npm init -y
npm i --save-dev nodemon
npm add babel-preset-env babel-cli
Create a .babelrc config in your project root. Insert the following
{
"presets": ["env"]
| #!/usr/bin/env python | |
| # Dependencies: | |
| # ffmpeg: https://www.ffmpeg.org/download.html | |
| # fpcalc: https://acoustid.org/chromaprint | |
| from datetime import datetime | |
| import os | |
| import os.path | |
| import json | |
| import math | |
| import shutil |
| import re | |
| import requests | |
| import js2py | |
| def getContent(url): | |
| javascript=js2py.EvalJs() | |
| javascript.eval(requests.get(re.search("(https?://.*?\.[a-zA-Z0-9.]{0,20})",url).group(1)+"/aes.js").text) | |
| return requests.get(url, headers={"Cookie":javascript.eval(re.search("\<script\>(fu.*?;)\<", requests.get(url).text).group(1).replace("document.cookie", "cookie").replace("location.", "")+"cookie")}) | |
| print(getContent("http://krypton-byte.byethost5.com/")) |
| class NeuMF(torch.nn.Module): | |
| def __init__(self, config): | |
| super(NeuMF, self).__init__() | |
| #mf part | |
| self.embedding_user_mf = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mf) | |
| self.embedding_item_mf = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim_mf) | |
| #mlp part | |
| self.embedding_user_mlp = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mlp) |
| //License CC0 1.0: https://creativecommons.org/publicdomain/zero/1.0/ | |
| class Deferred extends React.Component { | |
| constructor(props) { | |
| super(props); | |
| this.state = { | |
| value: '' | |
| }; | |
| } | |
| componentDidMount() { |
| const a = [{ | |
| 'id': '1', | |
| 'name': 'a1' | |
| }, { | |
| 'id': '2', | |
| 'name': 'a2' | |
| }, { | |
| 'id': '3', | |
| 'name': 'a3' | |
| }]; |
| 'use strict'; | |
| !function() { | |
| /** | |
| * @return {?} | |
| */ | |
| function t$jscomp$0() { | |
| return "cf-marker-" + Math.random().toString().slice(2); | |
| } | |
| /** | |
| * @return {undefined} |
| #!/usr/bin/env python | |
| # Dependencies: | |
| # ffmpeg: https://www.ffmpeg.org/download.html | |
| # fpcalc: https://acoustid.org/chromaprint | |
| from datetime import datetime | |
| import os | |
| import os.path | |
| import json | |
| import math | |
| import shutil |
| class NeuMF(torch.nn.Module): | |
| def __init__(self, config): | |
| super(NeuMF, self).__init__() | |
| #mf part | |
| self.embedding_user_mf = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mf) | |
| self.embedding_item_mf = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim_mf) | |
| #mlp part | |
| self.embedding_user_mlp = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim_mlp) |
| const io = require('socket.io-client'); | |
| const socket = io('http://localhost:3000', { | |
| transportOptions: { | |
| polling: { | |
| extraHeaders: { | |
| 'Authorization': 'Bearer abc', | |
| }, | |
| }, | |
| }, |