In the terminal, run
git clone https://github.com/bmaltais/kohya_ss.git
cd kohya_ss
# Patch these files into top level/root project folder
# Then run the next command
bash ./macos.sh
| #! /usr/bin/env ruby | |
| # NOTE: Requires Ruby 2.1 or greater. | |
| # This script can be used to parse and dump the information from | |
| # the 'html/contact_info.htm' file in a Facebook user data ZIP download. | |
| # | |
| # It prints all cell phone call + SMS message + MMS records, plus a summary of each. | |
| # | |
| # It also dumps all of the records into CSV files inside a 'CSV' folder, that is created |
John Rauser
Alice Goldfuss (GitHub)
Bryan Liles (CapitalOne)
| # Helper function to plot a decision boundary. | |
| # If you don't fully understand this function don't worry, it just generates the contour plot below. | |
| def plot_decision_boundary(pred_func): | |
| # Set min and max values and give it some padding | |
| x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 | |
| y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 | |
| h = 0.01 | |
| # Generate a grid of points with distance h between them | |
| xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) | |
| # Predict the function value for the whole gid |
| <style type="text/css"> | |
| #dashboard_list ul { | |
| margin:20px, 40px, 40px, 10px; | |
| overflow:hidden; | |
| } | |
| #dashboard_list li { | |
| line-height:1.5em; | |
| float:left; | |
| display:inline; | |
| } |
| // Python RDD creation functions // | |
| // SequenceFile converted to Text and then to String | |
| def sequenceFileAsText(path: String) = { | |
| implicit val kcm = ClassManifest.fromClass(classOf[Text]) | |
| implicit val fcm = ClassManifest.fromClass(classOf[SequenceFileAsTextInputFormat]) | |
| new JavaPairRDD(sc | |
| .newAPIHadoopFile[Text, Text, SequenceFileAsTextInputFormat](path) | |
| .map{ case (k, v) => (k.toString, v.toString) } |
| public class HCatInputFormat extends InputFormat<SerializableWritable<Writable>, HCatRecord> { | |
| private final org.apache.hcatalog.mapreduce.HCatInputFormat input; | |
| public HCatInputFormat() { | |
| input = new org.apache.hcatalog.mapreduce.HCatInputFormat(); | |
| } | |
| @Override | |
| public RecordReader<SerializableWritable<Writable>, HCatRecord> createRecordReader( |
| require 'rubygems' | |
| require 'mechanize' | |
| FIRST_NAME = 'FIRST_NAME' | |
| LAST_NAME = 'LAST_NAME' | |
| PHONE = 'PHONE' | |
| EMAIL = '[email protected]' | |
| PARTY_SIZE = 2 | |
| SCHEDULE_RANGE = { :start_time => '19:00', :end_time => '20:30' } |
| // An Example is an observation with optional target value and features in the form of a vector of Doubles | |
| case class Example(target: Option[Double] = None, features: Vector[Double]) | |
| // Base model API looks something like: | |
| abstract class BaseModel(val modelSettings: Settings) | |
| extends Serializable | |
| with Logging { | |
| def fit(data: RDD[Example]) |
| import spark.streaming.{Seconds, StreamingContext} | |
| import spark.storage.StorageLevel | |
| import spark.streaming.examples.twitter.TwitterInputDStream | |
| import com.twitter.algebird._ | |
| import spark.streaming.StreamingContext._ | |
| import spark.SparkContext._ | |
| /** | |
| * Example of using CountMinSketch monoid from Twitter's Algebird together with Spark Streaming's | |
| * TwitterInputDStream |