Skip to content

Instantly share code, notes, and snippets.

@jhale
Created March 10, 2015 14:40
Show Gist options
  • Select an option

  • Save jhale/f97256a9aab4a54430ba to your computer and use it in GitHub Desktop.

Select an option

Save jhale/f97256a9aab4a54430ba to your computer and use it in GitHub Desktop.
Example of how to pass command scoped options to PETSc and SLEPc using DOLFIN
import sys
# Here I make two namespaces, ns_ and A_.
# You can make as many as you want, probably
# one for every KSP/SVD/EPS in your code.
args = [sys.argv[0]] + """
--petsc.ns_svd_type lapack
--petsc.A_mat_type aij
""".split()
# Don't init petsc4py and slepc4py yourself, let DOLFIN handle it.
# You will run into problems with MPI communicators if you do it yourself.
from dolfin import *
# This line is also crucial!
parameters.parse(args)
# DOLFIN has already run init on these for you.
from petsc4py import PETSc
from slepc4py import SLEPc
n = 60
mu = 1e-06
print("Lauching singular value decomposition, (%d x %d) mu=%g\n" % (n+1, n, mu) )
A = PETSc.Mat(); A.create()
A.setSizes([n+1, n])
# Here I set the options prefix, remember the trailing _!
A.setOptionsPrefix("A_")
# Here the options are parsed from the A_ prefix.
A.setFromOptions()
A.setUp()
rstart, rend = A.getOwnershipRange()
for i in xrange(rstart, rend):
if i==0:
for j in range(n):
A[0,j] = 1.0
else:
A[i,i-1] = mu
A.assemble()
S = SLEPc.SVD()
S.create()
S.setOperator(A)
# and here I set the options prefix.
S.setOptionsPrefix("ns_")
S.setFromOptions()
S.solve()
Print = PETSc.Sys.Print
Print( "******************************" )
Print( "*** SLEPc Solution Results ***" )
Print( "******************************\n" )
svd_type = S.getType()
Print( "Solution method: %s" % svd_type )
its = S.getIterationNumber()
Print( "Number of iterations of the method: %d" % its )
nsv, ncv, mpd = S.getDimensions()
Print( "Number of requested singular values: %d" % nsv )
tol, maxit = S.getTolerances()
Print( "Stopping condition: tol=%.4g, maxit=%d" % (tol, maxit) )
nconv = S.getConverged()
Print( "Number of converged approximate singular triplets %d" % nconv )
if nconv > 0:
v, u = A.getVecs()
Print()
Print(" sigma residual norm ")
Print("------------- ---------------")
for i in range(nconv):
sigma = S.getSingularTriplet(i, u, v)
error = S.computeRelativeError(i)
Print( " %6f %12g" % (sigma, error) )
Print()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment