Skip to content

Instantly share code, notes, and snippets.

@kami619
Created February 4, 2026 14:37
Show Gist options
  • Select an option

  • Save kami619/85662520e7e052e7076c1c62c7ff70b1 to your computer and use it in GitHub Desktop.

Select an option

Save kami619/85662520e7e052e7076c1c62c7ff70b1 to your computer and use it in GitHub Desktop.
Red Hat & Open Data Hub Baseline Study
# Red Hat & Open Data Hub Baseline Study
# Curated list focused on RH product upstreams and ODH ecosystem
# Target: 50+ repositories across AI/ML, Container, Platform, and DevOps domains
# =============================================================================
# CATEGORY A: Open Data Hub (ODH) GitHub Organization - AI/ML Platform
# =============================================================================
# Expected: Silver-Gold (actively maintained, Python-heavy, ML focus)
# Core ODH Platform Components
https://github.com/opendatahub-io/opendatahub-operator
https://github.com/opendatahub-io/odh-dashboard
https://github.com/opendatahub-io/odh-manifests
https://github.com/opendatahub-io/model-registry
https://github.com/opendatahub-io/data-science-pipelines
https://github.com/opendatahub-io/notebooks
# ODH Model Serving & Inference
https://github.com/opendatahub-io/modelmesh-serving
https://github.com/opendatahub-io/kserve
https://github.com/opendatahub-io/text-generation-inference
# ODH Data & Feature Store
https://github.com/opendatahub-io/feast
https://github.com/opendatahub-io/ceph
# ODH Workflow & Orchestration
https://github.com/opendatahub-io/kubeflow
https://github.com/opendatahub-io/airflow
# =============================================================================
# CATEGORY B: Red Hat AI/ML & Data Science Ecosystem
# =============================================================================
# Expected: Silver-Platinum (varies by project maturity)
# Red Hat AI Platform
https://github.com/red-hat-data-services/data-science-pipelines-operator
https://github.com/red-hat-data-services/rhods-operator
# Model Frameworks & Libraries
https://github.com/vllm-project/vllm
https://github.com/huggingface/transformers
https://github.com/pytorch/pytorch
# =============================================================================
# CATEGORY C: Container & Cloud-Native (RH Core Products)
# =============================================================================
# Expected: Gold-Platinum (mature, well-documented, enterprise-grade)
# Podman & Container Tools (Python/Go)
https://github.com/containers/podman
https://github.com/containers/buildah
https://github.com/containers/skopeo
https://github.com/containers/crun
https://github.com/containers/toolbox
# Kubernetes & OpenShift Ecosystem (Go)
https://github.com/kubernetes/kubernetes
https://github.com/openshift/origin
https://github.com/openshift/oc
https://github.com/openshift/console
https://github.com/openshift/installer
# Operators & Controllers (Go)
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-lifecycle-manager
https://github.com/openshift/cluster-monitoring-operator
# =============================================================================
# CATEGORY D: Ansible & Automation (RH Flagship)
# =============================================================================
# Expected: Gold-Platinum (mature, Python, extensive docs)
# Ansible Core
https://github.com/ansible/ansible
https://github.com/ansible/ansible-runner
https://github.com/ansible/ansible-lint
# Ansible Automation Platform Components
https://github.com/ansible/awx
https://github.com/ansible/awx-operator
https://github.com/ansible/receptor
# Ansible Collections
https://github.com/ansible-collections/community.general
https://github.com/ansible-collections/kubernetes.core
# =============================================================================
# CATEGORY E: Developer Tools & Platform (RH Developer Portfolio)
# =============================================================================
# Expected: Silver-Gold (varies by adoption)
# Quarkus (Java/Kotlin) - Red Hat's Java framework
https://github.com/quarkusio/quarkus
https://github.com/quarkusio/quarkus-quickstarts
# Tekton Pipelines (Go) - CI/CD for OpenShift
https://github.com/tektoncd/pipeline
https://github.com/tektoncd/triggers
https://github.com/tektoncd/cli
# CodeReady/DevSpaces (TypeScript/Java)
https://github.com/eclipse-che/che
https://github.com/devfile/api
# Service Mesh & Observability
https://github.com/kiali/kiali
https://github.com/jaegertracing/jaeger
# =============================================================================
# CATEGORY F: Storage, Networking & Infrastructure
# =============================================================================
# Expected: Gold (mature infrastructure projects)
# Ceph Storage
https://github.com/ceph/ceph
https://github.com/rook/rook
# Networking
https://github.com/ovn-org/ovn-kubernetes
https://github.com/openshift/sdn
# =============================================================================
# CATEGORY G: Security & Compliance
# =============================================================================
# Expected: Silver-Gold (security-focused, may have strict requirements)
# SELinux & Security
https://github.com/SELinuxProject/selinux
https://github.com/openshift/compliance-operator
# Container Security
https://github.com/aquasecurity/trivy
https://github.com/anchore/syft
# =============================================================================
# CATEGORY H: AI/ML Research & Upstream (Additional Context)
# =============================================================================
# Expected: Bronze-Silver (research-oriented, less enterprise polish)
# LLM Frameworks & Tools
https://github.com/langchain-ai/langchain
https://github.com/run-llama/llama_index
https://github.com/mlflow/mlflow
# Data Processing & Feature Engineering
https://github.com/ray-project/ray
https://github.com/dask/dask
# =============================================================================
# CATEGORY I: Observability & Monitoring (RH Platform Services)
# =============================================================================
# Expected: Gold (well-established monitoring stack)
# Prometheus Ecosystem
https://github.com/prometheus/prometheus
https://github.com/prometheus/alertmanager
https://github.com/grafana/grafana
# OpenTelemetry
https://github.com/open-telemetry/opentelemetry-collector
# =============================================================================
# CATEGORY J: Red Hat Enterprise Linux (RHEL) Ecosystem
# =============================================================================
# Expected: Gold-Platinum (foundational to RH)
# System Management
https://github.com/osbuild/osbuild
https://github.com/rhinstaller/anaconda
# Package Management
https://github.com/rpm-software-management/dnf
https://github.com/rpm-software-management/rpm
# =============================================================================
# NOTES & METHODOLOGY
# =============================================================================
#
# Repository Selection Criteria:
# 1. Direct upstream to Red Hat products
# 2. Part of Open Data Hub platform
# 3. Critical to Red Hat AI/ML strategy
# 4. Used in Red Hat customer environments
# 5. Actively maintained by Red Hat engineers
#
# Language Distribution:
# - Python: 35% (AI/ML, Ansible, tooling)
# - Go: 40% (Kubernetes, operators, containers)
# - Java/Kotlin: 10% (Quarkus, enterprise apps)
# - TypeScript: 10% (UIs, dashboards)
# - C/C++/Rust: 5% (system-level)
#
# Expected Score Distribution:
# - Platinum (90-100): 10% (flagship products like Ansible, Podman)
# - Gold (75-89): 40% (mature platform components)
# - Silver (60-74): 35% (solid but evolving projects)
# - Bronze (40-59): 10% (research, experimental)
# - Needs Improvement (<40): 5% (expected outliers)
#
# Domains Covered:
# - AI/ML Platform (ODH): 13 repos
# - Red Hat AI/ML Ecosystem: 5 repos
# - Container/Cloud-Native: 15 repos
# - Automation: 8 repos
# - Developer Tools: 10 repos
# - Infrastructure: 4 repos
# - Security: 4 repos
# - AI/ML Research: 5 repos
# - Observability: 4 repos
# - RHEL Ecosystem: 4 repos
#
# Total: 72 repositories
#
# Analysis Focus Areas:
# 1. Python AI/ML repos: Type annotations, testing, documentation
# 2. Go operators: Standard layout, error handling, logging
# 3. Ansible: Module structure, documentation quality
# 4. UI/Dashboard: TypeScript practices, testing coverage
# 5. Cross-cutting: CI/CD, pre-commit hooks, CLAUDE.md adoption
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment