBoaApjZi/Lk11SWIWY10+0pofiWQ1ecPkPZT9xNzmDg1xpLjQ2b\nvr79V6anOR5Kol/GXB1IhJTGa8Af1E0Ma/J5kuhgcnqx48yg6RoAvRhv/r0Fow3u+WN/kzyiU4jm\nbMsZ9lswUtC2tQiN4qZzl0d9GI7jHzcJIvQc54AhB5lNP675heWzl0f7B6b0k3BNZVlrUxWxcJ2f\nOXd59FTynvl5bvLedOyCktT+vPYote/lyLnK3tA6551DTiXvse8wO84M6r2on7dlsTASLXSfnZyc\nrK6uRsxe33njV0YfbG2qwp95gu+0HlwrbsXloLWpqq1F6FpdT1yDHs9hxLUzr+v/rKkoBWdJ55FG\nBifUEn/vxRvjetmupqLU45LrjDgebqJfxlwcSGTflUBHS8XI49aTXRmLOAsZHlW6zt+34JCNh4XZ\nU9AC/8VrE6XD1qYqaNCs38zvjt30mxLXezcJNfYjNfmJ/ggnCNyDf8HPZPGCMM1BRnGGbj+0Rf8n\nsRQc0f1m4uHC2Utf9V2XL5zc5VSUrasJvOYXlk8l7xXc2QARZyGwZJrjZW/nF5Yt/d7c46WLN8Y1\nAeB5WxZpEq0kSZ2dnel0WpKk5uZmRVHi8Xh3d7fNrwyHwzDXQSaTcTcyzN4Vr6/jL5zYBQC4dvr1\nhkOf4zO4Fs9hyQMBnzjIg4bojGLgodI/MKWfNJvEch9KtCwZLq3i0TKG+64U2lvo+ULJgdRVVR4H\nigJ4nhNqQWQ/RdebHZy1VsiDPUW/PE4qkMM0pXx8VDy8t7br/H1iSS2KR7hRGS12rLZA1PK2H1wR\nm6orSttaBPbCYA5SX8c3iuWIohHitYSt5BBxFgC7ext9jgJLP4c+erODs/uO0gz0ucdL+47euXBy\nF0uGBP4F/np1uv5F8Re55N89jLF30j6T04tHTn1Z8O3f7cUMLs5Cbi1kjs92dm2yKyPpyUN8Hx5T\nDgP3lydfLos0P9rm5mZRFAEAiUQiGo3evXs3mUxCh4HiwN4V18IGN5atbyeFEGqTjuMuXGuytqpR\nqK8prU1V18683tpEmG1zj5dc8gbT457vSoAJSk7t/PGTV8qfxN5VEz9Vk5+oiZ8+ib2rvrpF7fyx\n0YfOXbI20qBWg+lU3ObD8yxyTFuLADeZx9/ZitgBIb5yA8Xlxfo6Xu+vSRd9msRy/YtyZk1lGXIy\nxdBZU1l27fTrx9/Zeqt3D1Fh6WmCalIiRS76lp0m9ZmJnTJnTU4vHjn5JcuZHWcGWXzKL1ZdqX9R\nBAD8MBQ9wkft9o+ZkbHc7tjNgouzAID3pmly/C+UZO6Jk50kam1am6raD21pP7SlrYVg8vImvMSf\ny6KhjlaWZUVRoEY2lUo9ePBAEARRFGVZFvzqzYlg54qHNpToZ+22FgF33KGk/Qu55Jbk2QaIkkKB\nEN5o3quLN8bzMxU1ieVQU97YsGnPNGFGo2c+cgZ3EsAFmKDk1OY3CU8xAKqigMRPQeYml/4cUdZO\nTi/iCtr6Ov54dBscJ9nB2SMnv0R0YAPSDItZg1BPm00tp98SH26pxXuozwZYcOYfo7vExtWC6fbN\noZrKMiOTi01DpxGau+fGsvVEJbGXalpcQctF9rPMz9BbESYTRd5yQ1xjd7/JPV7qODNIz56xuyz8\nRmlY+/MIH8W1lW5Ehs0vLB85hT6z+ZEdnNULfI3iJkvP3e3FDP0HKn9QfqEk3/9OPP8urgYXTxFt\netteYXdsla3bo9InvlwWDXW0UGxVFCWVSmkZZItJQQtsXXFEI7ixbD1d2YBgNzLMaGb0SqJVLd1o\naq8mpxf3H/vi/TN5Olf1HH12y9r2ErZS+SWdsIA87kNvobWPsTiroUqD6oFDyEE8BAfq9rR1q7Fh\n04WTu0w/Rf5GPCyMYUqpr+P1HgWtjVW4itF+OJeD4Goh3G/Bvi+EJUIbSvRbDqLRzLuqEETnE4a9\nTX0df6t3z9XTrw1eepOYX5aiZs7jghPdb+rreKjew8vnDkgzdD33D16OrGrqRbG2BJ2T3ZBoz14e\ntSmlzS8sd52//+r3P9t39M7ZS19pr31H77z6/c+6zt9nbOcXBv4Geq49Stnpqh4860hrUxWiR9u+\nOYRral03Xfp1WaR5HcTj8Z07d8ZisUgkAgDYuXMnAAC6wNohmUw2Nzc3NzfH447tYwgQnWiZ/Zzw\nxLG4kOpidG0R5rHHgZNIw6HPLTk16kFEgcN7a3FRwHVzrf9S7j0PqInTdHF25bTMTcT9AJfG8FDu\nxoZNuDxhLg8RK/YxTCmN2GYYd6HxVaAV3hlcj2W/KKAlbKoYnEVNovXbCenDSVw4sUtTMx+PbsNP\ncHZNwc1i7Ye23Pz7Pcff2Xr8na3SP/wFLgnRPXYQiRYAoFfZusTk9KJNp22Y/erspa+IT1nu8dLZ\nS1/t+VvzRH7KHxQWaXXoG8mppLz4bEZMaY8vi65HmPh1WaRFhnV3d0P5Vfs3GnXAbyYajcJ23I0M\nIxZnY84cRNRJFCQYokjpz06xG7yMwJ06WpuqkGnabQuLP72F1jjyuJr4KevJyU9A/Jj2aONGOqIH\ndmtjFWLknZheoKf2JKQTpwaoaeCTSf1mvm/1EddNDczg2h2iNtF+gkJL4Ndwex2PbJU1cRDJJ0OJ\ni2prEZDhwVQEJ6+YsLYWQb8/b2zY1CSWIz/BQVX9/MIyYnloEssRH4+ejoasNKufQgekmfmFZcAR\nGtzxkoinpgq94PowyDsAAwLFWVOPjuFR5cipL6+dfp2Sv4ilDrB2pkuF0zx+7ozw7bJIk2gzmYxe\nI9vd3S1JkqIovE6DKMtyMpkEAESjUcS/VlEU7S3ec6WjinuCWgm3wuOO8ZnOP2V1XEEeJ2+5GDRn\nHT2DjiRYwZVbuCiA+/w5DCEBnC8e3TWMmjht4WRFAYnTXPdHAIDJ6UVkE1VfxxOXKILJxdgtfoV8\nUwHiCs7t2GTCXnfQbfBpjZiEwWOvX3z6pagY2PsW2lDCmnxGI3WVUGKDISYMd5pqbaoyEsrtg1vG\nDrcQ5vP2g3WIS1j/wNR/eIPQIFEdu+NFMf8ussHoEWTE+2fQyrFGDI8qR05+ab8OHwBg6FsJ12fn\nQf1mHtmeEXdcHjnO6vHrskj2OpAkKZPJNDc3Z1YTi8Uk6dnol2W5ubkZetk2NzfrvWwVRdm5cyfP\n84qiHDhwwPXfgUNwomXNgk60Z20sW4/o9n1lKDRiZCzXdf4+fFmrJmIQHKYqJsbZrvP3ncoXiOvM\ncFWNu14H8jjBpXgtZqLwEcS8SABw0be5+AdkIfLp+fhgwGVHiGWBTBoijAQ210n8ID6w/RDEbQTu\ncAmhZEh1ltCGElyqxu+gNyoGgi81Q0xYaEMJftNx64GDsxnuRUPcsOF9MLqMuMsscF9H25+dsrPO\nZgdncYG4rUWAnsT4Qj8gzTCukvwL/O4yQ4+LCYeciTeWrW9s2KR/4fvzkbGcTaHfMj5eFsk62lQq\nBSXXRCKhP87zPMznpZ0WiUSgC4Esy6lUSnONTaVSmpfCzp07JUnSf9B17F1xo+os9ZtRO5efGRnL\ndfSg29PQhpK2FsFCPnkWdJuz7OCsU74ZxH1FdUVpaEOJfo5zd3tKrIniSdWr5xeSu+q6K5c08ZFL\nfvok9q7+XVVRuNRVENmP2+4pUhdLlbtn4F5M4T0sI8EoHRVucfYJuABhlLnFs/nQyBMAybfghYpB\nyZElWjOIP2Fj2fr6Ol4/RTs4myHqXuLOCvYBuYxGDjBEMzpRzHUQm4mocLdgJFHAxRvjiIq6K3nf\nNC/vET7aVd4dWsdPLMt/PXUA90ZwNoGXETBvQwGcIX28LJIlWpi0q7m5OZ2mFcDQh3ZlMpne3l7t\nT1mWNU8DURQVRYEeCwCA3/3ud9PT0wCA3/72t255IxCzHDBfcaNVsLqyFKweuiNjOatltb0Blr3G\np3joBT8yqlw4ucuk4Jk0SPaMoXoddJwx90lgxA/7ClUaQg/5Yye6hsEzZHHxD1ZpQ6NvcZijrSoN\ncZH9JB2tM48nQY5hs7IZ+b1t3IA+ffnVIHQcXLdXcNc9ow7UVJR6bW/Fk3axxYQZ/YTtm3lE6UCp\ntWEJ5FmgJfpdfRkHpJn/AxCeGqLw6pK3qIYdiRZP5Nd+aAsirR7eWzsgzeh1nBMPF+jL+r6XI+cq\nVkSdmvXCL6uubP1/X0XOcSPhA2RkLJeVZrKStSIyzuLnZZHmR0sXZzWgN0IkEjHSwkKxVZIk6JYw\nOTk5MTEBAHj06FFLS4vVHrNAclu2cMWNwnhJOXd86nhAz943IM2YOgypSo4UHkCjP0uo5ZM3RvsK\nQkSIe/sKQnwhq+9KQJ6sni45nufix5BTuPgxNHQscxOAj/DGnLGMKznClGKvQBRuyvcis7Kj4E9i\nwTuQHZx19RriGxvGYWA0QRGTtzgj0a6eigekGUpiYBbcFl5xbJaZJPgbkHJOtx/cgpzZn52iLChd\n5atKgtWsF/a9HEFyILgh0fZnp7qS9wvgMovj42WRINE2NzcDANLpNMcRRBpVXeU3H4vFFEVJp9OU\nsgtQkMXzJLiY68Ce27KRdtCtuglOw7LMDEgzJuXsDVLSIio0TnffnfXmYU8P5Na+QlFsbo0CLKPk\nUH+h6NsE6wof4iL79eKFKg1a3YBZgJiGli1Vjcd5W92g4HK2X+xg0hAhDS223SJitLPyZwqd2blv\nC90FANgcoymVPpCP11SWEbcK2zeHEE82SnzevpcjuGS/4yXRwRy0RJwKtnYAfy+LhMiwdDoNtbMq\nCf2ZyWRSUZQrV67g4mwkEtFiyCRJ8rTMGNmJ1oFAvIJb3/Kgvo5vEsuJsR1912VaHmZiZBh+8Om6\njieLsYnRvsKzRJi4bcU/3kJrFoKHFnn3TwgRw21hDkFwhLCnoAVrQtL1DENzjbeSLsHzhLjdIsGU\nFAwA4Gqac2Z+9zUq0fLuZ+nCMU0R3SSWE3PzQZD8spSFA7k7FEn6DVI0WL3LCR98JM76flmkeR0o\nipJIJDKZDIzrCofD8XgcSd2VSqU0VW48Hu/u7uY4TlVVURR5no/FYrIsRyIRLyVawjba4gaCXWby\nVe1KhNCGkgsnd2ndw13gc4+X+gemjIp/kpVexk60LIphJAwiP4wkXefx8U50zcKedA8v1qUoALjz\nMGI2H/aRQPFfRPBJ7hR2iarg+kWCG5ir15BY+ZYNIw9pXNL1VfU4jR0veRjY/RS6hb2+jr9wchcl\nWy2y1gyPKfuPfUE+c7UISxlFxBRmrpaZ6M9O0cXZ0IaSmspS75Kl+HtZpEm0Bw4ckGU5Ho8LggCT\nyzY3N9+9e1c7obu7G8aQ6dH0uFeuXIFqWk+zHADS8mOx3DC7G5M/Zx+IXpwFABzeW5t7vHQqeU9/\njkk5+8wtRLdNcAl/em1N99Pth7YAK1mK2LcKWckV5zlcM2fkiRHgFEgaaY7nDXf/uO5WGgSv/IXz\nXcrcQvKPcoJA+HYD2PWI5glxC4FR6i4vYX+6XbyGWBpaThDsm/78EAvoWyi5xpvEcvPg5tXkHi+x\nu32PjOXA/0o47r0z8TkDkT20oaS1qapR3NTaWNV1/r5nEq3Pl0VDiVZRlEwmMzc3pyllI5HIq6++\nipRdoEOUZZPJZCqVAgDMzc1Bn11nIbgcMBQFYMG36licJrEc7+17B+v6bozrN779A1PghHEreLoD\nfDQ/haLaqaksOx7dCh88k34zwG6/cx6DHL0BbkHdi3KCoH/YVSUHXnGhD/iYt+1yAAo7jK3gcbVb\nS3h5DUkuB+ZVFSCeJe6l0H5oC3vSxtuLGTDpaneYMBJA21qEng5rWiqrEGMz3E5VhjMylsNF1fo6\n/nh0m4+kET8ti+QKCwAAmGkLya7liPNANBqFrrpIslsXcUiiLSKI5WEAKdgzO2iYHgWdxEkR39xT\nP1qj2af90JZbvXscVJwUUKtB8IgPcBZL232G2Cz7XomEm+7EMAiUc/bx7hoqCiHLQfRtxk8Xy+6l\nKPBAnDXCe4k2i62q9XX8tdOv+0ic9dmyaKijFQQhHA53dnZqfgXJZFKWZXYFrX9QFYVTcv5xXvYA\nYnkCsFJXdpXjAcUVWJUGOX0tXFLqe/jupEGpm4+PijSvhmJEGmK3OAdYxqwiHR3cxE/xC0Kc6lqb\nqljHqp9m8AAPsBMTViiQEh5+CDizBFHVUlNZlrc42ySWs8d211SU+sGUjifYPh7d5sfNsG+WRYJE\n29nZqaUpSCQSyWRSFEVYH8Frj1gHMaoXgOEHC5F9jAa9pSUfAKAmTnO9P9P+TzhDbAAGxRvbD23J\nW5z1712QZZ88ugE4+LAxWshHxnKIVYF9tVMVZdVO73nFzw4JzkJQ0Cp+FxCREh6+TZ1uifaDdXl/\ndnsdb6lYpuxmeXVG8PptRPVT4YNKfbMsEiTaSCSiKWL1VcGKG2aJdg1YiIwUtHmgJj/hxAYQfUuN\n/YjgoAwAVFQQq4/amX18exdgbapC9yKADD7dD0gzxFpcI1iCHmupoDK3AIMbpYNPog9xpBCAKT69\nhnj8sc+o38zr0ykOjypG1cjE//zf9MEV9XX8j8940UM6xDXFkooESa1TdFpqdvDZzGP8sywSJFq3\nFbFaYYXJycnq6mpXv0sjjwpYAZAnsXdB7F3iW1paNFxH29pU5UfjiH38FNe5BrGt+MQzxBFT1OFu\n3zUVFoL6VXncs/lk8uEisOc3aL+FAARVUTgsFYwRjuhHrWZ0wR3Mzl4exU32eKHH1sYqAP4t7346\nBb6mWE3hXF2xKqfV2tBS48wvLHuXussI3yyLhpFh7gE9dMPhcEODh7Ost65vdqpR24el1IozGMsf\nvlWy2sVPcZ1rEN7KsCE91NuxgXf28ihSSWRyehGpBhLaUGJNR+vhfEJ06fG4hQAclVlNWxCBY/vm\nEJJ5re+6fPHGqukrOzjbcQYdyZSaBYXFaiI5tG7CqGIU7yH+5//2nTd+pb32/K1hSp+CgxdFcraw\nUZ74ZlkspES7Y4eHjhfPUzAHxauGViQsD57KH3gqbFywWBv4Kq5zzUPIfah/F8kPyocASZEz8XDh\n/TOSNvLnF5aPnPoSOceq+ofesYDnAjenAkd8lHG/r/fPSHv+9mbX+ftd5+8fOfXlvqN3kMWirUXw\nxpkkD6w+pLhojovvAIBzl0dJWmqfglRbmF9YRnLMFwT/LIu0CgtrCVeDOUL+M6+PjOWIOifc2Gqn\nkiT31OiGp8L2Syl2N/BNXOfagxNqVeSQ0WNrUEiltbEKqdIOAOgfmMpKs61NVbnHS1lpFt/y5eOs\n6c4wsC/KPD8BW4VFzdy073lipGKwVBnxO2/8Sv+nlnq2tanqLCauDY8qRjpjm8EPzmLf7bW6orS1\nqUqvwhyQZvYf++J4dBtcnianF/tujCN170IbStpavM7Sxc7Zy6PVlaVQ5s4OznYl7xU+LAzij2Xx\neZFoATBeGm3DHiUNSLPPf3W6PwCA/uwUUabE3SGI7gEcz6sswbwWi7H55dmziW/iOtcg+BMqDZIf\nW1wr8NRi0NYi4NVZc4+XjIpJ1lSW5ZOUQxp0YxjYF2VstsD+2QC8qqIRRlFZuIeYkX4kDwlvY9n6\n49GtR06iFgkjTkS3+VZBC/KqcNR+cAtilB+QZgZitMphPUcb/BMBsr2OR5RQucdL7DfUU/yxLBbA\n60CWZRgcNjSElVR1E3a3J/vQC1J7QN91Gd/94+6DNZVl5CmMQVTlxAarGRnx8FUjvHMFtg6hFHCA\nU2DygdFjS0io9HQ+bT9YZyn7G152hAXVK9cx+5NJwacjO/g5oId9TWF3ZbakHwHGucAhrY1VHx9l\nCvVeg7nDAdi+OWRpk9bWIvjK5aCI7C0+WRYLKdEODnrre8GWQZC99DMFo4LUDruxGpN7vIS410D3\nQURLSgkC4EyF2qeJDtzA19pc38R1rkm41YUJ1eQnhLIL8jjiucXpRuPGsvXsxtP6Ov69/CytDK60\nrk4mXrZQQAofx02B2Z3aaDPPHkNsJNmbysqH99Z+fFSk7PFCG0ounNxVpOKsqer6+DtbGb0ICliN\nzAjGKD385hZgAfXHslgAiTYcDnd3d3d3d79z+QX5AAAgAElEQVT1FmtdbGfwQTiel6rHvuvy/mNf\n9GensoOzF2+M747dxNcGmnbKTKLlrJsY/Kx5tYAPBtJaBlfTYqU91NiP0E+tHq7vHaxjWcZCG0ou\nnNjF0ikO278VPBiCUr/amxbsd6C44LCyt6o0yFjlzkjuxCUPqJbDncHsSPaH99be6t3T1iIgok9N\nZVn7oS2Dl970lWLScXo6Guia2tCGkhPRbX4TZwEAG8vWm85jNZVl+DkFyLbkj2VxzfrRcoKAVARw\nxJGfCG4a8InoNiDNULRE7Ye2ULymOLEBjdFBsK6j9bXm1QBObEBkF1UaDHIbuwcX3q0mP9EfURM/\n5fgQiB9b+TP2IzzVAJ7fu6ejIbShBHeo1aiv43s6REbHQS5+jJDfgNmN0g72ze5+NtwXC5wgcN0/\nQUYmAABkbgKG3PLGtevQ43BAsrty4rILMSdAdUVp+8G61qaq7N2Zf5v5BgCw7U82bq/j6zfz/nEb\ndY/j72xt21vbd2M8K83o9wZNYnmjuKmtRfDtRWg/WNc/MGW0dMI9eW5hCZno+q7LrU1VeXgeM+Lb\nZXHtSrTRt9TOD9Gj7gSH4Yui0fjDbU81FaXggcP9qaksM/Wcq6ksM7HMUpdqLrLfqhPtyBiTMsMU\nut+Y43CR/QRtnD/iOtcmkf14YOKTzg+55KdAqAXyOF67jhME4u04/s7WRnHTuUujyL4OhjO3H6xj\nXMa4yH7y48BciZAdfBGyqpyz30IAgch+wIdICzlTtSSiZgHPjU9PuZodtFZkQfuWs5dH+wfQSgrX\nnvoA19fxrY1VfpbqKLDv1qorSo+/sxVYKYTrB6orSk9Et71/RsLfCm0o6TnasH1zaH5hGU/wYrUk\nhyV8uyyuTYmW43kQfRs4LdFakqWIwa247clSYDIjNRWlrU1VFO0U3NiZzF9CLa7n1sCNsKZYrdRn\nFB3sZbp444Hki7jONUv0bZD4KXJMlWUjVy3OuCBtY8OmxoZNk9OLE9OLWWk2VLZ+ex1vdaKHPuVc\neA+iprVTOcz+xgxX+1lNmUdsATno5+oMXro9rIyx8B40yUbmJgAfsbTQn51CjPt4bny9uQ9XTBBr\nv9GVFxdvjJ8yS/AE83mdvTzac7Sh6NwPLO3Wfv0oNfStlPuDMrEs178o8i/wP3g5UrNeAAD8Ipcc\nX3o2vbxRGna+r/lyeG9tdWVpx5lBpFhxT4cIH/mNZesffPZ9z/rj52WxABJtMplMpVIAgLm5uebm\nZle+I7wb8CFc06NmbnEMOhViIXhgcXKfMBDIvOH4O1uN0hXpnwQTIvtxwQLAAW2mlsAT4lpdGtkv\noNXM2xaAihl8IPmmjPWahIsfA8lPmPLHQQWt5uCYuaWFn3PRt4BQC1JX1dTV7ym574kNjfFjzwwL\nqatq6ipQckCo5eLHTDa68F6LDWgkEIMrrSMbM2J66RwWZkqJ/sm7BT/kSTDKro3jUmpwLvo2HCF4\nvmRVGmTMdJ6VZhF5se8GOj/rEx3UVJQiF584ZvCtkSYWd52/T9FrIMC0UBdO7io6oZaF47Odv1CS\nyh+eTSm3FjIAgP8609nx3XjHd+O/fpSCRzR8JdQ2NmyS/uEv+rNT0NTZ2lhVyIzvPl4WCyDRRqPR\naDQKAIAZD9z4ihUNIr4Csa2Rw2MKoxZHG1VNYjliVxoZJTRiP2s0kaunX8MP9nQ0tDZV9V2XtZTy\nTWJ5a1MVe0wrF31LJUm0IPq2qcvBxPQC8sg5VazPpWtIZCXhQ74DKSBP+BAXP0bwGiLBdX+kjUY1\nc0sbsVx4N8jcehJ7d+W8zE2QucmlPwd8CCQ/fXYcAJC6yqU/N9IucGLDijTDhwjSjFn3HNmYeelK\ni6fANMKz6BNLnXejA8/0IESFSOYWMLYSaPRdl9v2CtqsmB2cxfWLdDGFOPXhjcDx1p+dwmsHtB+s\n07wLiPUFOs4MNonlwA8ekQywGDomluW/njow9A3Bag/p+X3i9qIrcojjtDZWUfYbXefv6/9sFDe5\n5HXg52XRGYk2mUxCIVWPoijJZBIAEI1GeUvl2u0D5x1itnYb4LYbilKEuJ/GDxILHDhFY21J43/6\n/8B/KgMAAOvpY4FQi1taOZ7nnsboUBgZy+mfvZGxnFVlj5EbEK5YchGjgeSPuM61TPwYJ48TAnFW\nw8U/MDQXyOOITKxKgyBxmgvvXiXOwmq6nR9y6d+Qv0Jrn5j9I9/gMEpuZvvbY2c32EY2q4Lj3eZW\nW79IvliqNMgBprw9HT3ShRO7qitKR8ZyxDz5+uUA31rgOw1KcEJX8j5y5MLJXfoxsOJXCoBeqIWW\nvW3eWbBtYWroyD1RWiab9e4EAIDaEuEHL0fg/3/9KDW+JFPk3SIC18e75Ufr42XRbvYuRVE6Ozuh\nFwFyfOfOnTzPK4py4MABm99iCU4QVq41JkYzJtwx8jqiTB8bN6AzPtFtFJfqXFkqkp+qBw6pr/zx\nk1fKnzS/ufJ6pVx95Y/VA4dA8lP2lrjen3GrLyPX/RMWyRjRyJ69zGr8MgW/hi6loaYNJOY8lAF5\nw/X+DM+XtOqE+Adct6ELo5o4TfBbSH6C5wID8IYaZQjXBFmj4DAqRlKXJa8D4i4O11xStsd2Wih4\n5hYjZbCnm1sNfBgw11kYHlUaDn2+/9gXu2MZon7EVJ3fn101r2YxGRfWc8Y1CE1iOVG+aT9Y1ySW\n61+Fuap5YZ6MdqYTEWc7vhu/9ycPujZ1w9e9P3nwf5Z3u9nHtYbPl0W7Eu2BAweIngOpVCocDkej\n0e7ubkVRJMnDPdDTGYfsMstQ2SKPqHw8RnV4VEHqKXgRxyANqa/+6ZPYu2rqKr6cq4qipq4+ib2r\nvvqnLNcBAACEWq77J5pQy8U/YLGvAQAmHi5oRpCLN8bzcDkwmq3wdPFu+SvTB5IP9qNrHq73Z+t6\nf47UXAAAcGLDuvTnFHEWwEgy/KCiGE27hCJkeH8wNa3pJpldPgiVGXvBspmbKdtj+y0wtukl+ObW\nVZMXhDAGZNnSbGDk1IG4nbCUMUcEXN1p6FcY+bRsLFt/9fRr+tdxv2YDwNdl+sM1sSxfUJL6I/te\njnRtQuXX978TD4RaC/h7WbTrdZBOpzOZTCKRQI7Lsqx5GoiiCIVaRVEAAL/73e+mp6cBAL/97W/d\n8EZ4dqGJ3vo2wvHwGZw+gQ5IM3rLO65pgPtpx0C8A41RZVnduWtd78+ZxNPoW1x490r0g0EARHVl\nKcD2LGcvfQUn1vySBxkpsRypw8TCs6WLOErdyQQXgBJ9i4u+xUlDIHNTVXKcUAvEBsZHmON5EN6N\nFxgDT71jV0mxLAYcsQE9zWxnaGjwMfahxM3NuJaUvuu20wIuSBE9FryEfXPrhXeEDVdaOshyQHRp\n67sutx+sg3v4kbEcwRO3jgckUc8lD2MvwU0K9D3Vrx+hpuOO78aJZ77/nXjP7xP6uLEAI3y+LHoR\nGQbFVkmSZFkGAExOTk5MTAAAHj161NLS4sb3rfyHdGVZwvGMnhP8idImUKP99GqJ1k1RTBrCI2m4\n8B4uvBsuw2rmFpp7qPNDLrybafwZy7IQI39iO4kwJx4u4A58+DLs8K5Aj/aTSfITY96MAGskP1V1\nu3xOqAXRt4CSA7KsKjkAgCqPA3kcpK5yfAiIDSZZk69cWjnhwCG98Kq5K3CJ00/Y4s9WwA1tsswp\nOYofjpG/rDWvg8dLSLw/7tRET2XK3gKhoqaBJsyzvWXBN7erILrSZm5SUsgxgpQ8NdpFHDn15bXT\nr+ceL3X0rAXvT3bwnRV9AOASav2LotHJO14SkVwHPmRyerF/YGp4TNH2ctvreK/zHvh7WfRCooWC\nLB465l6uAw08ITZL9WGjCZQin5nupyenF432046gdn6IuBmsUsGGd3PxY9xqJa6qKCD2I6OAGD+A\nKLmB27sCYwgDyQdxnWsPNXV11b4LbsZI8WEw7QBMJEdMv6Uvi8BF9msS7arQxvgxQlZFY7jwbkL2\nD2qdBaPU+ojFXC+PElNQZaUZ/bqFz1F6b3L7Legh7vDnPfS2LPzmFiG8GyRXryNUV9omsXx4TKEn\nhW1tqsIVzHjafADA8KgitPQbtWPkXUDMZVtcICPWyONCI7eGdK4jY7mu5D18MhmQZs5e+qpJLO85\nWoC768Nl0a4frRGRSETznZUkScA84Twir3A8OIEiB+kTqJH7QceZwfmF5fmF5SOnCJGtjiGPoxkJ\niA6v0be4+Af6A2rmpiOOLy7tEXE/Ddx46pE1DbewFNph6HlAlQbV5CdceM+67p+sS38OX1z8A82z\nVlUUNfmJuvPPCfGO+jlHf/vySPqh/yzeSbPAIHzqwIexXpokDmnUgZLqmG6nBXwqI+7wPQ4XI3lN\nFGzt5LBlRVUUuv+Jac5sREELycMtGHpj4xMy5X51nb+vf5lKioUCGcCmyeNCL6BXb/hbQ602EkDm\nKy7eGN8dy1AU0gPSzO5YIaKy/LcsOi/RchwHABBFkef5WCzW3NwciUQKJ9Gi38uY7sDqBGrkvzUg\nzTQc+lxo6Sfqdx0TBLGgFqMEW4TjzIG6FChZzOyALLrzC8tOJbW1DB4O4oO4zueBdb0/59K/AfFj\nILwbvrjuj7gH/6JPg6AqypPYu8hkamj8IibhYoQP4WFqpmYffOrAF2M8WQrCgDSjZd/MDs7iQVGm\nWzvGFvCpjLjD9ywZrdHX4Qu8d66ixIqJ1AmBKLBq1FSWEfOM5vGL4JrSJJYjc3LfdZnoOX3xxvjZ\nS1/pX5S8coVl4uGCFl09Ob1IrB+kZwfmY9DzezTgB/Lx1wnfSrT92Sm8BG5rU1X7oS3wBc07dAuA\nW/hvWXRAog2Hw+l0WvtTVVfSkF+5cgXmOujuLlggIUeMIGEI889DO2hk86IMNacEQehiqMGF9xhq\nofgQEqurOrGpyjtwhP4c5h4vXbzxrHtnL48Svtq9gmE6OOL1LPR+dM3DiQ1GATdc90+QI6qVtHT5\ng08pZvMJLnvhzjN6rwOjp0kz+HQl79G/0X4LCPhP8LiWGL6V9VikXoW4g7OYGrK1sYri6GxkMraa\nl1BbgzaWrW9rQbde+47dQfLtZAdnT60eCaENJfgH/UNX8h67zfMHL0dqS1b9lmuPUsdnO5HTPv46\n8V9n0IM+YX5huePMqnEV2lByqzd84cSu4+9shS/pH/6i/dCWgnTPh8uiu360okhwxPaiCq4GORzP\nPN1BVpoBq5OYmGoHifH+dByLILZUOQK5Jg45vuBVyHHq63hEV40UYsA5lby3fTO/fXNoZCxHrOjo\nUjJaFKJir9BxnWsfxTiiHxu3HB9SKec7BW72MQsOy0qzejdQoks9S/lWaPABBvtAFoMPYwuEAg3Y\nc+qxQAn1c9qEefHGOP4TPI2PCe9GLGNq6iq90tbx6FZiVYXWpiqjhWC7Ra8DvZLl+Dtbs9KMfqTl\nHi/tO3qnprIMzpkT04v4jN1ztGFj2XrgAy0tsXYd3YcY55dVV/43eaf+SM/vE79+lIIVFnJ/UG4v\nZnyrnQUA9F2XkXF+4eQufJwff2fryKhSgEBJ/y2LbvnRUohGo+l0Op1O4zm/nIdkeVQZdLTDo4q+\nwl5/dsp0ArWqcK130EaWt18gMBD6rWO6nIQ2lDRiamxTW0nu8dK+Y3dgTnLiCW4lo0XIy4EywCaq\nLKuxHxHkWnlcPXBIf4DjeUAtx+AUZLMP1daWe7yk3w/33SDoMNgNPkaPDDL/2G9BD7KfJ86HbnPu\n0oqJZn5hmWiuqamgZXtwFjwrLQDPPLiunn7t69t/pb1glfLWxipc/Vlfx3981DAA36qMjmzvr51+\nHfd2mHi4MCDNDEgziDgb2lDy8VGRrl8oOupfFH9ZdYVf7VA7viT3/D7R8/vEBSUJxVn+BZ7HnG79\nAGIZrqksM9r8HG4phBDpv2WxABKtx+Th9wbRT5oXrxMWIWQBsGr+dlIUQ34jXe1vrxSwEaZBDK1N\nVfglYtH05B4vGe0+vYtuJu4ZCh3X+TygJj9RX92iHjikdv545dX8l09e3aI38nJiA5f+3Na+jh3i\nJG62ST6VvAd3yIymBlO3WhzkAbTTAu6+qXdhBAWy+A9IM0dOfdmfndp37A7RHOStjpbgSmu6lvd0\nNLQf2qItHG0twrXTr9Nz6Fqa4pAJdmPZ+gsndl04uYveCPQ0uNW75/DeNWhx+sHLkS+Eu0d4NNWS\nxhE++oVwd8dLhvuKAoJkXKYYJL3czj3Df8uiF9m7CoxQi4qwbOWy+q7LNRWl7x2s6+gZJEpUyG7J\nalwqPX+kJThxh6r7U5VlzqjcfOYWkuSLrHOyTmtT1Smqcx5R4p94uDA5vZi3cO9l2nAuvAd1ew/8\naF2GC+/hIvvV5CfEgl6wgAIX3mM/ub0FhFqO59GCfKaVwx4v7Y7drN/MG4WcI49AHpMDIhjZbwGh\nK3nv5t/vAQBkB2dNg3Jcon9gyjBFg8cVBMQdeQwDAAD0fWSf9BrFTYzW5JrKMmKbrY1VrY1Vk9OL\nWWn2zuT/XFhQ52bWbVj3Mpw8G8VNhS2f4QE164VzFb1d5d23FzJDunQHtSXCG6XhmvX+9Rv2P35b\nFp8DiVZsQGyCqizTHZ40TiXvGUlpuIVuY9l6Fl9SDSdDmiL7kelV7fyQoLVScmrsR/oDMJ2nI12o\nriil/HwYzEusA9w/MPXewbr8vrQwmaWfomZuMg6kgPyBNcOUHCou8Hzexf/sgk0pLKKMJVND3iFB\njrTQKG7CFcnDo8r+Y19sr+MLJc7S8cj7SA/uSqtNCJlbT5rfpHz0PwDwxPjddeq/a/9vFMsBYArj\nM1pQbi9mfv0odXsxMy7IQCe8lb4c+SEfbSzd+v1/bdYXF+j4bvyN0jDLN7oKcRBaIvdEGfpmVWhL\nbYkAPWhNz+Rf4P/vE3/0R9KzqmNNYjn0HiGy8Geq0Vt2QCwtlLIsBUtm57NlsQASrVZYYXJysrq6\n2u2v4/gQYawZqTCZIWpkG8VNFiRaZ3fG0beBLve7Kg2C5je57p88+5mZW2rnh0ipG6MkX/nRtrfW\naAPQtrcWGFw09sL3OB6UcX+GL4v+PS/wIZsPrJPgm2RF4WyMhOpKVBrDj3jZAsxpigP9Ly016xkO\nmrxYIaakTF11SkcA2b45xKgowSXa3BPl8NQBo1JY1x6lrj1K7S4Lr+Hqry2Tq0LP+Rf4i1VXEHl9\nYln+66kD+ovAv8D/kI/+d3Df5re/URpmlHQnpxcR93q4YjaJ5XqjxMTDhXOXR4kKoL4bBdpn+mxZ\nLIBEKwhCOBwGAAwNDX399deuf59ROJ49iPbu+s18H9vHHXcA5bo/AtKgXv+vSoNq85uAaBeAH4ns\nB85KtC3C2cujeMiIlhGGXY3NmDnBS8UM4tqxQiDRPn+QR4I0mPdIwPWpVre7zrbgqenDIbzJ4qeH\nWECOpcq6VVqbqky1laENJUhQ18Sy/Jq8E5FWd7wkavLc7cXM0DeSb0u/2k9iE1rH/1+VvX/3MKYd\nUf6gtEw273hJ3PGiGHqBn1iSx5dlXDt7vTodWuepE8vE9CJyixvFTdUVpYf31p69PKpfCs9eHg1t\nKNF7PM8vLL9/RrJTcN4OflsWCyPRagUX3K6CC4BBJIc8blMxTnze2GdVNxxAuSuXQOxd3OOQLM5G\n3+Z6f+ZsB2ASRHzyPRHdprnoSf/wFyxNreSXoQq1eOYEdyGpZApexnqNwUX26x9YTqgF0hBQFIKC\nFh63UwAsb4gjwYYoQxzJeKo7CuQNto0WLH3WDzho8uK6P+K6P0IOzi8sD48pkw8XdZbfTSCJ5mus\nqSg97FQ/ntK2t9ZUosVzGuB6R1w9Ofyt1DLZ7E8dLaO2Ai8UPDKqaIPhh6HojhfF47OdesF96BsJ\nkWIh/Av8D16OdHw3buRZO7+w3HddHh5T9An46uv4UFnJ9jp+++aQG5kieo427Dt6R/sz93jp/TNS\n3w0ZThoTDxey0mxhyitAfLYsPgd+tHwoPxd+OkThtbqilHElcCVJCh/irlziUlfVxGlKum9ObODi\nx5w1jWm0H6xDkiC2NlXlF0Jr6sLhtVaG6LUZpDtwDrXzx5rSa13vz1Vp8EnsmQ5sZdzyPBIoxgkC\nFz/maXAYuW4L4YnDl1viOUSd6PbNFmRKojxnp4XqilKfSLR4clziOa724cipL40i0moqy+j1wOxT\nXVFqehHaV1uif/0ohQhtXeXduHds/Yvi9eo0krHVP7AspvWb0bS1iBtb/YviZ99LTyzLMPUsXgg3\ntI6vKRF2vCgSXWw1hseUhkOf448z7CHsQ2hDSfvBurzDQog0Nmz6+KiIlA0bHlWQK1OwLajPlsXn\nQKIFpEgOY68DxkXIaAfZ2lhlOrBqKstctOtF9nOR/Zw0BDI3VX08jdjA8SEQ2e+qOWBj2fprp18/\ncvJL+IS3H9rSnu/jTXfhoGTmcw9OEBBH5CDdgUs8ib0LYPU7eRxec1Ua1HLQwmygcNumyrIae3cd\nAF4KtQRPHpJEiy+3OEYbM3YXJqMwfzstFMAt1RjT1drxzW3X+VU+lJTyOoixjhK7Y4f3DtVRBlJb\ni4CsR0OY3PbDEDl9Vf2L4o6XRKLOsuAY+XPrwQsxEJfvmvUCvAKT0yta9tzjJX1Z4HsA3HvqOEvM\n/5B7vBTaUNJ+aEtrY5W2fI+M5fpuyFqsZO7x0qnkvYnpxZ4OgmW4Pzs1MpabeLig5eRi1Owe3lvb\nKG46e3nUKCizrUU4Ed1mqfaEg/hqWSyARCvLsizLAIChIaYsWg6Ah+MZpzuwswgBhiRWALMQ4Uau\nizfGB059SawtBJr+Qa+QaG2qOgzA9/8VLb32mZgG4o6ChBxuLFt/9fRrI2O50Ib11RWlI2O53MIS\nACBURtZFGdHaVIXXs9a/60BfrYJlggvSHbgEF9nP9f4cehRwidNPOj9cOS4IXPo38InmpKEnO3fB\n42rqKuepmpYUHEZKC2iqXTOKbmSvF2XkfmOnBZZIc0upXezQKJabSbQ0He3Xt/+K8i6SgKWmorQA\naRPMaGzY1H5oC/GOQL0gcjBnxZHAn8UFgEHZMD1NYjnu/jf5kLyp6Dp/Hy/BBdHqqK38WVEKSNE3\n106/jixh2zeHejoaaipK9Yt+33UZqQNn9NXw17Go+asrSns6Gk5Etw1IM3pBvKaiFHrcArNx7iJ+\nWhYLI9F6mesAAINwPON0B6aLEMXIVV1R2tYi0BPctGFWeEQlQFlL2loEfeIwuN008u4f/lYy8pHa\n8ZLohvP7/MJy/8DU8JgyMoaaRTTq6/jtm/n6zTzdG2Fj2frWpioj7Qh+Db0AV/aDIDjMFbjo288c\nZPWu8HojQ6GydwHACbXk4DCwGTlmuiobLWbsQe5GG0U7LbAYQLZvDnkj0dJ3wjZNXnonRQBA+6Et\nMGWs/iBlQt5exyMnuwTu0AU5Ed2Gi+AhTEgd/laqf5FQRABPXOUfTG/r9joez+mhPW7sq2pNRane\nj5yoaK+v4436897BOkSNlZVWKjbPLyzvO3YHv2tQhICFiCceLjDmKZt4uAj1u5qid2RU6R+Yqq4s\nhc5L9Zs9jZZewU/LYgEk2nA4DHMdaGm83IYYlEpRjJsuQnQjV2tTFUWixS1EeIPsz54Rr43vhDtv\nbRaD0q1+8oKO8F3l3U6JtsSdqF76h1cV+gD1AXAqea/naAPF5tLWIhAlWuI19AByJrhAon0OId1x\nVR4nSLTUVZmer4MxGyBlg22nBdONvWeeCXSzrOnmVjMTIRRXZQHo0IWIRx8fFYl6gSN8tOf3q4rM\n/910jBjCf3ym05+RYYClDmVjFfHOjozlHPfrm3i4OL+wTKxCMolJwKGy9YAkzoY2lJyIbtPfssnp\nxY4z5BJOGrDsc//AlOGzrNuS1NfxbXsFL8u/+WpZfD78aA2WHyPFON3iZpo0qrFhE0VNS/QrZZ9b\nt9fxLCcb5R/RJ9NW/qBcUJI/eDniSD7tPX97E9mJnohuQ3zk5xeWTyXv6b2Ojpz88sLJXa2NVcTk\n1Y0Nm/BlFU4K9jucD8RMcNKgj1KlBthDH6LLRd8CmVtq5hZInAYAAD7EiQ0gsh/wPJDHufgHK76z\nfAgIAhfZD8Qd4NgXSIOtjVUU13y6rNYobjItZ9AkllNqfdlpwbRalf0c+OxQZlSYGRBhcnqxf2Aq\nK83qf4LeuDw8puQeL3lXRtsJNpatv/n3e6A7JgCgbW+t0UpUs17o+G5cL9QOfSO9Ju+EgfzQcXZi\nWe75fWJ8yY/1MiD0qj1QK0ms2jMypmzfHHJW0Q5Xq56jDcg1n5xePHLqS/2R+joejsm+6zKyJuJ+\nC9UVpVdPv7b/2BdGz9rIWG7fsTv6CQR6KWzfHILW2smHi8NjivZ0DI8qw6PS8JhC9OV1BT8ti8+v\nREtJd9DYsCnvRQhyIrotK83ijyLRQuQGHqfTu3hjHHl02w9twUM+N5at7+loQMys9LyDF07u0keY\nhjaUmFZCdxFiJjglF7jS+gRi3iUAwPyu14alf9P+zD2VCQAAMAETNJLULyy/nLn1zJ6T/ATwPJw9\nYByYmroKOj/kBGElcRgAQBqEeVTUxE+5+AcA/O/4t1OMNkRp7NkHqdKw1rhLLZjXtfZQx2l0Ddta\nBHw2uHhjHHHBhyGqyJmT04umMQ8FZ2QsNzKmQDv4yOo5tmNUgfa6UNl6XNPRtakbAKAXaseXZH1y\nVg3+Bd63alqKkQGOW+Ly4VJ83oA003Do8yaxXDOT4n4gTWL5hZO74EjLSrPIW0aa48MttUSJdnJ6\nERFn6+t4dAVsAIdBbf1mXj/m+67Lpn59juGnZfH5kGgB4MQGNKEVNYGX0QSqFQugs7Fs/YUTu5Cx\n2NYiOJvXwz/gMwjFMcPSQrixbP3gpTdPJe9NPlzcuGF9+8EthUz/Tkx9ajsT3JqBE2pBeA/8v5o4\nDRKnufBuwPOqPM6F9wAA1MxNNfFTKNKxthUAACAASURBVDJyYgPgeS6yf0XxKdSqnT92vEuUcJDQ\nhpLWpiqo54BrT01F6cv6M6Jva/Ixl7r65GmmBcCHuLv/49lgePVPV0J9pUGw3YJES5TGGD+rP8Gl\nFui5CN0LzbRvrkFclZrEcqIGrrqi9OOjIiWPweT04vCYMjKWaz+0ZcTgOow8LQ4MAGgUN9Vv5p3a\nb+NDF6Y+1f7MLSzp9Y5wbdL/0q5N3W+Uhn+hJK89elbNVc/usvD734l//HXCt3UWKEYGuMR45n5W\nX8c3iuX9A1PEynmhDSWN4qa2FoGyulHcBfWxMXr6B6aQues9bGMGOby31ktPg1X4aVksgESbTCZT\nqRQAYG5urrkZDdJ3C6EWucSqonBKzig9u51FCLJ9c2jw0ptnL4/CqfBwSy2Lchd6u/7qBrlXO14S\nc39Qbi/+P9oR/gW+/kVxoUJBB9DDW8QWPgP/BYD/surQNzwgBAxYI4Rdk8mHi8RwUYAFFyM5EGB2\nFW13q19I5h8vdyXvafNCo7jJ+8BkxrRNzyeqPI5cHDVzkwvvAWIDEBs4cQcXP6ZmbgEAQOqqtsOE\nis91Vy450of9q+3+0LhsdPLkw8VJ8Gwzlq0o/Wvdu6uShOujS8N7Vs0bulBfx51n2g/W0Z3yTacj\nOy207RWGR8lhQ97b63uONuyO3dTfzZ6jDcTOH49uGz727L4PSDMdPYNI+Pn8wvKANHPxOjmaYmQs\n19Gzqg5TfR3/3sE6xENjcnoxK832D0zBaerZVG/rh660DFar8PVJo7ROnr38lSaR5x4vnb30FSK7\nv1EafqM0fO6JMvSNdHvxmdi640Vxx0siLCXw8derPG59RZNYTjQy1FSWaeupS6lYic/y8Xe2avm/\nNIzS+GzcsGpwZqUZYODbYJSfAS8RbyT7Fhb/LIsFkGij0Wg0GgUeRoYBYFCDWxoE4d2WFiGW7KoX\nb4xrI157FC9eH794fRzGJOpPPv7O1tuLmV8oyduLGc300/HdOCzTh7QMd9v66K7dZeHPvpcG0uCT\n5jdNO0aEC+/h0r/J77MaeP3bU8l71ZWl+Ib13OVRxNL38VERTgdd5+8jzu9tLUKjuEm/tR0ZVSam\nF+EKDfUTcKVxpWIFEWwLtLI1CiDBxT9A3ABWxMTwbnX1iFWlISOfARDevU79d2L7+PH3Dq16QruS\n94ZHyRJtTWUpcnJNRSn478Rz7YLIWMBYGkOg505hmY7stIAX4YRA9bbpV0PoSYWQHQilIEt1Rem1\n0693Je8NSDM1lWXHo1uNnnqoTYDqNJgBtO+6jF+BmsqyRnETIEnseKqWRrEc/7rqitLWpiok3L6m\nohT8T2K/LFBdUdp+sA72P/d4afLhIhSX6Ts0jYll+YKS1B/hX+ChHwLC7cUMoqDdQUqJUChgxhv8\n3umH382/30NpQcsC2ySWw9wCYLW2e3hMOXvpK2imBwBsr+NrKkpbm6qMHs9qAzUKPpKbxHK9BWB4\nVLl4Yxwf3jDwi/hduE+FlkUBp5B56HyzLNqVaBVFSSaTAIBoNMqvTpJFect7DEuxGzsv44uQvpqr\nHvYsIU2gPFS3SqKdnF6s/a5QUyLseCJquQj0m+miAMbhwsUGHsk9Xtp39A5M1AWF+NzjJcS3GO4Q\n4BN+7vIoct2IYbzwYfbO5x3HaGsU4BzZwdn/v737j4njvvsE/hkn8DhlqXdcP7ggLsD4ecDXiwth\n+MP36GKIvSs9ec5+0BM/i2RLZ6tOstzT6oJiu1qktHZstbrlarsid63qTeJH5NHZkrd2RW01lVg7\nEN0p0SnDj3P0yPDUA1wpxDyxZwlLk0KSuT++MMzOzA6zzC674PdLVQXzYxnGE/jw2c/389GPG2W/\ny7W/Btmn2t85laVF+r+dDD/ubZq0ez2F5t8NFj8lMqG22nv93J5jZz4Ym0yw7Kzzv8HaDtWY33wk\norbDOx3+xnLzCm2HasxtobXMbqpoVXu/nnRvs+j/NGX96knXa8l8jFlttdecgLCMibd4CirKio6W\nLf7XOvfZF/cmln/yeJ54XCj3aMdr27Ug4Mj+qtpqvrtvYmhYiSfmB4eTgh49bVhUXTVfUVZUV82v\nuELfibdvjp6J3NH/k7Ud3llb7X25uEZ/nWff+Mjy101lgfDuXMzQluvdudjffT2gjXgdW5AHPpMM\nge8xPvh3Xw/k1S8g85sMDlNLff3Tx177wFC20X/5OfMzz8bbaglRljRhJYJDI/E+6X48saA9xvHE\nvPZThT2uY5OJyjKP+Uk+9dJT7M8qbeMr56XBEUV7u4CtXzQkg/Sam8q7biYtL+u6IXs9BfZLrpnr\n5/esXUSbN78WXUW0iqI0NDSEQiFZlltaWnp6epzsyg2rkNq+eNn8SyhV8sD1mkpB6zbAPjBP6mPi\nXypPbxa1hth1m8WMtCnICPbLpq9/mi0xZpGreVgf0yRuZ1VH2l8IjeJ2b3HSf9jdvRO11RYtAIdG\n4t19SaVvliNesiTln0aW6z0hTeY1PZde221ZBGloyZSNfj2ro/r/xnL7t4k+JKLHiT4j6iS10+IY\nLnDQPPmsorTodHCX4bbU1fDOp/G5eYUj+6t6pfv6VFNlmcf+xOMX+vW/XCvLPNfPPWP5y/Xtm9Zv\n+vf1T/dJ0yyGGJuai8/ON4ol5mZhlaVFY1Nz5kiC/YjQFywZAmXl0/nf3/8jWf2sZq1XiKi22mt+\nomYSC4Mjyy+bvR87hr9AvMWFlaVF3uLFv8H6+qcHR5Q+adqmnuRGRc+FTzr+UYlob/3dThjTsXpP\nPyEe44OpRovlUEVpkWG6hHmRn6X47LwhUqwoNb5HymzxFHiLC/Vv8ccTCzOJhVfOS4Yn//bFfZZf\nemgkbvl7/9Jru7UJmozl2wWpGGZw0tJYss4rw3XVPHuqh4YVQ+beW1x44UT9Wi7czJ9fi64i2mg0\n6vP5WAlBQ0ODJEmiKK64K7O48I/ea3lZv2VoWIknJ02JiKiELWrWel4s6p9ufPjRYm2fybeJPvw3\nNLT1icrN81v+1/9RTe9IcuEfkTyqRt5a/FSoIqHqwatb2af6l12qyZum2G2SR9Wlbrhc8IWZkvJN\nI9/eR9/WDt5HlMEVBmupsb6ksb5kJrHwv4f+VUuK/N8RpehrBTvKPUTkeeLx7/ytxd9z2huFgyPK\n+OQcq77vbb1PyRV72n+6LCnCpgiuaV/J9P80Aueam8rjs/ODI8rM7AL7tz4b+ahPmjb/HmIFKvrc\nWEYiWsPPk6Erw/HEQmVpUUXZU6TrlkBLb/CNT86Ntfw377GCxZipf/oZc7Nx58R6yweJ/S2tJe0s\n1juvxM0r/PSESEvLrSrLPJdO77Y/se1QTWVp0eCIwqYejk0mjp35QHuvRjM0rBgKDTVaLMLeJvYW\nF7Jwli3qp6URpqmWtNf+OdVWTVNS/sGixxMRnVr6Wb1sYYQUzzeeT4r8DHNtNN29E1oF5MuHazL4\nPu+FE/WdV4a11EB8dt78B0ltNW+uJzn7xkesq5d3E3+2JHy2JPzuXOzduVj8S2VswSKQqtssVhUK\nzxb5tNxtHmo7VDM0rLCozvkC6+bGcu13yszsAvvDrLt3wrDAjnS/VprE7VuKC+qqeVZ18NMTYl01\nr50+NpnY23qLDS7Rn27zJLMJmm/fHDX8Wah39IBg6FRgfgVDqig+O2+5QI2VOtiUTGRL3vxa5FR1\n9e+ztbe3E1E4HCai1tbWQCDARidY7rp///7k5CQRPXz48OHDh0Q0MTHx5JNPHjx40M038Pjjj3/x\nxRerPj2RSHg8rvqEFxQULCwYy7fX8hr++Mc/fu1rX3NzAY8//njJr28+MfWxtuWz0m9O/s1fOzw9\ne/dw7nNV/vhL/RbPZq7qm49l/Boycg/xHOIeZvUesv8cUv0nwNjfwxVfweb6Rz/+MvG5uqtyhSRI\nnt9DJ/LtObwzlnQx272bSrybsnoN+XkP74x9Yf/w69k8h9Pxr+7Hv9I+TXU/M34P2X99o1NfJj5f\nDLp2VT0ufPOxos3WgZ/lPdR+J04ri9/FrqrHyeo34wb4ecjzfLqZ0IytDLOplGW7fvvb3/7ud78j\nok8//XRmZobtampqsl8cFo1GA4GAzQFf//rXP/3001R7FUWRZdnmpszMzGzZssXNBXzjG9948OCB\nm1ewvwZJkgRBsLm98/PzhYV26x8d3cPCx6kiubBv6d8lr+7hfaJ75vx7ntxDPIe4h2tyDy3/E2Ac\n3sNUr7DiPfwf/3WD3EObA/L8Obz/CN9D7ed/Zn+npHUNzKrv4deIvrZ0ASWBwP3fpbzCFe/h72VZ\nFEX2CubfjBvg56EgCDmLaGU5ZWkI2/VP//RPq3tlluhdHUmSJElixQ+r5uYC3L9Ce3u7Njc4JxeA\ne+j+AnAP3V8A7qH7C8A9dH8BuIfuLwD30P0F4B5aU1348MMPfT4f+1gQhHv37jnZBWkJhUI9PT25\nvor1DffQPdxD93AP3cM9dA/30D3cQ/eycQ9d5WhFUeR5vrW1VZblQCAgCAIRcRynqqrlLlgFn8+H\nu+cS7qF7uIfu4R66h3voHu6he7iH7mXjHrpaGcZIkkREluUONrsAAAAAADIiAxEtAAAAAEAO5WAK\nLjjX0dGhKIv9sd0XcT+CIpGIVjufV0Ps1hH9PcQDmS5ZlrWnjr3FhucwXeZ7iOcwXewe8jyvPXV4\nDtNlvod4DleHdbhia8Iy+xyu0NYOcqujoyPXl7BeKYrS3t4ejUa1TxsaGnieVxSlpaUlt9e2Xhju\nIeGBTJMsy36/XxAEQRD8fr8sy3gO02W+h4TnME2yLDc0NLDyP7/fT/h5mD7zPSQ8h6vCHjkW1Gb8\nOUSONn8piiKKIv7yW52WlhZFUbS/+dZsiN1GYriHeCDTxfo1sqdOluVoNMrzPJ7DtJjvYTAYxHOY\nFvY2C2sdGo1GZVmOxWJ4DtNivoes/z+ew3S1tLRoHbsy/nsZOdr8xRrO7dixY+vWrfhbMF09PT36\nnzXsBxD7WBRF7a0isGG4h3gg0xUKhbQbyGIIPIfpMt9DPIfpCofD4XBYkiT29q4gCHgO02W+h3gO\nV6Gjo0Pf4iDjzyEi2vwlCEIoFLp37969e/cikQhrHAHuoWhsdfBArk4sFtuxY4fP5zOkH/AcOqe/\nh3gOV4dFYOwdXv12PIfO6e8hnsN0SZIUi8VCoZDl3ow8h6g6yF/sPxgi4nk+EAhEo1G8MZQRNvPt\nwAYeyFVobW1VFKWnp8fceRHPoUOGe4jnMF1s3Ch7b7e1tdUQe+E5dMJ8D30+H57DtLS3tyuKolXD\nG34kZuQ5RI42f0UiEe29DPsp2LCiQCCg/RxnP5tyez3rER7IdEUiEUVRrl69qj1veA7TZb6HeA7T\nFY1GtfWdLG7Ac5gu8z3Ec5guVrkRCoV8SzL+HCJHm798Ph/7a0aWZUEQWE06rA6G2LmHBzJdbCUT\nx3HsU1YSiucwLeZ7GAwG8Rymhd0xSZJYKMbW5eA5TIv5HrIuHHgOndOCftbogD11mX0OMWEh38Vi\nMbamMtcXshFgiJ17eCDdw3PoHp7DdJnvGJ7DdJnvIZ5D9zL4HCKiBQAAAID1DXW0AAAAALC+ZaaO\nVj/TTIMhewAAAACwBjKQo9XPNNNvxJA9AAAAAFgDGcjR6meaaTB0FAAAAADWhtuIls00M88uw5A9\nAAAAAFgbriJaNtOsp6envb3d5jAW2ra3txtGlczOzh47dozlcS3IoyRUpbE9s6cDZM7bN0cHRxQi\nam4qb6wvyfXlAAAAbDSuIlrzTDPL8JTtDYfDhu2xWMxQfatRG/69KvVv6nmHfHsttl/8OQVfsLkw\nl6cDZNDxC/1dNxbn+3XdkNsO7zz10lO5vSQAAIANxlVEGw6HWTkBmw6nr6YNBAJa4naF4Wax22rs\nNvuQC75AQhVF3lKlfiJSO85x+pBU297+Khc4SLw3A6cDZNPZNz7Swlmm8/LdytKiI/vxRgEAAEDG\nuIpoLWeacRynqqrzoaNq7Lba8RP2MefbS0KVGru1tOsWpysSUCNvLn6gKFz0GsuzujwdIHv6+qc7\nL981bz8TudMollSUFq39JQEAAGxImZmwEA6HtaICbQjZ1atXg8GgfpdDavTa8ifax0qcZVgXj1kK\nWzN+OkCmvH552HJ7fHa+84r1LgAAAFiFzExYSMWyY1ckEmFVCg8fPvT7/cbdSyUEjCr1c4vbb9kc\nlrHTATKkr3+6V7qfam/XDfl0cNcWT8FaXhIAAMBGlYMpuMFgsKenp6enp6Ojw2K3LpNKtBx6qtKA\nfrOqKCSPZv50gAzp7p2wP8BQXwsAAACrloOI1p6aHGiqikJKnMgUqlpucX06QEbMJBZWDFi7+1YI\neQEAAMChvItoLVKnLPQ0BaCGtGtmTgfIhBUTtEQ0OKyMT82twcUAAABseHkX0Vqs2WItt8xTx2SL\nHJjL0wEygs1TWFGfNJ3tKwEAAHgU5CCilWWZzVYYGDBlSa2G5apK3HohFysnyODp+rNav6fu+Ldk\nyuOq7T+w3A6g5yRHS0Q2S8cAAADAuez2OrDEIloiGh8fr6io0O9KUUggk/K0xXandQgrnW45o4E1\nr21/lev5zfIpkbcWe9/6n+Pu3cWMBrA0NBKPz847PDLbFwMAAPAoyEFE6/P52HQxmym4SZS4Zaiq\nKgrn5OutdLrFjAZtFkPsFicNkLgYEGNGAzjR5zjzOjaZGJ+aw6gFAAAAl/Ksjtay/4BVLcHSruQU\nl8vTGXk0aRaDNqMh1XaAZGPprPdyWHELAAAANvIsorUshJX6U3baMmx3eTpjKLrVlpolh7CYOgap\nDKUTpKLwAAAAwL38imhVdz1iXZ6++CKGjrZLr2nx4hg8BlYGh9OJaNM5GAAAACzlIKKNRCJ+v9/v\n94dCIafnuAxV0zo9VeRq7nuAiBZM+vrTa8iVVokCAAAAWMq/KbhWLLrJsu3OYsr0Tk8xXUw196+1\nqdCFR5XDLgeasclElq4EAADg0ZFfVQe5pyjm8DdlR1vzfDJ45K2iLhaltAAAAC4hok1i3dFW6rcM\nXrE4DMxWkXONJ9JL6wIAAIABItpkKUbjqkjHgjMzswvpnoLFYQAAAC7lYMKCNljBPDMs9yw71Er9\nKceD6eYvAFDqwbZth3fGZ+e7blj8yRRPpB0EAwAAgF4OIlpBENjMsIGBgQcPHrh6LamfxHpXpyez\nLCRQFYWzjHQJi8PAkdPBXS8fqiEib3Fh5+W7hr3pLiYDAAAAA7cRrSzLkUiE5/lgMMjzvH6XoiiR\nSISIDLsEQRAEgX3saApuPshEp1vY8CzXeFWWeVg4S0Rth2rMEe34JBp4AQAAuOKqjlaW5YaGBlEU\nicjv9+t3KYrS0NDA87yiKC0tLeldU887XPBF83Yu9P1NF3+e7dMtuWwfthrSAEXestguj1LkLevq\nCMg1yzVeR/dXaR9v8RQ0N5Wv4RUBAAA8ElzlaCORSDAYDAQCRBSNRmVZ1pKv0WjU5/MFg0Eiamho\nkCSJBb4r4sR68u3lhCo18qZxV+gk8V6u45xFa9gMnZ4b8uhyLwWxnngvxW5/5X+OiDipn7v4s+Uj\nte2RN7kP38/BpYIty2yrIYStq+a7eyf0W1KV3gIAAIBDrnK04XA4HA5LksSqC7RwlohkWdYqDURR\nVJzXm/r2EREJVZzu1YiI8+1bXJ7l25vF03NBjbz1lf859r/FaQ6t31va9aa+Fe7ydqlfbf/B2l8q\n2DMPAKss81SUFum31NbwBAAAABmVge5dkiRJksQKDCwPYKFte3s7G377rW99a9u2bdu2bTt48KD5\nYE6LOIWqpB3aCjDeLiBweXpekAb0WeTlZHP0WlJ2OXptbS8LVqMyOZwlosb6kpxcCQAAwAbmKqKV\nJElRlGAwePHiRUEQJEmyPEyWZSIKh8Ns+O0///M/f/LJJ5988sm1a1YxmRaJJjcx4Ja2c/ZJVpen\npysLK8bU5FBV+9RQs6vKMlnOg4DcMY9XsMzIVpZ5DFswNgwAAMANVxFtNBqNRqPsYzm5ODUQCGgB\nriRJQnINgB1DbnXF7Zk9PYMib6ntP7BYwsW224xsMHcQY7GsKSmrIk2bZ8zjFcw5WsuNGBsGAADg\nhquVYcFg0O/3S5LEwlnWZZbjOFVVRVHkeb61tVWW5UAg4DCi5XSJVU6oUvX7tJA0dWzq8nTNpg8/\nUKPX1I6fGLeHf0xiPVublSR2W0ugcsEXSKhS23+weHrsVtISro5zX7W/SkTElnZZXYxq0SX3Nsfz\nFv0W0FMs71WUWUS0FWVFZP1+BgAAAKyGq4hWEIR79+7FYjGe57VWBqq6GElevXqVpWkddjkgSi5y\nNUR7TkJSl6cTEREXfJHEpzmhyhDRcjxPoZNExIn1hqBTjd3WDuZ8e4nnaan4VZX6uchbFHyBiEiJ\nqx3nFrcrCnWcS+pjsPRSFtcky9bBKyLaLJtJLAyOKH3SNBHVVnvrqvkKq5yrxrwyzOspNB/mLbbY\nCAAAAKuWgZlhLDVryTKWjUQirFbh4cOHhi62+WAx0ct7jZFrYGkdm2/fCqFk9Jo+n6pG3uRYRBt5\n07g9/GPjfF3LV5ZHVasqhcVhZqkm9Lo2k1jovDLc3TvBykPravij+4Uj+9e8fiMX2PfedUM2DPRq\nErefCu6qrba+5xZ1tCmONMDYMAAAADcy0OsgXcFgkC0R6+joMO5LMdKWc1iG6/J0w4ukWlu2UpbX\nMEpXlfpZ1axF2at5i2XkKvWnjKGzlqYdGonXH36n8/JdLUobHFZeOS/t+8+3ZhLGatENZiax8PzJ\n9zov3zUHmr3S/b2tsbdvpi6DdqBRNLY7wMowAAAAN3IQ0a6Gy3VdaZ0uPr34gaHPlxbgrvhq5sqB\n6DVS4lYFssZFYCmnP6SKXJ03+k3H0Ej8+ZPvWSYOB4eV50++t4GDWhbODg7b3dhXzkt9/dMrvhSq\nCwAAANbGOolo14o+m2vMxTqsxJX6zUu4VHnUooMBkfP2WynH8GahgddMYuHYmQ9s3gdnydqMf908\n0Xll2D6cZY6fN/6NMW4qoq2rzvvmxwAAABsCItpk+mh1VRGtORFLRCSPWoaeeTePl4iIOq8Mm+tB\nDbp7J5wkKded8am5zst3nRw5Npl4/cpw0hZTRJuKZUsvAAAAWLUMrAxLlyzLrNvXwMBGHBBgGbnG\nbnGpjrdsbpA7M4mFrhuO4uzXLw9vvPFXXekUyHbdHH35UM0qvop9wwQAAABIVw5ytLIsx2KxWCzW\n329MZ3Lulu27PJ0o9dqyFNvN1roQNtMrwzqvDDtcd98r3d9465m6eyecHzw2mbC/A5bNaAEAACDj\ncpCj9fl8rOEXi2uT9qUKHB0u7XJ5ug3ebUFkWoWwm65eVmO31aWmthou9H2O9y7OaMiOtEK67r4J\nh92p1oWhkfiK5RYGfdJ9mztgszKsSdyu/xR1CAAAAG7kIKJdDZcBpet4dC1xwRcpcJDz7TP0teUE\ngQv/iIi42G1zk4SMSDek6+6dOPXSU9m4kpzok+6ne4rz2lmDa+eeWd2JAAAAYIaVYblmyt1ybJQD\n7yXf3qQdSyMeOMP2zOnuSyNBSw7edl9fVhGejk8unzLkoEMCAAAAZMM6ydGulRWnJzh+HYEUxVxp\nwPE88XxSra08SmJyClkLWJMHQywHso6LetO1iiSl/dvuDg1+Lp2abtdvqdssni0Ju3zZdOnDU8Zb\nXHjptd1sAdzQSPz4BcnQ2KtXd8fiG7dHLwAAQJ7LQUSb11NwU0W06QSRnFjPffg+xW6r/ueMu3re\nIaGKduxMVVarX4LGCVWq5TVkJ6KdSSxY9mG99Nru5sZyInr9yvCZyB3D3lW/7a6nfKncTsRWPi7L\nek0B/fVze7R4vbbae+n07vrD76z5dQEAAMAK8mwK7obABV8kIvLtNXRI4IIvkvg08V5iB1jSl/wa\nwmutk4P7lg5WBkcswtnTwV0snCWilw/VHD1gnCc8ZHXWxlBXwxvSzxWlRYYVXfbM024BAAAgG+wi\nWkmSWA5VkqStW7dyHNfe3m5zPCxaKngl3z79Zq1swK4Q1nX7sFXrk4wTEyrLPIZ+q0f3GyNaJ+O1\n1gXzwIhGq+C1tsa4ynAjVRIDAACsU3ZVB36/PxgMElFHR0cwGAwEAmyLIBjDGtBwgqDlUFOWDayi\nWjf77RrMbWibm8oNW2qrvZVlHkM/hPGpuZyPDDBX4jqXqmbXYUeteMJR+14AAADInpQRrSzLiqKE\nw2Eiikaj9+7dEwRBFEVZlhHR2nE9RzdXzOuiLN80bxRLDBHtWB5EtNmoxMV8BAAAgPUiZUTLwlZF\nUWKxmCAI7FM51UCsdGiDFcbHxysqKty/YH5xVzaQqWYLq2BeF1VXbZEYNk8NcDhjLM95PYWGGlmv\nJ+V8BAAAAMgrdlUHoVCooaFBURRWe9DQ0EBEbNyXG4IgsBcZGBh48OCBy1dbNxyWDWSi2UJGeIsL\nt3gKzNsbxZLOy3f1W4ZG4trqsWwY/Fy6/ml0bF6Of6UQUd1m8dki37NFbp9Dg9pqr5OpB6tocAYA\nAADZZhfRauNqtf//q7/6K0VReF1wJstyJBIhInN9raIo2i79KVrGl4iMU3AhR8zLmywTtLS2mcux\nBfnlqVZDOcHtROzCJx1VhcLrpRe1uJZ/jN/rWWWMW7dZdHhkX//0hlkJBwAAsJFYR7SSJCmK4vf7\ne3p6aCnu9Pl87e3t4XBYS9PKsuz3+0OhEBGxg7VQVVGUhoaGUCgky3JLSwt7nUcBJz5tvSMva2c1\n5uVNW4otErRE5H6egkODn0sHxv3Kl9YR5Oi8fGDc/9/LLn7HGySius3ir5/M7jPW1z997LUPsvol\nAAAAYHWsI9poNCpJEhEZWsbyPC+Kov6wQCDAahJkWY5Goyy6Zbt8Pp9WriBJkv7EjSxVdUH2mxVk\nVmWZJ9Wu6+f3JB2ZhWVhypeKOiRiagAAHjtJREFUTTir+S+Trc8W+SoLsrhUcXxqruvmaHfvhGE9\nHAAAAOQP64iWtTjQcrSpaPErEcVisYsXL2qfyrKsVRqIoqikGJEFGXH2jY+GdO+G19bwp156Kq1X\nGErnzXQ2FdbeTGKhu3dibGrOcGG11d4mcbtlha7ewGeSw4u58EnH66UX352LHRhf5fy5vR6fZX73\n7Zuj3b0T5gVzAAAAkG/s6mgdlgrEYrHW1tZAIJAqC8tC2/b2dpb3/cMf/jA9PU1ECwsL//AP/5D2\nJYPJ0LDiMvCKJxYMW1adeZ1JLHReGe66IZt7ILCL9BYXHj0gtB2qWTGurSoUjm8L/d3XA95NfPwr\n5cInHRc+Mc6Z+9Wn0ddLL1qevmpDI/HjFySUzAIAAKwXFhEtmxPW09PDcZx5r6omDQ1obW1VFEVf\nQWvGen6xvK+e1sYL8tDqurE6iQXjs/Odl+/2SfcvHBdtqnKffkK8UdHj3bSY6fdu4s+WhPnH+B/e\nT5qksGJlQrqGRuLPn3xvY7QkAwAAeERYTMHt6elh2VnViv7ISCSiKMrVq1fN4WwgEGAZWSKSJAlD\nGR4FM4mFY2c+MIez5ha2RDQ4rDx/8r0ZU25Yc7YkrIWzmu/wQfORrKtXRoxPzSGcBQAAWHfsqg5W\nxFaDaancUCgUDoc5jlNVVRRFnudbW1tlWQ4EAohoc2ImsTA4ooxPzo1NzXk9BbU1fF01v+J7/av2\nynnJsHyq7fBOrbpgfGqOVSNoe+Oz86+cly6d3m1+Kf4x3rLjrHcTX1UojM4nTfpwXnS7ojOROwhn\nAQAA1h27iFZRlI6OjlgsxjoV+Hy+UCik7ywbDofNtQRaHvfq1assTfuodDnIJ+bwUVNXwx/dLxzZ\nn+FuYkMj8e7eCf2WtsM79QvUKkqLLhyvJyL9VXX3TvQdmKYa46s9/UTKZ8Yc0WbK+NSc4Vsw8xYX\nIuQFAADIN3YRbUtLiyzLoVBIEAQ2LsHv93/44YfOX90ylo1EItFolIgePnzIanYhs8am5va23koV\neA0OK4PDUtdN2b6MNV3dfUmxoLe4sO2QKVAlOh3cZYizu3snDlgcmANdN0dt9rIFbURkGJkGAAAA\nOZcyolUUJRaLPXz4UEvKBgKBHTt2xGIxl4Nwg8Eg61OLlWFZor31X1fDN4rb2ceGjqqsjLX/8nOZ\nKkIwjIdNVd6wxVNQV8Pra237pOkD7qpfMiVVgrayzNN2qKa5qXyLp+DsGx+t8VUBAADAiuwiWlpq\nvKVBOex64S0uvPTabn3j2FMvPfX6leEzkTvalvjs/JnIHVYJ4J5hQVivdP8bz/7SyYljkwmiNZpD\nZmN8as48Q8FbXHjhRH1zY3lOLgkAAAAcsuh1wAiCwMbealsikYgsyy4TtLA2LpyoN89BePlQTdvh\nnfotXTfk8am5Nbwua/JE7q9hcMSiYcL1c3sQzgIAAOQ/i4i2vb3d7/ezCteOjo6tW7f6/f6tW7e2\ntrby622U66OpssyTKg47aloQ1idNZ/+KVpD4LGUPrzUzNBI3bGk7vDODdcYAAACQPRZVB4FAQEvE\n6ufcZoosy2zmwsDAQMZfHMh23FeFaddYdnK0Rw8IzU1Os5uz5QOU67javJCuUVx52K+98ck5ykxN\nBwAAANixiGiz3WxLlmW2IGx8fLyioiKrX+vRZBOkmicaeFOsDOuTps11CzbMba2cn/7u3GPOv1CW\njE8ab1pa376lLP21AAAAAAY5WGPu8/lYDhi9DrJkbDLR128dj3ZeGTZsYZlUm7SuQ41iib5XwJBV\nWerSrng8kZwQzY/uXU4M2Q74BQAAgJzIi65JkHHHz/dfP/eMocagr3/a0Eu1SdzOjqkoM0a0NnME\nDE0M2CSF5qZyfUQ7OKy8fXPUPMdhaCRuGDN79ICQJ/1onTDG4jru/yoAAACA1UFEuzGNTSb2tt5q\nbipvFEu8xYXjk3O90n1Dv1XW4SvVK5jfhV/cnuKd9ObGckOj2VfOS2NTc9oU3JnEQnfvhGHMLBvE\nINP7aX13OTSYOkdr/qvAhuVfBau/LAAAgEcbItoNiJW0xmfnu27IloNwiaiuhr9wXNSGIJjzi5bd\nrMi2NvTCcdGQf+28fNd+wtaFE/UVpUXyOik37etPb/2aucEtAAAAZEPKfrTZw6bp+v3+bDRSACKq\nq+avn99TV2Pdaq2yzNN2eOetX+zTt6Yy90CIz85bpmPN3b60ngC11d7r5/Z4iwudXKS3uPD6+bzu\n9mr+9tPtdDYzm/uuZAAAAI+CHORoMQU3464d8tBf64In3kP1Jbd+sW9I+n3fb+7EP1YoHqfNm72V\npY3/oaL22X9n+SKVZR5DTnFwRLGMdG2upLba23/5uTORO6lyw0TkLS48ekDQqhGI6Nki3+zbr6od\nP9Ed9R713CbfXvPpv36yx7zx3bnMP0jdvRMvH1qu8J1JLNh8U2lJN9cLAAAA9lB1sBGo7a+qsVva\np5xvHxf+sdrxk13Ra7vMBwsCBQ5ywRdISFq2VVlaZIho+6Rpcw7VnKesq05KBm/xFFw4Xn86uKu7\nd2Jsak7fHKC2hq+t9mYjL/vs+5s+9TvKDZtxvgKyCJKp6+bo0QOCFnYbKoCdsFlGBgAAABmEiHYj\nkvpV/3OqYl0Iq8oydfyEIm9y4R9T8AVte20N3yvd1x/Z3TtxOrhri65h7dBI3BD1eosLt1h1tN3i\nKTiyv4oN4orPzrN1Zt29E/qy2soyT2VpUW0Nnw+LorYUG7+LscnE8yffY2nat2+MGm6Ombldms0y\nMgAAAMggRLQbEItlucBBLnCQfPuI95I8SrHbauRNVerXjlFbv7uJSAtqzYvD4rPznVeG9eFm103j\n2+6GBK1maCR+/IJkH9KNTSbyZ+1UZZnHvHFwWDn22gcZ/1rmprYYtwsAAOBGDiJarXwWM8Oyhwt9\nnwv/aPlzoYqCL3CBg+R/TgtqiUhtf5ULHCTeS0S1VrFp5+W7jWIJyz6+fXPUXEham2L9mU04y+po\ntU/zpI1rli5jaCRujlbj5sltzpbTAQAAgKUcRLSCILCZYQMDAw8ePFj7C9jwOJ5PCmc1vJe7+HO1\nYbkHraooXPQaS9PWVnvNk2yJ6PkT7zWJ2+OJecsINVVy0SY7e/SAsMoyAyWutn6XlLh+G+fbS6GT\nq3m1ZJYBvXsopQUAAFgDmYloI5EIa1+gpyhKJBIhomAwyPPL4YIgCIKwmKJDr4OsEOtT73rasEGV\nR7mljw2TbDU2JaRN4nb2wdk3PnJ4dUPDiuHgo/urnlzxNGlAbTmsystJYo7nudDJjISzlDqgNzB3\nhBgaVrQK2iZxu+Fe6ffqN7q+XgAAAFjmNqJVFKWjo0OSJENEqyhKQ0NDKBSSZbmlpaWnx2oxOWSJ\nPOp8F6freNAkbreMaFOpq+G1ZWH2kxT0eqX7hrCvUSxZIaKNvKW2v6pf68aJ9dzFn5sDdDeam8rt\n+3NVlnmO7q86E7mj35hqFAVjLjAgq8RtqnJkAAAAcMJtRNvS0qIoij4Fy0SjUZ/Px8LchoYGSZJE\nUXT5tcAhVZa5jnOWyUu1/VX9pxzPU+Cg9mlzU/kr5yXnX0jfh6vt8E79LpsAt0ncbqi+ta9hVVu/\np0be1G/hgi9y4R+z8t8MWjGibTtUYx512907MXNiwbLhA6VIx5pLMlKdDgAAAE64jWh7enpisVhH\nR4dhuyzLWpgriqKSopMUZMlX7a9y8igXfHE5ixm9pkbe0retJSJDXLjFU3D0gOB8jkBz03JEayiN\ntYloLdt1qZaHKnE1eSkbx/PcxZ/po/AMaqwvMZcNaOpqeK0fmUHXDZk1+TJ3QDNncC1fAQAAANxY\niym4LLRtb29nw2+/9a1vbdu2bdu2bQcPZiUuAY7niUiNvPlVw+6vuD9b/F/L4aQpDDy/6eLP9f1o\nGX2Qau/oAcE8USyD1NhtdcfOpHBWrOc+fD9L4SxzKmgeSUFE5C0uvHR6Ny2V2xr2WpYWLO6anTeE\nsEOmGNeycRgAAAA4txa9DmRZJqJwOGzYjim42SLWbwqdVDvOGTKyDKs04EInDTPDGPs8pV6bbkJs\nNiQPxSUiInnU0Ogg42qrvT89IRpKL7zFhdfP7dHC93u//ttUp3utigf6pPv6jhBjU3OGA/KkfxkA\nAMD6la2INhAItLe3s48lSdKaG8Aa8e3lfHs5eZSkflUaYNs4oYrE+hVXU104Ub+39Zb9qv+2wzuz\nmqC1pCoKtRzmPnw/4xW0ekf2V1WUFZ2N3GHVrs1N5W2HdjqcgGDZnbdPmn5ZF/2ntfYOAAAAnMh8\nRMtxnKqqoijyPN/a2irLciAQQESbG0IVCVVcmm/TV5QWnQ7uslkiVreGc2u5wEE1ek37VJVl8j/H\n9byT1aC2sb7k1i/2EVFf//TQsNLdN9HdtxiGVpYW1VbzaY346pXuj0/NsT8A+vqnzWPSUk2pAAAA\nAIcyENH6fD42MYFR1cVFPlevXpUkiYjQ5WDdObK/iogsg9q6Gv76uT1rcA0cz3NXL5NvLyX3OlCl\nfmo5zPX8JntfenxqrvPKcHfvRKpENRt71naoxtCjwNx6ljl+vv/Sa7uJ6Gxy5y8AAADIiOzW0VrG\nspFIJBqNEtHDhw/9fn9WLwBW7cj+qtpqvvPKXe1dchbGrV12loWzrCGD1J80vDd2i1q/x138WTa+\n7tk3Plqxt258dr7z8t2uG/KFE/X6Fmap9Er36w+/w040700r4wsAAABmOZiCGwwGWZ9arAzLFC5w\nUD8njLNa8rUKtdXeS6d302nq65/2egpZ4DU+Ndd1M2lMw9H9VdmtqeW9XM87tGOnfsKCGnmTUg37\ndeH4hX7L5mV1NXx8dsFQMBCfnT/22gfXz+/Rp2ZTrauzqUs2N08AAACAtOQgooXMC77AJW+YSSwM\njihDw4q+sZTXU1Bbw6d6Z9yG/pSxqTlDCrNRLMn6KjHey/W8ozbs1m9TO37CCVXmBmSr1t03YQhn\nvcWF+izsTGKh88qw4ds/fr5f+p9/rX26pTjtWQkYGAYAAOASItqN5u2bo103ZfNUKr3mpvKjB4RV\nhLbOPXj37zP8iuLTmy7+/KvW7+q3fdX63U1EmQpqz0Y+Mmy5fm6PviRgi6eAFV3og9qxyUR334QW\n9a6iuSwGhgEAALiEiHbjGBqJHzvzgXkpvVl370R370RzU/lPT4ipwqm+/mki6pOmaWmsQF017zD2\nmkks9Er3h0bi8dn58cnl9qsVZUXe4sLaam+TuH01YVzwBU4eNfSpVdtf5cR68u3dpP4p7RfUMXch\nOHpAsKxwbTtUY5htOzO7nAhPt7lsk7g9reMBAADALAcRrSzLbObCwMDA2n/1bODCPzIUdLI3/Wnr\nU+M37rKO+rXVXm//NC29g68Pv9T2H7i/hqGR+PMn3zMUax49INRV8xVlRUQ0PjnX3TuhL/Hs7p2Y\nmV24du4Z/Slv3xw1HKbX3FRun4Ps659+/fJwygENut4Jhj6v5ntoKdVhZ9/4SB9lWg7atcdid71U\nxQBbPAWGm6bH7rZz6R4PAAAAZrmJaNmCsPHx8YqKirW/gOzp65/u7p3okyx6jurV1fCN4nZtQZU5\nSlvMj46WUEQXA77x0XKu1JSPPH5BMoSzhhVLVE9H9lcZVj71SvffvjnKenVZpnjranivp7CirGh8\ncm5wRLGfDmC5rEqfgzTE0929Ez89IbKvnsrQSHxsKmEYJGtw6qWnhoYVJ3PO0rK6WDPdWg4MDAMA\nAHAvBxGt1r92I/U6mEksHHvtA0NQxSJX9nF8dl6LdAeHlcFhpeuGfDq4S4vnWA+B7t4JJ2UDlWWe\n5qZyLSbu7pswFM6mKpM9HdylLwOgpTX45hRvc1P56eAuw5Kv168Md14Ztly2bw5njx4QTgd36asL\nxqfmjp35QH+pr5yXKsqKzJfK1mB13ZDtR5cxa9ZQzKG6Gt6+jlkP4xUAAADcQx1tBswkFp4/+Z4+\niPEWFxoWFTH6sC8+O6/Fc+YeqM1N5c1N5XXVPIspWRlD1w2ZZUnHJhOdl+92Xr7LcpzmFGajaJ0p\nTPWOeeeVu/rYsbLMc+n0bvNhbJrrGdOYgKGRuCGcbRK3XzhebzisorTo+rk9x177IOncYcUc0b5y\nXrLJB7PMcaq9meIkmLZUW51GRJvV9XkAAACPCES0GdB1w9hb4HRwl+WiogvH65ubkhryV5YWvX1z\n1BDOHj0gGMLBLZ6CxvqSxvqS16uH9Q25bIZapfUt6Nc2kW3Pf8ucojYkVnPkgHUtgX0R6vILpg5n\nm8TtTl5hJrHQdUPuk6YNifMmcXttDd/cWG74Hs3fcp80bTk9geXj9Vuam8r1tRN11XzXitfHjkSC\nFgAAIBMQ0WaAPsRkbEowzTk5tnRMzxD16rEs6cqXlGZ+0dBF1aZudchZ9jHdkJqVDjsRT8wbDjYv\n4Rqbmqs//I7lTeiV7vdK9zsv320St5/S/eHRJG73FhfqT+m6IR/db9HuoPOKcembIXyvddxfthGN\nDgAAADIhBxHtxpuC6zU1ohqfnCPjW+6LDNFYZWlRo1hiyNF23ZAt34xm1aWG04/sr0orv2h4hUax\npLG+pO3Qzj5pWovnxiYTx858kKqO1vobS2ZzByw9f+I9h0cODiuGg6+f32M4htUis2pjtpyOrWwz\nrIobPKloxSFbPAVHDwiGf4jnT7536bXd+n+L100TFirLPIZbXVvtrSzzOKmHxvxbAACAjMAU3Aw4\nekDoujmqj2DORO5YLngyL59iHQl+ekI8E7mjBZTdvRPiyG+1aIxt7JOmDevGtGrX5sZyQwjVdUOu\nq+bNbQTORO4YLoBV3NZWe6+f26NfHMZ6ERh6HaRK/R7dX2WI8zqvDDc3lZubzg6NxPe2Jv2jtx3e\neeqlpwxtWW0aF7BuD0lbrGpqjd126+kIVR3dL+j7OcRn549fkG79Yh/79NRLT/VJ9/UFJPHZ+edP\nvFdZ5mEdCSzvgGXBcaNY4iSiRTNaAACAjEDVQQZs8RRcP/fM8fP9WhymRUIsXUdEY5MJfRKUlias\nsqj3yP6q5qZy1gh2aCQ+Nplga78sv1xdDV9bzTeKJfrU4KXTuw2R4ivnpV7pfpO4PVU/WkpuiVBb\n7e2//FzXDVnfOWHxg6UeYqwI1XxhFaVFbYd3GiZp7W291XaoRotrZxIL3b0ThlVllWWetkM1RGQo\njf3Gs7+0/N6JqK6ad1JHazk8orbaeyr4lL4KdnBY6euf1m7C9XN7zIvS2D+H+Ut4iwsvvbbbMs/a\nKJaYG5kZrHLMBAAAAJggos2MitKia+eeMfSjTRUJNTeVN4nbDSnMLZ6CI/urtKzq0Eg8njCmA72e\nwlTvU9dWe29f9BkayrI8a6prZslR/ZYtnoKXD9WwUl1WHTE+ORefnWerwbSZYZbdsk699JTXU6AP\nWMcmE6+cl145L5kPZprE7RdO1GcjqrMJFs3FGH3SckS7xVNw6fTu7qaJ168M2/Qr8BYXHj0gtB2q\nsfkqhqpci2NSV0sDAABAWhDRZhJrR0DazDAiIuqTpr2eAhYUVpYWVTjoqD+TWBgaUcam5gxTZC1p\nCcvaau/ti/sMSVYzb3Ehaw1mWarLAtn47Lx+cRibp8X+v7K0iCV9zd/Ly4dqmpvKnXTVZTG9/WwF\nN8yL7TTjpl3mGQfNjeXNjeXjU3N90rT+X4H9I7LK4xWvobmp3D5Ni4gWAAAgU3IQ0Wrls3kyM2xx\nZJc8SvIoKYp+Ji0X+r72sX77pp53iIjEeuK9RKT6/0aN3Vo+SxC2BF9oJFKVOBEtrloaIiKi2K2v\npH5OrCeeJ6GKE6oo+CJ7Eb29rbdSRYR1Nfyp4K5U34uWZB2fmhubmjNMdmXBqM2aM8MgWUNT26Fh\nxVAubGi7O/i5NFokf9Es/cdm+tPcYx8M/+Hz6a9//q/FbG/JY98sEf74Z0VfPCP++a8+vfhLol/+\nv8XXOVsSrtsspvqmVmFsMvH6lWHLvhCGlW0svif27yv1L+8QqirE+v8kjyZtZP+IV0nlvSQInFBF\nYj2JT1teQ9uhGpuI9ugBASUHAAAAmZKDiFYQBDYzbGBg4MGDB2t/AUbRa2rr91RlOZjbdPHn1pFK\n7LYau612/ETt+AnbwAkC1/Mby1dVlTjHe0msJyJSFFUaICLieSJSpX7Ot4/kURIWk5Q2ZaMGliv9\n91x9ffmSfPtIqHpSHn2SaI+iqFI/x/OLwTfPkzyqssuL3WIHc8EXKHBQyygTUTwxz1K88dl5QxOu\nytIifUQbn51npRG/+jT68lSr8uXyixzfFurad6qyQDBc/9iCfEmJ3E4kl/x+w+k8AufORO7EEwva\nWDUiGhqJn43cMVQSL081k/r1f5YQEYW+z/n2Uujk8p8cSpykfjV6TY28SUTsTnKCwF29bH5aKkqL\njh4QUgW1bc66sAEAAIATbiNaRVEikQgRBYNBnued7BIEQRAWA5286HXg28eFTpLUT0qc5FFVltXI\nm8TSqAayTNIAES0mWcV6TqgioYrEek5/mFhPoZNc8qlc4ODiB1aX8ODdv9d/ahPgWs4XUK/qvlDo\nJPn2Ln4Su636n1MVhWK3uND3ufCPlk/h/oy0uDZwcGhYGRpWDNGePpwdGlZqa3hzae/QsFJZWvTs\ndt/xbaGBz6T4VwqLVv9RiYzNy5WFxog2/qUytrDCkqlMYWPVUu31FhfqpxAbcILABV/Q/uRYxHvJ\nt5cjYhEto8oyJ/VbZmrbDtV0906Yq2nbDu90UnwCAAAADrmKaBVFaWhoCIVCsiy3tLT09PQ42ZV3\neK8+ALWMOPXMB2iRYvwrZeAziYhozjpSf/oJcWxe1ucy+cf4zL7hvjqsVkG7/rmEKv9ursjzR+Ev\nHmMHPENE9PEzh4nIUCPxe7WwwLtJ8D7GG+JXczhLRN7HeOVzhYiqCoWqQoGI6jaLTz+R4TvAFt51\nXhm2LN5gfWr16VtLauv3SFGMf9hI/SydzwnC4h8zgYOpCg8qSotOB3cZ1sbV1fBI0AIAAGSWq4g2\nGo36fD7WXLahoUGSJFEUV9yVd+RRNfKWfgPHe0mossjREqmx20lHik/TX/4FfbJYO+ElepY2ES2X\n2JrVTW4leUa3YYb4gVQhkUOLpcBmvr2b1D9ZnmLYPvi5dGq6XflyKSInOv6XoV1FPvOJ787FfvVp\ndHR+Oc96fFvobEn4O97gqq/fPct+Xkf2V41PzQ2OKNoqt9pqb2Wpx9FcA6FquZ5EiS9X0/I8l84/\nFssBa82G62r46+f2oIIWAAAgs1xFtLIsa+UEoigqulJUm115Rx7VilAX+falqo6l2G39wSorRb34\nM5JHkw5LEc5acxfOElF334S+NYHXU2BYFMV6LxgWiumTlHWbxV8/2TP4uaTPH1t6VhfmPr1Z9D7G\nswyrod2Y1urLcBmGhVmWjcAyqKK0qKK0yHJ8mgEXOLhY9Mw+1dcb8N7lQo70sWbDgyOKTfM1AAAA\ncINTVXXVJ7e3txNROBxmH/t8Prbky3LXD3/4w3/5l38hoj/96U/z84uhT0tLy8cff2zzJVZM7paX\nl09MpGy5qiiKoiha2a7Z7OxscXGxmwv45je/6fJbsL8G9rcBb5UwZh5//PEvvvjCzQXgHub8HhJR\nXlfmAAAA5LeM9TqQ5ZTLfdiu999/fxUv6/f73fymZ53CWGC9Oi4vwP0rGP5UWPsLwD10fwHu7yEA\nAADYcJWjlSSpvb2d/abfsWNHT0+PloWy2QVpcR+NAe4hAADAxuYqRyuKIs/zra2tsiwHAgEWs3Ic\np6qq5S5YBUEQbN4uBydwDwEAADY2VzlaRpIkIrKsMrTZBQAAAACQERmIaAEAAAAAcigHU3DBITZQ\njVV/dnR0aB3QsMDICfMds5lvBwAAAOvaplxfAFhTFKWlpUWbEtzR0ZHb61l3DHeMDbHjeZ7d2Fxd\nFQAAAGQDcrR5qqWlRVubryiKKIpIzTpnvmPraYgdAAAApAk52nzU0dHh8/n0rdAkSdqxY8fWrVuR\nrHXCfMfW0xA7AAAASBMi2rwjSVIsFguFQtoWQRBCodC9e/fu3bsXiURYBwmwYX/HUEQLAACwwaDX\nQd7x+/2KovA8z2athUIh9l45ox8vDE6wO8aw+9bS0hIMBjFwAQAAYMNAHW3eCYfD7D3xaDRKRD6f\nLxKJKIrCsrZsYkWOLzHvme+YIAhaaCtJEkZ+AAAAbCSIaPOOtmKJNToQBMHn8/n9flmWZVkWBAER\n7Yos7xiG2AEAAGxUqDpYN2KxGM/zWKHvnPmOYYgdAADAhoSIFgAAAADWN/Q6AAAAAID1DREtAAAA\nAKxviGgBAAAAYH37/9aIoYjjG7v8AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "def display_weblogo(sequences, prefix):\n", | |
| " count = PB.count_matrix(sequences)\n", | |
| " count_file = '{}.PB.count'.format(prefix)\n", | |
| " with open(count_file, 'w') as outfile:\n", | |
| " PB.write_count_matrix(count, outfile)\n", | |
| " logo_file = prefix\n", | |
| " command = ['./PBstat.py', '-f', count_file,\n", | |
| " '--logo', '-o', logo_file, '--image-format', 'png']\n", | |
| " proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", | |
| " out, err = proc.communicate()\n", | |
| " display(Image(logo_file + '.PB.logo.png'))\n", | |
| "\n", | |
| "ngroups = len(centers)\n", | |
| "with tempfile.TemporaryDirectory() as tempdir:\n", | |
| " display('all clusters')\n", | |
| " display_weblogo(sequences, '{}/all_clusters'.format(tempdir))\n", | |
| " for cluster_id in range(ngroups):\n", | |
| " clust_sequences = [sequence for sequence, cluster\n", | |
| " in zip(sequences, clusters)\n", | |
| " if cluster == cluster_id]\n", | |
| " display('cluster {}, {} sequences'\n", | |
| " .format(cluster_id, len(clust_sequences)))\n", | |
| " display_weblogo(clust_sequences,\n", | |
| " '{}/cluster_{}'.format(tempdir, cluster_id)) " | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### How different from each other are the clusters?" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 14, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.colorbar.Colorbar at 0x10c9646a0>" | |
| ] | |
| }, | |
| "execution_count": 14, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAEACAYAAAA5n1oZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGhtJREFUeJzt3X/wXXV95/Hni/xAaMCYSRtIvqFsClTiuBI6JhFmy1Wh\nDWGMTOtY6DoIFd1xN63T6U5tLZVk62zB0V1kRYqKbro6UMcfMe6ESujwRdiBCJLwQ4LKYlwgEECE\ngYQf+fHeP+75frm9uefe873nc+/33JPXY+ZM7o/P/bw/h8Cbzznnc85bEYGZWZ0cMd0DMDNLzYnN\nzGrHic3MaseJzcxqx4nNzGrHic3MaqfvxCZpnqQtkn4q6WZJc3Pa7ZR0v6Rtkn7Y/1DNrI4kfUXS\nbkkPdGlztaSfSbpP0rJefZaZsf0VsCUiTgH+JXvfSQCNiFgWEctLxDOzevoqsCrvS0mrgZMi4mTg\nI8C1vTosk9jWABuy1xuA87u0VYk4ZlZjEXE78KsuTSZzTURsBeZKWtCtzzKJbUFE7M5e7wbyAgVw\ni6R7JH24RDwzOzwtAh5ref84MNbtBzO7fSlpC3Bch6/+pvVNRISkvHuzzoyIJyX9OrBF0sNZhjYz\nK6r9qK/rvaBdE1tEnJMbpXmy77iIeErS8cDTOX08mf35jKTvAMuBQxJbl8RoZgMWEaVOF031v98p\nxnsCWNzyfiz7LFfXxNbDJuCDwJXZnxvbG0g6GpgRES9K+jXg94D1uT3q8hLDmYIYBzWGEwtY8MnH\nOH7dpUOL9+S6Lw813nvffQbr3j20cKz7F4YbbxOsWznEeHcNMd4Jb0d/cXeSrj5VsN1lU+96E7AW\nuFHSSuD5ltNgHZVJbFcA35D0IWAn8H4ASQuBL0XEeTQPY78taSLW1yPi5hIxzayiZvX5O0k3AGcB\n8yU9Blw+0V1EXBcRmyWtlvQIsAe4pFeffSe2iHgOOLvD57uA87LXjwKn9RvDzEZHv8kkIi4s0Gbt\nMMYy4k4carQ5jdNrHa/xb4Yabvjxul5/G/14qRw13QNocXgmNp041HDHDDnRDDteY8lQww0/nhNb\nIf0eig7C4ZnYzCy5KiWTKo3FzEaYZ2xmVjtVSiZVGouZjTDP2MysdpzYzKx2vNzDzGqnSsmkSmMx\nsxHmQ1Ezq50qJZMqjcXMRphnbGZWO1VKJlUai5mNsCrN2FxX1MySOKrg1omkVZIezkrsfbzD92+S\n9J2s/N5WSW/pNhYnNjNLYlbBrZ2kGcDnaZbgWwpcKOnUtmafAO6NiLcBFwGf6zYWJzYzS2Jmwa2D\n5cAjEbEzIvYBNwLvbWtzKnArQET8BDgxKxDVkRObmSUxa2axrYNO5fUWtbW5D/gDAEnLgd+kSwk+\nXzwwsyRm5mST2w/AHQe7/rRIhasrgM9J2gY8AGwDDuSOpUCHXUlaBVwFzAC+HBFXdmhzNXAusBe4\nOCK2lY1rZtUya0bnz981A97V8v6KPYc0aS+vt5jmrG1SRLwI/MnEe0k/Bx7NG0upQ9EiJ/0krQZO\nioiTgY8A15aJaWbVNHNmsa2De4CTJZ0oaTbwRzRL7k2S9MbsOyR9GLgtIl7KHUvJfZk86ZcFnDjp\nt6OlzRpgA0BEbJU0V9KCXnUBzWy0zDqyv99FxH5Ja4Hv0zzyuz4idkj6D9n319GcOP3PrDDzg8CH\nuvVZNrF1Oum3okCbMcCJzaxOSmSTiLgJuKnts+taXt8J/PYQhtKMV7Bdezn7or8zs1FRoUuRZYfS\n86RfhzZj2WeHivGWNycOvUye2eFg/PHmBsCOzv8p9qVGiW3ypB+wi+ZJv/aqzpuAtcCNklYCz+ee\nX1Oj5HDMrJfGWEvt0hMWsf7mXWk6zrkqOh1KJbYiJ/0iYrOk1ZIeAfYAl5QetZlVT41mbD1P+mXv\n15aNY2YV1+dV0UGoUI41s5FWoWxSoaGY2UirUDap0FDMbKTV5eKBmdmkCmWTCg3FzEZahbJJhYZi\nZiOtQtmkQkMxs5Hm5R5mVjsVyiZ+NLiZpTGj4NZBgSpVb5T0PUnbJT0o6eJuQ6lQjjWzkdZnNml5\nYO3ZNB+QcbekTRHR+lzH/wQ8GBHvkTQf+Imkr0XE/k59esZmZmn0X6aqSJWqg8Cx2etjgV/mJbWJ\noZiZldf/At0iD6z9PPA9SbuAY4D3d+vQic3M0sjJJuO7YPzJrr8s8uDZVTQLJr9T0m8BWyS9LSvy\nUnQoZmZT9IbOHzeWNLcJ6w+tUVfkgbUXA38PEBH/N6tS9ds0nwl5CJ9jM7M0+r8q2rNKFfD/aF5c\nQNICmkktt/yeZ2xmlkaf2aRglaq/o1ml6n6aNVT+MiKeSzwUM7M2g61S9STw+0MYiplZCz+2yMxq\np0LZpPTFgwK3QjQkvSBpW7ZdVjammVVQ/wt0BzKUvhW8FQLgtohYUyaWmVVchZ7uUXbGVuRWCDi0\nEryZ1U2FZmxlE1unWyEWtbUJ4AxJ90naLGlpyZhmVkUVSmxlwxS5FeJeYHFE7JV0LrAROKVTwwV/\n+3qOnHPW6cxpnF5yeNVw34zvT/cQBiqenu4RDJZunu4RpDX+UHMD4Nkn0nVco6uiPW+FaL2XKyJu\nkvQFSfM6La477vJLSw7HzHppLG1uAMxbxPqv70rTcY2uiva8FULSAknKXi8H1G3FsJmNqLociha8\nFeJ9wEcl7Qf2AheUHLOZVVGNDkWL3ApxDXBN2ThmVnE5T/eYDhU6KjazkVahbFKhoZjZSKvQoaif\nx2ZmaZS4eFDg1sz/3HJb5gOS9kuamzcUJzYzS6PPxNZya+YqYClwoaRTW9tExGciYllELAP+GhiP\niOfzhuLEZmZp9P8E3aK3Zk74Y+CGbkPxOTYzS6P/q6JFqlQBIOlomg+c/I/dOnRiM7M0+r94UOTW\nzAnvAe7odhgKTmxmlkpe+b0fwfi9XX9ZpErVhAvocRjaZShmZlOUk00aK5rbhPXXH9Jk8tZMYBfN\nWzMvbG8k6Y3A79I8x9bPUMzMpmiwVaoAzge+HxEvD2goZmZtSizQ7XVrZvZ+A7ChSH9ObGaWRoWy\nSYWGYmYjrUI1D5zYzCyNCmWTCg3FzEZahbJJhYZiZiOtQtmkQkMxs1EWFXpskRObmSVxoELZpEJD\nMbNRVpvEJukrwHnA0xHx1pw2VwPn0izkcnFEbCsT08yq6dUjZxds+dpAxwHln8f2VZoPh+tI0mrg\npIg4GfgIcG3JeGZWUQdmzCi0DUPZ8nu3Zzeu5llDdgtERGyVNFfSgojYXSaumVXPgQoVPRj0UXGn\nB8iNAU5sZjWz/zBKbABqe5/7ULmn1n958vWcs05nTuP0QY3J7LA1/lBzA+CoJ5L1e6BC1yIHPZL2\nB8iNZZ91dNzllw54OGbWWNrcAJi3iPVf35Wk3zKHopJWAVfRfEbIlyPiyg5tGsB/B2YBz0ZEI6+/\nQSe2TcBa4EZJK4HnfX7NrJ76TWwtVarOpjnxuVvSpojY0dJmLnAN8PsR8bik+d36LLvc4wbgLGC+\npMeAy2lmUyLiuojYLGm1pEeAPcAlZeKZWXW9StHlHoeYrFIFIGmiStWOljZ/DHwrIh4HiIhnu3VY\n9qroIY/v7dBmbZkYZjYaSpxjK1Kl6mRglqRbgWOAz0XE/8rrsDpn+8xspJU4x1akStUs4HTg3cDR\nwJ2S7oqIn3Vq7MRmZknkJbZ7xvdwz/jebj8tUqXqMZoXDF4GXpb0A+BtgBObmQ1O3jq20xrHclrj\n2Mn3X1x/yOmxIlWqvgt8PrvQcCTNQ9X/ljcWJzYzS6Lfc2xFqlRFxMOS/hm4HzgIfCkiHsrr04nN\nzJIos46tYJWqzwCfKdKfE5uZJfFa/8s9knNiM7MkDrd7Rc3sMHA43StqZoeJw+mxRWZ2mHBiM7Pa\n8Tk2M6ud1zhyuocwyYnNzJLwoaiZ1Y4PRc2sdrzcw8xqx4eiZlY7TmxmVjtObGZWO69WaLnHEWU7\nkPQVSbslPZDzfUPSC5K2ZdtlZWOaWfUcYEahrRNJqyQ9LOlnkj7e4fsp5ZEUM7avAv8D+McubW6L\niDUJYplZRQ2y/F6mcB4pndgi4vbskb7dtFeDN7OaKbGOrUj5PZhCHil9KFpAAGdIuk/SZklLe/7C\nzEbOAWYW2jroVH5vUVubKeWRYVw8uBdYHBF7JZ0LbARO6dTwveecMfm6sQQaS+ox0Tu4e7pHMFgz\nf+OT0z2EgTqw879M9xCSGr+zuQEw44lk/eYdiu4c/wW/GP9Ft58WKb9XOI/AEBJbRLzY8vomSV+Q\nNC8inmtvu+7seiQysyprvKO5ATB7Ees/uytJv3mJbXFjCYsbSybf/2D9He1Nepbfm0oegSEkNkkL\ngKcjIiQtB5Q3GDMbXa/2X/OgZ/m9qeaR0olN0g3AWcB8SY8Bl9Os2jxRZeZ9wEcl7Qf2AheUjWlm\n1TPI8ntMMY+kuCraXti0/ftrgGvKxjGzahtk+b2p5hHfeWBmSfiWKjOrHT+Pzcxqx89jM7Pa8aGo\nmdXOa/0v90jOic3MkvA5NjOrHZ9jM7Pa8Tk2M6sdJzYzqx2fYzOz2vE5NjOrHS/3MLPaqdKh6DAe\nDW5mh4ESjwbvWaWqpd3bJe2X9AfdxuIZm5klMegqVVm7K4F/pkdhF8/YzCyJEnVFJ6tURcQ+YKJK\nVbs/Bb4JPNNrLJ6xmVkSJdaxdapStaK1gaRFNJPdu4C306MAjBObmSXxKkf2+9MiVaquAv4qq3kg\nehyKOrGZWRJ5M7a943ezd/yebj/tWaUK+B3gxmZOYz5wrqR9EbGpU4elEpukxcA/Ar9BM+t+MSKu\n7tDuauBcmkUYLo6IbWXimln15CW2IxsrObKxcvL9c+v/ob1JzypVETFZv0/SV4Hv5SU1KD9j2wf8\neURslzQH+JGkLa1XMyStBk6KiJMlrQCuBVbm9GdmI6rfdWwFq1RNSanEFhFPAU9lr1+StANYCLRe\npl0DbMjabJU0V9KCiKh5fXSzw0uZW6p6Valq+/ySXv0lO8eWTSOXAVvbvup0xWMMcGIzq5HaPd0j\nOwz9JvCxiHipU5O29x2vgqy75fWPG0ugsaTrhQ8z68P4nc0NgBlPJOu3VolN0izgW8DXImJjhybt\nVzzGss8Ose5sJzKzQWu8o7kBMHsR6z+7K0m/r75WnZvgS915kK0nuR54KCKuymm2Cbgoa78SeN7n\n18zq58D+mYW2YSgb5UzgA8D9kiaWcHwCOAGaJ/8iYrOk1ZIeAfYAPU/8mdnoObC/JoeiEXEHBWZ9\nEbG2TBwzq77aJDYzswn79zmxmVnNHDxQnXRSnZGY2WjzoaiZ1c4r1Ukn1RmJmY22/dM9gNc5sZlZ\nGk5sZlY7FUpsrnlgZmnsK7h10KtKlaT3SrpP0jZJd0s6s9tQPGMzszQO9PezglWqbomI72bt3wp8\nAzg1r0/P2Mwsjf0Ft0P1rFIVEXta3s4BDnYbimdsZpbGK33/smeVKgBJ5wN/T7MUwepuHXrGZmZp\n9D9jK1KliojYGBGnAucDn+rW1jM2M0sj76roA+Pw4Hi3XxapUjUpIm6XtETSvIh4rlMbJzYzSyMv\nsZ3aaG4Tblzf3qJnlSpJvwU8mtUVPR2YnZfUwInNzFLJWcrRS8EqVX8IXCRpH/AyzeSXy4nNzNLo\nc7kH9K5SFRGfBj5dtD8nNjNLo0J3HjixmVka/S/3SM6JzczSqNCMrWyVqsWSbpX0Y0kPSvqzDm0a\nkl7I7vHaJumyMjHNrKL6X8eWXNkZ2z7gzyNie1Y0+UeStrTd4wVwW0SsKRnLzKqsQjO2slWqngKe\nyl6/JGkHsBBoT2yuhGxWd30u9xiEZLdUZYvrlgFb274K4IzskSObJS1NFdPMKuRAwW0Iklw8yA5D\nvwl8LCJeavv6XmBxROyVdC6wETilUz/rv/v6LWONseZWBzNume4RDNa+R/9uuocwUEf85uXTPYSk\nInYCOwFYuPCYdB3X6aqopFnAt4CvRcTG9u8j4sWW1zdJ+kLePV7rVpYdjZn10jy4OhGAsbGF7Nr1\nv9N0XJdzbJIEXA88FBFX5bRZADyd3eO1HFC3e7zMbERV6Bxb2RnbmcAHgPslbcs++wRwAkzeEvE+\n4KOS9gN7gQtKxjSzKhrS+bMiyl4VvYMeFyAi4hrgmjJxzGwE1OVQ1MxskhObmdVOhc6x+dHgZpbG\nqwW3DgqU3/v32VrY+yX9H0n/tttQPGMzszT6PBQtWH7vUeB3I+IFSauALwK5C8Sc2Mwsjf4PRSfL\n7wFImii/N5nYIuLOlvZbga7L930oamZp9H9LVafye4u6RPoQsLnbUDxjM7M08g5Fnx2HX453+2Wh\n8nsAkt4J/AnNNbS5nNjMLI28xDa30dwm/PSQKlWFyu9lFwy+BKyKiF91G4oTm5ml0f85tiLl904A\nvg18ICIe6dWhE5uZpZGzlKOXguX3Pgm8Cbi2eYs6+yJieV6fTmxmlkaJOw8KlN+7FLi0aH9ObGaW\nRoXuPHBiM7M06vJ0DzOzSb4J3sxqx4nNzGrH59jMrHb6XO4xCE5sZpZGhQ5FS90EL+kNkrZK2i7p\nQUnrctpdnT1n6T5Jy8rENLOK2ldwG4KyNQ9ekfTOrGboTOAOSTdFxGTRZEmrgZMi4mRJK4Br6fIc\nJTMbUXVa7hERe7OXs4FZwMG2JmuADVnbrZLmSloQEbvLxjazCqnLoSiApCMkbQd2AzdHxN1tTTo9\na6kmNd7NbNL+gtsQlE5sEXEwIk6jmaxWSHpLh2Zq/1nZuGZWMXU5x9Yqexb5rcAq4MctX7U/a2ks\n++wQ6+56/XVjrLmZWVrNJ3DvBODxx49J13FdDkUlzZc0N3t9FHAOLc8pz2wCLsrarASezzu/tm7l\n65uTmtlgSCciNZAajI29Z7qHAxSqUvVmSXdKekXSX/Tqr+yM7XhgQ1Zl5gjgnyJic+tzlLL3qyU9\nAuwBLikZ08xqpGCVql8CfwqcX6TPsss9HgBO7/D5dW3v15aJY2a1VqRK1TPAM5LOK9Kh7zwws0T6\nvjLQaeXEijIjcWIzs0Tyrh78INtyJV8l4cRmZonkzdjekW0T/mt7g0JVqqbCic3MEnm53x/2rFLV\non1NbEdObGaWSH/n2IpUqZJ0HHA3cCxwUNLHgKUR8VKnPp3YzCyR/lfoFqhS9RT/+nC1Kyc2M0uk\nOo/QdWIzs0Sqc0+VE5uZJeIZm5nVTt9XRZNzYjOzRHwoama140NRM6sdz9jMrHY8YzOz2vGMzcxq\nxzM2M6sdL/cws9rxjM3Maqc659jKVql6g6StkrZLelDSug5tGpJekLQt2y4rE9PMqqr/wqK9qlRl\nba7Ovr9P0rJuIymV2CLiFeCdWcHk04BVkjo9q/y2iFiWbZ8qEzOF8VLP5uwj3kM1j3fncOtfDzte\nVmOktvHS6a8UfEuVqlXAUuBCSae2tVkNnBQRJwMfAa7tNpIUleD3Zi9nA7OAgx2aFXrq5bA4saV1\n212924xyvIniwvWNl0rfM7bJKlURsQ+YqFLVag2wASAitgJzJS3IG0npxCbpCEnbgd3AzRFxd1uT\nAM7Ipo+bJS0tG9PMqqi/GRudq1QtKtAmt6x66YsHEXEQOE3SG4HvSHpLRPy4pcm9wOKI2CvpXGAj\ncErHzsYOKVE6GMfugrGFw4kF8OwueNMQ471hyPFmPAmzhxlv11DjHX/8HBYuPH5o8XbtGl68N795\nPj/8Yare+l7uUfTcQvuRX+7vFJHufIWkvwX2RsRnu7T5OfA7EfFc2+fDPXFiZpMiotTpoqn+99sa\nT9JKYF1ErMre/zVwMCKubGnzD8B4RNyYvX8YOCsidnfqv9SMTdJ8YH9EPC/pKOAc4Iq2NguApyMi\nJC2nmUyfa++r7D9YM5s+Jf/7LVKlahOwFrgxS4TP5yU1KH8oejywIbuqcQTwTxGxubW6DPA+4KOS\n9gN7gQtKxjSzGilSpSrLK6slPQLsAS7p1mfSQ1EzsyoofVW0H5LmSdoi6aeSbpY0N6fdTkn3Zwt7\np3yKM/Wiv7LxUi5WlvQVSbslPdClTcp96xov9UJsSYsl3Srpx9ni7z/LaZdkH4vES/z313Nxe9Yu\n1f4dXovpI2LoG/Bp4C+z1x8Hrshp93NgXp8xZgCPACfSXF+3HTi1rc1qYHP2egVwV4l9KhKvAWxK\n9M/w3wHLgAdyvk+2bwXjJdu3rL/jgNOy13OAnwz4769IvNT7eHT250zgLmDFgP8Oe8VLun/TuU3L\njI2WxXbZn+d3advvScnki/4SxINEi5Uj4nbgV12apNy3IvEg4ULsiHgqIrZnr18CdgDtazyS7WPB\neJB2H3stbk/9dzhyi+n7NV2JbUG8fkVjN5D3lxXALZLukfThKcZIvugvQbxhLlZOuW9FDGzfsqtl\ny4CtbV8NZB+7xEu6jwUWtyfdv8NpMf3Anu4haQvN6X27v2l9ExHRZQ3MmRHxpKRfB7ZIejibORSR\nfNFfgnjFFyunkWrfihjIvkmaA3wT+Fg2kzqkSdv7UvvYI17SfYzei9sh4f4ViDfsfz8HZmAztog4\nJyLe2mHbBOyWdByApOOBp3P6eDL78xngOzQP94p6Aljc8n4xzf/jdWszln3Wj57xIuLFicOBiLgJ\nmCVpXp/xpjqeMvvW0yD2TdIs4FvA1yJiY4cmSfexV7xB/f1FxAvArTRvAm81kL/DvHhD/vdzoKbr\nUHQT8MHs9Qdp/p/hX5F0tKRjste/BvwekHsFsIPJRX+SZtNc9LepwzguymL0XPRXNp6kBZKUvc5d\nrJxIyn3rKfW+ZX1dDzwUEVflNEu2j0XipdxHSfOVrQbQ64vbd7Q1S7l/PeMN+d/PgZquB01eAXxD\n0odoPsrg/QCSFgJfiojzaB7Gfjv75zwT+HpE3Fw0QAxg0V/ZeCRcrCzpBuAsYL6kx4DLaZ4QTr5v\nReKRfiH2mcAHgPslbcs++wRwwkTMxPvYMx5p97Hn4vbE+3dYLab3Al0zq53pOhQ1MxsYJzYzqx0n\nNjOrHSc2M6sdJzYzqx0nNjOrHSc2M6sdJzYzq53/D2L+4yhHS9b/AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10ca85390>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# Display the RMDS matrix among the centers\n", | |
| "diff = numpy.zeros((len(centers), len(centers)))\n", | |
| "for i, prof_i in enumerate(centers):\n", | |
| " for j, prof_j in enumerate(centers):\n", | |
| " diff[i, j] = numpy.sqrt((prof_i - prof_j) ** 2).sum() / prof_i.shape[1]\n", | |
| "im = plt.imshow(diff, interpolation='none', vmin=0, vmax=1)\n", | |
| "plt.colorbar(im)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## How stable is the clustering?\n", | |
| "\n", | |
| "If I run the clustering several times, how different are the results?" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 15, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "class DevNull(object):\n", | |
| " \"\"\"\n", | |
| " Emulate the /dev/null file\n", | |
| " \"\"\"\n", | |
| " def write(self, *args, **kwargs):\n", | |
| " pass" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 16, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "n_iterations = 100\n", | |
| "all_clusters = []\n", | |
| "for i in range(n_iterations):\n", | |
| " clusters, centers, convergeance = k_means(sequences,\n", | |
| " ngroups=number_of_clusters,\n", | |
| " max_iter=maximum_number_of_iterations,\n", | |
| " logfile=DevNull())\n", | |
| " all_clusters.append(clusters)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.lines.Line2D at 0x10c8c2780>" | |
| ] | |
| }, | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAF9CAYAAADcGsb5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QJPld3/nPt6o1VoxX0s4eu9LOQ2u1a0RY86SHkw5J\nxbGATIDPJ3TcWTY2d5jdsx1hgXX4fMdirK6sFnfmwdiHCXCYQHCLbDACjI4jzMMiM3L3CXslLM2T\nJAQXjKZnBu2CdhZLhOHUld/7IzOrq6srq7Kq8leZWfV+RUx0d+WvMr+TD9W//j18f+buAgAAQPla\nVQcAAACwqqhoAQAABEJFCwAAIBAqWgAAAIFQ0QIAAAiEihYAAEAglVW0zOxrzOyTZvbbZvbtVcUB\nAAAQilWRR8vM2pJ+S9JbJN2W9GFJ3+Dun1h6MAAAAIFU1aL1Bkm/4+433P0Lkv6lpK+rKBYAAIAg\nNio67ilJe0M/35L0XwwXMDNS1gMAgMZwdxt9raqKVqFKVPfvSNH/HDoUzCP6fq7NQtInIDpd/q4v\nSXq0/N0uVU/dhffRVW/ivqZtn7VccZfU/CtUkKW/c65sSZK6F9qSpN7VuKqIJvuhSHpHVHUUGKfm\n16ZzXNp9+EgdS1J1Fa3bks4M/XxGSavWIZc+JEXp94++UXr0TUuIDAAAYJqnL0kfviRJ+vQL8otV\nNRh+Q8lg+K+SdEfS0xoZDG9m3pQWLVdSi23f7c+9D0ubOPZPbIzdV7a9f6Jd+rGnxbJxd/9IbP5D\nkazGf13UXvrY+fmktSQ751vaXnjXl7Q27SWNdEnrc32yz6dtS1sDs983Nv4v/8r5r0v2FVVHgXFq\nfm06nU3t7jxWn65Dd983s2+R9CuS2pLeM27G4aNvXHpoKOr1j1YdAXI8VHUAmOihqgPABA9VHQBy\nPVR1AHOrLI+Wu/+Su3+Ju/8Zd/8H48o0qavQTsaKz9b0r7QA7A2PVh1C48XnTO5R6ft9qPQ9okwP\nVR3AkvU8lsdljW8LzF4R/BAed5tzPupkCdcmFDLDAwAABFLJGK0izMyjBjUQdePkPEatxequ2Vid\nbGxD3vZReeXLjGVabCjOzdTrJ+Pq7NqhLQEOln690Dv8enYZL3fHbwcWZZLHUfLttclF14HJFZ9L\nHjy/Xe/P0exzfiMd/9s/QbvMRMc6aj2wO3aMFmcOAAAgECpaAAAAgdS669CPZNaqsVPpeax5czDq\nwV2y0+V0N8900HGyqfY1+CwYpAPQ1sL7ylJl5O1r2vZ5yxUpuzbMBgO/7XrFsdSEn02+tq5X/7wV\nMTp0BON1jks7D7foOgzqtlHJwkz8li2vkgVUxFo9KllD7HpzKlkoB5/yAAAAgdS669Cu1XQ9LGBR\n6XO3db49pWB5RtfqG81GX95afsBhXVt8xYOVkHZ6dPeqDaOQtGrQ20y+NiLmKh3rqHX/Dl2HAAAA\ny0RFCwAAIBAqWgAAAIHUeoxWt64rvI8yKeon48n8zpx112n94dn2M0ePPbb8IkZjuTklNszMZWqd\nzDLDe372dqDJhtM7XKvn75pl8zQzfFNmHmZVhKb8Oq4K6R0AAAAqQEULAAAgkFp3HepqM9I7JAuF\npnXWO/O1r2bZd9vP7UuS4vvaY7e3nusfOfa48osYjaV/38bE2DA7d8nS1QSs1VPWd9h1ug6xOlym\nnief48l9jkFXKudjpXQ6m9rdeYyuQwAAgGWiogUAABBIvbsOLao6jJmUsejmtAU8s+0hjj0tFhYX\nLVOald3JmH1IOrWpd6U/pWDO24c+z7YubozdV1Ymb/ui5SaVXTfZZ0X/BMMNsOKOddR6YJeuQwAA\ngGWiogUAABAIFS0AAIBA6j1GS92qwygmS5l7ZYF4s+twcXv8vrLto5nDyzj2tFgub02ODTMbpOU4\nkfytk53yI5n/11UZaainpbQumvJ61nJFyq6L9DREe/X8PQOU5lhHdj9jtAAAAJaKilZJPO7Kz1Ud\nBZokPmfSKf7Sx2qL+rF0kvt84KRzPtZMvbsOr9YztnGySpZdX3RH6de8noe8UxKip2I0lmmxoTg/\nuGdarejg5QC3fNZNuSVSSWD5ovSmHr7P15WZq99Ph3+MWUUke/43NpPhGvs3tw/93N9b3jM8Gssy\nj91IdB0CAAAsHxUtAACAQGrdddhtyMwdN1Ovn2SCnrvrcCS79PZoZul0e/fCyGLT6Tk6Un4Ro7Fc\n3p8cG2ZmcsVnk2vnt01Za3P7zFaVYQGlMnPFcdJV5reb8XkeWraY/Liuw8zoRNeiE19DqPLYjULX\nIQAAwPJR0SpJt91efCA81krruvNXPlZeq9XlPh/it21iaxZWDxUtAACAQGo9RstvVR3FbLyETmxL\nr0feviznepVx7GmxTIsNxQ2mTo+Myarp47h0XfWmFxrDh3KPbGtr7L6yMnnbFy03qey6yT4r3n2V\ncZ1YbZ3j0s7DLcZoAQAALBMVLQAAgEBq3XUY0UOFFZU9dT1fwgLdeQuPT1vIvFJlfC6NLmkw6/Z5\nyxUpuyay03CRrOJSku5CakaWdTLDz+hYR637d+g6DKkbu7oxH64oLopd7lHVYQBB+XmTx3WqxFcr\n7keyk3HVYWCJqGgBAAAEQkULAAAgkFqP0WpKY7OZDroN50zMl12G7c3ka3dv/PbemaPHHld+EaOx\nbN2cHBtm5zLZqaT7wK7p4KRfCJgWIC8tB2tsIBSTvJ98ktu1imOpCT+XfG1dr+fv3lHZkKNsfBnG\nI70DAABABahoAQAABELXYYnK6HmZ1ouTd7lC9PrUaQX5VTNI76BoZEP5z2N2vfp7IxnS0xbug+nb\nZDNHubJ7rL3ZtE/zQLLPzlqlUskxSM2Rfi40IeYKdY5Luw8bXYcAAADLREULAAAgkFp3HTZtUWmg\nqGwh4tbdkhIXjs5aHO7fvZx0DdrF8V2DdAkjmGzYweWo0jBqZ9Fnbej3dvdC+/Cm9EHevtI/VHbr\n4kby+uX9se87cohsPx9Ly1+cXL4qgzgL/r9y339lZOHznPOWd4zNTkeP75AZHgAAYKmoaAEAAARC\nRasspzz5BxRkp+JB8kJgVcX9iPt8iJ+T/GzVUWCZaj1Gy6w500njOJIktVpRpXGgISz5BSRJdr3E\n/Y55nLOMzv17+bsKy+UytbIVEMq8z5vKXX4uGcITtaY/j4XGHxXN+ZOXrydPWq6Xjl3qnq/550fR\n/9e0948aN4h1zDE2Ox09vrvLGC0AAIBloqIFAAAQSK27DuOmpHdwyU4n5zGad458tjh0uoDz6OLR\ng+2jCzrnLDa9kNFYNkd+LvNYa8rN1IuHulSyxzDgotI2rl8RCClUF3mDZeOz7NoMz+Oi3WKLqPLY\nDdI5Lu0+wqLSAAAAS0VFqyR+y+ZvzcJa6rZa/JWPlddqR9znQ+z6jK1ZaLxadx367aqjmFEZpzKr\nq+XtK68uF+IyjsYyLTYUlj12vc2cmUFlHmuQ+XgkC/0g83F7/HZgUek9Vtes4suWPd3basKM+vTz\nQduSmhJzdTqdTe3uPEbXIQAAwDJR0QIAAAiEihYAAEAgGyF3bmZnJP2EpAeUdPj+iLv/EzO7T9JP\nS3q5pBuS3u7uz4++v3c6ZHRAdXwk63JIWVqH+L7Df1d5Ouhu48r+2O3AorJ7rL2E+7wRlpDGpTSD\nrPTptWtCzFWaML429CfrFyR9m7uflfSlkt5hZn9W0hOSnnL3V0r6QPpzo3VjVzdmlDiKi/rxYDkO\nYFW1Tva5z4f4eZN7VHUYWKKgFS13/4y7fyz9/vOSPiHplKS3SnoyLfakpLeFjAMAAKAKS0vvYGYP\nSfqgpHOSbrr7ifR1k/Rc9vNQedfVZkw3N7nic2md9fZ8f7kNmtjvpt04J9pjt7fuHm6CH3QLnShv\n+vRoLP0TGxNjw+x8aDUBa/WU9Sl006nUIeRlhs+uN5njUTaXFMXD9zk8TtIkmEXVBlIUmeEL6XQ2\ntbv7eHXpHczsHkk/J+md7v654W2e1PS4ggAAYOUEHQwvSWb2AiWVrPe6+/vTl58xs5e5+2fM7EFJ\nz4598w9HB9+//tHkHwAAQOVupP+kT3/6JbmlgnYdpt2CT0r6rLt/29Dr35u+9j1m9oSke939iZH3\nejxnN1wV7GTazXlnsZindeN4Tmr4EN0+o7HQxVQil3RqwYXIi8qZ4WiDzPAbY7cDizJ3xeeTjhOW\nKEs+Q3ueLibfkK7Dg8zwWxVHUm9Vdh2+WdI3SvoKM/to+u9rJH23pD9nZp+S9JXpz43md1oLV7Kw\nZm6zPiZWX+tqzH0+pGutxlSyUI6gXYfuvqv8ytxbQh4bAACgamQoBAAACGRp6R1mZWZu1ozVws2S\nc9jfm39qfnYZNja3xu4r294+c/iclHHsabHs39yeGBtmN0jX8VwyLmowXupCwNQZed032QWnewcl\n80F28f2KI6mbJj1rWR2hSTEvX+e4tPuIVZfeAQAAYB1R0QIAAAgkeB6tRdS0V/MI92ztqp56rXkz\nwyfitNVxdEHtbPvoOfGc8os4EsuZybFhdm7pWocnJbuuQat8dCvoURfcDszGJdmpWD2l9znkZ5Ov\nzTkfdBkWMuE00aIFAAAQCBUtAACAQGo961BX6xnbOH4u+WrXFo05a3/M209e+2SIczUay7TYUNTw\nQuR+p3Xo9dKlu8y6gIGlManbT1eWuMPf9e5S61SaGb7mi2xnM9qzWeejM95xWKezqd2dx5h1CAAA\nsExUtAAAAAKholUSu1ZGtyHWSetaTHcKVl6vbdznQ+Lbrdp3G6JctU7v0LxZpWUGPOu+Qp6s0X03\n7sLUVpAxWUcPIknq7oU/1KJ8wfFkw8ntt26O31dWJm/7rOUwQbbKxJl3SSo+3mflxwfVdGz0sMEK\nIWe2Dr+A8SacH/7MAAAACISKFgAAQCD1Tu/AmCesqvS5iy6E/1sne4q2Ndr9ki5kre2c7dUp42Mp\n6/rL29e07bOWw1E2co/Nei5X7tw3qBt/kBZmM/naiJirdKyj1gO7pHcAAABYJipaJfGzB2tYAUX4\nOVM3XpU/1YHxYu8pWpkmqcVFsctOcT7WSb27Di2qOoyCXB5HkqSoNV/d9aB7J5nh0U2b2o9uH9/9\nM1p+EaOxHHQtjY8Ns3Mz9fp9SUlakKyLJT7RDnfMnNfJ949QXHaQCZ2hIJKSP7AkqXW9GecjqyIY\nk80n6hyXdh5u0XUIAACwTFS0AAAAAqGiBQAAEEitx2jVZ7L5dNlgz4iObBRhpihOx65cH3p53UdK\nZf/9C3MuUTL8+F3ujt+XTdk+aznkMnP1+8l5i++0tXF3X5LUnzIW0dOTX7R8k9jJ5LlnWaIVc6yj\n1v07jNEKKTKjkoWZRK3WoUoWsIra7a7iO6tTUVqU32lRyVozXG0AAIBAat11qBplqgZKlTV+Xo2W\ncKjkGW9U9wup4VfCoAvw+f6hn4t2kc9avvbSe6h7of7Poqf3/fblpPu2CTFXabPT0WM7ZIYHAABY\nKipaAAAAgWxUHcAk8a3e0OyTpOm5f+Jw3XB0+37aPZJXHhiV3UPtu/ESD5p2IZxvpTEkQizsnO27\nnWb2B5YnW1SabqdhjeiFToPcurAx/CNyTDo/1EJKYqdYvwqz8fMHKR6AVRXHPe7zIVEcs/bjmqGi\nBQAAEAgVLQAAgEBqnd7Brh00N0+b5ju6fdnTguOzzVqRHUe5lphw1l1+LjkeiW6HpKeiuzfn+4ce\nv95mzr58yvZZyyGXu6l1Ovkcb1lXW9qWJPXWOHWPeyRJMosqjQPl6nQ2tbv7OOkdAAAAlomKFgAA\nQCC17jpUU5pWs4bCKws0h2eX4WJv/L7yFtst49jTYskW1c2LDbMbSe9gi3aZrZoyelOz+zhvX9O2\nz1oOR6XnLjpdbRhAaJudjh7fJTM8AADAUlHRAgAACKTWXYeN66AqY/ZYdj3y9jVtgdwyjcYyLTYU\nNsgE72m29vSU2tXG3fVAvvRG9/O9yeWwNGbJRYn3tieWyz7u25tbhcovso8yjjWv7NitM4c/e7Pz\n1L+5fSg2KSe+Yx3ZA3QdAgAALBUVLQAAgECoaJUkcmc9L8ykF8eD5IXAqorPGff5EPeI87Fmaj1G\nS1ebU3HJsnzbtXqeT9SLuStOUzscygy/7uPfmpgZfqTcxLJrxl1qnUo+x8mEnqhLZviiHzVlDM0t\nuo8qhwFPG/48vH1cfJ3OpnZ2yAwPAACwVFS0AAAAAql112G3Kd0oJkX9pHnc78xZd53WTZFtP3P0\n2GPLL2I0lptTYsPMXKbWyb6ktLs5L/P/mlpmppSyujOmdS2sJZPifpR8e63aUOrCzyVfOR+rpXNc\n2n3E6DoEAABYJipaJYnarflbs7CW4jttJk9g5bXaEa03Q+warVnrhpoBAABAILUeo+W3qo5iRmWM\ny8guR96+8i5XiDEho7FMiw2FeXoSW3fj0Q3rLf086l6Y729AHxoctX25P3ZfWZm87YuWm1R23WT3\n+baxtBRWW6ezqd2dxxijBQAAsExUtAAAAALZqDqASVrPNyczPDAT0jnkWKzv1IaHQlwcf24HZXK2\nz1uue7FdLMg10rLk3PRvJudwY3Mr+Xlv8jnNel+Klgcqd6yj1gPjN9GiVZL4rCk+y+AlFBefM3nM\n2BWstm7sap3mj+aMnXLZqXUfjLleqGgBAAAEUutZh43JDC8pipO/2KIWdVdM55J68ZIW282eoytN\naj0r43NpdLrsrNtnLYcjXPLz6QzbVjTzosFVLjIcgpmr30+7Qe9M/09l//+DLtTtUKHV6tiNdKwj\nu3+XWYcAAADLREULAAAgECpaAAAAgQQfo2VmbUkfkXTL3f9rM7tP0k9LermkG5Le7u7Pj3mf62oz\nZqpYOnYjPjH/9O4sg3L77v7YfR1kEu8fer2MY0+LpX9iY2JsmF322LXOHB431VXAaeyrMtAFjZH9\ndtn2rUrjqJtZH8Uqx6qt2ji5UDqdTe3sPF7ZGK13Svq4Dp65JyQ95e6vlPSB9GcAAICVE7SiZWan\nJf15ST+qg6k7b5X0ZPr9k5LeFjIGAACAqoTODP+PJf0vkl489NpL3f2Z9PtnJL00783xfevTRZV1\nAfbvG39JBl2ESzgno7FMiw2zy/7qCNpVOKqmqVwOSfsnelf6UwrmvH3o/7h1cWPsvrIyedtnLYcJ\nRlZA2FKSImBbxboSZy3fFPM+ilU+wk34+KjSpPMTrEXLzP6CpGfd/aM6+L1yiCcDxLh8AABgJYVs\noniTpLea2Z+X9EJJLzaz90p6xsxe5u6fMbMHJT2bt4Po+w/qYI++UXr0TYzGAwAAdXAj/Sd9+tMv\nyS21lMzwZvblkv5uOuvweyV91t2/x8yekHSvux8ZEG9mHjWoXtWNk/PYazUoaFTHpG4/ffZuW+6s\n0rVVxhSnadOlik6nYtrV3Ew+WAPWb9vMOfZXMSd/ts6h367mfsomxbXPTO6OzW73/Zvbhcovso8y\njjWv7NijC5ePLmyexSaNj6/T2dTubnWzDjPZs/Ldkv6cmX1K0lemPwMAAKycpYxudvcPSvpg+v1z\nkt6yjOMCAABUiczwAAAAgSxljNY8zMy704vVg5miOMlib9fmO5/TppIPtl8YSe+w4HT4IrFsX96f\nGBvm4JKfT8dltSKZJed8f+/dVUYFlMpdap1KPhtbrajaYGoijiNJ1Z+Por/6szFMi1QViu6jjGPN\na5ahnOPiq8sYLQAAgLVCRaskUas1d2sW1pNd9cr/qgVCi2+3uM+HtFoR52PN1LrrUGpM52FimVPS\nQxx7WixMcy9N1lXYv9kbeX3OHaaXpncm29HBpu7NkW3AsqT34dbNasNYNT70gLfvpsNWshU8Tkxu\nP8nem70vT7a//RPtQuUX2UcZx5pX3nkrep4ynePS7iNG1yEAAMAyUdECAAAIpN5dh1frGRuwsPS5\niy6W+7fO2Mc5bcjuNWceL1ZE1i3Tte0pJddE+ix293K2jw4BKPA+H1lK2Arm0R99X14s25vpLPS9\n+YeMZDFNO2bRciHknbfCsRzrqHX/ztiuw0IJS83szZIeGirv7v4TxY4OAACwnqZWtMzsn0t6WNLH\nJA0nUKKiNcTPJV/tWrVxoDn8vEmxsz4mVlrsPUk97vPUYI3TO5yPdVGkRet1kl7lde1jBAAAqKmp\nY7TM7GckvdPd7ywnpMFxPa5odfN52MlkCqjfYX4BpnOZWieTBuLQ+ddyVxUAAnMz9RZcNWOljKwI\ncUSWSedj6XjKi2n6l8vJz3axd/Q9oYzEstRjN1Cns6mdnfGZ4Yu0aN0v6eNm9rSkP0lfc3d/a5lB\nAgAArJoiFa0o/Zr9OWJD3wMAACBHofQOZvYySa9XUsF62t2fDR6Ymfvt0EcpiUs6lZzHuQd8ZtN3\n87J4503vzZsOvIjRWDanxIaZuZmiftqlcl0Hf7pcCNg8zzBLLJtJni6ibNerDaUu/GzydeLEqezX\niOf8vExVHrtBFsoMb2Zvl/TvJf1FSW+X9LSZ/cXyw2y428asGswkarf45YOVZ62I+3yIXWd2+rop\n0nX49yW9PmvFMrP7JX1A0s+EDAwAAKDpisw6vCrpQpbewcxaki67+/mggTWp6zBTRtPqtGbavEaz\nEM26dWq+XjHZY9fbtPEbyjxWeuG2tVX6voEiyAyf8HTV+O0r/SklayCbrXwxaY9pRMwV6hyXdh8e\n33VYpEXrlyX9ipn9pJJftX9J0i+VHCMAAMDKKVLR+l8lfb2kjpK2jH/m7j8fNCoAAIAVMLWilXYZ\n/lz6DwAAAAXljtEys//H3d9sZp/X0VE57u4vDhpY08ZonWT9KhTnLlmaEsQsCnqsbFX6LTFOBsvl\nMvU8TWMS+D5vhGnpLvLSvGS/Vq50AwU2KZYo+Xo1Wt6xG2iuMVru/ub06z0hgwMAAFhVRfJovbfI\nawAAADisSHqHj7r7a4Z+3pB0xd1fFTQwMzdbYjPpguK0OXjsQqHACDNXv590D/i4xdMH6R+Sr2Tl\nRxOZSd04uZnH3udrKBsy4HcmtHPk/V62xc9hlu6lfXdyuoZsyMH+vcli9O3n45mPNdjHiY2Jxyxa\nLoTs2P0T7UOvZ+dp4+7+odik8fFN6jrMvdJm9vfM7HOSzpvZ57J/kp6V9Asz/28AAADWTG5Fy93/\nd3d/kaR/6O4vGvp3n7s/scQYAQAAGqnootInJH2xpBdmr7n7vw0Yl8zMm9NxCMwobVyObk0pV0JW\n/uwRb53hicJymSU3X3yLGa/S9G67ad1YZXapee4yI+Njad2dvetwdF9FjzmtXAiW8+GaxTK8fVx8\nC2WGN7O/LulvSzoj6aOSvlTSb0j6yiLBAwAArKupsw4lvVPSGyTdcPevkPQaSX8YNCoAAIAVUKSi\n9cfu/p8kycxe6O6flPQlYcMCAABoviJrHd5Kx2i9X9JTZnZX0o2gUaV6V+fvEwZqLe3u3z7dm1yu\nxIN11Rt5NRlKsK2tsduBRWXDVVqnGR8oHYxZ6++1p5QceV/O2K2QsrGdG2feJUmK94q0y6yxY53c\nlqsiax2+Lf02MrNLkl4s6ZdLCg0AAGBlTayimtmGmX0y+9ndL7n7L7j7/xc+tGbxcyY/R0I+FOfn\nbZDoFlhVPY+5z4f0+z3ZSXpr1snEFi133zez3zKzl7v7p5cV1EAJWXCXrokxowIHU4W3PHCXXU4q\niSy1i20mx4/2woaB9TOcPij4fd4ASVdqch7ap7eqDWaq5Nq9y98tqQnxVqvT2ZS0M3ZbkTFa90m6\nbmZPS/qj9DV397eWEx4AAMBqKlLReteY1+ZImwgAALBeimaGf0jSn3H3XzOz45I23P0/Bg3MzOMG\nLUKa9blPXCgUSLlLrVPJPWMWBT1WNmOpa+Ozc2cfAfR6o2wuKUoXlQ59nzeCSZ6OV7NrBcpnD+fF\n9Nm9ssTZm4Njp12+V6LlHbuBOsel3UdmXFQ6Y2Z/Q9LPSPpn6UunJf18uSECAACsniLNL++Q1JH0\nHyXJ3T8l6YGQQTWR32nRmoWZxLdb/JWPlRe1jPt8iLWiYq1ZWBlFagZ/4u5/kv1gZhtijBYAAMBU\nU8domdn3SXpe0v8g6Vsk/S1JH3f37wwamJn77ZBHACqUPnbR6WrDqKue5huLYsNpM7Q9dl9Zmbzt\ni5abVHbtZKNVGN9z2KzjIbPbuopxlFUeu0E6x6Xdh+ccoyXp2yX9vqSrkv6mpH8t6e+XGyIAAMDq\nKZLe4Vvd/Qck/Uj2gpm9U9IPBIsKAABgBRTpOvyou79m5LWPufurgwZm5hFNlVhV6b3dvRn+UNni\n0a27/fAHK00ZD/+0Po+ifSKzlitSdj0MFkO+b3mLIddZ9uu2faZY13K2CPX+ze2Z3leGKo/dRJ3O\npnZ3HhvbdZjbomVm3yDpr0h6hZn930ObXiTps+WH2WzdNFdMr8UHLIrp9tNP3QbliwNmFZ8zSTGz\nslOtU7E8lqzFkkTrYlLX4Yck/Z6k+yX9Qx38ifY5SZcDxwUAANB4hTLDV8HMXA2aueMeSSL7MYox\nueJ0kd1ltYJ6A7qzPE1Pv31lzm7O4UWML26M31daJnf7guUmll0zJld8Nr3v7tT//luKk8n94jO0\nZGerNlTx67rKYzfKsY5aD+zO3HX4eeXny3J3f3FZ8QEAAKyi3IqWu9+zzEAAAABWDaMTAQAAAimS\nR6sy8a3mzMrw20ms8a2KA0EzuOS3ttU7s+SD1lyZo3hsWuqagoNOyi63TtxNdk2yC5GaNOY2rCj9\nyvlYJZ3OpqTdsdto0QIAAAiEihYAAEAgtU7vwKLSWFnLXFQ6nZ/dG0k5YCNpCUa3V8pK6ETMPtvy\n9jVt+7zlipRdF+k56Z7nb3rpIMXKtrYqjqS4bLH0JsVchU5nU7u7j8+9qDQAAADmQEULAAAgECpa\nZTnpg4y/QCGnXFFNu+6Bsvg54z4f0vN4sJII1kPwMVpmdq+kH5V0VsnIlG+W9NuSflrSyyXdkPR2\nd39+5H1u1pzpr3EcSZJarajSONAQJsX9KPn2WuBncMwSMYcUHYMEzMjN1OsnY/9C3+dNYHLF55L2\njXFL8GT40qzcAAAaxklEQVRjuDbuJuds/0T70M/9E8trGzmIZT89dntpx26kCUvwLOOq/YCkf+3u\nf1bSBUmflPSEpKfc/ZWSPpD+DAAAsFKCVrTM7CWSvszdf0yS3H3f3f9Q0lslPZkWe1LS20LGAQAA\nUIXQmeFfIen3zezHJV2U9JuS/idJL3X3Z9Iyz0h66bg3+5UocHglGep+nbsnNuu2uZxOob3QG7/9\nykh3anbA0fKLGI3l4vbk2DCz4bbl+L72IN1D0Ezx025OxtGgZK2h1Qji++h6SsSSxvfUW3q++um5\nOvrz8hwce2Ppx26kCScodNfhhqTXSvphd3+tpD/SSDehJ4PE+IQHAAArJ3SL1i1Jt9z9w+nPPyvp\nOyR9xsxe5u6fMbMHJT079t0/HB18//pHk381ZVedlh7MpNWK1L+1XXUYQFC9lmnrFu0hGb/TGrQW\nodkufUi69BvpD+1P55ZbxqzDfyvpf3T3T5lZJOl4uumz7v49ZvaEpHvd/YmR97ksChpb6co4l1l7\nct6+pmW5LtNoLNNiw8wiO1w5r9OpzS53d2+29w3/H7Y359sHVkM2c62dzlzLZr5uT1uFYGSm7KB8\n3usLBVniPqftK0T8ZZslxizz/4Vi3cKefqjU8v+9oM5xaefh1thZh6FbtCTpWyX9CzM7Jun/VZLe\noS3pfWb2uNL0DkuIAwAAYKmCV7Tc/bKk14/Z9JbQxwYAAKgSmeEBAAACCT5Ga15m5vGtqqMAAhlN\n55COXejVcOzCIgnjSTq/5rLxPhc2Dv1c+IbIKx/ixipzn9P2VeGDkf3G39bklVfMkzQU77J3Ty+f\nU4/IBv1vKZn008v2ceT/fbjctNjKlY4z0/aYV6VtJWmNtoa2j4uv09nU7s5jlWWGXwt2ymWn6llp\nRT3ZadY6xOqLz7UUxXHVYdRGFMc892uGihYAAEAgte46tGsN+SvIDxYK7bXmawoeTHu9nEyDHp0u\nmzstdsbptfPEMpjmmxMbZueSoji5dmaRzNIszLfeXWFUQLncpdapLBN6VG0wNeEeSeJ8rJpOZ1O7\nu4/TdQgAALBMVLQAAAACqXXXYbdBU5WywZ7RojGTGX5tZANih7sQgtzy2T5HFyQHQnMpPpfcgHSV\nJc93HEeSJL89/WHPeqE2NpOZb/295S3zVuWxG+lYR60Hduk6DClqtRavZGGtRGb88sHKa11z7vMh\nrVZUqJKF1UFFCwAAIBAqWgAAAIHUe4xW1UHMqLdANtvcDLo528s89rRYRjPjlnmsdTVI57CXnFNP\nB1K17wZMaUJvBZYs+yzp38vf9MNmHWVS5QoLrO5Q0LGO7H7GaAEAACwVFS0AAIBAat116E1aVDpd\n53DR2STZu/OuSt7eQ1zF0VimxYYZeLLWoXR4NQFf8/69ogveTt/DpAVqiy5gO1+5yWXXjEneT85F\n6zqfHJIUn02ecc7Haukcl3YebtF1CAAAsExUtAAAAAKpdddh1JReFJO6/fQ83pkz6PTtvc3ka3cv\nZ/uZo8ceW34Ro7HcnBIbZuYu2amhzPBkbx9RxsM/2uk96/Z5yxUpuybc5efTzPAtMotLksfJM875\nWC2dzqZ2dx6j6xAAAGCZqGgBAAAEQkWrJL22zd9tiLXkt1nrEKvPrjrdZEOs1eN8rJlaj9HS1YBZ\nsgMoI3PutCy8eZcrRNbe0VjIEFyi9Fz6+ZEP3CAnNzlYd2RVgYNUCltjtwOLGtxjvlVpHHWRPd79\nvfpXtLKhRhubybVrQsyVOtZR6wEywwMAACwVFS0AAIBANqoOYKKG9VGV0gmbddNN2R7k2NNimRYb\nCssWlY5vLaE5Pic1SJaQPr7ZG7sdWNTgHlvGfd4AWa9S+0z907hkn1H7N5MhBU2IuUqdzqak3bHb\naNECAAAIhIpWSfxs8g8oKj5rg6SlwKrqxs59PqR1OlYcR1WHgSWq96zDBk19J9svZuPy9MN2eFHp\nIEdKu+B7l/tjt4/OKgXKYu6Kzyd/z4e+zxthaBURv13gfExbMSSk9NjbL0++bt1c4rGbiFmHAAAA\ny0dFCwAAIBAqWgAAAIHUeoxWkyaTRul5jBqWkgLVcDP14mTlA7u2+DNo6YCK+EQ72f9QHpD23X1J\nUv++emdzwepxmVonk7GBZdznq8DPJc9m63rx83FkVY7ht15IxwVn265M+c2ZvffClPHE2djNj6Xj\njy/OMf44i+lyd/Ixi5YLIe+8FT1PqU5nUzs7j48do8Unb0moYGFW3VZL21fGD1AHVkV8p632c/tV\nh1Ebds2bliISC6LrEAAAIBC6DsuQTZ9foHXC0uuwdXFj7L4G2y+0Sz/2tFi2L+9PjA2zy7r6su68\n7DFcNPuyjcnbn3UjjtsGhDTILr737oojWWGjv8OLNpcV/d1fRv6XovuoMtdM3nkrGgvpHQAAAJaP\nihYAAEAgtR4M37saVx1CMYPZCdvz7yJtbBxk7x7Z12D76Dkp4dhTY3n19sTYMDtPL9x2dgGzxXf3\nomoCAkLIsoufrjaM9VJ2t1sZ+yu6jyqHNyx27M1O/jZatEri522wDA9QhMeRujHjprDa7LRznw/p\nxpyPdUNFCwAAIBAqWgAAAIHUeoxWY7K6DYc5LStv0X3l7Wf0lBTNBrxILFm23pDHWjPDqRa6e4c2\nrLVF01xk6QQkaf/m9th9DVIO5GxftNyksuvHFQ8NK926mXztnZn8ruyjv2j5JqppZiXMadL1pEUL\nAAAgECpaAAAAgdQ6M3x8e837UbCysmztG3dZA+6QbFWC8+0pBXPePjTc4N1X9sfuKyuTt33RcpPK\nrpvsPt/WlqTZE39XmSgcmEWns6nd3fGLStOiBQAAEAgVLQAAgEBqPeuwfZfFi7Gi8hYJX3NZD1FP\nc846HOpjeteFjbH7ysrkbV+03KSy6yabkRnv9SqOBAjsWEetB8ZvokULAAAgECpaAAAAgVDRKkl8\n1hSfZZYkiovPtRTFDVk4HZhTHPdkp5g2mLFTzvlYM7Ueo9WoKdLpL8xGxYzKuJnUT8Yg9q4wFjGT\nZcyPT8yZ3mEotX6WOmN0X6OpNfKONW+5SWXXTTLTPRmfRbb8RPa3FedjtXQ6m5J2x26jRQsAACAQ\nKloAAACB1DozvK42Z/yKn0u6D+xaPc8nasYlP5/eM62wU9+zKfb9ve0pJetjeNHteWVdenn7mrZ9\n3nJFyq4Ldw3GI5lF1QZTE+6RJCmyo2N6RzPpj+pqeWkyRmNZ5rGbaLPT0eO7u2SGBwAAWCYqWiWx\na05rFmZiVz14axZQNb9ttGYNMYvGtmZhddW765CKC1ZV+tx1zyd/60zrMigDn+1YvnQFBG9Ot/Wq\nyz4HunuTy2VVg95m8jWaUn7SPrY3Jx+zaLkQBv/PM4dfz87T1s3kaxablBPfsY7sgQq6Ds3s28zs\nmpldNbOfNLM/ZWb3mdlTZvYpM/tVM7s3ZAwAAABVCVbRMrNTkr5V0uvc/byktqS/LOkJSU+5+ysl\nfSD9GQAAYOWEHqO1Iem4mW1IOi7pjqS3Snoy3f6kpLcFjgEAAKASQcdomdk7JX2XpP8k6Vfc/b83\ns7vufiLdbpKey34eea+LAZRYUVnKhfjm4cHwaz8qMWe8RGFDoyO6N3P2ZVO2L1huYtk14+lAl21W\nP6idomM2syrCImM8i+6jjGPNK68qlMUyvH1cfJ3j0s7DreWO0TKzE0parx6SdFLSPWb2jcNlPKnl\nrcTvFo+78pglFVBc3I8k1jzDiuvF8SDPIJKci5yP9RJyrcO3SPpdd/+sJJnZv5L0RkmfMbOXuftn\nzOxBSc/m7sF/feiHhyR7RcBwAQAAivGnL0kfviRJ+vQL8ssF6zo0szdI+jFJr5f0x5L+T0lPS3q5\npM+6+/eY2ROS7nX3IwPizczjW0FCCyLLfuy3+UsF07mbWqeTlQ9arSj00SRJXTVnin0ZH0vjmvxn\n2T5vuSJl10mUngxyxkkyyftJz4ddH7M9u28ujJyr7N66ssRekyyWi73lH7uBOsel3YdtbNdhsBYt\nd3/azH5W0n+QtJ9+/RFJL5L0PjN7XNINSW8PFQMAAECVQnYdypNFnaKRl59T0q0IAACw0liCBwAA\nIJBaL8Fj1+KqwyjE0s7s/on23PvIlmDZuLs/dl/Z9vbdw9Okyzj2tFj2T2xMjA2zyx671unD4x66\nYhwLVk9PjO85pGieg1nfF0KVORcapNPZ1O7OY8tfggcAAGCdUdECAAAIJOhg+EW5mtFUmcXZurt4\nV+e0fY2ekzKPnXesrLsy5LHWzqBn4HBXYYgulqx7eSsnvcO2tiZuB1COrPetvxdVGkcRWQ/Yxmby\n+dCEmCt1rKPWA+M30aIFAAAQCBUtAACAQGo961DX6hnbOH42+To22y8wyiU/l3xrLJ4+MK2bcxbT\nukSLdpnOWq5I2XVhJnVjVs0Ylq0iojvNOB9MOizoWEd2/y6zDgEAAJaJihYAAEAgVLQAAAACqfUY\nrbgpffou2akk5UHUmrPumv5XuzeTr70zOdv3jh57bPlFjMayOSU2zMzN1OsnaTPsmg4GQlwgMzxW\niEkeR5Kk1vV6/q5ZtvhsmiaH87FSOselnYdbjNECAABYJipaJfHbrflbs7CWuu120poFrDBrRbTe\nDGldd87Hmql116HfrjqKGZVxKrNGx7x95fWmhriMo7FMiw2FDRaV3ozGb5hVNvf6Svfofi5uH94G\nLEt2H14k3UW5Dp7v7kgqkWzL9mCVicMpU7I0JKPvyztC0fJVWTTOo+fr8JbR85Z3jM1OR4/v7NB1\nCAAAsExUtAAAAAKp9aLSvdNVRwAEkjYuxyUt1Jq1VrfTGaJmB10L+ze3D20DliW7D/t7zKYtkw+N\nIWnf7R/alq2uEJ9oHyq7cXdfktQ/sTH2faOy/RQtX5VF4xw9X5m885Z3jM5xSY+Mb7uiRQsAACAQ\nKlol6cY+WNMLKKLb94N1z4AVFfcj7vMhdornft1Q0QIAAAik1ukddDWuOozC/FzSn2vX6nk+UTMu\n+fk0Q3QrKm+3Y26/LPNDTR/1Q7JY5x3TMzyzemNza+y+sjJ52xctN6ns2nHJTic3Xq/VkJU+Ast6\nPso6H56T88dG8vBk5bLX896Xt5+i5auyaJyj5yszet7yjkF6BwAAgApQ0QIAAAik3l2HFlUdRmEe\nJ1llrUWXAaYzc8X9SJLkoRdPD7HweGBWwinJPtry9jVt+7zlipRdG5ZM+pAkhb7PG8BlslPJkJgi\nw0xGUxe0lphiocpjN1HnuLT7CItKB2WtHpUszKTVjsJXsoCK9dpGJWuI324xlnfNUNECAAAIpNaZ\n4RsxTWpIV/O3aGWzGA4WxuxN3F7msafFcnQxUlruyjKYEZie85DZl/1qsF0DY2XdT11rTym5HgZZ\nyO+b7XzM+74yVHnsRjnWyW25okULAAAgECpaAAAAgVDRAgAACKTe6R3UrTqMwtwjSZI1KCUFKmSS\nx5EkqXV9csbhxQ+VTdOetjo9YzBQLpepdTIZdzh8n68td8XnkvaNumfK93QA6fbl5POhe4HPh0k2\nOx09trNLegcAAIBloqIFAAAQSL3TO1yNqo5gdk2MGcs31GXv57fDHsuSY9ne4a6b0S7FvEVVgbkt\n8z5vBJfSIQOTRu30RobNZM9mlmpnKdIA/cL28I/IMen80KIFAAAQCBUtAACAQGo967DLyqxYVemt\n3b25vOevCY9T9nHUPjPfjGOzg/O5f3N77L6yMnnbFy03qezayVY+uBxVGkb9THvu8x7WKn5fZ7HU\ns65QFywqDQAAUAEqWgAAAIFQ0QIAAAik1mO0dDWuOgwgjPSxs4u9pR2su8yp4Qsq42MpG5OWt69p\n2+ctV6TsushWH9g2xqxJB+P5+nvFnsXsPtrY3JrpfWWo8tiNdKyj1v07jNECAABYJipaJfFzJj/X\ngGldqA0/b4rT5IXAqup5LI9p0crE/Uh2kt6adVLvzPBNmI8uHeonmHfhzWkLeA62X+mPPXaZC36O\nxrJ1cWNibJidS1KcfNi6H9zq/b1wXYkNeZqwQg4NTaE/9dApaJ/emvl9s7ynLFUeu0k6nU1JO2O3\n0aIFAAAQCBUtAACAQOrddXh+GTOyynCwUOi8zeOWve9Cb+x+BtuPnBNf6LhFYjGPJ8aG2dlwt/jV\nSNl1NGvKPQ8UcOQ+R8avRLO/p/wwGnHsJvDjkh55fOw2WrQAAAACoaJVEmtFipoyeB+1ELVasmtV\nRwGE5Xe4z4fZNXE+1gwVLQAAgEBqnhm+nrHlKyPeaSulL3NV99FYWMW9LJaew/59G2NfL9NgevaZ\nw7mMsizV+ze3x24HFjW4x/beXXEkNZE+i70z1YZRSPpx372ZfG1EzBXa7HT0+A6Z4QEAAJaKihYA\nAEAg9U7v0JSx5Vlvz4UFFt3M/q+Xu+P3lW2/MtK9U8axp8VycXtybJiZpxdue7C6dPKlu1f+saZl\nnV9GVnqsqfT23j5dbRi104TRF9m1O3P4Z+SYMAyLFq2S+Dmxnhdm4nGkbsynF1abnXbu8yHd2BXV\ndGw0wqCiBQAAEEitZx1+k6SHGpKbKkoXCF44l1b2/rzrkrf/ENdxNJahn29Ieqj8I64NN1MvvWfs\n2sG1K+N296cvyd7w6ME+sxmOJ1gMvA4ufUh69E1VR7EcLpOdPHqf19aHL0mvfzTc/l3y88lDbhYd\n3T51iMgSu/ePDGepemjBDdX5t06ns6nd3cebN+vwRtUBINeNqgNAvg9fqjoCTHDpN6qOALl4dmrs\nRtUBzK3WFS0AAIAmq/Wsw3sefFAPnjxZdRgzefC1r11sBw3pOrznzp3GXZs68aHr+NoXHrxeRtfh\nnQ3p5PA+s29esOC9iXK07kgvWJdnZ/x9Xlejz07phj6mX/vaB49uz07XaAzZ+8a9J5TRWJZ57DHu\n3LlHJ09WG8Mkr3zlf6bd3fHbaj1Gq+oYAAAAiho3Rqu2FS0AAICmY4wWAABAIFS0AAAAAqllRcvM\nvsbMPmlmv21m3151PJDM7IaZXTGzj5rZ0+lr95nZU2b2KTP7VTO7t+o414GZ/ZiZPWNmV4dey70W\nZvYd6bP0STP76mqiXg851yYys1vps/NRM/vaoW1cmyUxszNm9utmdt3MrpnZ305f59mpgQnXp/HP\nT+3GaJlZW9JvSXqLpNuSPizpG9z9E5UGtubM7Hclvc7dnxt67Xsl/YG7f29aIT7h7k9UFuSaMLMv\nk/R5ST/h7ufT18ZeCzN7laSflPR6Sack/ZqkV7p7XFH4Ky3n2nQlfc7d/9FIWa7NEpnZyyS9zN0/\nZmb3SPpNSW+T9M3i2anchOvzdjX8+alji9YbJP2Ou99w9y9I+peSvq7imJAYnU3xVklPpt8/qeSh\nQGDuviPp7sjLedfi6yT9lLt/wd1vSPodJc8YAsi5NtLRZ0fi2iyVu3/G3T+Wfv95SZ9Q8guaZ6cG\nJlwfqeHPTx0rWqck7Q39fEsHJxvVcUm/ZmYfMbO/nr72Und/Jv3+GUkvrSY0KP9anFTyDGV4nqrx\nrWZ22czeM9Q1xbWpiJk9JOk1kv69eHZqZ+j6/Lv0pUY/P3WsaNWrLxOZN7v7ayR9raR3pF0kA570\nQXPtaqDAteA6Ldc/lfQKSa+W9HuSvn9CWa5NYGm31M9Jeqe7f254G89O9dLr87NKrs/ntQLPTx0r\nWrclnRn6+YwO11pRAXf/vfTr70v6eSVNtM+k/eoyswclPVtdhGsv71qMPk+n09ewJO7+rKck/agO\nuje4NktmZi9QUsl6r7u/P32ZZ6cmhq7PP8+uzyo8P3WsaH1E0heb2UNmdkzSX5L0CxXHtNbM7LiZ\nvSj9/k9L+mpJV5Vcl29Ki32TpPeP3wOWIO9a/IKkv2xmx8zsFZK+WNLTFcS3ttJf3pn/RsmzI3Ft\nlsrMTNJ7JH3c3f+PoU08OzWQd31W4fmp3VqH7r5vZt8i6VcktSW9hxmHlXuppJ9PngNtSPoX7v6r\nZvYRSe8zs8eVLK3+9upCXB9m9lOSvlzSF5nZnqQtSd+tMdfC3T9uZu+T9HFJ+5L+ltdtqvEKGXNt\nupIeNbNXK+nW+F1Jf1Pi2lTgzZK+UdIVM/to+tp3iGenLsZdn78n6Rua/vzULr0DAADAqqhj1yEA\nAMBKoKIFAAAQCBUtAACAQKhoAQAABEJFCwAAIBAqWgAAAIFQ0QJQC2b2nWZ2LV3T7KNmVssFYgFg\nFrVLWApg/ZjZGyX9V5Je4+5fMLP7JP2pisMCgIXRogWgDl4m6Q/c/QuS5O7PufvvmdnrzOySmX3E\nzH55aE2616UtXx8zs+8zs6vp63/NzH4w26mZ/aKZfXn6/Veb2YfM7DfN7H3pclIysxtmFqWvXzGz\nL0lfv8fMfjx97bKZff2U/Xy3mV1Py37fEs8dgBqjogWgDn5V0hkz+y0z+yEz+y/TBWZ/UNJ/6+7/\nuaQfl/S/peV/XNI73D1bmiNviQuX5Gb2RZK+U9JXufvrJP2mpL8zVOb309f/qaS/m77+Lkl33f2C\nu1+U9G/y9pO2wL3N3c+mZd9dzmkB0HR0HQKonLv/kZm9TtKXSfoKST8t6bsknZX0a+k6m21Jd8zs\nJZJe4u676dvfK+lrJ+zeJH2ppFdJ+lC6r2OSPjRU5l+lX/+DpK9Pv/8qJYvaZzE+b2Z/IWc/fyjp\nj83sPZJ+Mf0HAFS0ANSDu8eSPijpg2lX4DskXXf3Nw2XM7N7R95qQ9/v63BL/QuHvn/K3f9KzuH/\nJP3a1+HPRRtTdux+0sH7XyXpv5P0Len3ANYcXYcAKmdmrzSzLx566TWSPiHpi8zsS9MyLzCzV7n7\n85KeN7M3p2X/6tD7bkh6tSXOSHqDkq7BfyfpzWb2SLqvPz1yvHGeUlLZy2K8N28/6Tite939l5R0\nSV6c4zQAWEG0aAGog3sk/WBamdmX9NuS/oakH5H0T9Luwg1J/1jSxyV9s6QfMzNXMr5LkuTuu2b2\nu2mZTygZQyV3/wMz+2uSfsrMstmM35keZ9jweK/vkvRDaetaX1Lk7u/P2c/nJP1fZvZCJa1g37b4\nKQGwCsw9bwwpANSfmb1c0i+6+/mqYwGAUXQdAmg6U/6sQwCoFC1aAAAAgdCiBQAAEAgVLQAAgECo\naAEAAARCRQsAACAQKloAAACBUNECAAAI5P8HXQxjtBqb/mUAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c987518>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "plt.figure(figsize=(10, 6))\n", | |
| "plt.imshow(all_clusters, aspect='auto', interpolation='none')\n", | |
| "plt.xlabel('Sequences')\n", | |
| "plt.ylabel('Iteration')\n", | |
| "plt.axvline(x=89.5, color='w', ls='--', lw=2)\n", | |
| "plt.axvline(x=179.5, color='w', ls='--', lw=2)\n", | |
| "plt.axvline(x=21.5, color='w', ls='--', lw=2)\n", | |
| "plt.axvline(x=212.5, color='w', ls='--', lw=2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Tests on fake sequences" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### The most simple scenario" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1 Counter({0: 20, 1: 20, 2: 20, 3: 20}) 4\n", | |
| "Convergence reached in 1 iterations\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "sequences = ['a' * 50, 'm' * 50, 'o' * 50, 'g'*50] * 20\n", | |
| "\n", | |
| "# Carry out the clustering\n", | |
| "number_of_clusters = 4\n", | |
| "maximum_number_of_iterations = 40\n", | |
| "while 1:\n", | |
| " try:\n", | |
| " clusters, centers, convergeance = k_means(sequences,\n", | |
| " ngroups=number_of_clusters,\n", | |
| " max_iter=maximum_number_of_iterations)\n", | |
| " except AssertionError:\n", | |
| " pass\n", | |
| " else:\n", | |
| " break" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 19, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACWCAYAAAD64bJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADXBJREFUeJzt3X+MZWV9x/H3Zwep4lYpMUF+rL2i0lSlFbVIsJZVMV0p\noqm/IBYRmzZN2kqMRakmsklra9K00mpMWqUGrWIbJIiNtq6WWa22/JIFhbVgdRSwLP4ABVsVZ7/9\n457r3rk7c2f2zr0793Dfr2SSc5/z3HO+82TzzbPPnOd7UlVIkqbfpo0OQJK0NiZsSWoJE7YktYQJ\nW5JawoQtSS1hwpakljBhqzWSvCbJZzc6DmmjmLA1c5LsTXLcmK/ZSXJ1kh8k2Z3k+eO8vgQmbM2u\njPSl5JAVTl0G3AAcAbwFuDzJY0aMTVqWCVtTJ8mWJFckuSfJt5O8c5k+nWamvKmvbT7JbzfHT0yy\nM8l9Sb6V5LKm/TNN95uS3J/k5U37GUl2Jbk3yeeSnNB33YUkb0xyM3B//z2b88cDJwIXVdWPquoK\n4GbgpeMdGc26lWYL0oZIMgf8M/Ap4FXAXuAZa/x6NT8AfwL8S1WdmuRQ4JkAVfVrSfYCv1RVX23u\neSJwCXAGcD1wDnBVkuOr6sHmemcBLwS+XVV7B+77FOCrVfWDvrabmnZpbJxha9qcBBwFXFBV/9fM\nWD8/wnV+DHSSHFNVP17lGr8L/G1VXVdd7wd+BJzcnC/gb6rqrqr60TLf3wx8b6Dt+8DPjhC3tCIT\ntqbNFuDry8xiD9Qb6a5TX5vkS0nOG9L354E3NMsh9ya5FzgWOLqvzx1Dvv8A8KiBtsPpJm1pbFwS\n0bS5A3hckrmqWhzSr7f8cBjdhAnw2N7JqtpDd+ZMkmcDn0qys7cMMuAbwNuq6s+G3G9YWctbgOOS\nbK6qXiy/DHxgyHekA+YMW9PmGuB/gLcnOSzJw5OcMtipqr4F3AWck2QuyWuBJ/TOJ3l5kmObj/fR\nTbi9Wfue/r7Ae4DfS3JSuh6Z5DeSbF5LwFV1G7ALuKiJ9zeBpwIfOZBfXFqNCVtTpVkKeRHwRLoz\n3zuAV/ROs3Sm+zvABcC3gScDn+s790zgP5PcD3wUeF1VLTTntgOXNssfL6uqG5prvQv4LnA78GqG\nz6oHndXc87vA24CXVtV3DuD70qriCwwkqR2cYUtSS5iwJaklTNiS1BIjJ+wk25J8OcntSd40zqAk\nSfsb6Y+Ozfbh/wJOo/to1XXA2VW1u6+Pf82UpBFU1bLFyUbdOHMS8JXeY1JJPgy8GNi9tNtFfcfz\nwNYRb/dQMo/j0DOPY9Ezj2PRM8+sjsXcXFhc3L7i+VGXRI5h6VbdO5s2SdKEjDrDXuNyx3zf8X0j\n3kqSHsoWmh/Yu0oFnVET9l10i/T0bKE7yx6wdSAoQWejA5ginY0OYIp0NjqAKdLZ6AAOsg6933nT\nprC4uHPFnqMuiVwPPKkpIn8o8ErgqtWDkuPQr7PRAUyRzkYHMEU6Gx3A1Bpphl1VP0nyB8C/AnPA\nJf1PiEiSxm/k8qpV9QngE2OMRZI0hDsdJaklTNiS1BImbElqCRO2JLXEeoo/bUlydZJbmpecvm6c\ngUmSllrPS3gfBF5fVbuad9/dkGSHj/dJ0mSMPMOuqruraldz/ADdwk9HjyswSdJSY1nDTtIBTqT7\nxmtJ0gSsZ0kEgGY55HLg/Gam3We+77iDW04ladACky7+BECShwEfAf6hqq7cv8fW9VxekmZAh0kX\nfyJJgEuAW6vq4lGvI0lam/WsYT8b+C3guUlubH62jSkuSdKA9RR/+nfceCNJB40JV5JawoQtSS1h\nwpakljBhS1JLrCthJ5lrng752LgCkiQtb70z7POBW4EaQyySpCHWs3HmWOB04L1AxhaRJGlZ65lh\nvwO4AFhl97skaRxGSthJzgDuqaobcXYtSQfFqDsdTwHOTHI68HDgUUneX1WvXtptvu+4g9X6JGnQ\nAmut1peq9f29MMmpwB9V1YsG2gsuWte1JWmWzM2FxcXtVNWyKxfjeg7bp0QkacLW/QKDqtoJrFzA\nVZI0Fu50lKSWMGFLUkuYsCWpJUzYktQSJmxJaon11BI5PMnlSXYnuTXJyeMMTJK01Hoe6/tr4ONV\n9bIkhwCPHFNMkqRljJSwkzwaeE5VnQtQVT8BvjfOwCRJS426JPJ44FtJ3pfkC0nek+SwcQYmSVpq\npFoiSZ4J/AdwSlVdl+Ri4PtV9da+PgWn9n2rg8WfJGnQAr3iTwlU7Vyxlsioa9h3AndW1XXN58uB\nC/fvtnXEy0vSrOjQm8xu2hQWF1eu9DHSkkhV3Q3ckeT4puk04JZRriVJWpv1PCXyh8AHkxwK/Ddw\n3nhCkiQtZ+SEXVU3Ab8yxlgkSUO401GSWsKELUktYcKWpJYwYUtSS6yn+NPrk3wpyReTfCjJz4wz\nMEnSUiMl7CTH0H2s7xlVdQIwB5w1zsAkSUut5znsQ4DDkiwChwF3jSckSdJyRt3peBfwl8A3gG8C\n91XVp8YZmCRpqVGXRH4OOJPuBvijgc1JXjXGuCRJA0ZdEjkN+FpVfQcgyRXAKcAHl3ab7zvuYLU+\nSRq0QK9a3969w3uOmrC/Dpyc5BHAD+km8Gv377Z1xMtL0qzoMOlqfdfSLan6BeDmpvnvRrmWJGlt\n1lP8aTuwfWyRSJKGcqejJLWECVuSWsKELUktYcKWpJYwYUtSSwxN2En+PsmeJF/sazsiyY4ktyX5\nZJLDJx+mJGm1Gfb7gG0DbRcCO6rqeODTzWdJ0oQNTdhV9Vng3oHmM4FLm+NLgZdMIC5J0oBR1rCP\nrKo9zfEe4MgxxiNJWsF66mFTVZWkVu4x33fcweJPkjRogUkWf9qT5LFVdXeSo4B7Vu66dYTLS9Is\n6TDJ4k9XAec2x+cCV45wDUnSAVrtsb7LgM8Dv5DkjiTnAW8HXpDkNuB5zWdJ0oQNXRKpqrNXOHXa\nBGKRJA3hTkdJagkTtiS1hAlbklrChC1JLbFqwl6hANRfJNmd5KYkVyR59GTDlCSlashGRSDJc4AH\ngPdX1QlN2wuAT1fV3iRvB6iqCwe+VxdNJmZJekjK3BzbFxepqix3ftUZ9nIFoKpqR1X1NlFeAxy7\n7kglSUONYw37tcDHx3AdSdIQ6yr+lOQtwI+r6kPLnZ/vO+5g6SdJGrRAr/QTq1Z/GjlhJ3kNcDrw\n/JX6bB314pI0Izrsm8xm0yZ2Li6u2HekhJ1kG3ABcGpV/XCUa0iSDsxaHusbLAD1WuCdwGZgR5Ib\nk7x7wnFK0sxb9bG+kS+cFPhgnySt1dxcWFzcPvpjfZKk6WDClqSWMGFLUkuYsCWpJVZ7Rdh+hZ/6\nzr0hyd4kR0wuPElSz2oz7PcB2wYbk2wBXgB8fRJBSZL2NzRhL1f4qfFXwBsnEpEkaVkHvIad5MXA\nnVV18wTikSSt4IC2pic5DHgz3eWQnzaPNSJJ0rIOtJbIE+jWKbkpCXTrYN+Q5KSqumf/7vN9xx2s\n1ydJgxbo1etbpVjfgSXsqvoicGTvc5KvAc+oqu8u/42tB3J5SZpBHXqT2U2bwuLizhV7rvZYX6/w\n0/FN4afzBrpMphCJJGk/Q2fYVXX2KuePG284kqSVuNNRklrChC1JLXEQE/bCwbvVVFvY6ACmyMJG\nBzBFFjY6gCmysNEBTC0T9kG3sNEBTJGFjQ5giixsdABTZGGjA5haLolIUkuM/Nb0tXj604/66fE3\nv7mZo48+akjv2eA47ONY7ONY7DPLYzE3F667buXzE36noyTpQK30TseJJWxJ0ni5hi1JLWHClqSW\nmHjCTrItyZeT3J7kTZO+3zRZ7hVrSY5IsiPJbUk+meTwjYzxYEmyJcnVSW5J8qUkr2vaZ248kjw8\nyTVJdjVjsb1pn7mx6Ekyl+TGJB9rPs/sWAwz0YSdZA54F93XjD0ZODvJL07ynlNmuVesXQjsqKrj\ngU83n2fBg8Drq+opwMnA7zf/FmZuPKrqh8Bzq+ppwNOAbUmexQyORZ/zgVvZV1BulsdiRZOeYZ8E\nfKWqFqrqQeDDwIsnfM+pscIr1s4ELm2OLwVeclCD2iBVdXdV7WqOHwB2A8cwu+Pxv83hocDD6Caq\nmRyLJMcCpwPvZd8LUWZyLFYz6YR9DHBH3+c7m7ZZdmRV7WmO99BXX3xWJOkAJwLXMKPjkWRTkl10\nf+dPVtW1zOhYAO8ALgD6y/fP6lgMNemE7TODQ1T3mcqZGqMkm4GPAOdX1f3952ZpPKpqb7Mkcizw\nrCRPHTg/E2OR5Azgnqq6kRVeNzgrY7EWk07YdwFb+j5voTvLnmV7kjwWIMlRwDKvVntoSvIwusn6\nA1V1ZdM8s+MBUFXfA64Gfp3ZHItTgDObt1ddBjwvyQeYzbFY1aQT9vXAk5J0khwKvBK4asL3nHZX\nAec2x+cCVw7p+5CR7ktALwFuraqL+07N3HgkeUzvqYckj6D7UuvdzOBYVNWbq2pLVT0eOAv4t6o6\nhxkci7WY+E7HJC8ELgbmgEuq6s8nesMp0rxi7VTgMXTX4d4KfBT4J+BxdMuSvaKq7tuoGA+WJL8K\nfAa4mX3/vf1j4FpmbDySnED3D2lzdCdN/1hVf5rkCGZsLPolORV4Q1WdOetjsRK3pktSS7jTUZJa\nwoQtSS1hwpakljBhS1JLmLAlqSVM2JLUEiZsSWoJE7YktcT/AzyE3r9qUpbeAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c888dd8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACWCAYAAAD64bJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADQ1JREFUeJzt3XusZWV5x/Hvbw5QHEmlxITbjN3eaKqlFSFIsC2jxYgU\nB/+oClFEaNo0aQshFERNdBJ7MWlaSTVNWgEDVrENEsS2WgbLGa223OTOWLD1IJcyQAUKtQieefrH\nXsfZ53Busy9z9mJ/P8mEtdd6z1rPeTM8vLz7fZ+VqkKSNP7WrXUAkqTVMWFLUkuYsCWpJUzYktQS\nJmxJagkTtiS1hAlbrZHk/Um+sdZxSGvFhK2Jk2RnklcM+Z4fS3JHkueSfHSY95bmmLA1qdLXDyV7\nLXHpXuA84B8Ad6NpJEzYGjtJNia5MskjSR5L8slF2nSakfK6nnPTSX6zOX5Vkm1JnkjyaJLLm/Nf\nb5rfluSpJO9szp+U5NYkjyf5ZpLDe+47k+T8JLcDT/U+c05VXVZVXwWeos//GEgrWWq0IK2JJFPA\n3wPXAu8BdgJHrvLHi12j248BX62q45LsAxwFUFW/mmQn8ItV9Z/NM48ALgZOAm4CTgOuTnJYVT3X\n3O8U4G3AY1W1c8BfU+qLI2yNm6OBg4Hzqur/qupHVfWtPu7zLNBJcmhVPbvCPX4b+KuqurG6LgN+\nBBzTXC/gL6rqwar6UR+xSENhwta42QjcN4RR7Pl0pyZuSHJnkjOWafuzwLnNdMjjSR4HNgCH9LS5\nf8B4pIE5JaJxcz/wsiRTVTW7TLv/bf65Hni6OT5o7mJV7aA7cibJG4Frk2ybmwZZ4PvAH1XVHy/z\nvN35ItEvHTUSjrA1bq4H/gv4eJL1SfZNcuzCRlX1KPAgcFqSqSRnAq+cu57knUk2NB+foJtE50bt\nO3rbAp8GfifJ0el6cZJfT7LfaoNOsleSfYEpYO8mbv/90lD5F0pjpZkKeTvwKroj3/uBd81dZv7o\n9bfoLqV7DHgN8M2ea0cB/5bkKeBLwFlVNdNc2wJc2kx//EZV3dzc61PAD+gu0XsfuzdSvgj4Id0v\nJz/cHL93N35eWlF8gYEktYMjbElqCRO2JLWECVuSWqLvhJ3khCTfSXJvkg8MMyhJ0vP19aVjs334\n34Hj6S6tuhE4taq297Tx20xJ6kNVLVqPpt+NM0cD351bJpXkC8DJwPb5zXqrTE4Dm/p83AvJNPbD\nnGnsiznT2BdzppnUvpiaCrOzW5a83u+UyKHM36r7QHNOkjQi/Y6wVzndMd1z/ESfj5KkF7KZ5g/s\nXKGCTr8J+0G6RXrmbKQ7yl5g04KgBJ21DmCMdNY6gDHSWesAxkhnrQPYwzrM/c7r1oXZ2W1Ltux3\nSuQm4NVNEfl9gHcDV68clOyHXp21DmCMdNY6gDHSWesAxlZfI+yq+nGS3wP+iW6xm4t7V4hIkoav\n7/KqVfUV4CtDjEWStAx3OkpSS5iwJaklTNiS1BImbElqiUGKP21Mcl2Su5qXnJ41zMAkSfMN8hLe\n54BzqurW5t13NyfZ6vI+SRqNvkfYVfVwVd3aHD9Nt/DTIcMKTJI031DmsJN0gCPovvFakjQCg0yJ\nANBMh1wBnN2MtHtM9xx3cMupJC00w6iLPwGQZG/gi8DfVNVVz2+xaZDbS9IE6DDq4k8kCXAxcHdV\nXdjvfSRJqzPIHPYbgfcCb0pyS/PnhCHFJUlaYJDiT/+CG28kaY8x4UpSS5iwJaklTNiS1BImbElq\niYESdpKpZnXIl4cVkCRpcYOOsM8G7gZqCLFIkpYxyMaZDcCJwEVAhhaRJGlRg4ywPwGcB6yw+12S\nNAx9JewkJwGPVNUtOLqWpD2i352OxwKbk5wI7Av8dJLLqup985tN9xx3sFqfJC00w2qr9aVqsO8L\nkxwH/EFVvX3B+YKPDnRvSZokU1NhdnYLVbXozMWw1mG7SkSSRmzgFxhU1TZg6QKukqShcKejJLWE\nCVuSWsKELUktYcKWpJYwYUtSSwxSS2T/JFck2Z7k7iTHDDMwSdJ8fW+cSXIpsK2qLkmyF/Diqnqy\n53q5bUaSVi9TU2yZnV1y40xf67CTvAT4lao6HaCqfgw8ufxPSZIG0e+UyMuBR5N8Jsm3k3w6yfph\nBiZJmq+vKZEkRwH/ChxbVTcmuRD4n6r6SE+bOq7nZzpY+kmSFpphrvQTkLCtarhTIsADwANVdWPz\n+QrggoWNNvV5c0maFB12DWazbh3bZmeXbNvXlEhVPQzcn+Sw5tTxwF393EuStDqDFH/6feBzSfYB\n/gM4YzghSZIWM3A97CVvbD1sSdote6oetiRpxEzYktQSJmxJagkTtiS1xCDFn85JcmeSO5J8PslP\nDTMwSdJ8fSXsJIfSXdZ3ZFUdDkwBpwwzMEnSfIOsw94LWJ9kFlgPPDickCRJi+l3p+ODwJ8B3wce\nAp6oqmuHGZgkab5+p0R+BthMdwv8IcB+Sd4zxLgkSQv0OyVyPPC9qvpvgCRXAscCn5vfbLrnuIP1\n+iRpoRnm6vXt3Ll8y34T9n3AMUleBDxDN4Hf8Pxmm/q8vSRNig5zg9l168Ls7LYlW/Y7h30D3ZKq\n3wZub07/dT/3kiStTt+rRKpqC7BlaJFIkpblTkdJagkTtiS1hAlbklrChC1JLWHClqSWWDZhJ7kk\nyY4kd/ScOyDJ1iT3JLkmyf6jD1OStNII+zPACQvOXQBsrarDgK81nyVJI7Zswq6qbwCPLzi9Gbi0\nOb4UeMcI4pIkLdDPHPaBVbWjOd4BHDjEeCRJSxikHjZVVUlq6RbTPccdLP4kSQvNMMriTzuSHFRV\nDyc5GHhk6aab+ri9JE2SDqMs/nQ1cHpzfDpwVR/3kCTtppWW9V0OfAv4uST3JzkD+DjwliT3AG9u\nPkuSRmzZKZGqOnWJS8ePIBZJ0jLc6ShJLWHClqSWMGFLUkuYsCWpJVZM2EsUgPrTJNuT3JbkyiQv\nGW2YkqTVjLAXKwB1DfDaqvol4B7gg8MOTJI034oJe7ECUFW1tarmNlFeD2wYQWySpB7DmMM+E/jH\nIdxHkrSMgYo/Jfkw8GxVfX7xFtM9xx0s/iRJC80wyuJPACR5P3Ai8GtLt9rU7+0laUJ0WG3xp74S\ndpITgPOA46rqmX7uIUnaPatZ1rewANSZwCeB/YCtSW5J8pcjjlOSJt6KI+wlCkBdMoJYJEnLcKej\nJLWECVuSWsKELUktYcKWpJZY6RVhzyv81HPt3CQ7kxwwuvAkSXNWGmEvVviJJBuBtwD3jSIoSdLz\nLZuwFyv81Phz4PyRRCRJWtRuz2EnORl4oKpuH0E8kqQl7NbW9CTrgQ/RnQ75yemhRiRJWtTu1hJ5\nJd0qJbclgW4d7JuTHF1Vjzy/+XTPcQer9UnSQjOMpFpfVd0BHDj3Ocn3gCOr6geL/8Sm3bm9JE2g\nDqut1rfSsr65wk+HNYWfzljQpAYJU5K0esuOsJco/NR7/RXDDUeStBR3OkpSS5iwJakl9mDCntlz\njxprM2sdwBiZWesAxsjMWgcwRmbWOoCxZcLe42bWOoAxMrPWAYyRmbUOYIzMrHUAY8spEUlqib7f\nmr4ar3/9wT85fuih/TjkkIOXaT0Z7Idd7Itd7ItdJrkvpqbCjTcufT1Vo1lKncQ12pLUh6patOTH\nyBK2JGm4nMOWpJYwYUtSS4w8YSc5Icl3ktyb5AOjft44WewVa0kOSLI1yT1Jrkmy/1rGuKck2Zjk\nuiR3JbkzyVnN+YnrjyT7Jrk+ya1NX2xpzk9cX8xJMpXkliRfbj5PbF8sZ6QJO8kU8Cm6rxl7DXBq\nkp8f5TPHzGKvWLsA2FpVhwFfaz5PgueAc6rqtcAxwO82fxcmrj+q6hngTVX1OuB1wAlJ3sAE9kWP\ns4G72VVQbpL7YkmjHmEfDXy3qmaq6jngC8DJI37m2FjiFWubgUub40uBd+zRoNZIVT1cVbc2x08D\n24FDmdz++GFzuA+wN91ENZF9kWQDcCJwEbteiDKRfbGSUSfsQ4H7ez4/0JybZAdW1Y7meAc99cUn\nRZIOcARwPRPaH0nWJbmV7u98TVXdwIT2BfAJ4Dygt3z/pPbFskadsF0zuIzqrqmcqD5Ksh/wReDs\nqnqq99ok9UdV7WymRDYAb0jyCwuuT0RfJDkJeKSqbmGJ1w1OSl+sxqgT9oPAxp7PG+mOsifZjiQH\nASQ5GFjk1WovTEn2ppusP1tVVzWnJ7Y/AKrqSeA64K1MZl8cC2xu3l51OfDmJJ9lMvtiRaNO2DcB\nr07SSbIP8G7g6hE/c9xdDZzeHJ8OXLVM2xeMdF8CejFwd1Vd2HNp4vojyUvnVj0keRHdl1pvZwL7\noqo+VFUbq+rlwCnAP1fVaUxgX6zGyHc6JnkbcCEwBVxcVX8y0geOkeYVa8cBL6U7D/cR4EvA3wEv\no1uW7F1V9cRaxbinJPll4OvA7ez639sPAjcwYf2R5HC6X6RN0R00/W1V/WGSA5iwvuiV5Djg3Kra\nPOl9sRS3pktSS7jTUZJawoQtSS1hwpakljBhS1JLmLAlqSVM2JLUEiZsSWoJE7YktcT/A6iOwpyT\nOXWoAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c822438>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACWCAYAAAD64bJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADVhJREFUeJzt3XusZWV5x/Hvb46gjsQLseE2Y7dVMdXSilgkY+2MFtIR\ncfAPb8QqQtNL0hZCKIo2kUl6s2laaTUmLaIZrWIbJIittgzWM95aGJQBhbFo69FhLINWxkItF888\n/WOv09nnzLnNPnvP2Yv9/SQnrL3We9Z6zhvy5J13v++zUlVIkkbfmtUOQJK0PCZsSWoJE7YktYQJ\nW5JawoQtSS1hwpakljBhqzWSvCXJ51c7Dmm1mLA1dpIcSPJTA7zfTyS5JsneJPuTfCHJ6YO6vzTD\nhK1xlb5+KXncPKePAW4GXgg8DdgG/EOSJ/UfnnQoE7ZGTpL1Sa5Lcl+S7yd5zzxtOs1IeU3Puckk\nv9ocPzvJjmbE+70k1zTnP9c0vz3JA0le25w/J8muJPcn+WKSU3ruO5XkrUnuAB7ofSZAVX2rqq6s\nqn3VdRVwNHDyoPtG422+0YK0apJMAH8P3AS8ETgAnLbMX6/mB+D3gX+sqo1JjgZeBFBVv5jkAPCz\nVfUfzTNPBa4GzgFuBd4E3JDk5Kp6tLnfG4BXAN+vqgNL/A0voJuwv7nMuKVlcYStUXM6cAJwWVX9\nb1U9XFVf6uM+jwCdJCdV1SNL3OPXgb+qqp3NCPlDwMPAGc31Av6yqvZW1cOLPTTJk4EPA1ur6oE+\n4pYWZMLWqFkPfHupUewyvJXuPPUtSb6W5IJF2v4kcGkzHXJ/kvuBdcCJPW32LPXAJE8EPgl8qar+\nZAWxS/NySkSjZg/wjCQTVTW9SLv/af67FniwOT5+5mJV7aM7cibJS4CbkuyYmQaZ4zvAH1bVHy3y\nvEXLWiZ5PHA98J2q+o3F2kr9coStUXMz8J/Au5KsTfKEJBvmNqqq7wF7gTclmUhyIfCsmetJXptk\nXfNxP92EOzNq39fbFrgK+M0kp6frSUlemeSY5QSc5CjgWuBHwFsO54+VDocJWyOlmQp5FfBsuiPf\nPcDrZi4ze6T7a8BlwPeB5wFf7Ln2IuBfkzwAfAK4qKqmmmtbgW3N9MdrqurLzb3eC/wA+AbwZpYY\nVffYALwSOAvY36w+eaAZ2UsDE19gIEnt4AhbklrChC1JLWHClqSW6DthJ9mc5OtJvpHkbYMMSpJ0\nqL6+dGy2D/8bcCbdpVU7gfOqandPG7/NlKQ+VNW8xcn63ThzOvDNmWVSST4GnAvsnt3sip7jSWBT\nn497LJnEfpgxiX0xYxL7YsYk49oXExNhenrrgtf7nRI5idlbde9pzkmShqTfEfYypzsme4739/ko\nSXosm2p+4MASFXT6Tdh76RbpmbGe7ih7jk1zghJ0VjuAEdJZ7QBGSGe1AxghndUO4AjrMPM3r1kT\npqd3LNiy3ymRW4HnNEXkjwZeD9ywdFCyH3p1VjuAEdJZ7QBGSGe1AxhZfY2wq+rHSX4b+CdgAri6\nd4WIJGnw+i6vWlWfBj49wFgkSYtwp6MktYQJW5JawoQtSS1hwpakllhJ8af1ST6b5M7mJacXDTIw\nSdJsK3kJ76PAJVW1q3n33ZeTbHd5nyQNR98j7Kq6t6p2NccP0i38dOKgApMkzTaQOewkHeBUum+8\nliQNwUqmRABopkOuBS5uRto9JnuOO7jlVJLmmmLYxZ8ASHIU8HHgb6rq+kNbbFrJ7SVpDHQYdvEn\nkgS4Grirqq7s9z6SpOVZyRz2S4BfAV6W5LbmZ/OA4pIkzbGS4k9fwI03knTEmHAlqSVM2JLUEiZs\nSWoJE7YktcSKEnaSiWZ1yCcHFZAkaX4rHWFfDNwF1ABikSQtYiUbZ9YBZwPvBzKwiCRJ81rJCPvd\nwGXAErvfJUmD0FfCTnIOcF9V3Yaja0k6Ivrd6bgB2JLkbOAJwJOTfKiq3jy72WTPcQer9UnSXFMs\nt1pfqlb2fWGSjcDvVtWr5pwvuGJF95akcTIxEaant1JV885cDGodtqtEJGnIVvwCg6raASxcwFWS\nNBDudJSkljBhS1JLmLAlqSVM2JLUEiZsSWqJldQSeWqSa5PsTnJXkjMGGZgkabaVLOv7C+BTVfWa\nJI8DnjSgmCRJ8+grYSd5CvDSqjofoKp+DPxwkIFJkmbrd0rkmcD3knwwyVeSXJVk7SADkyTN1lct\nkSQvAv4F2FBVO5NcCfx3Vb2zp03Bxp7f6mDxJ0maa4qZ4k8JVO1YsJZIv3PY9wD3VNXO5vO1wOWH\nNtvU5+0laVx0mBnMrlkTpqcXrvTR15RIVd0L7ElycnPqTODOfu4lSVqelawS+R3gI0mOBv4duGAw\nIUmS5tN3wq6q24GfH2AskqRFuNNRklrChC1JLWHClqSWMGFLUkuspPjTJUm+luSrST6a5PGDDEyS\nNFtfCTvJSXSX9Z1WVacAE8AbBhmYJGm2lazDfhywNsk0sBbYO5iQJEnz6Xen417gz4DvAN8F9lfV\nTYMMTJI0W79TIk8DttDdAH8icEySNw4wLknSHP1OiZwJfKuq/gsgyXXABuAjs5tN9hx3sFqfJM01\nxUy1vgMHFm/Zb8L+NnBGkicCD9FN4Lcc2mxTn7eXpHHRYdjV+m6hW1L1K8Adzem/7udekqTlWUnx\np63A1oFFIklalDsdJaklTNiS1BImbElqCRO2JLWECVuSWmLRhJ3kA0n2Jflqz7ljk2xPcneSG5M8\ndfhhSpKWGmF/ENg859zlwPaqOhn4TPNZkjRkiybsqvo8cP+c01uAbc3xNuDVQ4hLkjRHP3PYx1XV\nvuZ4H3DcAOORJC1gJfWwqapKUgu3mOw57mDxJ0maa4phFn/al+T4qro3yQnAfQs33dTH7SVpnHQY\nZvGnG4Dzm+Pzgev7uIck6TAttazvGuBLwHOT7ElyAfAu4KwkdwMvbz5LkoZs0SmRqjpvgUtnDiEW\nSdIi3OkoSS1hwpakljBhS1JLmLAlqSWWTNgLFID60yS7k9ye5LokTxlumJKk5Yyw5ysAdSPw/Kr6\nOeBu4O2DDkySNNuSCXu+AlBVtb2qZjZR3gysG0JskqQeg5jDvhD41ADuI0laxIqKPyX5PeCRqvro\n/C0me447WPxJkuaaYpjFnwBI8hbgbOCXFm61qd/bS9KY6LDc4k99Jewkm4HLgI1V9VA/95AkHZ7l\nLOubWwDqQuA9wDHA9iS3JXnfkOOUpLG35Ah7gQJQHxhCLJKkRbjTUZJawoQtSS1hwpakljBhS1JL\nLPWKsEMKP/VcuzTJgSTHDi88SdKMVNXCF5OXAg8CH6qqU3rOrweuAp4LnFZVP5jnd+uKwccrSY9Z\nmZhg6/Q0VZX5ri86wp6v8FPjz4G3DiA+SdIyHfYcdpJzgXuq6o4hxCNJWsBhbU1PshZ4B3BW7+mB\nRiRJmtfh1hJ5Ft0qJbcngW4d7C8nOb2q7pvbeLLnuIO1+iRprilmavWxZLm+w0rYVfVV4LiZz0m+\nxQJfOoK1+iRpKR0ODmazZg07pqcXbLvUsr6Zwk8nN4WfLpjTZOElJpKkgVp0Wd+KbpwUuLBPkpZr\nYiJMT2/tb1mfJGl0mLAlqSWOYMKeOnKPGmlTqx3ACJla7QBGyNRqBzBCplY7gJFlwj7iplY7gBEy\ntdoBjJCp1Q5ghEytdgAjyykRSWqJvt+avhwvfOEJ/3/83e8ew4knnrBI6/FgPxxkXxxkXxw0zn0x\nMRF27lz4+pCX9UmSDtdCy/qGlrAlSYPlHLYktYQJW5JaYugJO8nmJF9P8o0kbxv280bJfK9YS3Js\nku1J7k5yY5KnrmaMR0qS9Uk+m+TOJF9LclFzfuz6I8kTktycZFfTF1ub82PXFzOSTCS5Lcknm89j\n2xeLGWrCTjIBvBfYDDwPOC/JTw/zmSPmg3T/9l6XA9ur6mTgM83ncfAocElVPR84A/it5v+FseuP\nqnoIeFlVvQB4AbA5yYsZw77ocTFwFwcLyo1zXyxo2CPs04FvVtVUVT0KfAw4d8jPHBkLvGJtC7Ct\nOd4GvPqIBrVKqureqtrVHD8I7AZOYnz740fN4dHAUXQT1Vj2RZJ1wNnA+zn4QpSx7IulDDthnwTs\n6fl8T3NunB1XVfua43301BcfF0k6wKnAzYxpfyRZk2QX3b/5xqq6hTHtC+DdwGVAb/X+ce2LRQ07\nYbtmcBHVXVM5Vn2U5Bjg48DFVfVA77Vx6o+qOtBMiawDXpzkZ+ZcH4u+SHIOcF9V3cYCrxscl75Y\njmEn7L3A+p7P6+mOssfZviTHAyQ5ATjk1WqPVUmOopusP1xV1zenx7Y/AKrqh8BngV9mPPtiA7Cl\neXvVNcDLk3yY8eyLJQ07Yd8KPCdJJ8nRwOuBG4b8zFF3A3B+c3w+cP0ibR8z0n0J6NXAXVV1Zc+l\nseuPJE+fWfWQ5Il0X2q9mzHsi6p6R1Wtr6pnAm8A/rmq3sQY9sVyDH2nY5JXAFcCE8DVVfXHQ33g\nCGlesbYReDrdebh3Ap8A/g54Bt2yZK+rqv2rFeORkuQXgM8Bd3Dwn7dvB25hzPojySl0v0iboDto\n+tuq+oMkxzJmfdEryUbg0qraMu59sRC3pktSS7jTUZJawoQtSS1hwpakljBhS1JLmLAlqSVM2JLU\nEiZsSWoJE7YktcT/Adg73/sKYwjvAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10cad0898>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAACWCAYAAAD64bJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADURJREFUeJzt3XusZWV5x/Hvbw4gIKmUmHAdu72AqZZWhCLBWkbFFigM\n/qEIUURoapo0QggF0SYySS+aNK20miatokGr2AYJolHDYDmj1Zab3C8FWw9yKQNUoNCWizNP/9jr\nOPucObfZlzl7sb+f5IS113rPWs95Qx5e3r3e501VIUkaf2tWOwBJ0sqYsCWpJUzYktQSJmxJagkT\ntiS1hAlbklrChK3WSPKBJN9b7Tik1WLC1sRJsjXJq4Z8z2uTPJrkqSS3JFk/zPtLALusdgDSKklf\nv5TsUlU/W+DS2cA9VfVCkiOBa5IcXFWbB4pS6uEIW2MnydokVzQj1seTfGqBNp1mpLym59x0kt9t\njl+TZFOSJ5M8luSy5vx3m+a3Jnk6ybub8yc2I+Mnknw/yaE9951JckGS24Cne585q6pur6oXek7t\nCqwdRn9Isxxha6wkmQK+AVwDvBfYChy+wl+v5gfgj4FvV9UxSXYDjgCoqt9MshX41ar6j+aZhwGX\nACcCNwKnA1clOaQnCZ8KHA88XlVbF4n9G8DbgZc0z75x5X+5tDxH2Bo3RwL7A+dX1f9V1XNV9YM+\n7vM80ElyYFU9v8w9Pgj8bVXdUF1fAJ4DjmquF/DXVfVQVT232E2q6kRgL+AEYGMfMUtLMmFr3KwF\n7l9sFLsDLqA7T319kjuSnLlE218CzmumQ55I8gRwEHBAT5sHVvLQqtpSVd8GfivJSf0GLy3EKRGN\nmweAVySZqqotS7T7n+afewLPNMf7zV5svuz7IECSN9P9EnDT7DTIPD8B/rSq/myJ5+1oWctdgaG+\niSI5wta4uQ74T+ATSfZMsnuSo+c3qqrHgIeA05NMJTkLePXs9STvTnJQ8/FJugl3dtS+ubct8Bng\n95Mcma6XJvmdJHutJOAkr01yfJI9kuya5H3AW4BNO/anS0szYWusNFMhJwGvoTvyfQA4ZfYyc0e6\nvwecDzwOvA74fs+1I4B/TfI08DXg7Kqaaa5tAC5tpj/eVVU3Nff6NPBT4D7g/ax8VB3gIrr/IXgU\n+BBwSlXdssLfl1YkbmAgSe3gCFuSWsKELUktYcKWpJboO2EnOS7JPUnuS/LhYQYlSdpeX186NsuH\n/w04lu6rVTcAp1XV3T1t/DZTkvpQVQsWJ+t34cyRwI9mX5NK8hXgZODu3kYX9RxPA+v6fNiLyTT2\nw6xp7ItZ09gXs6aZ3L7I1BQbtiy+XqzfKZEDmbtU98HmnCRpRPodYa9oumO65/jJPh8kSS9mM80P\nAFuXLqHTb8J+iLm1ftfSHWXPsW5eUILOagcwRjqrHcAY6ax2AGOks9oB7GQdtv3NWbOGTSOYErkR\nOLgpIr8b8B7gquWCkv3Qq7PaAYyRzmoHMEY6qx3AGOt7aXqS44GLgSngkqr6+LzrNfdrR0nSUqam\nwpYtG4b+lghV9S3gW31HJknaIa50lKSWMGFLUkuYsCWpJUzYktQSgxR/Wpvk2iR3Npucnj3MwCRJ\ncw2yCe8LwLlVdUuz991NSTb2FoCSJA1P3yPsqnpkds+6qnqGbuGnA4YVmCRprqHMYSfpAIfR3fFa\nkjQCg0yJANBMh1wOnNOMtHtM9xx3cNGpJM03w2y1pWVqPw2WsJPsCnwV+PuqunL7FusGub0kTYAO\ns4PZNWvCli2bFm05yFsiAS4B7qqqi/u9jyRpZQaZw34z8D7grUlubn6OG1JckqR5Bin+9M+48EaS\ndhoTriS1hAlbklrChC1JLWHClqSWGChhJ5lq3g75+rACkiQtbNAR9jnAXUB/G0NKklZskIUzBwEn\nAJ8FFtwwUpI0PIOMsD8JnA8ss/pdkjQMfSXsJCcCj1bVzTi6lqSdot+VjkcD65OcAOwO/EKSL1TV\n++c2m+457mC1Pkmab4aVVutL1WDfFyY5BvjDqjpp3vmCiwa6tyRNkqmpsGXLBqpqwZmLYb2H7Vsi\nkjRiA29gUFWbgMULuEqShsKVjpLUEiZsSWoJE7YktYQJW5JawoQtSS0xSC2RvZNcnuTuJHclOWqY\ngUmS5hrktb6/Ar5ZVe9Ksgvw0iHFJElaQF8JO8nLgLdU1RkAVfUz4KlhBiZJmqvfKZFXAo8l+XyS\nHyb5TJI9hxmYJGmuvmqJJDkC+Bfg6Kq6IcnFwH9X1cd62hQc0/NbHSz+JEnzzTBb/CmBqk2L1hLp\ndw77QeDBqrqh+Xw5cOH2zdb1eXtJmhQdZgeza9aELVsWr/TR15RIVT0CPJDkkObUscCd/dxLkrQy\ng7wl8iHgS0l2A/4dOHM4IUmSFtJ3wq6qW4FfH2IskqQluNJRklrChC1JLWHClqSWMGFLUksMUvzp\n3CR3JLk9yZeTvGSYgUmS5uorYSc5kO5rfYdX1aHAFHDqMAOTJM01yHvYuwB7JtkC7Ak8NJyQJEkL\n6Xel40PAXwA/AR4Gnqyqa4YZmCRprn6nRH4RWE93AfwBwF5J3jvEuCRJ8/Q7JXIs8OOq+i+AJFcA\nRwNfmttsuue4g9X6JGm+GWar9W3dunTLfhP2/cBRSfYAnqWbwK/fvtm6Pm8vSZOiw6ir9V1Pt6Tq\nD4HbmtN/18+9JEkrM0jxpw3AhqFFIklakisdJaklTNiS1BImbElqCRO2JLWECVuSWmLJhJ3kc0k2\nJ7m959w+STYmuTfJ1Un2Hn2YkqTlRtifB46bd+5CYGNVHQJ8p/ksSRqxJRN2VX0PeGLe6fXApc3x\npcA7RxCXJGmefuaw962qzc3xZmDfIcYjSVrEIPWwqapKUou3mO457mDxJ0mab4ZRFn/anGS/qnok\nyf7Ao4s3XdfH7SVpknQYZfGnq4AzmuMzgCv7uIckaQct91rfZcAPgNcmeSDJmcAngHckuRd4W/NZ\nkjRiS06JVNVpi1w6dgSxSJKW4EpHSWoJE7YktYQJW5JawoQtSS2xbMJepADUnye5O8mtSa5I8rLR\nhilJWskIe6ECUFcDr6+qXwPuBT4y7MAkSXMtm7AXKgBVVRuranYR5XXAQSOITZLUYxhz2GcB3xzC\nfSRJSxio+FOSPwKer6ovL9xiuue4g8WfJGm+GUZZ/AmAJB8ATgDevnirdf3eXpImRIeVFn/qK2En\nOQ44Hzimqp7t5x6SpB2zktf65heAOgv4FLAXsDHJzUn+ZsRxStLEW3aEvUgBqM+NIBZJ0hJc6ShJ\nLWHClqSWMGFLUkuYsCWpJZbbImy7wk89185LsjXJPqMLT5I0a7kR9kKFn0iyFngHcP8ogpIkbW/J\nhL1Q4afGXwIXjCQiSdKCdngOO8nJwINVddsI4pEkLWKHlqYn2RP4KN3pkJ+fHmpEkqQF7WgtkVfT\nrVJyaxLo1sG+KcmRVfXo9s2ne447WK1PkuabYSTV+qrqdmDf2c9JfgwcXlU/Xfg31u3I7SVpAnVY\nabW+5V7rmy38dEhT+OnMeU1qkDAlSSu35Ah7kcJPvddfNdxwJEmLcaWjJLWECVuSWmInJuyZnfeo\nsTaz2gGMkZnVDmCMzKx2AGNkZrUDGFsm7J1uZrUDGCMzqx3AGJlZ7QDGyMxqBzC2nBKRpJboe9f0\nlXjjG/f/+fHDD+/FAQfsv0TryWA/bGNfbGNfbDPJfTE1FW64YfHrqRrNq9RJfEdbkvpQVQuW/BhZ\nwpYkDZdz2JLUEiZsSWqJkSfsJMcluSfJfUk+POrnjZOFtlhLsk+SjUnuTXJ1kr1XM8adJcnaJNcm\nuTPJHUnObs5PXH8k2T3JdUluafpiQ3N+4vpiVpKpJDcn+XrzeWL7YikjTdhJpoBP091m7HXAaUl+\neZTPHDMLbbF2IbCxqg4BvtN8ngQvAOdW1euBo4A/aP5dmLj+qKpngbdW1RuANwDHJXkTE9gXPc4B\n7mJbQblJ7otFjXqEfSTwo6qaqaoXgK8AJ4/4mWNjkS3W1gOXNseXAu/cqUGtkqp6pKpuaY6fAe4G\nDmRy++N/m8PdgF3pJqqJ7IskBwEnAJ9l24YoE9kXyxl1wj4QeKDn84PNuUm2b1Vtbo4301NffFIk\n6QCHAdcxof2RZE2SW+j+zVdX1fVMaF8AnwTOB3rL909qXyxp1AnbdwaXUN13Kieqj5LsBXwVOKeq\nnu69Nkn9UVVbmymRg4A3JfmVedcnoi+SnAg8WlU3s8h2g5PSFysx6oT9ELC25/NauqPsSbY5yX4A\nSfYHFtha7cUpya50k/UXq+rK5vTE9gdAVT0FXAv8NpPZF0cD65vdqy4D3pbki0xmXyxr1An7RuDg\nJJ0kuwHvAa4a8TPH3VXAGc3xGcCVS7R90Uh3E9BLgLuq6uKeSxPXH0lePvvWQ5I96G5qfTcT2BdV\n9dGqWltVrwROBf6pqk5nAvtiJUa+0jHJ8cDFwBRwSVV9fKQPHCPNFmvHAC+nOw/3MeBrwD8Cr6Bb\nluyUqnpytWLcWZL8BvBd4Da2/e/tR4DrmbD+SHIo3S/SpugOmv6hqv4kyT5MWF/0SnIMcF5VrZ/0\nvliMS9MlqSVc6ShJLWHClqSWMGFLUkuYsCWpJUzYktQSJmxJagkTtiS1hAlbklri/wFYqtWxIDAJ\niAAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10cf74e10>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "for i, profile in enumerate(centers):\n", | |
| " plt.figure()\n", | |
| " plt.imshow(profile, interpolation='none')\n", | |
| " plt.title('cluster {}'.format(i))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1 Counter({0: 40, 1: 20, 2: 20}) 3\n", | |
| "2 Counter({0: 40, 1: 20, 2: 20}) 3\n", | |
| "Convergence reached in 2 iterations\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "sequences = ['abcd' * 20, 'dcba' * 20, 'hijk' * 20, 'hljk' * 20] * 20\n", | |
| "\n", | |
| "# Carry out the clustering\n", | |
| "number_of_clusters = 3\n", | |
| "maximum_number_of_iterations = 40\n", | |
| "while 1:\n", | |
| " try:\n", | |
| " clusters, centers, convergeance = k_means(sequences,\n", | |
| " ngroups=number_of_clusters,\n", | |
| " max_iter=maximum_number_of_iterations)\n", | |
| " except AssertionError:\n", | |
| " pass\n", | |
| " else:\n", | |
| " break" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAABuCAYAAAADICkGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADjFJREFUeJzt3X2wXHV9x/H3JzcgJgFSygwkJHVBjaOImGADhVouGNsE\nATv1iYxFhI6dznQKw1gwagfQjtaO06rVYaalwCDVtENMaeggQ2K5lOoYQsgTeSBYWE2CCeEpRdoC\nTb7945yN52727p579uzds9zPa2YnZ8/Dbz85yf3l5Le/B0UEZmZWfVP6HcDMzPJxhW1mNiBcYZuZ\nDQhX2GZmA8IVtpnZgHCFbWY2IFxh28CQ9ElJD/U7h1m/uMK2SUfSIUmnlVxmTdIDkl6WtF3S+8os\n3wxcYdvkpUIXSVPHOLQcWA+cAHweWCHpxILZzFpyhW2VI2mupJWSnpH0rKRvtjinlj4pT8nsG5H0\nB+n2WyQ9KOlFSfslLU/3/3t6+iZJL0n6SLr/YkkbJb0g6YeSzsiUW5d0vaTNwEvZz0yPzwPmAzdG\nxCsRsRLYDHyo3Dtjk91YTwtmfSFpCPhXYA3wceAQcFbOyyN9Afw5cF9EnC/paOA9ABHxW5IOAe+K\niCfTz5wP3ApcDDwCXA6skjQvIl5Ly7sMWAI8GxGHmj73dODJiHg5s29Tut+sNH7CtqpZCMwCrouI\n/0mfWH9UoJxXgZqkUyLi1Q5l/CHwtxGxLhLfBl4BzkmPB/A3EbEnIl5pcf0M4EDTvv8Cji2Q22xM\nrrCtauYCP23xFDte15O0Uz8s6TFJV7Y5903Ap9PmkBckvQDMAWZnztnV5vpfAMc17ZtJUmmblcZN\nIlY1u4BfkzQUEQfbnNdofphGUmECnNw4GBH7SJ6ckXQesEbSg41mkCY/A74UEV9u83ntprXcCpwm\naUZENLKcCdzZ5hqzcfMTtlXNWuDnwFckTZN0jKRzm0+KiP3AHuBySUOSrgLe3Dgu6SOS5qRvXySp\ncBtP7fuy5wK3AH8kaaES0yV9QNKMPIEjYiewEbgxzft7wDuB743nN27WiStsq5S0KeQS4C0kT767\ngI82DjP6SfdTwHXAs8A7gB9mjr0H+LGkl4B/Aa6OiHp67CbgjrT548MRsT4t61vA88ATwCdo/1Td\n7LL0M58HvgR8KCKeG8f1Zh3JCxiYmQ0GP2GbmQ2IwhW2pMWSdkh6QtJnygxlZmZHKtQkkg5ueBxY\nRPLFzzpgaURsLzeemZk1FH3CXgj8JCLq6UiwfwQ+WF4sMzNrVrQf9imMHkiwGzg7e4Ikf5tpZlZA\nRLScnKxohZ2rMr4RGAGGgS9wY47zv9D2eKcyOl3fvowRYLjLMvLl6OZejJDvfk7E76N9GSPkuZ/9\n/nsxQnXuZ/vrRyjjfvby9zHCxP2sd1fGCFX9WdfQEDcdHHu8WNEKew/JEOKGuSRP2aOMAPX012Sr\nVvDjzMxen+rpC4BD7WdkKNqG/Qjw1nSKy6OBjwGrmk8aJqmihwFX1mZmR6qR1JHDwAVT2lfJhQfO\nSFoCfB0YAm6NiL9oOh7iBoI6osYNfPGIMqJpDvkvcsPoz2hqeWkuo9P14ymjTlBDHTMUydEpw3jK\nGOt+lnkvOmXIU0be+9kpQ54c3dyLovdzIv5eZK8v63728u/FRP6sd1PGWPeySI6yf9aHhsTBgzeV\n3oZNRHwf+H6n8zQgT9a1YguQTDjfz3L5fpbH97L3uhk4Mzddw25rOn3l1WUGMzOz0bqZXvU14NqI\n2JjOarZe0moPnjEz641umkT2AnvT7V9I2k4y4fvhCrtVu1NWq3bAUZ/R5fUTkaEqZbxe7sVE/D7K\nKMP3Iv/1ZZQxme5FO6VM/iSpRrII6doyyjMzsyN1veJM2hyyArgms9pGauTwVh137DMzO1KdRk/s\nDt2wu6uwJR1FsqrGP0TE3UeeMXx4q8aD3XyUmdnrVI3G4+yUKeLgwbHrym76YQu4A3guIq5tcTxu\nyLTnVLHPY5EMZZThe5H/+jLK8L0Y+/oyyqjaGIC8ZVTxXjSGpo/VD7ubNuzzgN8HLpC0IX0t7qI8\nMzNro3CFHRH/ARxFMhHU7oiYHxH3lZbMzMxG6baXyDXANsa3WKmZmRXQzUjHOcBFwN/DAI/1NDMb\nEN186XgX8GXgOOBPI+KSpuNBjrlgzcws0Wnyp0JP2JIuBp6JiA346drMbEIU7Yd9LnCppIuAY4Dj\nJH07Ij4x+rSRzHYND50xM2tWJ+/AmcJNIocLkM7HTSJmZl3rSZNIC+4lYmbWY4WHpkuaSdJD5HQg\nJJ0TET8uLZmZmY3SzVwi3wDujYgPS5oKTC8pk5mZtVCowpZ0PPDeiLgCICL+DzhQZjAzMxutaBv2\nqcB+SbdLelTSLZKmlRnMzMxGK1phTwUWADdHxALgZWBZaanMzOwIRduwd5NM+LQufb+ClhX2SGa7\nhvthm5k1q9PTBQwiYq+kXZLmRcROYBGw9cgzh4sUb2Y2idTIu4BBN71E/gT4jqSjgf8EruyiLDMz\n66CbVdM3Ab9eYhYzM2ujm+lVr5X0mKQtkr4r6Q1lBjMzs9GKztZ3CkmTyFkRcQYwBFxWZjAzMxut\nmzbsqcA0SQeBacCeciKZmVkrhZ6wI2IP8FfAz4CngRcjYk2ZwczMbLSiQ9N/BbiUpC/KAeAuSR+P\niO+MPnMks13D/bDNzJrV6Wk/bJJ+109FxHMAklaSLGrQVGEPFyzezGyyqJG3H3bRXiI/Bc6R9EZJ\nIqnAtxUsy8zMcijahv0wyXD0R4HN6e6/KyuUmZkdqW2TiKTbgA+QLLh7RrrvBOCfgDeRNLx8NCJe\n7HFOM7NJr9MT9u3A4qZ9y4DVETEP+AGepc/MbEK0rbAj4iHghabdlwJ3pNt3AL/bg1xmZtakSBv2\nSRGxL93eB5xUYh4zMxtDV6umR0TgFdPNzCZEkX7Y+ySdnM6JPQt4ZuxTRzLbNTxwxsysWZ1eDpxZ\nBVwB/GX6691jnzpcoHgzs8mkRikDZyQtB34EvC1dYeZK4CvA+yXtBC5M35uZWY+1fcKOiKVjHFrU\ngyxmZtZGxy8dJd0maZ+kLZl9X5W0XdImSSslHd/bmGZmlqeXSKvBM/cDp0fEmcBO4LNlBzMzs9E6\nVtitBs9ExOqIaHyfuRaY04NsZmaW0VU/7NRVwL0llGNmZm10s0QYkj4PvBoR3219xkhmu4b7YZuZ\nNavT6wUMkPRJ4CLgfWOfNVy0eDOzSaJG3n7YRZcIWwxcB5wfEf9bpAwzMxufPN36mgfPXAV8E5gB\nrJa0QdLNPc5pZjbp5VnA4EKSBQxmZw7dJunTwFeBEyPi+R5mNDMzii1ggKS5wPtJ1nY0M7MJUGQB\nA4C/Bq7vSSIzM2tp3P2wJX0Q2B0RmzuebGZmpRlXLxFJ04DPkTSHHN5daiIzM2tpvN363kzSYXCT\nJEiGpK+XtDAiWixkMJLZruGBM2Zmzer0ZOBMRGwhs4ajpKeAs8buJTI8nuLNzCahGmUvYDAvs4BB\nVo71HOudT6mEer8D5FTvd4Cc6v0OkFO93wFyqvc7QA71fgfIqd7vAIV16iWyNCJmR8QbImJuRNze\ndPy0zn2w612HnBj1fgfIqd7vADnV+x0gp3q/A+RU73eAHOr9DpBTvd8BCitjtj4zM5sAXc3W18mC\nBbN4+ukZzJ49q5cfUwrnLJdzlmsQcg5CRqh2zqEhsW7d2McVkaMZugBJvSnYzOx1LiJadpfuWYVt\nZmblchu2mdmAcIVtZjYgelphS1osaYekJyR9ppefNR6SbpO0T9KWzL4TJK2WtFPS/ZJm9jnjXEkP\nSNoq6TFJV1c05zGS1kramOa8qYo5GyQNpXO435O+r1xOSXVJm9OcD1c450xJKyRtl7RN0tlVyynp\nbel9bLwOSLq6ajnz6lmFLWkI+BbJ9KzvAJZKenuvPm+cWk0buwxYHRHzgB+k7/vpNeDaiDgdOAf4\n4/T+VSpnuuLQBRHxbuDdwGJJZ1OxnBnXANv45aCvKuYMYDgi5kfEwnRfFXN+A7g3It4OvAvYQcVy\nRsTj6X2cD5wF/Dfwz1QsZ24R0ZMX8BvAfZn3y4Blvfq8AvlqwJbM+x3ASen2ycCOfmdsyns3sKjK\nOYFpwHpgYRVzksx9swa4ALinqn/uwFPArzbtq1RO4HjgyRb7K5WzKdtvAw9VPWe7Vy+bRE4BdmXe\n7073VdVJEbEv3d5HZs6UfpNUA+YDa6lgTklTJG1M89wfEQ9TwZzA10jWIs1OsVPFnAGskfSIpE+l\n+6qW81Rgv6TbJT0q6RZJ06lezqzLgOXpdpVzjqmXFfbA9heM5J/dSuSXNAP4HnBNRLyUPVaVnBFx\nKJImkTnA2ZLe2XS87zklXUyy1N0GxpgSuAo5U+dF8l/4JSRNYe/NHqxIzqnAAuDmiFgAvExTs0JF\ncgIg6WjgEuCu5mNVytlJLyvsPcDczPu5JE/ZVbVP0skAkmYBLaaLnViSjiKprO+MiLvT3ZXL2RAR\nB4AHgN+hejnPBS5NZ5hcDlwo6U6ql5OI+Hn6636S9taFVC/nbpKFTBrj8laQVOB7K5azYQmwPr2n\nUL37mUsvK+xHgLdKqqX/un0MWNXDz+vWKuCKdPsKkjbjvlEy4fitwLaI+HrmUNVyntj4hl3SG0kW\nt9hOxXJGxOcimcDsVJL/Gv9bRFxOxXJKmibp2HR7Okm76xYqljMi9gK7JM1Ldy0CtgL3UKGcGUv5\nZXMIVOx+5tbjRv4lwOPAT4DP9rvBPpNrOfA08CpJO/uVwAkkX0jtBO4HZvY542+StLVuBDakr8UV\nzHkG8CiwiaRi+bN0f6VyNmU+H1hVxZwkbcMb09djjZ+bquVMM50JrEv/7FeSfBFZxZzTgWeBYzP7\nKpczz8tD083MBoRHOpqZDQhX2GZmA8IVtpnZgHCFbWY2IFxhm5kNCFfYZmYDwhW2mdmAcIVtZjYg\n/h8d+54WXkm5aQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d04dac8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAABuCAYAAAADICkGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADdJJREFUeJzt3X2wHXV9x/H3JzcgJliQMgMJiR58iKMUMcEGCrUJNrUB\nAdupD2QUETp2OtMWhrFg1BYZmXbacVpFHWZaBAZsTVsRMbQMJbFcSrWSEJIQSAJYOZoHCaGETMQK\nNPn2j93T7D255569e3aze7if18yZ7NmH3/nkJPndzW9/D4oIzMys+abVHcDMzPJxhW1mNiRcYZuZ\nDQlX2GZmQ8IVtpnZkHCFbWY2JFxh29CQ9DFJD9Sdw6wurrBtypF0QNIbSi7zOkmbJL0s6bNllm3W\n4QrbpioVukia3uPQk8BVwL8AHo1mlXCFbY0jaa6kOyQ9I+lZSV8e55xWeqc8LbNvVNLvpttvknS/\npOcl7Za0It3/7+npGyXtk/SBdP/5kjZI2iPpu5JOzZTblnS1pEeAfdnP7IiI2yLiHmAfBX8YmPXT\n627BrBaSRoB/BlYDHwYOAKfnvDw4eHd7HXBPRCySdCTwToCI+DVJB4C3R8QP08+cD9wEnA88BFwM\nrJQ0LyJeTsu7CDgXeDYiDgz42zQrxHfY1jQLgVnAVRHxPxHxYkR8r0A5LwEtSSdFxEt9yvg94G8i\nYm0kbgNeBM5MjwfwpYjYEREvFshiVgpX2NY0c4EflXAXezVJ08QaSY9KunSCc18PfCJtDtkjaQ8w\nB5idOWfbgHnMBuYmEWuabcDrJI1ExP4Jznsh/XUG8NN0+8TOwYjYRXLnjKSzgdWS7u80g3T5MfBn\nEfHnE3zeZB4k+qGjVcJ32NY0DwI/Af5C0gxJR0k6q/ukiNgN7AAuljQi6TLgjZ3jkj4gaU769nmS\nSrRz174rey5wI/D7khYqMVPSeyUdnTe0pOmSjgJGgCPS3P73ZaXyXyhrlLQp5ALgTSR3vtuAD3YO\nM/bu9eMkXemeBd4GfDdz7J3A9yXtA74NXB4R7fTYtcCtafPH+yNiXVrWV4DnSLrofZTJ3Sl/FfgZ\nycPJz6TbH5nE9WZ9yQsYmJkNB99hm5kNicIVtqSlkrZKelLSJ8sMZWZmhyrUJJIObngcWELy4Gct\nsCwitpQbz8zMOoreYS8EfhAR7XQk2D8A7ysvlpmZdSvaD/skxg4k2A6ckT1Bkp9mmpkVEBHjzkdT\ntMLOWRl/FhgFFhf8mMNpFOcs0yjOWaZRmp9zlOZnhCbnHBkR+/df2/N40Qp7B8kQ4o65JHfZXUaB\ndvprK32ZmdlB7fQFB/pMyFC0wn4IeLOkFrAT+BCw7NDTFtPkn2ZmZvVr0bmZnTZN7N9/f88zC1XY\nEfG/kv4Q+FeSobg39e4h0iryETVo1R0gp1bdAXJq1R0gp1bdAXJq1R0gh1bdAXJq1R2gsMpGOiYP\nHb1SkplZXp027F4PHQcZODNX0n2SHkunr7y8eEwzM+tnkOlVXwaujIgN6axm6ySt8uAZM7NqFL7D\njoinI2JDuv1TYAtjJ3w3M7MSlTL5U9pbZD7JXMZmZlaBgVecSZtDbgeuSO+0M0Yz2y2G+emsmVk1\n2lTdDxsASUcA3wT+LiLuPPSMxYMUb2Y2BbTI2w97kF4iAm4CNkfEF4uWY2Zm+QzShn02yRJI50ha\nn76WlpTLzMy6DNJL5D+AI0gmgtoeEfMj4p7SkpmZ2RiD9hK5AtjM5BYrNTOzAgZpw54DnEeyWvS4\nwyjNzKw8g9xhfwG4CujTEcXMzMpQqMKWdD7wTESsx3fXZmaHRdF+2GcBF0o6DzgK+AVJt0XER8ee\nNprZbuGBM2Zm3drkHTgz8PSqkhYBfxwRF3Tt9/SqZmaTUNn0ql3cS8TMrGKFh6ZLOpakh8gpQEg6\nMyK+X1oyMzMbY5C5RK4H7o6I90uaDswsKZOZmY2jUIUt6RjgXRFxCSRrPAJ7ywxmZmZjFW3DPhnY\nLekWSQ9LulHSjDKDmZnZWEUr7OnAAuCGiFgAvAAsLy2VmZkdomgb9naSCZ/Wpu9vZ9wKezSz3cL9\nsM3MurWpdAGDiHha0jZJ8yLiCWAJ8NihZy4uUryZ2RTSIu8CBoUHzkg6jaRb35HAfwGXRsTezPG4\nJjNq/XNcM+nPuIbPjXlfRxnd15dRhr+L4tc3pQx/F83K0JQyBr2+38CZwt36ImIj8MtFrzczs8kZ\nZHrVKyU9KmmTpK9LelWZwczMbKyis/WdBPwRcHpEnAqMABeVGczMzMYq1IadVtj/CZwG7AO+BVwf\nEasz53jyJzOzSahk8qeI2AH8FfBjYCfwfLayNjOz8hUdmv5a4EKSvih7gW9I+nBE/P3YM0cz2y3c\nD9vMrFubSvthk/S7fioi/htA0h0kixp0VdiLCxZvZjZVtMjbD7tohf0j4ExJrwZ+TlKBr5lsIXX3\neXwlldGEDGWU4f7Nva8vowx/F8Wvb0IZRduw15AMR38YeCTd/bdFyjIzs3wmvMOWdDPwXpIFd09N\n9x0H/CPwepKGlw9GxPMV5zQzm/L63WHfAizt2rccWBUR84Dv4Fn6zMwOiwkr7Ih4ANjTtftC4NZ0\n+1bgtyrIZWZmXfoOnJHUAu7KNInsiYjXptsCnuu877qu78AZda3d+6dcN+Z9v8b4fteXUUaeBwJN\nKOOV8l10X19GGf4uel9fRhn+LvJfP14Z2YeQGhnh2v37q1k1PZLa3iumm5kdBkW69e2SdGI6J/Ys\n4Jnep45mtlt44IyZ2VhtOsNm6DtypkiFvRK4BPjL9Nc7e5+6uEDxZmZTR4uDt7KaNo379+/vee6E\nbdiSVgCLgOOBXcA1wLeBfwJexwTd+rrbsN3xvff1ZZTxSvkuhvX3UUYZTchQRhn++937+n5lDLSA\nQUQs63FoyUTXmZlZ+fo+dJR0s6RdkjZl9n1e0hZJGyXdIemYamOamVmeXiLjDZ65FzglIk4DngA+\nVXYwMzMbK9cCBt19sbuO/TbwOxHxka79XsDAzGwSKlnAoMtlwN0llGNmZhMovGo6gKTPAC9FxNfH\nP2M0s93C/bDNzLq1qXoBAyR9DDgP+PXeZy0uWryZ2RTRotIFDCQtBa4CFkXEz4uUYWZmk5OnW98K\n4HvAWyRtk3QZ8GXgaGCVpPWSbqg4p5nZlJdnAYN3kyxgMDtz6GZJnwA+DxwfEc9VmNHMzCi2gAGS\n5gK/QbK2o5mZHQZFFjAA+Gvg6koSmZnZuCbdD1vS+4DtEfFI35PNzKw0k+olImkG8GmS5pD/311q\nIjMzG9dku/W9kaTD4MZkdTDmAOskLYyIcRYyGM1st/DAGTOzbm0qGTgTEZuAEzrvJT0FnN67l8ji\nyRRvZjYFtcg7cGbCNuxMH+x5aR/sS7tOybGeY7v/KY3QrjtATu26A+TUrjtATu26A+TUrjtADu26\nA+TUrjtAYf16iSyLiNkR8aqImBsRt3Qdf0P/PtjtgUMeHu26A+TUrjtATu26A+TUrjtATu26A+TQ\nrjtATu26AxRWxmx9ZmZ2GAw0W18/CxbMYufOo5k9e1aVH1MK5yyXc5ZrGHIOQ0Zods6REbF2be/j\nuRYwKCJZwMDMzCar1wIGlVXYZmZWLrdhm5kNCVfYZmZDotIKW9JSSVslPSnpk1V+1mRIulnSLkmb\nMvuOk7RK0hOS7pV0bM0Z50q6T9Jjkh6VdHlDcx4l6UFJG9Kc1zYxZ4ekkXQO97vS943LKakt6ZE0\n55oG5zxW0u2StkjaLOmMpuWU9Jb0e+y89kq6vGk586qswpY0AnyFZHrWtwHLJL21qs+bpPGmjV0O\nrIqIecB30vd1ehm4MiJOAc4E/iD9/hqVM11x6JyIeAfwDmCppDNoWM6MK4DNHBz01cScASyOiPkR\nsTDd18Sc1wN3R8RbgbcDW2lYzoh4PP0e5wOnAz8DvkXDcuYWEZW8gF8B7sm8Xw4sr+rzCuRrAZsy\n77cCJ6TbJwJb687YlfdOYEmTcwIzgHXAwibmJJn7ZjVwDnBXU//cgaeAX+za16icwDHAD8fZ36ic\nXdneAzzQ9JwTvapsEjkJ2JZ5vz3d11QnRMSudHsXmTlT6iapBcwHHqSBOSVNk7QhzXNvRKyhgTmB\nL5CsRZqdYqeJOQNYLekhSR9P9zUt58nAbkm3SHpY0o2SZtK8nFkXASvS7Sbn7KnKCnto+wtG8mO3\nEfklHQ18E7giIvZljzUlZ0QciKRJZA5whqRf6jpee05J55MsdbeeHlMCNyFn6uxI/gt/LklT2Luy\nBxuSczqwALghIhYAL9DVrNCQnABIOhK4APhG97Em5eynygp7BzA3834uyV12U+2SdCKApFnAONPF\nHl6SjiCprL8WEXemuxuXsyMi9gL3Ab9J83KeBVyYzjC5Ani3pK/RvJxExE/SX3eTtLcupHk5t5Ms\nZNIZl3c7SQX+dMNydpwLrEu/U2je95lLlRX2Q8CbJbXSn24fAlZW+HmDWglckm5fQtJmXBslE47f\nBGyOiC9mDjUt5/GdJ+ySXk2yuMUWGpYzIj4dyQRmJ5P81/jfIuJiGpZT0gxJr0m3Z5K0u26iYTkj\n4mlgm6R56a4lwGPAXTQoZ8YyDjaHQMO+z9wqbuQ/F3gc+AHwqbob7DO5VgA7gZdI2tkvBY4jeSD1\nBHAvcGzNGX+VpK11A7A+fS1tYM5TgYeBjSQVy5+k+xuVsyvzImBlE3OStA1vSF+Pdv7dNC1nmuk0\nYG36Z38HyYPIJuacCTwLvCazr3E587w8NN3MbEh4pKOZ2ZBwhW1mNiRcYZuZDQlX2GZmQ8IVtpnZ\nkHCFbWY2JFxhm5kNCVfYZmZD4v8AmNJmP2HkVH8AAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d1225f8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAABuCAYAAAADICkGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADhtJREFUeJzt3XuwXWV9xvHvk8PNJMqldCAh0Y2XOEoREmygUJtgo4ar\n/cMLGYtcOradaQvDWDDaFjM67dRxWqEqM5YSirSmasSYtAwlsRyKUpMQkhBIwqWyJRc5hJJkIlag\nya9/rLXNOjtnn73O2mtnr53zfGb2nLXX5V1PVuA9K+961/sqIjAzs+qb0OsAZmaWjytsM7M+4Qrb\nzKxPuMI2M+sTrrDNzPqEK2wzsz7hCtv6hqSrJT3U6xxmveIK28YdSQckvbnE8n5V0hJJOyTtkfQD\nSbPLKt+swRW2jVcqdJB01AirJwOrgVnAicBdwL9JmlQ8ntmhXGFb5UiaLukeSS9IelHSl0fYp5be\nKU/IrBuU9Hvp8lslPZje8e6StCRd/5/p7hsl7ZP04XT9pZI2SNot6YeSzsyUW5d0k6THgH3ZcwJE\nxLMRcUtEDEXiduAYYEbZ18bGt5HuFsx6RtIA8K/AKuBjwAHgnJyHR/oB+DxwX0TMkXQM8G6AiPgt\nSQeAd0XEj9NzzgTuAC4FHgGuBJZLmhERr6XlXQFcBLwYEQfa/BnOJqmwn8mZ2ywX32Fb1cwGpgA3\nRsT/RsQrEfFwgXJeBWqSTouIV9uU8fvA1yJibXqH/HXgFeC8dHsAfxcROyLildFOKukNwN3AoojY\nVyC3WUuusK1qpgM/aXcXm8NNJO3UayQ9LumaUfZ9E/DJtDlkt6TdwDRgamafbe1OKOl1wArg4Yj4\nQgfZzUbkJhGrmm3AGyUNRMT+UfZ7Of05EfhZunxqY2NEDJHcOSPpAmCVpAcbzSBNngP+MiL+apTz\njTqspaRjgWXAcxHxB6Pta1aU77CtalYDPwX+WtJEScdJOr95p4jYBewArpQ0IOla4C2N7ZI+LGla\n+nUPSYXbuGsfyu4L3A78oaTZSkySdImkyXkCSzoaWAr8HLh6LH9Ys7FwhW2VkjaFXAa8leTOdxvw\nkcZmht/pfgK4EXgReCfww8y2dwM/krQP+B5wXUTU022LgLvS5o8PRcS6tKyvAC8BTwMfp81ddcb5\nwCXA+4A9ae+TfemdvVlp5AkMzMz6g++wzcz6ROEKW9J8SVslPS3pU2WGMjOzQxVqEklfbngSmEfy\n4GctsCAitpQbz8zMGoreYc8GnomIevom2L8AHywvlpmZNSvaD/s0hr9IsB04N7uDJD/NNDMrICJG\nHJysaIWdszL+LDAIzC14msNpEOcs0yDOWaZBqp9zkOpnhCrnHBgQ+/cvarm9aIW9g+QV4obpJHfZ\nTQaBevqzln7MzOygevqBA20GZChaYT8CvE1SDdgJfBRYcOhuc6nybzMzs96r0biZnTBB7N//YMs9\nC1XYEfF/kv4Y+HdgALijdQ+RWpFT9ECt1wFyqvU6QE61XgfIqdbrADnVeh0gh1qvA+RU63WAwrr2\npmPy0PGzXSnbzOxI1GjDbvXQsZMXZ6ZLekDSE+nwldcVj2lmZu10Mrzqa8ANEbEhHdVsnaSVfnnG\nzKw7Ct9hR8TzEbEhXf4ZsIXhA76bmVmJShn8Ke0tMpNkLGMzM+uCjmecSZtDlgLXp3faGYOZ5Rr9\n/HTWzKw76nS7Hzbwy5k2vgP8U0QsO3SPuZ0Ub2Y2DtTI2w+7k14iAu4ANkfELUXLMTOzfDppw74A\n+F3gQknr08/8knKZmVmTTnqJ/AA4mmQgqO0RMTMi7istmZmZDdNpL5Hrgc3kn6zUzMwK6qQNexpw\nMfAPwIivUZqZWXk6ucP+EnAj0KYjipmZlaFQhS3pUuCFiFiP767NzA6Lov2wzwcul3QxcBzwBklf\nj4iPD99tMLNcwy/OmJk1q5P3xZmOh1eVNAf404i4rGm9h1c1MxuDrg2v2sS9RMzMuqzwq+mSTiDp\nIXIGEJLOi4gflZbMzMyG6WQskVuBeyPiQ5KOAiaVlMnMzEZQqMKWdDzwnoi4CpI5HoG9ZQYzM7Ph\nirZhnw7sknSnpEcl3S5pYpnBzMxsuKIV9lHALOC2iJgFvAwsLC2VmZkdomgb9naSAZ/Wpt+XMmKF\nPZhZruF+2GZmzep0dQKDiHhe0jZJMyLiKWAe8MShe84tUryZ2ThSI+8EBoVfnJF0Fkm3vmOA/wau\niYi9me1xc+at9c9x85jPcTOfG/a9F2U0H19GGb4WxY+vShm+FtXKUJUyOj2+3Yszhbv1RcRG4NeL\nHm9mZmPTyfCqN0h6XNImSd+QdGyZwczMbLiio/WdBvwJcE5EnAkMAFeUGczMzIYr1IadVtj/BZwF\n7AO+C9waEasy+4Qy7Td/wecPKadd+46ahihpLiNP+1CnZTQfX0YZvhbFj69KGb4W+Y8vo4zxci26\nMvhTROwA/gZ4DtgJ7MlW1mZmVr6ir6afCFxO0hdlL/BtSR+LiH/O7heZfth1gprnOjAza1Knq/2w\nSfpdPxsR/wMg6R6SSQ2GVdjK9MOu8VDBU5mZHclqdLUftqTZwGKSbn2/AP4RWBMRX83sM2wCA7f5\ntT6+jDKOlGvh9s/Wx5dRxpHy33cZZVTxWnSrDXsNyevojwKPpav/vkhZZmaWz6hNIpIWA5eQTLh7\nZrruJOCbwJtIGl4+EhF7upzTzGzca3eHfScwv2ndQmBlRMwAvo9H6TMzOyxGrbAj4iFgd9Pqy4G7\n0uW7gN/pQi4zM2vS9qGjpBqwItMksjsiTkyXBbzU+N50XNtZ0/2QprwyjpRr4QdWrY8vowxfi9bH\nl1FGkWuRHTBKAwMs2r+/O7OmR1Lbe8Z0M7PDoEg/7CFJp6ZjYk8BXmi962BmuYYnMDAzG65O47UZ\n2r45U6TCXg5cBXwh/bms9a5zCxRvZjZ+1Dh4K6sJE3hw//6W+47ahi1pCTAHOBkYAm4Gvgd8C3gj\no3Try9OGbWZmB3U0gUFELGixaV7HyczMbEzaPnSUtFjSkKRNmXVflLRF0kZJ90g6vrsxzcwsTy+R\nkV6euR84IyLOAp4CPl12MDMzG65thT3SyzMRsTIiGo8zVwPTupDNzMwyOuqHnboWuLeEcszMbBSF\nZ00HkPRnwKsR8Y2R9xjMLNdwP2wzs2Z1uj2BAZKuBi4Gfrv1XnOLFm9mNk7UyDuBQdEpwuYDNwJz\nIuIXRcowM7OxydOtbwnwMPB2SdskXQt8GZgMrJS0XtJtXc5pZjbu5ZnA4L0kExhMzWxaLOmTwBeB\nkyPipS5mNDMzik1ggKTpwPuAn3QjlJmZHarIBAYAfwvc1JVEZmY2ojH3w5b0QWB7RDzWdmczMyvN\nmHqJSJoIfIakOeSXq0tNZGZmIxprt763kHQY3JjMDsY0YJ2k2RExwkQGg5nlGn5xxsysWZ2uvDgT\nEZuAUxrfJT0LnNO6l8jcsRRvZjYO1cj74syobdiZPtgz0j7Y1zTtkmM+x3r7XSqh3usAOdV7HSCn\neq8D5FTvdYCc6r0OkEO91wFyqvc6QGHteoksiIipEXFsREyPiDubtr+5fR/seschD496rwPkVO91\ngJzqvQ6QU73XAXKq9zpADvVeB8ip3usAhZUxWp+ZmR0GHY3W186sWVPYuXMyU6dO6eZpSuGc5XLO\ncvVDzn7ICNXOOTAg1q5tvX3USXg7kUzCa2ZmY9VqEt6uVdhmZlYut2GbmfUJV9hmZn2iqxW2pPmS\ntkp6WtKnunmusZC0WNKQpE2ZdSdJWinpKUn3SzqhxxmnS3pA0hOSHpd0XUVzHidptaQNac5FVczZ\nIGkgHcN9Rfq9cjkl1SU9luZcU+GcJ0haKmmLpM2Szq1aTklvT69j47NX0nVVy5lX1ypsSQPAV0iG\nZ30nsEDSO7p1vjEaadjYhcDKiJgBfD/93kuvATdExBnAecAfpdevUjnTGYcujIizgbOB+ZLOpWI5\nM64HNnPwpa8q5gxgbkTMjIjZ6boq5rwVuDci3gG8C9hKxXJGxJPpdZwJnAP8HPguFcuZW0R05QP8\nBnBf5vtCYGG3zlcgXw3YlPm+FTglXT4V2NrrjE15lwHzqpwTmAisA2ZXMSfJ2DergAuBFVX9ewee\nBX6laV2lcgLHAz8eYX2lcjZlez/wUNVzjvbpZpPIacC2zPft6bqqOiUihtLlITJjpvSapBowE1hN\nBXNKmiBpQ5rn/ohYQwVzAl8imYs0O8ROFXMGsErSI5I+ka6rWs7TgV2S7pT0qKTbJU2iejmzrgCW\npMtVztlSNyvsvu0vGMmv3UrklzQZ+A5wfUTsy26rSs6IOBBJk8g04FxJv9a0vec5JV1KMtXdeloM\nCVyFnKkLIvkn/EUkTWHvyW6sSM6jgFnAbRExC3iZpmaFiuQEQNIxwGXAt5u3VSlnO92ssHcA0zPf\np5PcZVfVkKRTASRNAUYYLvbwknQ0SWV9d0QsS1dXLmdDROwFHgA+QPVyng9cno4wuQR4r6S7qV5O\nIuKn6c9dJO2ts6lezu0kE5k03stbSlKBP1+xnA0XAevSawrVu565dLPCfgR4m6Ra+tvto8DyLp6v\nU8uBq9Llq0jajHtGyYDjdwCbI+KWzKaq5Ty58YRd0utIJrfYQsVyRsRnIhnA7HSSfxr/R0RcScVy\nSpoo6fXp8iSSdtdNVCxnRDwPbJM0I101D3gCWEGFcmYs4GBzCFTseubW5Ub+i4AngWeAT/e6wT6T\nawmwE3iVpJ39GuAkkgdSTwH3Ayf0OONvkrS1bgDWp5/5Fcx5JvAosJGkYvnzdH2lcjZlngMsr2JO\nkrbhDenn8cb/N1XLmWY6C1ib/t3fQ/Igsoo5JwEvAq/PrKtczjwfv5puZtYn/KajmVmfcIVtZtYn\nXGGbmfUJV9hmZn3CFbaZWZ9whW1m1idcYZuZ9QlX2GZmfeL/Addztk6N4SPcAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d1a8630>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "for i, profile in enumerate(centers):\n", | |
| " plt.figure()\n", | |
| " plt.imshow(profile, interpolation='none')\n", | |
| " plt.title('cluster {}'.format(i))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 22, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "['fiahigkfalboofabmjbghankbljmjj', 'nehbhiihkdlckmokcdljgadnibpkoa', 'kaifinljeojpapkppijnljmcfhofkp', 'ndehccaiocnliibcalapcpodfifnih', 'obppbebgobcobeedohomghkmcgkdnk', 'phjnfdgphadjfadfoiijemclhkcdad', 'lmbklafhdkolbhcnkblomkcfplomko', 'dddmpbkhicbkhlicihffelgahnofbk', 'mjfbapnoollekeipgliiejfcpokoin', 'pafjefgehppecbmbbbepchgcpdpona', 'fiahigkfalboofabmjbghankbljmjj', 'nehbhiihkdlckmokcdljgadnibpkoa', 'kaifinljeojpapkppijnljmcfhofkp', 'ndehccaiocnliibcalapcpodfifnih', 'obppbebgobcobeedohomghkmcgkdnk', 'phjnfdgphadjfadfoiijemclhkcdad', 'lmbklafhdkolbhcnkblomkcfplomko', 'dddmpbkhicbkhlicihffelgahnofbk', 'mjfbapnoollekeipgliiejfcpokoin', 'pafjefgehppecbmbbbepchgcpdpona']\n", | |
| "1 Counter({0: 20, 1: 20, 2: 20, 3: 20, 4: 20, 5: 20, 6: 20, 7: 20, 8: 20, 9: 20}) 10\n", | |
| "Convergence reached in 1 iterations\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# We build 10 different random sequences\n", | |
| "sequences = [''.join(numpy.random.choice(list(NAMES), 30, replace=True))\n", | |
| " for _ in range(10)] * 20\n", | |
| "print(sequences[:20])\n", | |
| "\n", | |
| "# Carry out the clustering\n", | |
| "number_of_clusters = 10\n", | |
| "maximum_number_of_iterations = 40\n", | |
| "while 1:\n", | |
| " try:\n", | |
| " clusters, centers, convergeance = k_means(sequences,\n", | |
| " ngroups=number_of_clusters,\n", | |
| " max_iter=maximum_number_of_iterations)\n", | |
| " except AssertionError:\n", | |
| " pass\n", | |
| " else:\n", | |
| " break" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD9tJREFUeJzt3XuMrHV9x/H35yxSi1iRmHA9dvCCaa21oCVGaz2t2Byt\nRVtvEKuIjW2TeokxeE0BNbbGRkuradMqGLxhWqRIG22F1oNUIze5g0Wrq4ByAAULpvVyzrd/zKzO\n2bM7Z3d2np39zb5fyYZnnnnmme8zD/vhx2/n9/ulqpAkbXxbpl2AJGllDGxJaoSBLUmNMLAlqREG\ntiQ1wsCWpEYY2GpGkpcluXTadUjTYmBr00myO8kjJnzOXpLPJvl+kpuTPH2S55fAwNbmlbFelOy3\nzFPnAlcBBwNvAc5L8rAxa5OWZGBrw0myNcn5Se5McneS9y5xTG/QUt4ytG9Hkj8YbD8qySVJ7k1y\nV5JzB/s/Nzj82iT3JXnBYP+zk1yT5J4kn0/yuKHzzid5fZLrgPuG33Pw/NHAMcDpVfWDqjofuA54\n3mQ/GW12y7UWpKlIMgf8C3Ax8GJgN/CEFb68Bj8Abwf+taqelmR/4IkAVfXrSXYDv1xVXxu85zHA\nWcCzgSuBlwAXJjm6qn40ON+JwDOBu6tq96L3fSzwtar6/tC+awf7pYmxha2N5jjgMODUqvrfQYv1\nC2Oc54dAL8kRVfXDfZzjD4G/q6orqu9DwA+AJw2eL+Cvq+r2qvrBEq8/EPjeon3/Azx4jLqlZRnY\n2mi2At9YohW7Wq+n3099eZIbkpwy4tifB1436A65J8k9wJHA4UPH3Dri9fcDP7do30H0Q1uaGLtE\ntNHcCjw8yVxV7Rpx3EL3wwH0AxPg0IUnq2on/ZYzSZ4CXJzkkoVukEW+Cbyjqv5sxPuNmtbyRuAR\nSQ6sqoVaHg98eMRrpFWzha2N5jLg28A7kxyQ5IFJnrz4oKq6C7gdeEmSuSQvBx658HySFyQ5cvDw\nXvqBu9Bq3zl8LPB+4I+THJe+ByX57SQHrqTgqroFuAY4fVDv7wG/BHxiNRcu7YuBrQ1l0BXyO8Cj\n6Ld8bwVeuPA0e7Z0XwGcCtwN/CLw+aHnngh8Mcl9wCeBV1fV/OC5M4BzBt0fz6+qqwbneh/wXeAr\nwEsZ3ape7MTBe34XeAfwvKr6zipeL+1TXMBAktpgC1uSGmFgS1IjDGxJakRnX+tLYue4JI2hqpac\n66bj72GfvsS+HcC2bt92qnYwu9e3g9m9Ntis13c6b13xGd665O/0RrGDjXr/VvoZZ26OM3YtP/xg\n7C6RJNuTfDnJV5K8YdzzSJJWZqzAHkzQ8z5gO/3vv56U5BcmWZgkaU/jtrCPA75aVfOD2cw+Djxn\nZS/tjfmWrehNu4AO9aZdQMd60y6gY71pF9Cx3rQL6Ny4gX0Ee06Gc9tg3wr0xnzLVvSmXUCHetMu\noGO9aRfQsd60C+hYb9oFdG7cPzqu8BsgO4a2e2yGD1SSVmN+8APA7tGTVI4b2LfTnwZzwVb6rexF\nto15eknaHHr8tCmbLVu4pINviVwJPHqwTNP+wIuAC8c8lyRpBcZqYVfVj5O8Evg3YA44q6punmhl\nkqQ9jD1wpqo+DXx6grVIkkbobHrV/tD06Y+KOo23rfjYt3Fah5VImoRZ/p2emwu7dp2x7NB0J3+S\npEYY2JLUCANbkhphYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGGNiS1AgDW5IaMfNziah7szy3\nA8z+9Wnj6GwukSRbk3w2yY1Jbkjy6vHLlCTty9jTqwI/Al5bVdckORC4KslFzostSd0Yu4VdVXdU\n1TWD7fuBm4HDJ1WYJGlPE/mjY5IecAxw2STOJ0na21q6RAAYdIecB7xm0NIesmNou4erpkvSYvMs\nrJu+j0XT1xbYSR4AfAL4SFVdsPcR29ZyeknaBHosNGa3bAm7dl2y7JFr+ZZIgLOAm6rqzHHPI0la\nmbX0YT8F+H3gN5JcPfjZPqG6JEmLrGXV9P/EkZKStG4MXElqhEPTNxGHWI8nrPx35E95+4qPbfEz\n9t+hbnU2NF2StL4MbElqhIEtSY0wsCWpEQa2JDXCwJakRhjYktQIA1uSGmFgS1IjDGxJasSGGJru\ncFdJ6nhoepK5wbSq/7yW80iS9m2tXSKvAW6CVcyOI0kay1pWnDkSeBbwAWDJ5rskaXLW0sL+S+BU\nYB/LRkqSJmGsFWeSPBu4s6quTrJt+SN3DG33cNV0SVpsnq5XTX8ycEKSZwEPBH4uyYeq6qV7HrZt\nzNNL0mbRo9NV06vqzVW1taqOAk4E/mPvsJYkTdKkBs74LRFJ6tjYq6YvqKpLgOXb8JKkiXBouiQ1\nYs0t7ElwuLkk7ZstbElqhIEtSY0wsCWpEQa2JDXCwJakRhjYktQIA1uSGmFgS1IjDGxJaoSBLUmN\n2BBD0yVNzmm8bVXHOzVEO2xhS1Ij1rII70FJzktyc5KbkjxpkoVJkva0li6RvwI+VVXPT7If8KAJ\n1SRJWsK4i/A+BHhqVZ0MUFU/Br43ycIkSXsat0vkKOCuJB9M8qUk709ywCQLkyTtadwukf2AY4FX\nVtUVSc4E3giL/9y8Y2i7x8LKwJKkBfODH9i9e/SR4wb2bcBtVXXF4PF59AN7kW1jnl6SNoseC43Z\nLVvCrl3LL5E7VpdIVd0B3Jrk6MGu44EbxzmXJGll1vItkVcBH02yP/DfwCmTKUmStJSxA7uqrgV+\ndYK1SJJGaG5oepfDbldz7q6G826EGtQ2/72YXQ5Nl6RGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0w\nsCWpEQa2JDXCwJakRhjYktSIVFU3J04KTu/k3F0JK/8sVjOEvMiKj3VYsTYjp2Tom5sLu3adQVUt\nGRq2sCWpEWtZNf21SW5Icn2SjyX5mUkWJkna01iBneQI+vNhP6GqHgfMASdOsjBJ0p7WMr3qfsAB\nSXYBBwC3T6YkSdJSxl0i7Hbg3cA3gW8B91bVxZMsTJK0p7Fa2EkeCpxAf+XI7wH/mOTFVfXRPY/c\nMbTdw1XTJWmxebpeNf144OtV9R2AJOcDTwYWBfa2MU8vSZtFj05XTQe+ATwpyc8mCf0Av2nMc0mS\nVmDcPuzLgfOALwHXDXb//aSKkiTtbS2rpp8BnDGxSiRJIznSUZIa4VwiUgOca2NzcC4RSZoRBrYk\nNcLAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDViLUuEacpWM1wZNsaQ5Y0yxHqj\n1NFSDbOuhd+nkS3sJGcn2Znk+qF9Bye5KMktST6T5KDuy5Qk7atL5IPA9kX73ghcVFVHA/8+eCxJ\n6tjIwK6qS4F7Fu0+AThnsH0O8NwO6pIkLTLOHx0Pqaqdg+2dwCETrEeStIw1/dGxqqo/7/Vydgxt\n93DVdElabJ4uV03fmeTQqrojyWHAncsfum2M00vSZtKjy1XTLwROHmyfDFwwxjkkSau0r6/1nQt8\nAXhMkluTnAK8E3hGkluA3xw8liR1bGSXSFWdtMxTx3dQiyRpBIemS1IjXDVdS2pt6HaL/Iy1mKum\nS9KMMLAlqREGtiQ1wsCWpEYY2JLUCANbkhphYEtSIwxsSWqEgS1JjTCwJakRDk3XhuXQbW02Dk2X\npBmxz8BOcnaSnUmuH9r3F0luTnJtkvOTPKTbMiVJK2lhfxDYvmjfZ4DHVtXjgVuAN026MEnSnvYZ\n2FV1KXDPon0XVdXCcpGXAUd2UJskacgk+rBfDnxqAueRJI0wzqrpP5HkLcAPq+pjSx+xY2i7x8LK\nwJKkBfODH9i9e9RxawjsJC8DngU8ffmjto17eknaJHosNGa3bAm7dl2y7JFjBXaS7cCpwNOq6v/G\nOYckaXVW8rW+c4EvAI9JcmuSlwPvBQ4ELkpydZK/6bhOSdr09tnCrqqTlth9dge1SJJG6HRo+mks\nObpyLw4rlmaPUwusnkPTJWlGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRhjY\nktQIV03XTFjNMGhwKLTWrouh9w5Nl6QZMTKwl1oxfei51yXZneTg7sqTJC3YVwt7qRXTSbIVeAbw\njS6KkiTtbWRgL7Vi+sB7gNd3UpEkaUmr7sNO8hzgtqq6roN6JEnLWNWajkkOAN5MvzvkJ7uXf8WO\noe0erpouSYvN09Wq6Y+kn7rXJgE4ErgqyXFVdefeh29b5eklabPp0cmq6VV1PXDIwuMkXweeUFXf\nHaNKSdIq7OtrfQsrph89WDH9lEWHdDPqRpK0l5Et7GVWTB9+/hGTLUeStBxHOkpSI5xLRNLM6mK+\njy45l4gkzQgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEVMI7Pn1f8t1NT/tAjo0P+0COjY/7QI6Nj/t\nAjo2P+0COmdgT9z8tAvo0Py0C+jY/LQL6Nj8tAvo2Py0C+icXSKS1IjVTq+6Kscee9he+771rQM5\n/PC998+KWb6+Wb428Ppat9T1HcaxK379sUz/s5mbC1dcsfzzHQ9NlySt1nJD0zsLbEnSZNmHLUmN\nMLAlqREGtiQ1Yt0CO8n2JF9O8pUkb1iv910vSeaTXJfk6iSXT7uetUpydpKdSa4f2ndwkouS3JLk\nM0kOmmaNa7HM9Z2R5LbBPbw6yfZp1jiuJFuTfDbJjUluSPLqwf6ZuH8jrm8m7t8o6/JHxyRzwH8B\nxwO3A1cAJ1XVzZ2/+TqZtQWJkzwVuB/4UFU9brDvXcDdVfWuwX90H1pVb5xmneNa5vpOB+6rqvdM\ntbg1SnIocGhVXZPkQOAq4LnAKczA/RtxfS9kBu7fKOvVwj4O+GpVzVfVj4CPA89Zp/deT0t+FadF\nVXUpcM+i3ScA5wy2z6H/S9KkZa4PZuAeVtUdVXXNYPt+4GbgCGbk/o24PpiB+zfKegX2EcCtQ49v\n46cf8Kwo4OIkVyZ5xbSL6cghVbVzsL0TOGSaxXTkVUmuTXJWq10Gw5L0gGOAy5jB+zd0fV8c7Jqp\n+7fYegX2Zviy91Oq6hjgmcCfDP6Xe2ZVvy9t1u7r3wJHAb8CfBt493TLWZtBd8EngNdU1X3Dz83C\n/Rtc33n0r+9+Zuz+LWW9Avt2YOvQ4630W9kzo6q+PfjnXcA/0e8GmjU7B/2HJDkMuHPK9UxUVd1Z\nA8AHaPgeJnkA/bD+cFVdMNg9M/dv6Po+snB9s3T/lrNegX0l8OgkvST7Ay8CLlyn9+5ckgOSPHiw\n/SDgt4DrR7+qSRcCJw+2TwYuGHFscwYhtuB3afQeJglwFnBTVZ059NRM3L/lrm9W7t8o6zY0Pckz\ngTOBOeCsqvrzdXnjdZDkKPqtauhPqPXR1q8vybnA04CH0e/vPA34JPAPwMPpz2X5wqq6d1o1rsUS\n13c6sI3+/04X8HXgj4b6fJuR5NeAzwHX8dNujzcBlzMD92+Z63szcBIzcP9GcS4RSWqEIx0lqREG\ntiQ1wsCWpEYY2JLUCANbkhphYEtSIwxsSWrE/wMulZN7rovrXAAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d065128>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD8BJREFUeJzt3XusZWddxvHvM1MqliqXmPQ6uMulRA1qCzYEREYtZkAs\nmHBruJRiUBO5hJByDb1GJRiwCtEotKQVKNGCpSogrTKlQuiNXmmxoBxoC5220pLWC5SZn3/sfeg+\nZ87Zc87ee5193j3fTzLpOmuts/ZvndXzzDvv3u/7pqqQJG1+W2ZdgCRpbQxsSWqEgS1JjTCwJakR\nBrYkNcLAlqRGGNhqRpJXJbl81nVIs2Jga7+TZE+Sx035mmcluTHJg0lOm+a1pUUGtvZXGeubkgNW\nOfQ14BTgnwBHo6kTBrY2nSTbknwiyV1J7knyvhXO6Q1ayluG9u1M8juD7SckuSzJfUnuTnLBYP/n\nB6dfn+T+JC8a7H9ekuuS3JvkC0mePHTdhSRvTnIDcP/way6qqvOr6jPA/Yz5l4G0L6u1FqSZSLIV\n+EfgUuBlwB7gKWv89uKh1u1ZwGeq6llJDgSeClBVv5JkD/DzVfWfg9c8BjgHeB5wNfAK4OIkR1fV\ng4PrvRR4DnBPVe2Z8DalsdjC1mZzHHAYcEpV/W9Vfb+qvjjGdX4A9JIcUVU/2Mc1fhf4q6q6qvrO\nB74PPG1wvIA/r6o7qur7Y9QiTYWBrc1mG/DNKbRi30y/a+LKJDclOXnEuT8NvGnQHXJvknuBI4HD\nh865bcJ6pInZJaLN5jbgsUm2VtXuEef99+C/BwEPDLYPXTxYVbvot5xJ8gzg0iSXLXaDLPMt4A+r\n6o9GvN563kj0TUd1wha2NpsrgO8A70pyUJKHJ3n68pOq6m7gDuAVSbYmeTXw+MXjSV6U5MjBl/fR\nD9HFVvuu4XOBDwC/n+S49D0iyW8mOXitRSc5IMnDga3AwwZ1+/ulqfJ/KG0qg66Q3wKeQL/lexvw\n4sXDLG29vob+R+nuAX4W+MLQsacCX0pyP/BJ4PVVtTA4djpw3qD744VVdc3gWu8Hvkv/I3qvZH0t\n5Q8C/0P/zcl3DLZfvo7vl/YpLmAgSW2whS1JjTCwJakRBrYkNaKzj/UlsXNcksZQVStOb9Dx57BX\nmrRsJ7C925edqZ3M7/3tZH7vDby/6TqNM9Z87hkrZsV67aT157d1a9i9+/RVj4/dJZJkR5KvJvla\nkreMex1J0tqMFdiDCXreD+yg//nXE5P8zDQLkyQtNW4L+zjg61W1MJjN7GPA89f2rb0xX7IVvVkX\n0KHerAvoWG/WBXSsN+sCOtabdQGdGzewj2DpZDi3D/atQW/Ml2xFb9YFdKg36wI61pt1AR3rzbqA\njvVmXUDnxn3TcY2fANk5tN1jf/iBStL6LAz+wJ59zFE5bmDfQX8azEXb6Leyl9k+5uUlaX/RY7Ex\nu2VL2L37slXPHLdL5GrgiYNlmg4EXgJcPOa1JElrMFYLu6p+mOS1wD/Tn07ynKq6ZaqVSZKWGHvg\nTFV9Gvj0FGuRJI3gijNjOpUz13zumZzaYSXdmPf7U/emM3px85rF74iTP0lSIwxsSWqEgS1JjTCw\nJakRBrYkNcLAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY1I1RrXIljvhZNaedV0zYrzgzzEn4U2\no8VV06sqKx2fZNX0bUk+l+QrSW5K8vrxy5Qk7csks/U9CLyxqq5LcjBwTZJLnBdbkroxdgu7qu6s\nqusG2w8AtwCHT6swSdJSU3nTMUkPOAa4YhrXkyTtbeIFDAbdIRcCbxi0tIfsHNru4arpkrTcAl2v\nmg5AkocBHwc+XFUX7X3G9kkuL0n7gR5dr5pOkgDnADdX1dnjXkeStDaT9GE/A3g58KtJrh382TGl\nuiRJy0yyavq/4UhJSdowBq4kNaLToeldDEwvVhyxuSqHFUtqRWdD0yVJG8vAlqRGGNiS1AgDW5Ia\nYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRky8gMEoZ7hqurTh1rMiPDh9Q0smamEn2TqYVvUf\nplWQJGllk3aJvAG4GehmBilJ0o9MsuLMkcBzgQ/COqfQkySt2yQt7D8FTgH2sWykJGkaxnrTMcnz\ngLuq6tok21c/c+fQdg9XTZek5RboetX0pwMnJHku8HDgJ5OcX1WvXHra9jEvL0n7ix6drppeVW+v\nqm1VdRTwUuBf9w5rSdI0TWvgjJ8SkaSOTTxwpqouA1Zvw0uSpsKh6ZLUiE6Hpkta3WmcseZzax1D\nHRxqPp4WhvTbwpakRhjYktQIA1uSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUiFR1\nM9FeksJV06W5sp7h2w6RX7+tW8Pu3adTVSvORWALW5IaMckivI9KcmGSW5LcnORp0yxMkrTUJLP1\n/Rnwqap6YZIDgEdMqSZJ0grGXYT3kcAzq+okgKr6IfC9aRYmSVpq3C6Ro4C7k3woyZeTfCDJQdMs\nTJK01LhdIgcAxwKvraqrkpwNvBWWvy28c2i7x+LKwJKkRQuDP7Bnz+gzxw3s24Hbq+qqwdcX0g/s\nZbaPeXlJ2l/0WGzMbtkSdu9efYncsbpEqupO4LYkRw92HQ98ZZxrSZLWZpJPibwO+EiSA4H/AE6e\nTkmSpJWMHdhVdT3wS1OsRZI0gqumbzLzPvTX+3tIi/fXVc3z/nObFoemS1IjDGxJaoSBLUmNMLAl\nqREGtiQ1wsCWpEYY2JLUCANbkhphYEtSIwxsSWqEq6ZvMmHtz+OdnLWua8/zkN71DG2G9f0sHDat\njeKq6ZI0JyZZNf2NSW5KcmOSjyb5sWkWJklaaqzATnIE/fmwn1JVTwa2Ai+dZmGSpKUmmV71AOCg\nJLuBg4A7plOSJGkl4y4RdgfwHuBbwLeB+6rq0mkWJklaaqwWdpJHAyfQXznye8DfJXlZVX1k6Zk7\nh7Z7uGq6JC23QNerph8PfKOq/gsgySeApwPLAnv7mJeXpP1Fj05XTQe+CTwtyY8nCf0Av3nMa0mS\n1mDcPuwrgQuBLwM3DHb/9bSKkiTtbZJV008HTp9aJZKkkRzpKEmNcC4RSdoknEtEkuaEgS1JjTCw\nJakRBrYkNcLAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY2YZIkwrdGpnLnmc8/k1A4r6ca83580\nqdM4Y03nha0jZ9Qb2cJOcm6SXUluHNr3mCSXJLk1yWeTPGpNlUiSJrKvLpEPATuW7XsrcElVHQ38\ny+BrSVLHRgZ2VV0O3Lts9wnAeYPt84AXdFCXJGmZcd50PKSqdg22dwGHTLEeSdIqJnrTsaqqP+/1\nanYObfdw1XRJWmqBxTXT2eey6eME9q4kh1bVnUkOA+5a/dTtY1xekvYfPR5qymbLFi7bvXvVc8fp\nErkYOGmwfRJw0RjXkCSt074+1ncB8EXgSUluS3Iy8C7g2UluBX5t8LUkqWMju0Sq6sRVDh3fQS2S\npBEcmi5JjXDVdG1aDnnfGP6cNw9XTZekOWFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLU\nCANbkhphYEtSI+Z+aLrDbiW1wqHpkjQn9hnYSc5NsivJjUP7/iTJLUmuT/KJJI/stkxJ0lpa2B8C\ndizb91ng56rqF4BbgbdNuzBJ0lL7DOyquhy4d9m+S6pqcbXIK4AjO6hNkjRkGn3YrwY+NYXrSJJG\nGGfV9B9J8g7gB1X10ZXP2Dm03eOhtYElSX0Lgz+wZ8+o8yYI7CSvAp4L/PrqZ20f9/KStJ/osdiY\n3bIl7N592apnjhXYSXYApwDPqqr/G+cakqT1WcvH+i4Avgg8KcltSV4NvA84GLgkybVJ/qLjOiVp\nv7fPFnZVnbjC7nM7qEWSNMJEbzq2wOHm0nzZn6ebcGi6JDXCwJakRhjYktQIA1uSGmFgS1IjDGxJ\naoSBLUmNMLAlqREGtiQ1wsCWpEbM/dB0SfPlLN655nPnbRi7LWxJasTIwF5pxfShY29KsifJY7or\nT5K0aF8t7JVWTCfJNuDZwDe7KEqStLeRgb3SiukD7wXe3ElFkqQVrbsPO8nzgdur6oYO6pEkrWJd\nnxJJchDwdvrdIT/avfp37Bza7uGq6ZK03AJdrZr+ePqpe30SgCOBa5IcV1V37X369nVeXpL2Nz06\nWTW9qm4EDln8Osk3gKdU1XfHqFKStA77+ljf4orpRw9WTD952SnVWWWSpCVGtrBXWTF9+PjjpluO\nJGk1jnSUpEY4l8iQeZt3QJpHNeqDacvM2++pLWxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUiBkE\n9sLGv+SGWph1AR1amHUBHVuYdQEdW5h1AR1bmHUBnTOwp25h1gV0aGHWBXRsYdYFdGxh1gV0bGHW\nBXTOLhFJakSnIx2PPfawvfZ9+9sHc/jhe+/fDA7j2DWfeywr38Nmvr9JzfO9gffXunm4v61bw1VX\nrX48Vd1MuJfEmfwkaQxVteL4+84CW5I0XfZhS1IjDGxJaoSBLUmN2LDATrIjyVeTfC3JWzbqdTdK\nkoUkNyS5NsmVs65nUknOTbIryY1D+x6T5JIktyb5bJJHzbLGSaxyf6cnuX3wDK9NsmOWNY4rybYk\nn0vylSQ3JXn9YP9cPL8R9zcXz2+UDXnTMclW4N+B44E7gKuAE6vqls5ffIPM24LESZ4JPACcX1VP\nHux7N3BPVb178Jfuo6vqrbOsc1yr3N9pwP1V9d6ZFjehJIcCh1bVdUkOBq4BXgCczBw8vxH392Lm\n4PmNslEt7OOAr1fVQlU9CHwMeP4GvfZGWvtSGJtcVV0O3Lts9wnAeYPt8+j/kjRplfuDOXiGVXVn\nVV032H4AuAU4gjl5fiPuD+bg+Y2yUYF9BHDb0Ne389APeF4UcGmSq5O8ZtbFdOSQqto12N4FHDLL\nYjryuiTXJzmn1S6DYUl6wDHAFczh8xu6vy8Nds3V81tuowJ7f/iw9zOq6hjgOcAfDP7JPbeq35c2\nb8/1L4GjgF8EvgO8Z7blTGbQXfBx4A1Vdf/wsXl4foP7u5D+/T3AnD2/lWxUYN8BbBv6ehv9Vvbc\nqKrvDP57N/D39LuB5s2uQf8hSQ4D7ppxPVNVVXfVAPBBGn6GSR5GP6z/pqouGuyem+c3dH8fXry/\neXp+q9mowL4aeGKSXpIDgZcAF2/Qa3cuyUFJfmKw/QjgN4AbR39Xky4GThpsnwRcNOLc5gxCbNFv\n0+gzTBLgHODmqjp76NBcPL/V7m9ent8oGzY0PclzgLOBrcA5VfXHG/LCGyDJUfRb1dCfUOsjrd9f\nkguAZwE/Rb+/81Tgk8DfAo+lP5fli6vqvlnVOIkV7u80YDv9f04X8A3g94b6fJuR5JeBzwM38FC3\nx9uAK5mD57fK/b0dOJE5eH6jOJeIJDXCkY6S1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXi\n/wGqtlNkHe17sQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d2a53c8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEA1JREFUeJzt3XuQZGddxvHvswMBksittHJd7HAJpRZKAqaoIGbVxFou\nBqzilkIIwUKsUqAoKtwskwVKRSwwCqWlkFDhFkoDhqCgJMqGQCQ3ciXBgGYg2ZBNIgkmXrjM/vxj\neqB3dmZ2prvP9Lw930/V1J45febt35nT++y7b/d73lQVkqSNb8ukC5AkrY6BLUmNMLAlqREGtiQ1\nwsCWpEYY2JLUCANbzUjy8iSXTroOaVIMbG06SfYkeewY2/uJJOcl2ZXkviRfSHLcuNqXFhjY2qwy\n1A8lD1pi98HA5cCxwKOAc4F/SHLQ8OVJ+zKwteEk2ZrkE0nuSnJPkvcscUyv31PeMrBvZ5Lf7G8/\nPskl/R7v3UnO6+//fP/w65Lcn+QF/f3PSXJtknuTfDHJkwbanU3yhiTXA/cPPidAVd1aVWdV1e6a\n9z7gAODocf9utLkt1VuQJibJDPD3wMXAS4A9wFNW+ePV/wJ4O/CPVXVCkgOApwJU1S8m2QP8bFX9\nR/85jwHOBp4DXAW8FLgwydFV9f1+ey8GngncU1V79nMOT2Y+sL++yrqlVbGHrY3mOOAw4PSq+t+q\n+m5VXTZEO98DekmOqKrv7aeN3wL+qqqu7PeQPwh8F3ha//EC/ryqdlXVd1d60iQPBz4E7Kiq+4eo\nW1qWga2NZivwjf31YlfhDcyPU1+R5MYkp61w7E8Cr+8Ph9yb5F7gSODwgWNu298TJnkY8Cngsqr6\n4xFql5bkkIg2mtuAxySZqaq5FY777/6fBwIP9LcPXXiwqnYz33MmydOBi5NcsjAMssg3gT+oqj9c\n4flWvK1lkocAFwDfrKpXrXSsNCx72NpoLge+BbwjyYFJHprk+MUHVdXdwC7gpUlmkrwCeNzC40le\nkOTI/rf3MR+4C7323YPHAu8DfjvJcZl3UJJnJzl4NQUneTBwPvA/wMvXcrLSWhjY2lD6QyG/Bjye\n+Z7vbcALFx5m757uK4HTgXuAnwa+OPDYU4EvJbkf+CTwmqqa7T+2Azi3P/zx/Kq6ut/We4FvA18D\nXsZ+etUDjgeeDZwE3Nf/9Mn9/Z69NDZxAQNJaoM9bElqhIEtSY0wsCWpEZ19rC+Jg+OSNISqWvJe\nNx1/DvvMJfbtBLYtOuqtq27xrUu2uZHsZPH5TY+djHpuG/ta72R6rx14fhvfzEyYm9ux7ONDD4kk\n2Z7kq0m+luSNw7YjSVqdoQK7f4Oe9wLbmf/86ylJfmqchUmS9jZsD/s44OtVNdu/m9nHgOeu7kd7\nQz5lK3qTLqBDvUkX0LHepAvoWG/SBXSsN+kCOjdsYB/B3jfDub2/bxV6Qz5lK3qTLqBDvUkX0LHe\npAvoWG/SBXSsN+kCOjfsm46r/ATIzoHtHpvhFypJazPb/4I9+7lH5bCBvYv522Au2Mp8L3uRbUM2\nL0mbRY+FzuyWLWFu7pJljxx2SOQq4An9ZZoOAF4EXDhkW5KkVRiqh11VP0jyu8A/ATPA2VV181gr\nkyTtZeiJM1X1GeAzY6xFkrSCzm6vOj81faPPSpSkjWNhpuNyU9O9+ZMkNcLAlqRGGNiS1AgDW5Ia\nYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRhjYktSIjldNl7RZncHbVn3s2zijw0qmxyirpm9N\n8rkkX0lyY5LXjLMwSdLeRulhfx94XVVdm+Rg4OokF3lfbEnqxtA97Kq6s6qu7W8/ANwMHD6uwiRJ\nexvLm45JesAxwOXjaE+StK+R33TsD4ecD7y239MesHNgu4erpkvSYrN0vWo6AEkeDHwc+HBVXbDv\nEdtGaV6SNoEeXa+aTpIAZwM3VdVZw7YjSVqdUcawnw78BvBLSa7pf20fU12SpEVGWTX9CzhTUpLW\njYErSY1warqkTjjdfPzsYUtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGGNiS1AgDW5IaYWBLUiMM\nbElqhFPTG7aWVanBqcJS60bqYSeZ6d9W9VPjKkiStLRRh0ReC9wE1BhqkSStYJQVZ44EngW8H8jY\nKpIkLWmUHvafAqcD+1k2UpI0DkO96ZjkOcBdVXVNkm3LH7lzYLuHq6ZL0mKzdL1q+vHAyUmeBTwU\neHiSD1bVy/Y+bNuQzUvSZtGj01XTq+otVbW1qo4CXgz8y75hLUkap3FNnPFTIpLUsZEnzlTVJcDy\nfXhJ0lg4NV2SGjH1U9PXMn27tanbrdUrLWcj/D1t4VYP9rAlqREGtiQ1wsCWpEYY2JLUCANbkhph\nYEtSIwxsSWqEgS1JjTCwJakRBrYkNSJV3dxoL0nBmZ20LUnTaGYmzM3toKqWXHbRHrYkNWKURXgf\nmeT8JDcnuSnJ08ZZmCRpb6Pcre/PgE9X1fOTPAg4aEw1SZKWMOwivI8AnlFVpwJU1Q+A74yzMEnS\n3oYdEjkKuDvJB5J8Ocn7khw4zsIkSXsb6lMiSZ4K/CtwfFVdmeQs4L+q6oyBYwpOGPipHgsrA0uS\nFsz2vyCBqkuW/ZTIsGPYtwO3V9WV/e/PB96072HbhmxekjaLHgud2S1bwtzc8kvkDjUkUlV3Arcl\nObq/60TgK8O0JUlanVE+JfJq4CNJDgD+HThtPCVJkpYydGBX1XXAz4+xFknSCqZ+1XRJ02UjrLA+\nKU5Nl6RGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRhjYktSI5qamr2VaKqxt\naupmnvKq8fA11L3N/Huzhy1JjRhl1fTXJbkxyQ1JPprkIeMsTJK0t6ECO8kRzN8P+ylV9SRgBnjx\nOAuTJO1tlDHsBwEHJpkDDgR2jackSdJShl0ibBfwLuCbwB3AfVV18TgLkyTtbagedpJHASczv3Lk\nd4C/TfKSqvrI3kfuHNju4arpkrTYLAurpu/Zs/KRww6JnAjcWlX/CZDkE8DxwKLA3jZk85K0WfTo\ndNV04BvA05I8LEmYD/CbhmxLkrQKw45hXwGcD3wZuL6/+6/HVZQkaV+jrJq+A9gxtkokSStypqMk\nNSJV1U3DScGZnbQ9zTbKvSg2Sh2tCav/+/T7vH3Vx3qtN4eZmTA3t4OqylKP28OWpEYY2JLUCANb\nkhphYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGGNiS1IhOp6afwZKzK/fhdFeNai3Tq8HXnEbX\nxZT+kaamJzknye4kNwzse3SSi5LckuSzSR656qolSUPb35DIB4Dti/a9Cbioqo4G/rn/vSSpYysG\ndlVdCty7aPfJwLn97XOB53VQlyRpkWHedDykqnb3t3cDh4yxHknSMoZecQagqmr+vtdL2zlwb+Ae\n0Fvlm5CStHnM0uWq6buTHFpVdyY5DLhruQO3GdCStB89ulw1/ULg1P72qcAFQ7QhSVqj/X2s7zzg\nMuCJSW5LchrwDuCkJLcAv9z/XpLUsRWHRKrqlGUeOrGDWiRJK3BquiQ1wlXT14GrUms9OU2/Xa6a\nLklTwsCWpEYY2JLUCANbkhphYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGODVd0qp5m4VuOTVd\nkqbEfgM7yTlJdie5YWDfnyS5Ocl1ST6R5BHdlilJWk0P+wPA9kX7Pgv8TFX9HHAL8OZxFyZJ2tt+\nA7uqLgXuXbTvoqpaWC7ycuDIDmqTJA0Yxxj2K4BPj6EdSdIKhlk1/YeS/B7wvar66NJH7BzY7rGw\nMrAkacFs/wv27FnpuBECO8nLgWcBv7L8UduGbV6SNokeC53ZLVvC3Nwlyx45VGAn2Q6cDpxQVf83\nTBuSpLVZzcf6zgMuA56Y5LYkrwDeAxwMXJTkmiR/0XGdkrTp7beHXVWnLLH7nA5qkSStYKQ3HTcz\np+hqPW2U15uv5clyarokNcLAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJak\nRrhq+iayUaY3S+ultde8q6ZL0pRYMbCXWjF94LHXJ9mT5NHdlSdJWrC/HvZSK6aTZCtwEvCNLoqS\nJO1rxcBeasX0vncDb+ikIknSktY8hp3kucDtVXV9B/VIkpaxpgUMkhwIvIX54ZAf7l7+J3YObPdw\n1XRJWmyWrlZNfxzzqXtdEoAjgauTHFdVd+17+LY1Ni9Jm02PTlZNr6obgEMWvk9yK/CUqvr2EFVK\nktZgfx/rW1gx/ej+iumnLTqkm1k3kqR9rNjDXmbF9MHHHzveciRJy3GmoyQ1wnuJaGRd3a+hy/tA\nnMlbV31srfRBqBHr0Oaw2tdbZmbYMTfnvUQkqXUGtiQ1wsCWpEYY2JLUCANbkhphYEtSIyYQ2LPr\n/5TranbSBXRodtIFdGp20gV0bnbSBXRsdtIFdM7AHrvZSRfQodlJF9Cp2UkX0LnZSRfQsdlJF9A5\nh0QkqRFrvb3qmhx77GH77LvjjoM5/PB990+LaT6/5c7tMI5ddRvHsvrfTVftLtf2wXfcwWGHH77P\n/rXMdFxrHetpml+bsLHPb7Wv5czMwJVXLv94t1PTJUlrtdzU9M4CW5I0Xo5hS1IjDGxJaoSBLUmN\nWLfATrI9yVeTfC3JG9freddLktkk1ye5JskVk65nVEnOSbI7yQ0D+x6d5KIktyT5bJJHTrLGUSxz\nfjuS3N6/htck2T7JGoeVZGuSzyX5SpIbk7ymv38qrt8K5zcV128l6/KmY5IZ4N+AE4FdwJXAKVV1\nc+dPvk6mbUHiJM8AHgA+WFVP6u97J3BPVb2z/4/uo6rqTZOsc1jLnN+ZwP1V9e6JFjeiJIcCh1bV\ntUkOBq4GngecxhRcvxXO74VMwfVbyXr1sI8Dvl5Vs1X1feBjwHPX6bnX0+o/sLvBVdWlwL2Ldp8M\nnNvfPpf5vyRNWub8YAquYVXdWVXX9rcfAG4GjmBKrt8K5wdTcP1Wsl6BfQRw28D3t/OjX/C0KODi\nJFcleeWki+nIIVW1u7+9GzhkksV05NVJrktydqtDBoOS9IBjgMuZwus3cH5f6u+aquu32HoF9mb4\nsPfTq+oY4JnA7/T/yz21an4sbdqu618CRwFPBr4FvGuy5YymP1zwceC1VXX/4GPTcP3653c+8+f3\nAFN2/ZayXoG9C9g68P1W5nvZU6OqvtX/827g75gfBpo2u/vjhyQ5DLhrwvWMVVXdVX3A+2n4GiZ5\nMPNh/aGquqC/e2qu38D5fXjh/Kbp+i1nvQL7KuAJSXpJDgBeBFy4Ts/duSQHJvmx/vZBwK8CN6z8\nU026EDi1v30qcMEKxzanH2ILfp1Gr2GSAGcDN1XVWQMPTcX1W+78puX6rWTdpqYneSZwFjADnF1V\nf7QuT7wOkhzFfK8a5m+o9ZHWzy/JecAJwI8zP955BvBJ4G+AxzB/L8sXVtV9k6pxFEuc35nANub/\nO13ArcCrBsZ8m5HkF4DPA9fzo2GPNwNXMAXXb5nzewtwClNw/VbivUQkqRHOdJSkRhjYktQIA1uS\nGmFgS1IjDGxJaoSBLUmNMLAlqRH/D5dlh+9MOl2fAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d2f9940>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEAxJREFUeJzt3XuMbWV9xvHvwwAqYr2kCddjN14wbWNb0BKjtZ5WNEAR\nbaIo8YLYaJtUMcbgrSnnoGlrbLS0NW1aBYNVMS1apEat0HqQauQmV8GiraNc5AAVDDSt4pxf/5g9\ndc+cmTkze+81e949308yYe211qz9W3sdnvOed693vakqJEmb336TLkCStDYGtiQ1wsCWpEYY2JLU\nCANbkhphYEtSIwxsNSPJa5NcMek6pEkxsLXlJNmT5EljPuaXktyT5IdJrk9yyjiPLwHsP+kCpAnJ\nUL+U7F9VP1lm05nAN6vq4STHAZcleWpV7R6pSmmALWxtOkm2Jfl0v8V6X5K/XGafXr+lvN/Aul1J\nfqe//JQklyd5IMm9SS7sr/9yf/cbkjyY5GX99Sf3W8b3J/lKkqcPHHc2yduS3Ag8OPieC6rqpqp6\neGDVAcC2cXwe0gJb2NpUkswAnwUuA14J7AGescZfr/4PwHuAL1TV85IcCDwToKp+Pcke4Jeq6j/7\n73kMcB5wMnAN8GrgkiRHD4TwK4ATgfuqas8KtX8WeD7wiP57X7P2M5f2zRa2NpvjgMOAs6rqf6rq\nR1X11SGO82Ogl+SIqvrxPo7xBuBvqurqmvdR4EfAs/rbC/iLqrqzqn600kGq6mTgYOAk4NIhapZW\nZWBrs9kGfHelVuw6vI35fuqrktyc5IxV9v054K397pD7k9wPHAkcPrDP7Wt506qaq6ovAC9M8qJh\ni5eWY5eINpvbgScmmamquVX2++/+fw8CHuovH7qwsf9l3xsAkjyH+S8BL1/oBlnie8AfVdUfr/J+\n632s5QHAWO9EkWxha7O5Evg+8N4kByV5ZJJnL92pqu4F7gRenWQmyeuAJy9sT/KyJEf2Xz7AfOAu\ntNp3D+4LfAj4vSTHZd6jk/xWkoPXUnCSpyU5McmjkhyQ5FXAc4HL13fq0uoMbG0q/a6QFwFPYb7l\neztw6sJmFrd0Xw+cBdwH/ALwlYFtzwS+luRB4DPAmVU129+2E7ig3/3x0qq6tn+sDwI/AL4FvIa1\nt6oD7GD+L4J7gDcBp1bV9Wv8fWlN4gQGktQGW9iS1AgDW5IaYWBLUiM6u60viZ3jkjSEqlr2WTcd\n34e9Y5l1u4Dt3b7tRO1is57fDs5Z877nbIJrN3q967WLzXrtxmMXnt/4dPHnc2YmzM3tXHH70F0i\nSU5I8s0k30ry9mGPI0lam6ECu/+Ang8CJzB//+tpSX5+nIVJkhYbtoV9HPDtqprtP83sk8CL1/ar\nvSHfshW9SRfQod6kC+hYb9IFdKw36QI61pt0AZ0bNrCPYPHDcO7or1uD3pBv2YrepAvoUG/SBXSs\nN+kCOtabdAEd6026gM4N+6XjGu8A2TWw3GMrfKCStD6z/R/Ys49nVA4b2HeyeDaNbcy3spfYPuTh\nJWmr6LHQmN1vvzA3t/Izw4btErkGeGp/mqYDgZcDlwx5LEnSGgzVwq6qnyR5I/DPwAxwXlXdOtbK\nJEmLDD1wpqo+D3x+jLVIklbR2eNV54emj2P0mSRtDQsjHVcamu7DnySpEQa2JDXCwJakRhjYktQI\nA1uSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEZ0PGu6pGlyNu9e877v5uwOK1mb1urdl1Fm\nTd+W5EtJvpHk5iRnjrMwSdJio7SwHwbeUlXXJzkYuDbJpT4XW5K6MXQLu6rurqrr+8sPAbcCh4+r\nMEnSYmP50jFJDzgGuHIcx5Mk7W3kLx373SEXAW/ut7QH7BpY7uGs6ZK01Cxdz5oOQJIDgE8BH6uq\ni/feY/soh5ekLaBH17OmkyTAecAtVXXusMeRJK3NKH3YzwFeBfxGkuv6PyeMqS5J0hKjzJr+bzhS\nUpI2jIErSY1IVXVz4KRgRyfH3gymbcjrUq2d33rqhc1Rs7oX1p5vf8h71nXs9fwZ2sE5a9ovMzPs\nnJujqrLcdlvYktQIA1uSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUCANbkhrh0HRp\nyjhMv10zM2Fubmc3Q9OTzPQfq/pPoxxHkrRvo3aJvBm4BdbxhBVJ0lBGmXHmSOAk4MPAss13SdL4\njNLC/jPgLGAf00ZKksZhqBlnkpwM3FNV1yXZvvKeuwaWezhruiQtNUvXs6Y/GzglyUnAI4GfSfLR\nqnrN4t22D3l4SdoqenQ6a3pVvauqtlXVUcArgH/dO6wlSeM0roEz3iUiSR0betb0BVV1ObByG16S\nNBYOTZekRozcwp4mrc0U3qLN8hlvljq60Fq9Wjtb2JLUCANbkhphYEtSIwxsSWqEgS1JjTCwJakR\nBrYkNcLAlqRGGNiS1AgDW5Ia4azpG2Cah0FLGp9OZ02XJG2cUSbhfVySi5LcmuSWJM8aZ2GSpMVG\neVrfnwOfq6qXJtkfePSYapIkLWPYSXgfCzy3qk4HqKqfAD8cZ2GSpMWG7RI5Crg3yUeSfD3Jh5Ic\nNM7CJEmLDdslsj9wLPDGqro6ybnAO2DpLQ67BpZ7LMwMLElaMNv/gT17Vt9z2MC+A7ijqq7uv76I\n+cBeYvuQh5ekraLHQmN2v/3C3NzKU+QO1SVSVXcDtyc5ur/qeOAbwxxLkrQ2o9wl8ibg40kOBP4D\nOGM8JUmSljN0YFfVDcCvjrEWSdIqNsWs6dM+dLurmtfzuXVZhzSqac+AcXFouiQ1wsCWpEYY2JLU\nCANbkhphYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGOGu6NEY7OGfN+xbLToy9rK08HHsrcdZ0\nSZoSo8ya/pYkNye5KcknkjxinIVJkhYbKrCTHMH887CfUVVPB2aAV4yzMEnSYqM8XnV/4KAkc8BB\nwJ3jKUmStJxhpwi7E3g/8D3gLuCBqrpsnIVJkhYbqoWd5PHAKczPHPlD4B+SvLKqPr54z10Dyz2c\nNV2Slpql61nTjwe+U1X/BZDk08CzgSWBvX3Iw0vSVtGj01nTge8Cz0ryqCRhPsBvGfJYkqQ1GLYP\n+yrgIuDrwI391X87rqIkSXsbZdb0ncDOsVUiSVqVIx0lqRGj3Ic9EWfz7nXt7zMYureeazLt1+Oc\ndTw/J6z9OT5+xgJb2JLUDANbkhphYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGGNiS1AgDW5Ia\nkaq1D49d14GTYh3DdCVpLaZ5mP7MTJib20lVZbntq7awk5yfZHeSmwbWPSHJpUluS/LFJI8bd9GS\npL3tq0vkI8AJS9a9A7i0qo4G/qX/WpLUsVUDu6quAO5fsvoU4IL+8gXASzqoS5K0xDBfOh5SVbv7\ny7uBQ8ZYjyRpBSM9D7uqav7LxZXsGlju4azpkrTULF3Omr47yaFVdXeSw4B7Vt51+xCHl6StpEeX\ns6ZfApzeXz4duHiIY0iS1mlft/VdCHwVeFqS25OcAbwXeEGS24Df7L+WJHVs1S6RqjpthU3Hd1CL\nJGkVDk2XpEY0N2u6pDZ0NYS8teHm42QLW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRhjY\nktQIA1uSGmFgS1IjHJoubXEOIW+HLWxJasQ+AzvJ+Ul2J7lpYN2fJrk1yQ1JPp3ksd2WKUlaSwv7\nI8AJS9Z9EfjFqvpl4DbgneMuTJK02D4Du6quAO5fsu7SqlqYLvJK4MgOapMkDRhHH/brgM+N4TiS\npFWMdJdIkj8AflxVn1h+j10Dyz0WZgaWJC2Y7f/Anj2r7TdCYCd5LXAS8PyV99o+7OElaYvosdCY\n3W+/MDd3+Yp7DhXYSU4AzgKeV1X/O8wxJEnrs5bb+i4Evgo8LcntSV4H/CVwMHBpkuuS/FXHdUrS\nlrfPFnZVnbbM6vM7qEWStIqpH5re1bBbaVr4574dDk2XpEYY2JLUCANbkhphYEtSIwxsSWqEgS1J\njTCwJakRBrYkNcLAlqRGGNiS1IipH5rusFuNyscbaLOwhS1JjVg1sJebMX1g21uT7EnyhO7KkyQt\n2FcLe7kZ00myDXgB8N0uipIk7W3VwF5uxvS+DwBv66QiSdKy1t2HneTFwB1VdWMH9UiSVrCuu0SS\nHAS8i/nukP9fvfJv7BpY7uGs6ZK01CxdzZr+ZOZT94YkAEcC1yY5rqru2Xv37es8vCRtNT06mTW9\nqm4CDll4neQ7wDOq6gdDVClJWod93da3MGP60f0Z089Yskt1VpkkaZFVW9grzJg+uP1J4y1HkrQS\nRzpKUiNS1U2vRpI6e7UbSAb4/IWf8rkV0tY1MxPm5nZSVcuGpy1sSWqEgS1JjTCwJakRBrYkNcLA\nlqRGGNiS1IgND+zZqR8cOTvpAjo0O+kCOjY76QI6NjvpAjo2O+kCOjeBwJ52s5MuoEOzky6gY7OT\nLqBjs5MuoGOzky6gc3aJSFIjOp01/bBjj91r3WPuuovDDj980bpjOazLMjbUXXcdzOGHD38+h7H3\nZ7aSjf7cRj23zc7za9s0nN/MTLj66pW3dzo0vZMDS9KUW2loemeBLUkaL/uwJakRBrYkNcLAlqRG\nbFhgJzkhyTeTfCvJ2zfqfTdKktkkNya5LslVk65nVEnOT7I7yU0D656Q5NIktyX5YpLHTbLGUaxw\nfjuT3NG/htclOWGSNQ4rybYkX0ryjSQ3Jzmzv34qrt8q5zcV1281G/KlY5IZ4N+B44E7gauB06rq\n1s7ffINM24TESZ4LPAR8tKqe3l/3PuC+qnpf/y/dx1fVOyZZ57BWOL8dwINV9YGJFjeiJIcCh1bV\n9UkOBq4FXgKcwRRcv1XO71Sm4PqtZqNa2McB366q2ap6GPgk8OINeu+NtLYpdhpQVVcA9y9ZfQpw\nQX/5Aub/J2nSCucHU3ANq+ruqrq+v/wQcCtwBFNy/VY5P5iC67eajQrsI4DbB17fwU8/4GlRwGVJ\nrkny+kkX05FDqmp3f3k3cMgki+nIm5LckOS8VrsMBiXpAccAVzKF12/g/L7WXzVV12+pjQrsrXCz\n93Oq6hjgROD3+//knlo135c2bdf1r4GjgF8Bvg+8f7LljKbfXfAp4M1V9eDgtmm4fv3zu4j583uI\nKbt+y9mowL4T2DbwehvzreypUVXf7//3XuAfme8Gmja7+/2HJDkMuGfC9YxVVd1TfcCHafgaJjmA\n+bD+u6q6uL96aq7fwPl9bOH8pun6rWSjAvsa4KlJekkOBF4OXLJB7925JAcleUx/+dHAC4GbVv+t\nJl0CnN5fPh24eJV9m9MPsQW/TaPXMEmA84BbqurcgU1Tcf1WOr9puX6r2bCh6UlOBM4FZoDzqupP\nNuSNN0CSo5hvVcP8A7U+3vr5JbkQeB7ws8z3d54NfAb4e+CJzD/L8tSqemBSNY5imfPbAWxn/p/T\nBXwH+N2BPt9mJPk14MvAjfy02+OdwFVMwfVb4fzeBZzGFFy/1fgsEUlqhCMdJakRBrYkNcLAlqRG\nGNiS1AgDW5IaYWBLUiMMbElqxP8B9P16IuKl9yMAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d3351d0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD/RJREFUeJzt3X2MZXV9x/H3Z0etRaxImvC4evExfbAKWmKwlq3VZrWK\nmvhE2orY2DZp1RiDT62AkLbGRkvVtPEBDFbFVLRIG7Vi6yLVCog8Coq2jALCghUsGOvD7rd/zJk6\nMztzd+bOPXPnd+f9SiZ77jnn/u73zJn97G9/c875paqQJG1+2yZdgCRpdQxsSWqEgS1JjTCwJakR\nBrYkNcLAlqRGGNhqRpKXJLlk0nVIk2Jga8tJsjfJw3pq+/iu/TP7aF9bm4GtrSojvSm5z5Bt9wX+\nBvgi4B1pGjsDW5tOku1JPpbkjiTfSfKOZfYZdD3ZbQvW7Ury+93yI5JcnOTuJHcmOa9b/7lu96uT\n3JPk+d36Zya5KsldST6f5DEL2p1N8pok1wD3LPzMJV4NfAr4GiP+gyANY2BrU0kyA/wzcBPwUOAI\n4LxVvr34ac/2TOBTVXVQ18Y7AKrq17vtv1JVD6yqjyQ5GjgbeBlwMPAu4MKuxzzvRcDTgYOqau8y\ndT8UOLn7XMNavTCwtdkcCxwGnFJVP6iqH1bVF0Zo50fAIMkRVfWj/bTxB8C7qurymvN+4IfAE7vt\nBby9qm6tqh+u0MbbgT+rqu+z+B8OaWwMbG0224FvLteLXaPXMNfTvSzJdUlOHrLvQ4FXd8MhdyW5\nCzgSOHzBPjev9OYkzwIOrKqPzK/CXrZ6sOIvUKQJuRl4SJKZqtozZL/vd38eANzbLR86v7GqdjPX\ncybJk4DPJLm4qv5rmba+Bfx5Vf3FkM8b1mN+CvCEJLd1rx8E7Enyy1X13CHvk9bEHrY2m0uB24A3\nJzkgyf2THLd0p6q6E7gV+L0kM0leCjx8fnuS5yc5snt5N3OBO99r371wX+A9wB8lOTZzHpDkt5Mc\nuMqa3wg8Engs8DjgQuDdzI1pS2NjYGtT6YZCngU8grme783AC+Y3s7in+zLgFOA7wC8Cn1+w7QnA\nF5PcA3wceEVVzXbbTgfO7YY/nldVV3RtvRP4LvB14MWschy6qu6tqju6r93AD4DvV9Xdazl2aX/i\nBAaS1AZ72JLUCANbkhphYEtSI3q7rC+Jg+OSNIKqWvY6/p6vwz5tmXW7gB39fuxE7WLp8Z3Gm1b9\n7jct+z3bLHax1c4d9Hf+Nv7nYhdb8fy1ZGYm7Nlz+orbRx4SSbIzyVeTfD3Ja0dtR5K0OiMFdveA\nnncCO5m7/vXEJL8wzsIkSYuN2sM+FvhGVc1W1Y+BDwPPXt1bByN+ZCsGky6gR4NJF9CzwaQL6Nlg\n0gX0bDDpAno3amAfweKH4dzSrVuFwYgf2YrBpAvo0WDSBfRsMOkCejaYdAE9G0y6gN6N+kvHVV4B\nsmvB8oCt8A2VpLWZ7b5g736eUTlqYN/K3GMw521nrpe9xI4Rm5ekrWLAfGd227awZ8/FK+456pDI\nl4BHdtM03Q94IXNPKJMk9WSkHnZV/STJnwD/AswAZ1fVDWOtTJK0yMg3zlTVJ4FPjrEWSdIQvT1e\nde7W9M18156myamcsab9z+DUniqRRjd/p+NKt6b78CdJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLU\nCANbkhphYEtSIwxsSWqEgS1JjTCwJakRPc+a3pa1zGJdLHur/7I2y3Mr1vK8jc1S82qdyRvXtP80\nfy98rsr0Ws+s6duTfDbJV5Jcl+QV4yxMkrTYenrYPwZeVVVXJTkQuCLJRT4XW5L6MXIPu6pur6qr\nuuV7gRuAw8dVmCRpsbH80jHJADgauHQc7UmS9rXuXzp2wyHnA6/setoL7FqwPMBZ0yVpqVn6njUd\ngCT3BT4KfKCqLth3jx3raV6StoABfc+aTpIAZwPXV9VZo7YjSVqd9YxhPwn4XeA3klzZfe0cU12S\npCXWM2v6v+OdkpK0YQxcSWpEqqqfhpOC01a17zTfJixtVf69XruZmbBnz+lU1bLPvrCHLUmNMLAl\nqREGtiQ1wsCWpEYY2JLUCANbkhphYEtSIwxsSWqEgS1JjTCwJakRm+LW9LD6Gt7ImWuqw1teJbWi\n11vTk8x0j1X9p/W0I0nav/UOibwSuB7W0EWWJI1kPTPOHAk8A3gvsGz3XZI0PuvpYf81cAqwn2kj\nJUnjMNKMM0meCdxRVVcm2bHynrsWLA9w1nRJWmqWvmdNPw44IckzgPsDP5fk/VX14sW77RixeUna\nKgb0Omt6Vb2hqrZX1VHAi4B/2zesJUnjNK4bZ7xKRJJ6NvKs6fOq6mJg5T68JGksvDVdkhqx7h72\nONQaLuP2VnNp+vQ1w/q0zdxuD1uSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUCANb\nkhphYEtSIzbFrOmSpJ5nTZckbZz1TMJ7UJLzk9yQ5PokTxxnYZKkxdbztL6/AT5RVc9Lch/gAWOq\nSZK0jFEn4X0Q8OSqOgmgqn4CfG+chUmSFht1SOQo4M4k70vy5STvSXLAOAuTJC020lUiSZ4A/Adw\nXFVdnuQs4H+q6tQF+xQcv+BdA+ZnBpYkzZvtviCBqotXvEpk1DHsW4Bbqury7vX5wOv23W3HiM1L\n0lYxYL4zu21b2LNn5SlyRxoSqarbgZuTPKpb9VTgK6O0JUlanfVcJfJy4INJ7gf8J3DyeEqSJC1n\n5MCuqquBXx1jLZKkITbFrOl9mrZZkyW15zTetKr9wgynD9nuremS1AgDW5IaYWBLUiMMbElqhIEt\nSY0wsCWpEQa2JDXCwJakRhjYktQIA1uSGuGs6ZvMtN9Kv9pbdAGKZR8JvKwWvxcazWb5O9JHHc6a\nLklTYj2zpr8qyXVJrk3yoSQ/M87CJEmLjRTYSY5g7nnYj6+qxwAzwIvGWZgkabH1PF71PsABSfYA\nBwC3jqckSdJyRp0i7FbgrcC3gG8Dd1fVZ8ZZmCRpsZF62EkeDJzA3MyR3wM+kuR3quqDi/fctWB5\ngLOmS9JSs8zPmr537/A9Rx0SeSpwU1X9N0CSjwHHAUsCe8eIzUvSVjGg11nTgW8CT0zys0nCXIBf\nP2JbkqRVGHUM+zLgfODLwDXd6nePqyhJ0r7WM2v66TB0vkhJ0hh5p6MkNcJniUjSJuGzRCRpShjY\nktQIA1uSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUCANbkhoxNLCTnJNkd5JrF6w7\nOMlFSW5M8ukkB/VfpiRpfz3s9wE7l6x7HXBRVT0K+NfutSSpZ0MDu6ouAe5asvoE4Nxu+VzgOT3U\nJUlaYpQx7EOqane3vBs4ZIz1SJJWMPKMMwBVVXPPvV7JrgXLA5w1XZKWmqXPWdN3Jzm0qm5Pchhw\nx8q77hiheUnaSgb0OWv6hcBJ3fJJwAUjtCFJWqP9XdZ3HvAF4NFJbk5yMvBm4GlJbgSe0r2WJPVs\n6JBIVZ24wqan9lCLJGkI73SUpEas6yoRCeBUzlj1vmdwao+VTJ7fC/XJHrYkNcLAlqRGGNiS1AgD\nW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRqRqyPwD62k4KTitl7YlaRrNzIQ9e06nqrLc\ndnvYktSI/QZ2knOS7E5y7YJ1f5XkhiRXJ/lYkgf1W6YkaTU97PcBO5es+zTwS1X1WOBG4PXjLkyS\ntNh+A7uqLgHuWrLuoqqany7yUuDIHmqTJC0wjjHslwKfGEM7kqQh1jWBQZI/BX5UVR9afo9dC5YH\nzM8MLEmaN9t9wd69w/ZbR2AneQnwDOA3V95rx6jNS9IWMWC+M7ttW9iz5+IV9xwpsJPsBE4Bjq+q\n/x2lDUnS2qzmsr7zgC8Aj05yc5KXAu8ADgQuSnJlkr/tuU5J2vL228OuqhOXWX1OD7VIkoboddb0\n1c4g7ezRm4+zf2urWcvPPEzm595b0yWpEQa2JDXCwJakRhjYktQIA1uSGmFgS1IjDGxJaoSBLUmN\nMLAlqREGtiQ1wlnTG9bCrbSaLj6yoF/Omi5JU2JoYC83Y/qCba9OsjfJwf2VJ0mat78e9nIzppNk\nO/A04Jt9FCVJ2tfQwF5uxvTO24DX9FKRJGlZax7DTvJs4JaquqaHeiRJK1jTBAZJDgDewNxwyP+v\nXvkduxYsD3DWdElaapa+Zk1/OHOpe3USgCOBK5IcW1V37Lv7jjU2L0lbzYBeZk2vqmuBQ+ZfJ7kJ\neHxVfXeEKiVJa7C/y/rmZ0x/VDdj+slLdunnrhtJ0j6G9rBXmDF94faHjbccSdJKvNNRkhqx1l86\nahPxWQ1bR5/P8PD5IO2why1JjTCwJakRBrYkNcLAlqRGGNiS1AgDW5IaMYHAnt34j9xQs5MuoEez\nky6gZ7OTLqBns5MuoGezky6gdwb22M1OuoAezU66gJ7NTrqAns1OuoCezU66gN45JCJJjej1Tsdj\njjlsn3Xf/vaBHH74vuunxTQf3zQfG2zu4zuMY1a97zEsfwwrHd842t4MNvP5W62ZmXD55StvT1U/\nD9xL4pP8JGkEVbXsxDC9BbYkabwcw5akRhjYktQIA1uSGrFhgZ1kZ5KvJvl6ktdu1OdulCSzSa5J\ncmWSyyZdz3olOSfJ7iTXLlh3cJKLktyY5NNJDppkjeuxwvGdnuSW7hxemWTnJGscVZLtST6b5CtJ\nrkvyim79VJy/Icc3FedvmA35pWOSGeBrwFOBW4HLgROr6obeP3yDTNuExEmeDNwLvL+qHtOtewvw\nnap6S/eP7oOr6nWTrHNUKxzfacA9VfW2iRa3TkkOBQ6tqquSHAhcATwHOJkpOH9Dju8FTMH5G2aj\netjHAt+oqtmq+jHwYeDZG/TZG2nZS3FaVFWXAHctWX0CcG63fC5zf0matMLxwRScw6q6vaqu6pbv\nBW4AjmBKzt+Q44MpOH/DbFRgHwHcvOD1Lfz0GzwtCvhMki8ledmki+nJIVW1u1veDRwyyWJ68vIk\nVyc5u9Uhg4WSDICjgUuZwvO34Pi+2K2aqvO31EYF9la42PtJVXU08HTgj7v/ck+tmhtLm7bz+nfA\nUcDjgNuAt062nPXphgs+Cryyqu5ZuG0azl93fOczd3z3MmXnbzkbFdi3AtsXvN7OXC97alTVbd2f\ndwL/yNww0LTZ3Y0fkuQw4I4J1zNWVXVHdYD30vA5THJf5sL676vqgm711Jy/Bcf3gfnjm6bzt5KN\nCuwvAY9MMkhyP+CFwIUb9Nm9S3JAkgd2yw8Afgu4dvi7mnQhcFK3fBJwwZB9m9OF2Lzn0ug5TBLg\nbOD6qjprwaapOH8rHd+0nL9hNuzW9CRPB84CZoCzq+ovN+SDN0CSo5jrVcPcA7U+2PrxJTkPOB74\neebGO08FPg78A/AQ5p5l+YKquntSNa7HMsd3GrCDuf9OF3AT8IcLxnybkeTXgM8B1/DTYY/XA5cx\nBedvheN7A3AiU3D+hvFZIpLUCO90lKRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEf8HgVKC\nt4BiiowAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d387550>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD9tJREFUeJzt3XuMpXddx/H3Z6cgllZKNel14ZRr1IC2aEOoyKqFbBEL\nJtzqhVIMaiKXEFJuJt0tRiUYsArBILSkSCmRgqUabkXYUkHaUnqlxYJ2oBe6LdKSVpHL7Nc/5hmY\nmT1ndubMOXPmd+b9Sib7zHOe85zvM7+dz/72d87v+aWqkCRtftsmXYAkaXUMbElqhIEtSY0wsCWp\nEQa2JDXCwJakRhjYakaSFye5fNJ1SJNiYGvLSbIvyaNGfM7ZJP+b5P7u6+OjPL8EcNCkC5AmJEM9\nKTmoqn7Y56ECnlVVn15fWdJg9rC16STZnuTDSe5O8q0kb+tzTK/rKW9btG9Pkj/oth+T5LIk9yW5\nJ8mF3f7Pdodf1/WEn9ftf1aSa5Pcm+RzSZ6w6LyzSV6T5Hrg/sWvubysEf0IpL4MbG0qSWaAfwFu\nBR4JHANcuMqnV/cF8GfAx6vqsO4cbwOoql/tHn9iVR1aVR9McjxwLvBS4HDgncAlSR606NwvBE4B\nDquqfQNe/4LuH5lPJHniKmuWVs3A1mZzInAUcGZVfbeqvldVnx/iPN8HekmOqarvH+Acfwi8s6qu\nqnnvBb4HPLl7vIC/rao7qup7A87xO8z/A/NI4DPAJ5I8bIi6pYEMbG0224Gvr9CLXa3XMD9EcWWS\nG5OcscKxjwRe3Q2H3JvkXuBY4OhFx9y20otV1b93/7h8t6reBNwHPHWd1yAt4ZuO2mxuAx6RZKaq\n5lY47n+6Pw8GHui2j1x4sKr2Mt9zJslJwKeSXFZV/9XnXN8A/ryq/mKF11vrbS29DaZGzh62Npsr\ngG8Cb0pycJKHJHnK8oOq6h7gDuD3k8wkeQnw6IXHkzwvybHdt/cxH6ALvfa9i48F3gX8cZITM++h\nSX4zySGrKbh7k/SkJA/u6j0T+Gngc2u7dGllBrY2lW4o5LeAxzDf870NeP7Cwyztub4UOBP4FvBz\nLA3IXwK+kOR+4CPAK6pqtntsN3B+N/zx3Kq6ujvX24FvA18FXsTqe8mHAu/onns78AzglKq6d5XP\nl1YlLmAgSW2why1JjTCwJakRBrYkNWJsH+tL4uC4JA2hqvre5mDMn8Pe1WffHmDHeF92SLs4e9XH\nnt332mAzX9/67WF6rw28vtbtofXrm5kJc3O7Bz4+9JBIkp1JvpLkq0leO+x5JEmrM1RgdzfoeTuw\nk/nPv56W5GdHWZgkaalhe9gnAl+rqtmq+gHwAeDZq3tqb8iXbEVv0gWMUW/SBYxZb9IFjFlv0gWM\nWW/SBYzdsIF9DEtvhnN7t28VekO+ZCt6ky5gjHqTLmDMepMuYMx6ky5gzHqTLmDshn3TcZWfANmz\naLvHVviBStLazHZfsO8A96gcNrDvYP42mAu2M9/LXmbHkKeXpK2ix0Jndtu2MDd32cAjhx0S+SLw\n2G6ZpgcDLwAuGfJckqRVGKqHXVU/TPIy4BPADHBuVd080sokSUsMPXGmqj4GfGyEtUiSVjD1K86c\nxRtXfezg2YuSNHne/EmSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUCANbkhphYEtS\nIwxsSWrE1N9L5I2cNekSpC1pLffx8fd0ddazavr2JJ9J8uUkNyZ5xSgLkyQttZ4e9g+AV1XVtUkO\nAa5Ocqn3xZak8Ri6h11Vd1XVtd32A8DNwNGjKkyStNRI3nRM0gOOB64YxfkkSftb95uO3XDIRcAr\nu572InsWbfdw1XRJWm6Wca+aDkCSBwEfAt5XVRfvf8SO9ZxekraAHuNeNZ0kAc4Fbqqqc4Y9jyRp\nddYzhn0S8HvAryW5pvvaOaK6JEnLrGfV9H/DmZKStGEMXElqxNRPTZc0GU43Hz172JLUCANbkhph\nYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLAlqRGGNiS1AgDW5Ia4dR0rdu4Vsd21e3hrOXnBv7sWrKu\nHnaSme62qv88qoIkSf2td0jklcBNQI2gFknSCtaz4syxwDOBdwMZWUWSpL7W08P+a+BM4ADLRkqS\nRmGoNx2TPAu4u6quSbJj8JF7Fm33cNV0SVpulnGvmv4U4NQkzwQeAvxUkvdW1YuWHrZjyNNL0lbR\nY6yrplfVG6pqe1UdB7wQ+PT+YS1JGqVRTZzxUyKSNGbrnjhTVZcBg/vwkqSRcGq6JDUiVeMZzUhS\nsGvk53XarTQ53i5gvGZmwtzcbqqq79wWe9iS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXC\nwJakRhjYktQIA1uSGtHc1HRpozkdWxvFqemSNCXWswjvYUkuSnJzkpuSPHmUhUmSllrP/bD/Bvho\nVT03yUHAQ0dUkySpj2EX4X0Y8NSqOh2gqn4IfGeUhUmSlhp2SOQ44J4k70nypSTvSnLwKAuTJC01\n7JDIQcAJwMuq6qok5wCvg+Vvke9ZtN1jYWVgSdKC2e4L9u1b+chhA/t24Paquqr7/iLmA3uZHUOe\nXpK2ih4Lndlt28Lc3OAlcocaEqmqu4Dbkjyu23Uy8OVhziVJWp31fErk5cAFSR4M/CdwxmhKkiT1\nM3RgV9V1wC+PsBZJ0grW08OWtgSnm2uzcGq6JDXCwJakRhjYktQIA1uSGmFgS1IjDGxJaoSBLUmN\nMLAlqREGtiQ1wsCWpEY4NV1TYS0rm8PmmG6+i7NXfWzRdxHtvjbDtW0Fa/k7N6o2sYctSY1Yz6rp\nr0pyY5Ibkrw/yU+MsjBJ0lJDBXaSY5i/H/aTquoJwAzwwlEWJklaaj1j2AcBByeZAw4G7hhNSZKk\nfoZdIuwO4C3AN4A7gfuq6lOjLEyStNRQPewkDwdOZX7lyO8AH0zyu1V1wdIj9yza7uGq6ZK03Czj\nXjX9ZODWqvpvgCQfBp4CLAvsHUOeXpK2ih5jXTUd+Drw5CQ/mSTMB/hNQ55LkrQKw45hXwlcBHwJ\nuL7b/fejKkqStL/1rJq+G9g9skokSStypqMkNSJVNZ4TJwW7VnXsJObkS5rn79/mMTMT5uZ2U1V9\nbx5jD1uSGmFgS1IjDGxJaoSBLUmNMLAlqREGtiQ1wsCWpEYY2JLUCANbkhphYEtSIzbF1HRtHU6D\n1kZq7e/buqamJzkvyd4kNyzad3iSS5PckuSTSQ4bddGSpP0daEjkPcDOZfteB1xaVY8D/rX7XpI0\nZisGdlVdDty7bPepwPnd9vnAc8ZQlyRpmWHedDyiqvZ223uBI0ZYjyRpgKFXnAGoqpp/c3GQPYu2\ne7hquiQtN8s4V03fm+TIqroryVHA3YMP3THE6SVpK+kxzlXTLwFO77ZPBy4e4hySpDU60Mf6LgQ+\nDzw+yW1JzgDeBDw9yS3Ar3ffS5LGbMUhkao6bcBDJ4+hFknSCpyaLkmNcGr6FrKLs1d9bNF3Zmxf\nm2FK72bR2lRobS6umi5JU8LAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJak\nRox1avpZq5ze7BRdSXJquiRNjQMGdpLzkuxNcsOifX+V5OYk1yX5cJKHjbdMSdJqetjvAXYu2/dJ\n4Oer6heAW4DXj7owSdJSBwzsqrocuHfZvkuramG5yCuAY8dQmyRpkVGMYb8E+OgIziNJWsEwq6b/\nSJI/Bb5fVe/v9/gefvwJlB7QW8NN8SVpa5jtvmDfvpWOW0dgJ3kx8EzgNwYds8OAlqQD6HVfsG1b\nmJu7bOCRQwV2kp3AmcDTqur/hjmHJGltVvOxvguBzwOPT3JbkpcAbwMOAS5Nck2Sd4y5Tkna8g7Y\nw66q0/rsPm8MtUiSVuCq6RvAlbSlrW0XZ6/quMzMsHtuzqnpktQ6A1uSGmFgS1IjDGxJaoSBLUmN\nMLAlqREGtiQ1wsCWpEYY2JLUCANbkhrh1PQNEFb/M17LNPZa4+1rnfauaTCuWz2s5bxrPfdquWq6\nJE2JFQO734rpix57dZJ9SQ4fX3mSpAUH6mH3WzGdJNuBpwNfH0dRkqT9rRjY/VZM77wVeM1YKpIk\n9bXmMewkzwZur6rrx1CPJGmANa3pmORg4A3MD4f8aPfgZ+xZtN1jYaFJSdKCWca1avqjmU/d65IA\nHAtcneTEqrp7/8N3rPH0krTV9BjLqulVdQNwxML3SW4FnlRV3x6iSknSGhzoY30LK6Y/rlsx/Yxl\nh4xn1o0kaT8r9rAHrJi++PFHjbYcSdIgznSUpEZ4L5Ehjet+BtoYtt/mYnvM814ikjQlDGxJaoSB\nLUmNMLAlqREGtiQ1wsCWpEZMILBnN/4lN9DsVE/+nJ10AWM13W0H095+0399BvbIzU66gLGanXQB\nYzU76QLGbnbSBYzZ7KQLGDuHRCSpEWu9veqanHDCUfvtu/POQzj66P33t+YoTui7/9A77+Soo49e\nsu8E2r9emJ62g/7t16/twPbbCIN+n/oZ1B6b+fpWa2YmXHXV4MfHPDVdkrRWg6amjy2wJUmj5Ri2\nJDXCwJakRhjYktSIDQvsJDuTfCXJV5O8dqNed6MkmU1yfZJrklw56XrWK8l5SfYmuWHRvsOTXJrk\nliSfTHLYJGtcjwHXtzvJ7V0bXpNk5yRrHFaS7Uk+k+TLSW5M8opu/1S03wrXNxXtt5INedMxyQzw\nH8DJwB3AVcBpVXXz2F98g0zbgsRJngo8ALy3qp7Q7Xsz8K2qenP3j+7Dq+p1k6xzWAOubxdwf1W9\ndaLFrVOSI4Ejq+raJIcAVwPPAc5gCtpvhet7PlPQfivZqB72icDXqmq2qn4AfAB49ga99kbq+1Gc\nFlXV5cC9y3afCpzfbZ/P/C9JkwZcH0xBG1bVXVV1bbf9AHAzcAxT0n4rXB9MQfutZKMC+xjgtkXf\n386Pf8DTooBPJflikpdOupgxOaKq9nbbe4EjJlnMmLw8yXVJzm11yGCxJD3geOAKprD9Fl3fF7pd\nU9V+y21UYG+FD3ufVFXHA6cAf9L9l3tq1fxY2rS1698BxwG/CHwTeMtky1mfbrjgQ8Arq+r+xY9N\nQ/t113cR89f3AFPWfv1sVGDfAWxf9P125nvZU6Oqvtn9eQ/wT8wPA02bvd34IUmOAu6ecD0jVVV3\nVwd4Nw23YZIHMR/W/1BVF3e7p6b9Fl3f+xaub5rab5CNCuwvAo9N0kvyYOAFwCUb9Npjl+TgJId2\n2w8FngHcsPKzmnQJcHq3fTpw8QrHNqcLsQW/TaNtmCTAucBNVXXOooemov0GXd+0tN9KNmxqepJT\ngHOAGeDcqvrLDXnhDZDkOOZ71TB/Q60LWr++JBcCTwN+hvnxzrOAjwD/CDyC+XtZPr+q7ptUjevR\n5/p2ATuY/+90AbcCf7RozLcZSX4F+CxwPT8e9ng9cCVT0H4Dru8NwGlMQfutxHuJSFIjnOkoSY0w\nsCWpEQa2JDXCwJakRhjYktQIA1uSGmFgS1Ij/h8VgH1kvSZ4rAAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d0fea90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD+9JREFUeJzt3XuMbWV9xvHvcwatRaxImnA9uvGaXmiLtsRorccWmyO1\naBNvpK0IlrZJVWoMeGnkHDBtjY0traaNVSBYEVvRIm20FVsPUomAyFVAtDLIRQ5YwUJrvcz59Y+9\nRvfMmdlnZs9es2ft+X6SyaxZa+21fmuvOQ8v7+x3vakqJEkb35ZJFyBJWhkDW5I6wsCWpI4wsCWp\nIwxsSeoIA1uSOsLAVmckeVWSyyddhzQpBrY2nSR7kjyxheOemuSrSR5OcnOSp4z7HNrc9pt0AdKE\nZKQXJftV1feXWP87wMnAcVV1a5IjgQfXWKO0gC1sbThJtib5aJL7knwjybuW2KfXtJS3DKzbleTV\nzfKTk1yW5MEk9ye5sFn/mWb365M8lOSlzfoXJrkuyQNJPpvkqIHjziY5PckNwEOD52y2bwF2AH9Y\nVbcCVNXtVfXAeN8ZbXYGtjaUJDPAPwO3A08ADgcuXOHLq/kCeBvwL1V1YHOMdwFU1S8123+mqh5T\nVR9OcjRwDnAKcBDwHuCSJI8YOPYrgBcAB1bVnkXnPaI5x1FJvtZ0i+xMMlIrXlqOga2N5hjgUOC0\nqvp2VX2nqq4Y4TjfBXpJDq+q7+7jGL8LvKeqrq6+9wPfAZ7ZbC/gr6rq7qr6zhKvP6L5/nzgp4Hn\nAScArx6hbmlZBrY2mq3AHUu0YlfrdPr91FcluSnJSUP2fQLwhqY75IEkD9AP4cMG9rlzyOu/3Xx/\nR1X9d1XdQb+Vftwa6pf24h8dtdHcCTw+yUxVzQ3Z73+a7/sDDzfLh8xvrKrd9FvOJHk28Kkkl1XV\nV5c41teAP66qPxlyvmGPtfwS/Rb9al4jrZotbG00VwJfB96eZP8kj0ryrMU7VdX9wN3AbyeZSXIy\n8KT57UlemmS+q+JB+uE532rfPbgv8F7g95Mck75HJ/m1JAespOCq+l/g74HTkxzQnPcU+n3x0tgY\n2NpQmq6QXweeTL/leyfwsvnNLGy1ngKcBnwD+EngswPbfh74XJKHgI8Br6uq2WbbTuD8pvvjJVV1\nTXOsdwPfBL4MvJLVtZBfQ7+lfw9wBXBBVZ23itdL+xQnMJCkbrCFLUkdYWBLUkcY2JLUEa19rC+J\nneOSNIKqWnKUbMufw96xxLpdwLY1HPHMVe1/5pI1tGkXa7m+1Vj/92IX63VtqzWe92IXG/X6xmMX\nS13fat679f/3tBq76Pr9m5kJc3M7l90+cpdIku1Jbk3y5SRvHPU4kqSVGSmwmwf0vBvYTv/zryck\n+YlxFiZJWmjUFvYxwFeqaraqvgd8CHjRyl7aG/GUXdGbdAEt6k26gJb1Jl1Ay3qTLqBlvUkX0LpR\nA/twFj4M565m3Qr0RjxlV/QmXUCLepMuoGW9SRfQst6kC2hZb9IFtG7UPzqu8BMguwaWe2yGN1SS\nVme2+YI9+3hG5aiBfTf9x2DO20q/lb3IthEPL0mbRY/5xuyWLWFu7rJl9xy1S+TzwFOaaZoeCbwc\nuGTEY0mSVmCkFnZVfT/Ja4B/BWaAc6rqlrFWJklaYOSBM1X1CeATY6xFkjREa49X7Q9N38ijojTM\nGZy14n3P4owWK1mZrHJyl7fythXv29b1de09bpPvRd/8SMflhqb78CdJ6ggDW5I6wsCWpI4wsCWp\nIwxsSeoIA1uSOsLAlqSOMLAlqSMMbEnqCANbkjrCwJakjvBZIpK0QbT2LJEkW5N8OskXk9yU5HWj\nlylJ2peRH68KfA94fVVdl+QA4Jokl/pcbElqx8gt7Kq6t6qua5YfBm4BDhtXYZKkhcbyR8ckPeBo\n4MpxHE+StLe1dIkA0HSHXASc2rS0B+waWO7hrOmStNgsbc+aDkCSRwAfAT5QVRfvvce2tRxekjaB\nHm3Pmk6SAOcAN1fV2aMeR5K0Mmvpw3428FvA85Jc23xtH1NdkqRF1jJr+n/gSElJWjcGriR1hIEt\nSR1hYEtSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1xJoC\nO8lM81jVfxpXQZKkpa21hX0qcDNQY6hFkjTEWmacOQI4DngfkLFVJEla0lpa2H8BnAbsY9pISdI4\njDTjTJIXAvdV1bVJti2/566B5R7Omi5Ji83S9qzpzwKOT3Ic8Cjgx5K8v6peuXC3bSMeXpI2ix6t\nzppeVW+pqq1VdSTwCuDf9w5rSdI4jetz2H5KRJJaNvKs6fOq6jJg+Ta8JGksHOkoSR2x5hb2MGdw\n1or2O4sz2iyjU1b6nsH0v2++F9JCtrAlqSMMbEnqCANbkjrCwJakjjCwJakjDGxJ6ggDW5I6wsCW\npI4wsCWpIwxsSeqIVLXzoL0kBTtaOfZG4LBprSd/3zaHmZkwN7eTqlpy2kVb2JLUEWuZhPfAJBcl\nuSXJzUmeOc7CJEkLreVpfX8JfLyqXpJkP+DRY6pJkrSEUSfhfSzwnKo6EaCqvg98a5yFSZIWGrVL\n5Ejg/iTnJflCkvcm2X+chUmSFhq1S2Q/4OnAa6rq6iRnA2+CxX+e3jWw3GN+ZmBJ0rzZ5gv27Bm+\n56iBfRdwV1Vd3fx8Ef3AXmTbiIeXpM2ix3xjdsuWMDe3/BS5I3WJVNW9wJ1JntqsOhb44ijHkiSt\nzFo+JfJa4IIkjwT+EzhpPCVJkpYycmBX1fXAL4yxFknSEFM/NN0hvZoGYeX/Tt/K21Z1bH/vNw6H\npkvSlDCwJakjDGxJ6ggDW5I6wsCWpI4wsCWpIwxsSeoIA1uSOsLAlqSOMLAlqSM2xND0NoePtzWk\n1+G8ksbNoemSNCXWMmv665PclOTGJB9M8iPjLEyStNBIgZ3kcPrPw35GVR0FzACvGGdhkqSF1jKB\nwX7A/knmgP2Bu8dTkiRpKaNOEXY38E7ga8A9wINV9alxFiZJWmikFnaSxwHH05858lvAh5P8ZlVd\nsHDPXQPLPZw1XZIWm6XtWdOPBW6vqv8CSPJR4FnAosDeNuLhJWmz6NHqrOnAHcAzk/xoktAP8JtH\nPJYkaQVG7cO+CrgI+AJwQ7P6b8dVlCRpb2uZNX0nsHNslUiShnKkoyR1xIZ4log0Ldp8Lo5Wr837\nsYMzV1vOPmVmhp1zcz5LRJK6zsCWpI4wsCWpIwxsSeoIA1uSOsLAlqSOMLAlqSMMbEnqCANbkjrC\nwJakjnBo+jpwuLI2I3/vV29mJszN7RxtaHqSc5PsTnLjwLqDklya5LYkn0xy4LiLliTtbV9dIucB\n2xetexNwaVU9Ffi35mdJUsuGBnZVXQ48sGj18cD5zfL5wItbqEuStMgof3Q8uKp2N8u7gYPHWI8k\naRkjzzgDUFXV/+PicnYNLPdw1nRJWmyWNmdN353kkKq6N8mhwH3L77pthMNL0mbSo81Z0y8BTmyW\nTwQuHuEYkqRV2tfH+i4ErgCeluTOJCcBbween+Q24JebnyVJLRvaJVJVJyyz6dgWapEkDeHQdEnq\nCIembyIOFdY0mObf4zUNTZckbRwGtiR1hIEtSR1hYEtSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLU\nEQa2JHWEQ9OlfZjmodD6odXcZ2jnXjs0XZKmxD4DO8m5SXYnuXFg3Z8luSXJ9Uk+muSx7ZYpSVpJ\nC/s8YPuidZ8Efqqqfha4DXjzuAuTJC20z8CuqsuBBxatu7Sq5qeLvBI4ooXaJEkDxtGHfTLw8TEc\nR5I0xCizpv9Akj8CvltVH1x6j10Dyz3mZwaWJM2bbb5gz55h+60hsJO8CjgO+JXl99o26uElaZPo\nMd+Y3bIlzM1dtuyeIwV2ku3AacBzq+r/RjmGJGl1VvKxvguBK4CnJbkzycnAu4ADgEuTXJvkr1uu\nU5I2vX22sKvqhCVWn9tCLZKkIRyaLmnFHKbfLoemS9KUMLAlqSMMbEnqCANbkjrCwJakjjCwJakj\nDGxJ6ggDW5I6wsCWpI4wsCWpI9b0PGwJYAdnrnjfYskRt0tyaPPG4z2ZLFvYktQRQwN7qRnTB7a9\nIcmeJAe1V54kad6+WthLzZhOkq3A84E72ihKkrS3oYG91IzpjT8HTm+lIknSklbdh53kRcBdVXVD\nC/VIkpaxqk+JJNkfeAv97pAfrF7+FbsGlns4a7okLTZLW7OmP4l+6l6fBOAI4Jokx1TVfXvvvm2V\nh5ekzaZHK7OmV9WNwMHzPye5HXhGVX1zhColSauwr4/1zc+Y/tRmxvSTFu3SzoSQkqS9DG1hLzNj\n+uD2J463HEnSchzpKEkd4bNEtGZnsmPSJUibgi1sSeoIA1uSOsLAlqSOMLAlqSMMbEnqCANbkjpi\nAoE9u/6nXFezky6gRbOTLqBls5MuoGWzky6gZbOTLqB1BvbYzU66gBbNTrqAls1OuoCWzU66gJbN\nTrqA1tklIkkd0epIx6c//dC91t1zzwEcdtje66fFNF/fNF8beH1dNw3XNzMTrr56+e2paueBe0l8\nkp8kjaCqlpwYprXAliSNl33YktQRBrYkdYSBLUkdsW6BnWR7kluTfDnJG9frvOslyWySG5Jcm+Sq\nSdezVknOTbI7yY0D6w5KcmmS25J8MsmBk6xxLZa5vp1J7mru4bVJtk+yxlEl2Zrk00m+mOSmJK9r\n1k/F/RtyfVNx/4ZZlz86JpkBvgQcC9wNXA2cUFW3tH7ydTJtExIneQ7wMPD+qjqqWfcO4BtV9Y7m\nP7qPq6o3TbLOUS1zfTuAh6rqzyda3BolOQQ4pKquS3IAcA3wYuAkpuD+Dbm+lzEF92+Y9WphHwN8\npapmq+p7wIeAF63TudfTkh/F6aKquhx4YNHq44Hzm+Xz6f8j6aRlrg+m4B5W1b1VdV2z/DBwC3A4\nU3L/hlwfTMH9G2a9Avtw4M6Bn+/ih2/wtCjgU0k+n+SUSRfTkoOranezvBs4eJLFtOS1Sa5Pck5X\nuwwGJekBRwNXMoX3b+D6Ptesmqr7t9h6BfZm+LD3s6vqaOAFwB80/8s9tarflzZt9/VvgCOBnwO+\nDrxzsuWsTdNd8BHg1Kp6aHDbNNy/5vouon99DzNl928p6xXYdwNbB37eSr+VPTWq6uvN9/uBf6Tf\nDTRtdjf9hyQ5FLhvwvWMVVXdVw3gfXT4HiZ5BP2w/ruqurhZPTX3b+D6PjB/fdN0/5azXoH9eeAp\nSXpJHgm8HLhknc7duiT7J3lMs/xo4FeBG4e/qpMuAU5slk8ELh6yb+c0ITbvN+joPUwS4Bzg5qo6\ne2DTVNy/5a5vWu7fMOs2ND3JC4CzgRngnKr603U58TpIciT9VjX0H6h1QdevL8mFwHOBH6ff33kG\n8DHgH4DH03+W5cuq6sFJ1bgWS1zfDmAb/f+dLuB24PcG+nw7I8kvAp8BbuCH3R5vBq5iCu7fMtf3\nFuAEpuD+DeOzRCSpIxzpKEkdYWBLUkcY2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BH/DxX1kRcJSn5D\nAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d103278>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD9pJREFUeJzt3XuMpXddx/H3Z6cglFZKY+x18ZRr1KC2aEO4yKrFLIgF\nEm6NylIMaiKXEFJuxt6ISjBgFaJBaEm5lUjBUg0oRdmlQmhL6ZUWC9qBXui2SEtaL1x2v/4xZ+DM\n7MzZmXPOM2d+Z96vZLLPPOeZ3/k+82w//e3vPL/nl6pCkrT5bZt2AZKktTGwJakRBrYkNcLAlqRG\nGNiS1AgDW5IaYWCrGUlemuTyadchTYuBrS0nyf4kj5pge49Mcv+yr/1JXjOp95AADpl2AdKUZKQf\nSg6pqh8M7quqbwCHDxzTA74GfHSM+qQD2MPWppNke5KPJbk7ybeSvGOFY3r9Xuy2gX27k/xuf/sx\nSfYkuS/JPUku6u//bP/w6/o94Rf09z87ybVJ7k3yuSRPGGh3PsnrklwP3D/4nqvYBezpB7k0MQa2\nNpUkc8A/ArcCPwUcB1y0xh+v/hfAm4F/qqoj+m28A6Cqfrn/+s9V1eFV9ZEkJwLnAy8HjgTeBVya\n5EEDbb8YeCZwRFXtH1J/gJcAF66xZmnNDGxtNicDxwBnVNX/VtV3q+rzI7TzPaCX5Liq+t5B2vg9\n4F1VdVUteB/wXeBJ/dcL+KuquqOqvnuQ930q8JPAxSPULA1lYGuz2Q58fVgvdo1ex8I49ZVJbkxy\n+pBjfwp4bX845N4k9wLHA8cOHHPbGt93F3BxVf3PSFVLQ/ihozab24BHJpmrqn1Djvvv/p+HAg/0\nt49efLGq9rLQcybJU4BPJ9lTVf+5QlvfAP6kqv50yPsd9LGWSR4KPB947sGOlUZhD1ubzRXAN4G3\nJDk0yUOSPHn5QVV1D3AH8DtJ5pK8DHj04utJXpDk+P6397EQuIu99r2DxwLvBv4gyclZ8LAkv5Hk\nsHXW/jzg21W1e50/J62Jga1NpT8U8pvAY1jo+d4GvHDxZZb2dF8OnAF8C/gZ4HMDr/0i8IUk9wMf\nB15VVfP9184GLuwPfzy/qq7ut/VO4NvAV1n44HC9D4t/CfD+df6MtGZxAQNJaoM9bElqhIEtSY0w\nsCWpEZ3d1pfEwXFJGkFVrfism47vwz5rhX27gR3LjjpnzS2es2Kbm8lulp/f7NjN7J4beH6t281m\nPb+1Zlzm5jh73+rTD0YeEkmyM8lXknw1yetHbUeStDYjBXb/AT3vBHaycP/raUl+epKFSZKWGrWH\nfTLwtaqar6rvAx8GnrO2H+2N+Jat6E27gA71pl1Ax3rTLqBjvWkX0LHetAvo3KiBfRxLH4Zze3/f\nGvRGfMtW9KZdQId60y6gY71pF9Cx3rQL6Fhv2gV0btQPHdd4B8juge0eW+EXKknrMd//AmD/8IdU\njhrYd7DwGMxF21noZS+zY8TmJWlr6PGjrmy2bWNPB3eJfBF4bH+ZpgcDLwIuHbEtSdIajNTDrqof\nJHkF8M/AHHB+Vd080cokSUuMPHGmqj4JfHKCtUiShujs8aoLU9M3+6xEbWZncu6ajz2XM9fV9npm\n165HseKM4hWtt2bNvrm5sG/f2atOTffhT5LUCANbkhphYEtSIwxsSWqEgS1JjTCwJakRBrYkNcLA\nlqRGGNiS1AgDW5IaYWBLUiM6XjVdWqrL54Osxzkz/Jyb9fyOobvf82a51rNknFXTtyf5TJIvJ7kx\nyasmWZgkaalxetjfB15TVdcmOQy4OsllPhdbkroxcg+7qu6qqmv72w8ANwPHTqowSdJSE/nQMUkP\nOBG4YhLtSZIONPaHjv3hkIuBV/d72gN2D2z3cNV0SVpunsV10w+yaPp4gZ3kQcBHgQ9U1SUHHrFj\nnOYlaQvosdiZ3bYt7Nu3Z9Ujx7lLJMD5wE1Vdd6o7UiS1macMeynAL8N/EqSa/pfOydUlyRpmXFW\nTf83nCkpSRvGwJWkRqSqumk4KWZ4+q+k6ZjlKe9zc2HfvrOpqqz0uj1sSWqEgS1JjTCwJakRBrYk\nNcLAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY1w1fQBm2HK62aoYb1arHkz8Pc2mq38uxirh51k\nrv9Y1X+YVEGSpJWNOyTyauAmoJsnSEmSfmicFWeOB54FvAdY8clSkqTJGaeH/RfAGcBBlo2UJE3C\nSB86Jnk2cHdVXZNkx+pH7h7Y7uGq6ZK03Dxdr5r+ZODUJM8CHgL8eJL3VdVLlh62Y8TmJWmr6NHp\nqulV9aaq2l5VJwAvBv71wLCWJE3SpCbOeJeIJHVs7IkzVbUHWL0PL0maCKemS1Ijmls1fT3TeWF9\n01izjpGdP+bNndQgaety1XRJmhEGtiQ1wsCWpEYY2JLUCANbkhphYEtSIwxsSWqEgS1JjTCwJakR\nBrYkNaK5qembhdPYtRW50nu3nJouSTNinEV4j0hycZKbk9yU5EmTLEyStNQ4z8P+S+ATVfX8JIcA\nD5tQTZKkFYy6CO/DgadV1S6AqvoB8J1JFiZJWmrUIZETgHuSvDfJl5K8O8mhkyxMkrTUqEMihwAn\nAa+oqquSnAe8AZZ/LLx7YLvH4srAkqRF8/0v2L9/+JGjBvbtwO1VdVX/+4tZCOxldozYvCRtFT0W\nO7PbtoV9+1ZfInekIZGqugu4Lcnj+rtOAb48SluSpLUZ5y6RVwIfTPJg4D+A0ydTkiRpJSMHdlVd\nB/zSBGuRJA0xTg97SytWnDm6oq6m6Ha5gry2Dqebt8Op6ZLUCANbkhphYEtSIwxsSWqEgS1JjTCw\nJakRBrYkNcLAlqRGGNiS1AgDW5Ia4arpkrRJuGq6JM2IcVZNf02SG5PckORDSX5skoVJkpYaKbCT\nHMfC87CfWFVPAOaAF0+yMEnSUuM8XvUQ4NAk+4BDgTsmU5IkaSWjLhF2B/A24BvAncB9VfXpSRYm\nSVpqpB52kkcAp7KwcuR3gI8k+a2q+uDSI3cPbPdw1XRJWm6erldNPwW4tar+CyDJx4AnA8sCe8eI\nzUvSVtGj01XTga8DT0ry0CRhIcBvGrEtSdIajDqGfSVwMfAl4Pr+7r+dVFGSpAONs2r62cDZE6tE\nkjSUMx0lqRHj3IfdhDM5d83HnsuZHVYiSeOxhy1JjTCwJakRBrYkNcLAlqRGGNiS1AgDW5IaYWBL\nUiMMbElqhIEtSY0wsCWpETM/Nd3p5pJmxdAedpILkuxNcsPAviOTXJbkliSfSnJE92VKkg42JPJe\nYOeyfW8ALquqxwH/0v9ektSxoYFdVZcD9y7bfSpwYX/7QuC5HdQlSVpmlA8dj6qqvf3tvcBRE6xH\nkrSKsT50rKpKUqsfsXtgu4erpkvScvN0uWr63iRHV9VdSY4B7l790B0jNC9JW0mPLldNvxTY1d/e\nBVwyQhuSpHU62G19FwGfBx6f5LYkpwNvAZ6R5BbgV/vfS5I6NnRIpKpOW+WlUzqoRZI0hFPTJakR\nBrYkNcLAlqRGGNiS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXCwJakRhjYktSImV81XVvD\nmZy7ruPP5cyOKpG6Yw9bkhpx0MBOckGSvUluGNj350luTnJdko8leXi3ZUqS1tLDfi+wc9m+TwE/\nW1U/D9wCvHHShUmSljpoYFfV5cC9y/ZdVlWLy0VeARzfQW2SpAGTGMN+GfCJCbQjSRpirLtEkvwR\n8L2q+tDKR+we2O6xuDKwJGnRfP8L9u8fdtwYgZ3kpcCzgF9b/agdozYvSVtEj8XO7LZtYd++Pase\nOVJgJ9kJnAE8var+b5Q2JEnrs5bb+i4CPg88PsltSV4GvAM4DLgsyTVJ/rrjOiVpyztoD7uqTlth\n9wUd1CJJGsKp6ZoJTjXXRlvP4xAm9ffTqemS1AgDW5IaYWBLUiMMbElqhIEtSY0wsCWpEQa2JDXC\nwJakRhjYktQIA1uSGuHUdElifVPNYTqPQ7CHLUmNGBrYK62YPvDaa5PsT3Jkd+VJkhYdrIe90orp\nJNkOPAP4ehdFSZIONDSwV1oxve/twOs6qUiStKJ1j2EneQ5we1Vd30E9kqRVrOsukSSHAm9iYTjk\nh7tX/4ndA9s9XDVdkpabp6tV0x/NQupelwTgeODqJCdX1d0HHr5jnc1L0lbTo5NV06vqBuCoxe+T\n3Ao8saq+PUKVkqR1ONhtfYsrpj+uv2L66csOqc4qkyQtMbSHvcqK6YOvP2qy5UiSVuNMR0lqRKfP\nElnr3PxpzMnfis7inDUfW8Nu/lnG69e99TznosXr0dX5zdrvzR62JDXCwJakRhjYktQIA1uSGmFg\nS1IjDGxJasSGB/b8zE+OnJ92AZ3x2rVuftoFdGx+2gV0bgqBPevmp11AZ+anXUDn5qddQMfmp11A\nx+anXUDnHBKRpEZ0OtPxmJNOOmDf4XfeyTHHHrtk30kc02UZG+rOOw/j2GM35/kcw4HXYzUrzXRc\n6drB7Fy/Wbl2q12PrXh+k2h3I83NhauuWv31VHUzLplk1gc8JakTVbXisyE6C2xJ0mQ5hi1JjTCw\nJakRBrYkNWLDAjvJziRfSfLVJK/fqPfdKEnmk1yf5JokV067nnEluSDJ3iQ3DOw7MsllSW5J8qkk\nR0yzxnGscn5nJ7m9fw2vSbJzmjWOKsn2JJ9J8uUkNyZ5VX//TFy/Iec3E9dvmA350DHJHPDvwCnA\nHcBVwGlVdXPnb75BZm1B4iRPAx4A3ldVT+jveyvwrap6a/9/uo+oqjdMs85RrXJ+ZwH3V9Xbp1rc\nmJIcDRxdVdcmOQy4GngucDozcP2GnN8LmYHrN8xG9bBPBr5WVfNV9X3gw8BzNui9N9Lal2nZ5Krq\ncuDeZbtPBS7sb1/Iwn8kTVrl/GAGrmFV3VVV1/a3HwBuBo5jRq7fkPODGbh+w2xUYB8H3Dbw/e38\n6Bc8Kwr4dJIvJnn5tIvpyFFVtbe/vRc4aprFdOSVSa5Lcn6rQwaDkvSAE4ErmMHrN3B+X+jvmqnr\nt9xGBfZWuNn7KVV1IvBM4A/7/+SeWbUwljZr1/VvgBOAXwC+CbxtuuWMpz9c8FHg1VV1/+Brs3D9\n+ud3MQvn9wAzdv1WslGBfQewfeD77Sz0smdGVX2z/+c9wN+zMAw0a/b2xw9Jcgxw95Trmaiqurv6\ngPfQ8DVM8iAWwvr9VXVJf/fMXL+B8/vA4vnN0vVbzUYF9heBxybpJXkw8CLg0g16784lOTTJ4f3t\nhwG/Dtww/KeadCmwq7+9C7hkyLHN6YfYoufR6DVMEuB84KaqOm/gpZm4fqud36xcv2E2bGp6kmcC\n5wFzwPlV9Wcb8sYbIMkJLPSqYeGBWh9s/fySXAQ8HfgJFsY7zwQ+Dvwd8EgWnmX5wqq6b1o1jmOF\n8zsL2MHCP6cLuBX4/YEx32YkeSrwWeB6fjTs8UbgSmbg+q1yfm8CTmMGrt8wPktEkhrhTEdJaoSB\nLUmNMLAlqREGtiQ1wsCWpEYY2JLUCANbkhrx/8vvT8+OJO5FAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10d253320>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAECBJREFUeJzt3XuQZGV9xvHvs4OXIEagUsV1tfGaS5kIGspgDJsEUytR\nNClvVBIRU2hualEW3pLAgknFMqUh0TJlFCyMiEY0SBI1YuIiagREroJBE0aXVRaMoJAyXmZ/+WPO\nSM/sdO9MT5/pOb3fT9XUnj59+vTv7cM+vPtOv+dNVSFJ2vg2TboASdLKGNiS1BEGtiR1hIEtSR1h\nYEtSRxjYktQRBrY6I8mLklwx6TqkSTGwtc9JsjvJI8d8zickuSLJPUl2JPmTcZ5fAgNb+66M9KJk\nvwFPvRfYDhwEHA/8QZJnjlaatDwDWxtOks1JPpTkziTfTPKWZY7pNT3lTX37tif53Wb70Ukub3q8\ndyW5qNn/qebw65Pcm+S5zf5nJLkuyd1JPpPk8X3nnU3yqiQ3APf2v2efRwAX1rz/Bj4N/PS4PhMJ\nDGxtMElmgH8GbmM+BI8ALlrhy6v5AXg98LGqOrA5x1sAquqXmud/tqoeWlUfSHI0cB5wGnAw8Hbg\n0iQP6Dv3C4CnAwdW1e5l3vtc4JQk+yX5SeAXgE+ssG5pRQxsbTTHAocBZ1TVd6vqe1X12RHO832g\nl+SIqvr+Xs7xEuDtVXV100N+N/A94MnN8wX8TVXtrKrvDTjHvwDPAb4L3Ay8s6quGaFuaSADWxvN\nZuCrA3qxq/Eq5sepr0pyU5JThxz7COCVzXDI3UnuBo4EDu87ZsegFyc5GPgYcDbwoKYNW5P8/hrb\nIC1iYGuj2QE8vBkaGeZ/mz/379t36MJGVe2qqpdU1RHAS4G3DflmyNeAP6+qg/p+Dqiq9/cdM+y2\nlo8EflhV76mq3VW1E3g/cOJe2iCtioGtjeZK4BvAG5Lsn+TBSY5belBV3QXsBH4nyUySFwOPWng+\nyXOTHNk8vIf5wF3ote/qPxZ4B/B7SY7NvIck+fUkB6yw5lvn3zInJ9mU5FDg+cD1K2+2tHcGtjaU\nZijkmcCjme/57gCet/A0i3u6pwFnAN9k/hsZn+l77knA55LcC3wYeHlVzTbPbQMuaIY/ntOMNZ8G\nvBX4FvBl4IUM71X31/wd4DeB05vXXwvcAPzZStstrURcwECSusEetiR1hIEtSR1hYEtSRwy6L8Ka\nJXFwXJJGUFXL3uumtcCed9Yy+7YDW9p923VwFmcvu387e7bu7GU/hy7azjRcu8G2Y/u6bDtdb9/M\nTJib2zbw+ZGHRJJsTfKlJF9O8upRzyNJWpmRAruZhfZWYCvz3389OclPjbMwSdJio/awjwW+UlWz\nVfUD4H3As1b20t6Ib9kNvUkX0KrepAtoWW/SBbSsN+kCWtabdAGtGzWwj2DxzXBub/atQG/Et+yG\n3qQLaFVv0gW0rDfpAlrWm3QBLetNuoDWjfpLxxV+A2R733aPfeEDlaTVmW1+YPde7lE5amDvZP4W\nkgs2M9/LXmLLiKeXpH1Fj4XO7KZNYW7u8oFHjjok8nngMc0yTQ9k/s5kl454LknSCozUw66qHyb5\nI+BfgRngvKq6ZayVSZIWGXniTFV9FPjoGGuRJA3R8kzH8TuTc1Z1/Dmc2Uod0zN7cX2t5vq1de3a\nNO3t02R58ydJ6ggDW5I6wsCWpI4wsCWpIwxsSeoIA1uSOsLAlqSOMLAlqSMMbEnqCANbkjrCwJak\njkjVCtciWO2Jk1p+1XRp/DbKPWamnfdKadfCqulVleWeX8uq6ZuTfDLJF5PclOTlo5cpSdqbtdyt\n7wfA6VV1XZIDgGuSXOZ9sSWpHSP3sKvqjqq6rtm+D7gFOHxchUmSFhvLLx2T9ICjgSvHcT5J0p7W\nvIBBMxxyMfCKpqfdZ3vfdg9XTZekpWZpe9V0AJI8APgg8J6qumTPI7as5fSStA/o0faq6SQJcB5w\nc1WdO+p5JEkrs5Yx7KcAvw38cpJrm5+tY6pLkrTEWlZN/zTOlJSkdWPgSlJHODW9w5yOLU2X1qam\nS5LWl4EtSR1hYEtSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLUEQa2JHWEgS1JHbHmBQw0OU41l/Yt\na+phJ5lpbqv6T+MqSJK0vLUOibwCuBlo5w5SkqQfWcuKM0cCJwLvBJa9s5QkaXzW0sP+K+AMYC/L\nRkqSxmGkXzomeQZwZ1Vdm2TL4CO39233cNV0SVpqlrZXTT8OOCnJicCDgR9P8u6qeuHiw7aMeHpJ\n2lf0aHXV9Kp6XVVtrqqjgBcA/75nWEuSxmlcE2f8logktWzNE2eq6nJgcB9ekjQWTk2XpI5wavo6\nWM3q5k4317Twv/vxs4ctSR1hYEtSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLUEQa2JHWEgS1JHWFg\nS1JHpKqdG+0lKTirlXNL0jSamQlzc9uoqmWXXbSHLUkdsZZFeA9McnGSW5LcnOTJ4yxMkrTYWu7W\n99fAR6rqOUn2Ax4yppokScsYdRHehwFPrapTAKrqh8C3x1mYJGmxUYdEjgLuSvKuJF9I8o4k+4+z\nMEnSYiN9SyTJk4D/AI6rqquTnAt8p6rO7Dum4Pi+V/VYWBlYkrRgtvmBBKouH/gtkVHHsG8Hbq+q\nq5vHFwOv2fOwLSOeXpL2FT0WOrObNoW5ucFL5I40JFJVdwA7kjy22XUC8MVRziVJWpm1fEvkZcCF\nSR4I/Bdw6nhKkiQtZ+TArqrrgZ8fYy2SpCFcNX2DcaXp+/lZSIs5NV2SOsLAlqSOMLAlqSMMbEnq\nCANbkjrCwJakjjCwJakjDGxJ6ggDW5I6wsCWpI5w1XRJ2iBcNV2SpsRaVk0/PclNSW5M8t4kDxpn\nYZKkxUYK7CRHMH8/7CdW1eOBGeAF4yxMkrTYWm6vuh+wf5I5YH9g53hKkiQtZ9QlwnYCbwK+Bnwd\nuKeqPjHOwiRJi43Uw05yEHAS8ytHfhv4QJLfqqoLFx+5vW+7h6umS9JSsyysmr579/AjRx0SOQG4\nrar+ByDJh4DjgCWBvWXE00vSvqJHq6umA18Fnpzkx5KE+QC/ecRzSZJWYNQx7KuAi4EvADc0u/9u\nXEVJkva0llXTtwHbxlaJJGkoZzpKUkcY2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1hIEtSR1h\nYEtSRxjYktQRBrYkdYSBLUkdsZYlwjrhTM5Z8bHncGaLlUyen8Vopv1zm/b2tWUSn9vQHnaS85Ps\nSnJj376Dk1yW5NYkH09y4FgqkSQNtbchkXcBW5fsew1wWVU9Fvi35rEkqWVDA7uqrgDuXrL7JOCC\nZvsC4Nkt1CVJWmKUXzoeUlW7mu1dwCFjrEeSNMCafulYVZWkBh+xvW+7h6umS9JSs7S5avquJIdW\n1R1JDgPuHHzolhFOL0n7kh5trpp+KXBKs30KcMkI55AkrdLevtZ3EfBZ4HFJdiQ5FXgD8LQktwK/\n0jyWJLVs6JBIVZ084KkTWqhFkjSEU9MlqSNSNeRLHms5cVJnkhUd2+Z017Dy9v0pr1/xsU7RvZ9T\nm0fj5zaaaf7cZmbC3Nw2qmrZ8LSHLUkdYWBLUkcY2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1\nhIEtSR1hYEtSR7Q6NT0rnBbqlHBpfFYzdRv8O7VgI3xuTk2XpCmx18BOcn6SXUlu7Nv3l0luSXJ9\nkg8leVi7ZUqSVtLDfhewdcm+jwM/U1U/B9wKvHbchUmSFttrYFfVFcDdS/ZdVlULy0VeCRzZQm2S\npD7jGMN+MfCRMZxHkjTEKKum/0iSPwa+X1XvXe75Ynvfox5pVgaWJC2YbX5g9+5hx60hsJO8CDgR\n+NWBx7Bl1NNL0j6i1/zApk1hbu7ygUeOFNhJtgJnAMdX1f+Ncg5J0uqs5Gt9FwGfBR6XZEeSFwNv\nAQ4ALktybZK3tVynJO3z9trDrqqTl9l9fgu1SJKGaHVqOpzVyrmltZrmlbfVXU5Nl6QpYWBLUkcY\n2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1hIEtSR1hYEtSRzg1Xcty6vbG4vUYzUb53M7i7BUd\nl5kZts3NOTVdkrpuaGAvt2J633OvTLI7ycHtlSdJWrC3HvZyK6aTZDPwNOCrbRQlSdrT0MBebsX0\nxpuBV7VSkSRpWasew07yLOD2qrqhhXokSQOsak3HJPsDr2N+OORHuwe/Ynvfdg9cNV2SFpllYc10\n9rps+moX4X0U86l7fRKAI4FrkhxbVXfuefiWVZ5ekvYtPe7vymbTJi6fmxt47KoCu6puBA5ZeJzk\nNuCJVfWtVVcpSVqVvX2tb2HF9Mc2K6afuuSQdmbdSJL2MLSHPWDF9P7nHzneciRJgzjTUZI6wnuJ\nSJq4jXLPj0mbmQlzc9u8l4gkdZ2BLUkdYWBLUkcY2JLUEQa2JHWEgS1JHTGBwJ5d/7dcV7OTLqBF\ns5MuoGWzky6gZbOTLqBls5MuoHUG9tjNTrqAFs1OuoCWzU66gJbNTrqAls1OuoDWOSQiSR2x2tur\nrsoxxxy2x76vf/0ADj98z/3TYprbN81tA9s3SYdxzIqPPYbl27CR27dSMzPh6qsHP9/y1HRJ0moN\nmpreWmBLksbLMWxJ6ggDW5I6wsCWpI5Yt8BOsjXJl5J8Ocmr1+t910uS2SQ3JLk2yVWTrmetkpyf\nZFeSG/v2HZzksiS3Jvl4kgMnWeNaDGjftiS3N9fw2iRbJ1njqJJsTvLJJF9MclOSlzf7p+L6DWnf\nVFy/Ydbll45JZoD/BE4AdgJXAydX1S2tv/k6mbYFiZM8FbgPeHdVPb7Z90bgm1X1xuZ/ugdV1Wsm\nWeeoBrTvLODeqnrzRItboySHAodW1XVJDgCuAZ4NnMoUXL8h7XseU3D9hlmvHvaxwFeqaraqfgC8\nD3jWOr33elr2qzhdVFVXAHcv2X0ScEGzfQHzf0k6aUD7YAquYVXdUVXXNdv3AbcARzAl129I+2AK\nrt8w6xXYRwA7+h7fzv0f8LQo4BNJPp/ktEkX05JDqmpXs70LOGSSxbTkZUmuT3JeV4cM+iXpAUcD\nVzKF16+vfZ9rdk3V9VtqvQJ7X/iy91Oq6mjg6cAfNv/knlo1P5Y2bdf1b4GjgCcA3wDeNNly1qYZ\nLvgg8Iqqurf/uWm4fk37Lma+ffcxZddvOesV2DuBzX2PNzPfy54aVfWN5s+7gH9kfhho2uxqxg9J\nchhw54TrGauqurMawDvp8DVM8gDmw/rvq+qSZvfUXL++9r1noX3TdP0GWa/A/jzwmCS9JA8Eng9c\nuk7v3bok+yd5aLP9EODXgBuHv6qTLgVOabZPAS4ZcmznNCG24Dfo6DVMEuA84OaqOrfvqam4foPa\nNy3Xb5h1m5qe5OnAucAMcF5V/cW6vPE6SHIU871qmL+h1oVdb1+Si4DjgZ9gfrzzTODDwD8AD2f+\nXpbPq6p7JlXjWizTvrOALcz/c7qA24CX9o35dkaSXwQ+BdzA/cMerwWuYgqu34D2vQ44mSm4fsN4\nLxFJ6ghnOkpSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLUEQa2JHXE/wPb6pbjVZ5/dwAAAABJRU5E\nrkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10cf5cc88>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADdCAYAAACffkjdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD/lJREFUeJzt3X2MZXddx/H3Z6dUXCqUxqSPi7c8lChBbcGGFJFVqy6I\nBQxPDUIpBjWRhxBSngzdUqIiClYhGoWWFCklWrAUA0qrbKkgfaKPtFhAhj5Aty202BrlYffrH/cM\nnZmduXvn3nvmzrnzfiWTnjnnd8/9njmzn/7md885v1QVkqSNb8u0C5AkDcfAlqSOMLAlqSMMbEnq\nCANbkjrCwJakjjCw1RlJXpbksmnXIU2Lga1NJ8neJI+e8D5PSHJFkv9Ocl2Sp05y/xIY2Nq8MtKL\nkgNWWHcI8HHgT4BHAO8APp7k4LEqlJYxsLXhJNmW5KNJ7kpyT5J3r9Cm1/SUtyxatyvJbzfLj01y\naZL7ktyd5Pxm/Wea5tcluT/J85v1z0pybZJ7k3w2yRMX7Xc+yeuTXA/cv/g9GycAd1bVR6rvPOBu\n4Dcn+XOR9uktSNOUZA74J+AS4MXAXuBJQ768mi+AtwH/XFVPT3Ig8GSAqvqFJHuBn66q/2re81jg\nbOBZwFXAS4CLkhxTVd9v9vci4BnAPVW1d4hatgBPGLJuaSj2sLXRHA8cDpxWVf9bVd+tqs+NsJ/v\nAb0kR1bV9/azj98B/qaqrmx6yB8Avgs8pdlewF9W1R1V9d0VXv8fwOFJXpjkIUlOAR4NbB2hbmlV\nBrY2mm3A14fsxQ7yevrj1FckuTHJqQPa/gTwumY45N4k9wJHAUcsanPbai+uqm8BzwFeB9wJ/Br9\nvxBuH/MYpCUcEtFGcxvwqCRzVbVnQLv/af67FXigWT5sYWNV7abfc6a5YuOSJJcuDIMscyvwh1X1\nRwPeb+BjLavqM/T/Olj4YPKrwJ8Neo20VvawtdFcDnwTeHuSrUkemuSE5Y2q6m7gDuAlSeaSvBx4\nzML2JM9PclTz7X30A3eh1757cVvgvcDvJTk+fQ9L8utJDhq26CTHNsMhD6cf1LdW1cXDH7a0fwa2\nNpRmKOQ3gMfS7/neBrxgYTNLe7qvAE4D7gF+Cvjsom1PBj6f5H7gY8Crq2q+2XYGcG4z/PG8qrq6\n2dd7gG8DXwZeyn561cucRv/KkFuBQ4HnruG10lDiBAaS1A32sCWpIwxsSeoIA1uSOqK1y/qSODgu\nSSOoqhWfddPyddg7V1i3C9je7ttO1S5m9/h2MbvHBh5f1+2i68c3Nxf27Dlj1e0jD4kk2ZHkS0m+\nnOQNo+5HkjSckQK7eUDPe4Ad9K9/PTnJT06yMEnSUqP2sI8HvlJV883TzD4MPHu4l/ZGfMuu6E27\ngBb1pl1Ay3rTLqBlvWkX0LLetAto3aiBfSRLH4Zze7NuCL0R37IretMuoEW9aRfQst60C2hZb9oF\ntKw37QJaN+qHjkNeAbJr0XKPzfADlaS1mW++YO9+nlE5amDfQf8xmAu2seKjJLePuHtJ2ix6LHRm\nt2wJe/ZcumrLUYdErgIe10zTdCDwQuCiEfclSRrCSD3sqvpBklcC/wLMAWdX1c0TrUyStMTIN85U\n1SeBT06wFknSABtixpnTOXPotmdyeufqmPXj61oNUlf58CdJ6ggDW5I6wsCWpI4wsCWpIwxsSeoI\nA1uSOsLAlqSOMLAlqSMMbEnqCANbkjrCwJakjkjVkHMRrHXHSa08a7qmJcPOOwG8hbcN3dZnfmhc\nPmOmb2HW9KrKStvHmTV9W5JPJ/likhuTvHr0MiVJ+zPO0/q+D7y2qq5NchBwdZKLfS62JLVj5B52\nVd1ZVdc2yw8ANwNHTKowSdJSE/nQMUkPOBa4fBL7kyTta+wJDJrhkAuA1zQ97UV2LVru4azpkrTc\nPG3Pmg5AkocAHwE+WFUX7tti+zi7l6RNoEfbs6aTJMDZwE1Vddao+5EkDWecMeynAr8F/GKSa5qv\nHROqS5K0zDizpv873ikpSevGwJWkjvDWdG1K3gqt5dbyOwHt/F60dmu6JGl9GdiS1BEGtiR1hIEt\nSR1hYEtSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLUEWNPYLBZeWtz+3by1qHbFiveybsqz4mW68Lv\nxFg97CRzzWNVPz6pgiRJKxt3SOQ1wE1AO0+QkiT90DgzzhwFPBN4H6zx71FJ0pqN08P+c+A0YD/T\nRkqSJmGkDx2TPAu4q6quSbJ99Za7Fi33cNZ0SVpunrZnTT8BOCnJM4GHAg9P8oGqeunSZttH3L0k\nbRY9Wp01vareXFXbqupo4EXAv+0b1pKkSZrUjTNeJSJJLRv7xpmquhRYvQ8vSZoIb02XpI5w1nRJ\n2iCcNV2SZoSBLUkdYWBLUkcY2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1hIEtSR3hrOkbjLOx\na1xr+R2C7v0ebeZ/I/awJakjxpmE9+AkFyS5OclNSZ4yycIkSUuNMyTyF8Anqup5SQ4AHjahmiRJ\nKxh1Et5HAE+rqlMAquoHwHcmWZgkaalRh0SOBu5O8v4kX0jy3iRbJ1mYJGmpUYdEDgCOA15ZVVcm\nOQt4Iyz/SHbXouUeCzMDS5IWzDdfsHfv4JajBvbtwO1VdWXz/QX0A3uZ7SPuXpI2ix4LndktW8Ke\nPatPkTvSkEhV3QncluSYZtWJwBdH2ZckaTjjXCXyKuC8JAcCXwVOnUxJkqSVjBzYVXUd8HMTrEWS\nNICzpksTtBFumw5r+zf9Ft42dNtZu9V7o3HWdEmaEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1hIEt\nSR1hYEtSRxjYktQRBrYkdYS3pkvSBuGt6ZI0I8aZNf21SW5MckOSDyX5kUkWJklaaqTATnIk/edh\nP6mqngjMAS+aZGGSpKXGmcDgAGBrkj3AVuCOyZQkSVrJqFOE3QG8E7gV+AZwX1VdMsnCJElLjdTD\nTvJI4CT6M0d+B/iHJC+uqvOWtty1aLmHs6ZL0nLztD1r+onA16rqWwBJPgqcACwL7O0j7l6SNose\nrc6aDnwdeEqSH00S+gF+04j7kiQNYdQx7CuAC4AvANc3q/92UkVJkvY1zqzpZwBnTKwSSdJA3uko\nSR1hYEtSRxjYktQRBrYkdYSBLUkdYWBLUkcY2JLUEQa2JHWEgS1JHWFgS1JHGNiS1BEGtiR1xDhT\nhEnaZE7nzKHbnsnpLVYynI1S707eOlS7MDfwiXoDe9hJzkmyO8kNi9YdkuTiJLck+VSSg4eqRJI0\nlv0Nibwf2LFs3RuBi6vqGOBfm+8lSS0bGNhVdRlw77LVJwHnNsvnAs9poS5J0jKjfOh4aFXtbpZ3\nA4dOsB5J0irG+tCxqipJrd5i16LlHs6aLklLzbMwZzr7nTZ9lMDeneSwqrozyeHAXas33T7C7iVp\n8+jxYFc2W7Zw6Z49q7YdZUjkIuCUZvkU4MIR9iFJWqP9XdZ3PvA54PFJbktyKvB24FeS3AL8UvO9\nJKllA4dEqurkVTad2EItkqQBvDVdkjoiVQMu8hhnx0nBzlb2LUmzaG4u7NlzBlWVlbbbw5akjjCw\nJakjDGxJ6ggDW5I6wsCWpI4wsCWpIwxsSeoIA1uSOsLAlqSOMLAlqSOcNV3qgI0y+/dadLHmjc4e\ntiR1xH4DO8k5SXYnuWHRuj9NcnOS65J8NMkj2i1TkjRMD/v9wI5l6z4FPKGqfga4BXjTpAuTJC21\n38CuqsuAe5etu7iqFmaLvBw4qoXaJEmLTGIM++XAJyawH0nSAGNdJZLkD4DvVdWHVm6xa9Fyjwfn\nBpYk9c03X7B376B2YwR2kpcBzwR+efVW20fdvSRtEj0WOrNbtoQ9ey5dteVIgZ1kB3Aa8PSq+r9R\n9iFJWpthLus7H/gc8PgktyV5OfBu4CDg4iTXJPmrluuUpE1vvz3sqjp5hdXntFCLJGkAZ02XpBG0\nceu9s6ZL0owwsCWpIwxsSeoIA1uSOsLAlqSOMLAlqSMMbEnqCANbkjrCwJakjjCwJakjWr01/XRW\nvLtyH86YPJq13BoL7f2cZ3127LaOb9Z/blo7b02XpBkxMLBXmjF90bbXJdmb5JD2ypMkLdhfD3ul\nGdNJsg34FeDrbRQlSdrXwMBeacb0xruA17dSkSRpRWsew07ybOD2qrq+hXokSatY05yOSbYCb6Y/\nHPLD1au138WDV6D0gN6QV41I0uYxT1uzpj+GfvZelwTgKODqJMdX1V3LG283oCVpP3q0Mmt6Vd0A\nHLrwfZKvAU+qqm+PUKUkaQ32d1nfwozpxzQzpp+6rEk7d91IkvYxsIe9yozpi7c/erLlSJJW452O\nktQRrT5LBHZOfL87eeua2tcaPvj0eQ2SpslniUjSjDCwJakjDGxJ6ggDW5I6wsCWpI4wsCWpI6YQ\n2PPr/5bran7aBbRoftoFtGx+2gW0bH7aBbRsftoFtM7Anrj5aRfQovlpF9Cy+WkX0LL5aRfQsvlp\nF9A6h0QkqSPW+njVNTnuuMP3WfeNbxzEEUfsu35Yh3Pcmtqv5U7H4xi9rgXjHt9GNsvHBh5f183C\n8c3NhSuvXH17y7emS5LWarVb01sLbEnSZDmGLUkdYWBLUkcY2JLUEesW2El2JPlSki8necN6ve96\nSTKf5Pok1yS5Ytr1jCvJOUl2J7lh0bpDklyc5JYkn0py8DRrHMcqx3dGktubc3hNkh3TrHFUSbYl\n+XSSLya5Mcmrm/Uzcf4GHN9MnL9B1uVDxyRzwH8CJwJ3AFcCJ1fVza2/+TqZtQmJkzwNeAD4QFU9\nsVn3DuCeqnpH8z/dR1bVG6dZ56hWOb6dwP1V9a6pFjemJIcBh1XVtUkOAq4GngOcygycvwHH9wJm\n4PwNsl497OOBr1TVfFV9H/gw8Ox1eu/1NPxF3xtcVV0G3Lts9UnAuc3yufT/kXTSKscHM3AOq+rO\nqrq2WX4AuBk4khk5fwOOD2bg/A2yXoF9JHDbou9v58Ef8Kwo4JIkVyV5xbSLacmhVbW7Wd4NHDrN\nYlryqiTXJTm7q0MGiyXpAccClzOD52/R8X2+WTVT52+59QrszXCx91Or6ljgGcDvN39yz6zqj6XN\n2nn9a+Bo4GeBbwLvnG4542mGCz4CvKaq7l+8bRbOX3N8F9A/vgeYsfO3kvUK7DuAbYu+30a/lz0z\nquqbzX/vBv6R/jDQrNndjB+S5HDgrinXM1FVdVc1gPfR4XOY5CH0w/rvqurCZvXMnL9Fx/fBheOb\npfO3mvUK7KuAxyXpJTkQeCFw0Tq9d+uSbE3yY83yw4BfBW4Y/KpOugg4pVk+BbhwQNvOaUJswXPp\n6DlMEuBs4KaqOmvRppk4f6sd36ycv0HW7db0JM8AzgLmgLOr6o/X5Y3XQZKj6feqof9ArfO6fnxJ\nzgeeDvw4/fHO04GPAX8PPIr+syxfUFX3TavGcaxwfDuB7fT/nC7ga8DvLhrz7YwkPw98BrieB4c9\n3gRcwQycv1WO783AyczA+RvEZ4lIUkd4p6MkdYSBLUkdYWBLUkcY2JLUEQa2JHWEgS1JHWFgS1JH\n/D/N8n2yeDBz0QAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10c887358>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "for i, profile in enumerate(centers):\n", | |
| " plt.figure()\n", | |
| " plt.imshow(profile, interpolation='none')\n", | |
| " plt.title('cluster {}'.format(i))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.4.1" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0 | |
| } |
Another one, is I think you need to have a maximum number of iterations.
I feel that with huge data, it can never goes to complete convergence (but perhaps I'm wrong)
You didn't use scipy or scilearn ?
I updated the notebook. It now works with a regular version of PBexplore (the latest one); also I added tests. Among the tests I added, is the one suggested by @alexdb27 with the dummy sequences. This test works. Yet, I also looked at the reproducibility of the clustering, and I am not really satisfied with it.
There is no test yet for empty clusters. Yet, the only case I see where a cluster can be empty is if two initial centers are the same; there is now a test to avoid that.
The profile is updated by recalculating the frequency profile with the sequences in the cluster.
@pierrepo I did not see the need. What would you have done with scipy or sk- learn?
@alexdb27 Also, there already is a maximum number of iterations, and that number must be set by the user.
Impressive.
@jbarnoud, a point about empty cluster. It was a problem in early R implementation. If you have in fact x clusters and you provide 10x possibilities. At some points, some of the 10x clusters remain not used.
I supose it will not arrive with this kind of data to be honnest, but it would be nice to have (in case of).
Concerning the comparison between clustering, I'm not sure i've understood everyrhing.
In the exemple, i would like to know the number of frames,we need to have a view with (a) a large number of snapshots (perhaps even from different MDs - for the same protein of course), and (b) a quite large number of clusters (at least 10+).
In my mind, i would like to know if i do 10 times the k-means which is the number of snapshots that are always find together (not only with two simulations).
@jbarnoud, there already is a maximum number of iterations, and that number must be set by the user.
ok, 1 iteration means complete use of all the data ?
A default must be provided (=10)
What could be nice for the user is to have a plot of "non-change (NC)"*
- I explain: x = 10 clusters, N = 10000 sequence of PBs
iteration 1 -> random initialisation of centers (profiles), association of N with the x for the first time,
update of profiles
iteration 2 -> association of N with the x
NC is the number of N associated with the same cluster as for previous iteration.
iteration i+1 -> association of N with the x
NC would increase .... i hope
can it be done ?
A lot of stuff from @alexdb27.
About the empty clusters
It is in theory possible to have empty clusters with the k-means algorithm. The workaround is easy, though: here I choose my initial centers among the records, and I make sure they are not redundant. I think it is enough to avoid empty clusters, indeed there will at the very least be one record by cluster at the beginning.
Therefore there is no test about empty clusters as they should not happen.
About clustering reproducibility
I am not sure I understood everything you asked. I carried out 100 times the clustering of the same 270 PB sequences from a MD trajectory, and we can observe that the succession of clusters along the trajectory is not always the same. The figure is difficult to analyze, I will try to come up with something more quantitative and more readable.
About non-change plot
It s easy to get the number of sequences that change group at each iteration. I made a crude prototype, and indeed the number decreases at each iteration until it reaches 0. I'll have the plot available in a future version of the notebook. I may even use that as a criterion for convergence as it is faster to compute as what I currently do.
About the user interface
This notebook is just a prototype to validate the algorithm. Once the method will be validated, I will implement it in PBclust. At that point I will set a default value for the number of iterations and I can make some plots available to the user.
I will come to you all later to define what are the most pertinent information and plots to expose to the user. My feeling is that we should expose only what is the most useful through the command line and have the rest accessible through the API that will mostly be used by advanced users.
On testing the method
I would like to test the pertinence of the clustering on structure similarity within the clusters. What do you usually use to compute GDT TS and TM-scores?
@jbarnoud, About clustering reproducibility
I am not sure I understood everything you asked. I carried out 100 times the clustering of the same 270 PB sequences from a MD trajectory, and we can observe that the succession of clusters along the trajectory is not always the same. The figure is difficult to analyze, I will try to come up with something more quantitative and more readable.
-> Ok, i've fixed our own confusion point. You cannot look at the cluster i in simulation S(t) and look if it looks at cluster i in simulation S(t+1). What you need is to do a (i) a confusion table that is based only on data associated to each cluster. The principle is that to define the number of data found both in each cluster in simulation S(t) and in simulation S(t+1). (b) you take the max for each line (or column) and it gives you the correspondance between one cluster [S(t] and another [resp S(t+1)]. (c) you sum all and you have the true confusion. You do that cycle (t) after cycle and you will see if it reproducible
@ jbarnoud On testing the method
I would like to test the pertinence of the clustering on structure similarity within the clusters. What do you usually use to compute GDT TS and TM-scores?
It is mainly RMSD. GDT TS and TM-scores will be quite not sensitive for so highly similar structures. :-)
Impressive indeed and very nice.
About scipy, I was juste wondering if the built-in k-means clustering implemented in scipy was easier-to-use / quicker.
Great job Jonathan!
RMSD could be a nice measure for the different clusters. The issue on a regular MD (the 270 sequences you tested) is to know the good number of clusters. Maybe '4' is not a good one, hence the reproducibility is hard to assess.
The issue, I think, about built-in k-means it is really difficult to have a custom distance metrix and a custom representation of the centroids.
Dear @jbarnoud,
Amazing works. I've seen your mail.
For me, the most simple way to insure its abilities is to simulate totally fake PB series.
With one 'aaaaaa...aaaaaaa', twenty times, 'bbbbbbbbbbbbbbbbb...' forty and so on. Then test is they suceed to cluster it in a perfect way and also how it reacts if the number of clusters is 'wrong'.
I've two questions, (i) is there a control in case of empty cluster and (ii) how is updated the profile.