Created
April 29, 2014 03:24
-
-
Save kikiliu/11389972 to your computer and use it in GitHub Desktop.
Robyn_Kiki
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "", | |
| "signature": "sha256:1549383cfcfadd0f9557cc366906b339383ea0da3b94dc44bc0dd7850df611ba" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "heading", | |
| "level": 1, | |
| "metadata": {}, | |
| "source": [ | |
| "Examining Gentrification in Oakland" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Gentrification is a hot topic in the Bay Area, and much of the conversation centers around its effects in Oakland. We set out to develop an understanding of what was happening in Oakland based on freely available census, city-collected, and real estate data. Our group considered some of the vectors of gentrification in Oakland over time including property values, income, changing race demographics, and crime statistics. We\u2019ve learned a lot about the challenges of measuring a phenomenon as complex as gentrification, and we have some interesting insights to share. \n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "First, we import all libraries needed for the data manipulation and analysis. " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "%pylab --no-import-all inline" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "Populating the interactive namespace from numpy and matplotlib\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 19 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "from pandas import DataFrame, Series, Index\n", | |
| "import pandas as pd\n", | |
| "from itertools import islice" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 20 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#import census modules\n", | |
| "import census\n", | |
| "import us\n", | |
| "\n", | |
| "#import API key\n", | |
| "import settings" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 21 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "To run this notebook, download an API key from the census and add it to a file called settings.py in the same directory as your notebook: http://www.census.gov/developers/tos/key_request.html" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#access API key\n", | |
| "c = census.Census(key=settings.CENSUS_KEY)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 22 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#create function to call California census tracts for 2000 (adapted from Raymond Yee's function)\n", | |
| "year = 2000\n", | |
| "def places(variables=\"NAME\", year=year):\n", | |
| " \n", | |
| " states_fips = set([s.fips for s in us.states.STATES])\n", | |
| " geo={'for':'place:*',\n", | |
| " 'in':'state:06'}\n", | |
| " \n", | |
| " for place in c.sf1.get(variables, geo=geo, year=year):\n", | |
| " yield place\n", | |
| " " | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 23 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#P001001/Total Pop, P010004/African-American Not Hispanic, P011001/Hispanic, \n", | |
| "#P010006/Asian, not Hispanic P010003/White, not Hispanic \n", | |
| "ca_places_2000 = [place for place in places(variables=\"NAME,P001001,P010004,P011001,P010006,P010003\")]\n", | |
| "\n", | |
| "#put list into dataframe\n", | |
| "ca_places_2000_df = pd.DataFrame(ca_places_2000)\n", | |
| "ca_places_2000_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>P001001</th>\n", | |
| " <th>P010003</th>\n", | |
| " <th>P010004</th>\n", | |
| " <th>P010006</th>\n", | |
| " <th>P011001</th>\n", | |
| " <th>place</th>\n", | |
| " <th>state</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> Acton CDP</td>\n", | |
| " <td> 2390</td>\n", | |
| " <td> 2058</td>\n", | |
| " <td> 20</td>\n", | |
| " <td> 53</td>\n", | |
| " <td> 263</td>\n", | |
| " <td> 212</td>\n", | |
| " <td> 6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> Adelanto city</td>\n", | |
| " <td> 18130</td>\n", | |
| " <td> 6964</td>\n", | |
| " <td> 2477</td>\n", | |
| " <td> 390</td>\n", | |
| " <td> 8299</td>\n", | |
| " <td> 296</td>\n", | |
| " <td> 6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> Agoura Hills city</td>\n", | |
| " <td> 20537</td>\n", | |
| " <td> 17419</td>\n", | |
| " <td> 318</td>\n", | |
| " <td> 1571</td>\n", | |
| " <td> 1407</td>\n", | |
| " <td> 394</td>\n", | |
| " <td> 6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> Alameda city</td>\n", | |
| " <td> 72259</td>\n", | |
| " <td> 40770</td>\n", | |
| " <td> 5181</td>\n", | |
| " <td> 20534</td>\n", | |
| " <td> 6725</td>\n", | |
| " <td> 562</td>\n", | |
| " <td> 6</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> Alamo CDP</td>\n", | |
| " <td> 15626</td>\n", | |
| " <td> 13919</td>\n", | |
| " <td> 95</td>\n", | |
| " <td> 1100</td>\n", | |
| " <td> 616</td>\n", | |
| " <td> 618</td>\n", | |
| " <td> 6</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 8 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 24, | |
| "text": [ | |
| " NAME P001001 P010003 P010004 P010006 P011001 place state\n", | |
| "0 Acton CDP 2390 2058 20 53 263 212 6\n", | |
| "1 Adelanto city 18130 6964 2477 390 8299 296 6\n", | |
| "2 Agoura Hills city 20537 17419 318 1571 1407 394 6\n", | |
| "3 Alameda city 72259 40770 5181 20534 6725 562 6\n", | |
| "4 Alamo CDP 15626 13919 95 1100 616 618 6\n", | |
| "\n", | |
| "[5 rows x 8 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 24 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pop_vars_00 = ['P001001', 'P010003', 'P010004', 'P010006', 'P011001']\n", | |
| "\n", | |
| "#turn numbers into integers\n", | |
| "ca_places_2000_df[(pop_vars_00)] = ca_places_2000_df[(pop_vars_00)].astype(int)\n", | |
| "\n", | |
| "#sort by total population, largest first\n", | |
| "ca_places_2000_df[['NAME','P001001','P010003', 'P010004','P010006', \\\n", | |
| " 'P011001']].sort('P001001', ascending=False).head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>P001001</th>\n", | |
| " <th>P010003</th>\n", | |
| " <th>P010004</th>\n", | |
| " <th>P010006</th>\n", | |
| " <th>P011001</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>559</th>\n", | |
| " <td> Los Angeles city</td>\n", | |
| " <td> 3694820</td>\n", | |
| " <td> 1167030</td>\n", | |
| " <td> 422819</td>\n", | |
| " <td> 396352</td>\n", | |
| " <td> 1719073</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>839</th>\n", | |
| " <td> San Diego city</td>\n", | |
| " <td> 1223400</td>\n", | |
| " <td> 632533</td>\n", | |
| " <td> 103508</td>\n", | |
| " <td> 184105</td>\n", | |
| " <td> 310752</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>850</th>\n", | |
| " <td> San Jose city</td>\n", | |
| " <td> 894943</td>\n", | |
| " <td> 343088</td>\n", | |
| " <td> 33571</td>\n", | |
| " <td> 252818</td>\n", | |
| " <td> 269989</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>843</th>\n", | |
| " <td> San Francisco city</td>\n", | |
| " <td> 776733</td>\n", | |
| " <td> 356374</td>\n", | |
| " <td> 64070</td>\n", | |
| " <td> 250364</td>\n", | |
| " <td> 109504</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>553</th>\n", | |
| " <td> Long Beach city</td>\n", | |
| " <td> 461522</td>\n", | |
| " <td> 161584</td>\n", | |
| " <td> 70935</td>\n", | |
| " <td> 61438</td>\n", | |
| " <td> 165092</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 6 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 25, | |
| "text": [ | |
| " NAME P001001 P010003 P010004 P010006 P011001\n", | |
| "559 Los Angeles city 3694820 1167030 422819 396352 1719073\n", | |
| "839 San Diego city 1223400 632533 103508 184105 310752\n", | |
| "850 San Jose city 894943 343088 33571 252818 269989\n", | |
| "843 San Francisco city 776733 356374 64070 250364 109504\n", | |
| "553 Long Beach city 461522 161584 70935 61438 165092\n", | |
| "\n", | |
| "[5 rows x 6 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 25 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#create new descriptively named columns with values population by race/ethnicity\n", | |
| "ca_places_2000_df['African-American, not Hispanic'] = ca_places_2000_df['P010004']\n", | |
| "ca_places_2000_df['White, not Hispanic'] = ca_places_2000_df['P010003']\n", | |
| "ca_places_2000_df['Asian, not Hispanic'] = ca_places_2000_df['P010006']\n", | |
| "ca_places_2000_df['Total Pop'] = ca_places_2000_df['P001001']\n", | |
| "ca_places_2000_df['Hispanic'] = ca_places_2000_df['P011001']\n", | |
| "\n", | |
| "#show only columns that have legible names; set index by tract\n", | |
| "alameda_places_df_2000 = ca_places_2000_df[['place','NAME','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']] \n", | |
| "\n", | |
| "alameda_places_df_2000.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>place</th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 212</td>\n", | |
| " <td> Acton CDP</td>\n", | |
| " <td> 2390</td>\n", | |
| " <td> 20</td>\n", | |
| " <td> 53</td>\n", | |
| " <td> 263</td>\n", | |
| " <td> 2058</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 296</td>\n", | |
| " <td> Adelanto city</td>\n", | |
| " <td> 18130</td>\n", | |
| " <td> 2477</td>\n", | |
| " <td> 390</td>\n", | |
| " <td> 8299</td>\n", | |
| " <td> 6964</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 394</td>\n", | |
| " <td> Agoura Hills city</td>\n", | |
| " <td> 20537</td>\n", | |
| " <td> 318</td>\n", | |
| " <td> 1571</td>\n", | |
| " <td> 1407</td>\n", | |
| " <td> 17419</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 562</td>\n", | |
| " <td> Alameda city</td>\n", | |
| " <td> 72259</td>\n", | |
| " <td> 5181</td>\n", | |
| " <td> 20534</td>\n", | |
| " <td> 6725</td>\n", | |
| " <td> 40770</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 618</td>\n", | |
| " <td> Alamo CDP</td>\n", | |
| " <td> 15626</td>\n", | |
| " <td> 95</td>\n", | |
| " <td> 1100</td>\n", | |
| " <td> 616</td>\n", | |
| " <td> 13919</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 26, | |
| "text": [ | |
| " place NAME Total Pop African-American, not Hispanic \\\n", | |
| "0 212 Acton CDP 2390 20 \n", | |
| "1 296 Adelanto city 18130 2477 \n", | |
| "2 394 Agoura Hills city 20537 318 \n", | |
| "3 562 Alameda city 72259 5181 \n", | |
| "4 618 Alamo CDP 15626 95 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "0 53 263 2058 \n", | |
| "1 390 8299 6964 \n", | |
| "2 1571 1407 17419 \n", | |
| "3 20534 6725 40770 \n", | |
| "4 1100 616 13919 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 26 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "ca_places_2010 = [place for place in places(variables=\"NAME,P0010001,P0050004,P0050010,P0050006,P0050003\", year=2010)]\n", | |
| "\n", | |
| "#put list into dataframe\n", | |
| "ca_places_2010_df = pd.DataFrame(ca_places_2010)\n", | |
| "ca_places_2010_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>P0010001</th>\n", | |
| " <th>P0050003</th>\n", | |
| " <th>P0050004</th>\n", | |
| " <th>P0050006</th>\n", | |
| " <th>P0050010</th>\n", | |
| " <th>place</th>\n", | |
| " <th>state</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> Acalanes Ridge CDP</td>\n", | |
| " <td> 1137</td>\n", | |
| " <td> 908</td>\n", | |
| " <td> 5</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 50</td>\n", | |
| " <td> 00135</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> Acampo CDP</td>\n", | |
| " <td> 341</td>\n", | |
| " <td> 113</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 3</td>\n", | |
| " <td> 199</td>\n", | |
| " <td> 00156</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> Acton CDP</td>\n", | |
| " <td> 7596</td>\n", | |
| " <td> 5782</td>\n", | |
| " <td> 54</td>\n", | |
| " <td> 151</td>\n", | |
| " <td> 1373</td>\n", | |
| " <td> 00212</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> Adelanto city</td>\n", | |
| " <td> 31765</td>\n", | |
| " <td> 5395</td>\n", | |
| " <td> 6196</td>\n", | |
| " <td> 522</td>\n", | |
| " <td> 18513</td>\n", | |
| " <td> 00296</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> Adin CDP</td>\n", | |
| " <td> 272</td>\n", | |
| " <td> 224</td>\n", | |
| " <td> 2</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 32</td>\n", | |
| " <td> 00310</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 8 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 27, | |
| "text": [ | |
| " NAME P0010001 P0050003 P0050004 P0050006 P0050010 place \\\n", | |
| "0 Acalanes Ridge CDP 1137 908 5 125 50 00135 \n", | |
| "1 Acampo CDP 341 113 0 3 199 00156 \n", | |
| "2 Acton CDP 7596 5782 54 151 1373 00212 \n", | |
| "3 Adelanto city 31765 5395 6196 522 18513 00296 \n", | |
| "4 Adin CDP 272 224 2 0 32 00310 \n", | |
| "\n", | |
| " state \n", | |
| "0 06 \n", | |
| "1 06 \n", | |
| "2 06 \n", | |
| "3 06 \n", | |
| "4 06 \n", | |
| "\n", | |
| "[5 rows x 8 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 27 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pop_vars_10 = ['P0010001','P0050003','P0050004','P0050006','P0050010']\n", | |
| "\n", | |
| "#turn numbers into integers\n", | |
| "ca_places_2010_df[(pop_vars_10)] = ca_places_2010_df[(pop_vars_10)].astype(int)\n", | |
| "\n", | |
| "#sort CA cities by total population\n", | |
| "ca_places_2010_df.sort('P0010001', ascending=False).head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>P0010001</th>\n", | |
| " <th>P0050003</th>\n", | |
| " <th>P0050004</th>\n", | |
| " <th>P0050006</th>\n", | |
| " <th>P0050010</th>\n", | |
| " <th>place</th>\n", | |
| " <th>state</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>789 </th>\n", | |
| " <td> Los Angeles city</td>\n", | |
| " <td> 3792621</td>\n", | |
| " <td> 1086908</td>\n", | |
| " <td> 347380</td>\n", | |
| " <td> 420212</td>\n", | |
| " <td> 1838822</td>\n", | |
| " <td> 44000</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1187</th>\n", | |
| " <td> San Diego city</td>\n", | |
| " <td> 1307402</td>\n", | |
| " <td> 589702</td>\n", | |
| " <td> 82497</td>\n", | |
| " <td> 204347</td>\n", | |
| " <td> 376020</td>\n", | |
| " <td> 66000</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1197</th>\n", | |
| " <td> San Jose city</td>\n", | |
| " <td> 945942</td>\n", | |
| " <td> 271382</td>\n", | |
| " <td> 27508</td>\n", | |
| " <td> 300022</td>\n", | |
| " <td> 313636</td>\n", | |
| " <td> 68000</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1191</th>\n", | |
| " <td> San Francisco city</td>\n", | |
| " <td> 805235</td>\n", | |
| " <td> 337451</td>\n", | |
| " <td> 46781</td>\n", | |
| " <td> 265700</td>\n", | |
| " <td> 121774</td>\n", | |
| " <td> 67000</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>500 </th>\n", | |
| " <td> Fresno city</td>\n", | |
| " <td> 494665</td>\n", | |
| " <td> 148598</td>\n", | |
| " <td> 37885</td>\n", | |
| " <td> 60939</td>\n", | |
| " <td> 232055</td>\n", | |
| " <td> 27000</td>\n", | |
| " <td> 06</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 8 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 28, | |
| "text": [ | |
| " NAME P0010001 P0050003 P0050004 P0050006 P0050010 \\\n", | |
| "789 Los Angeles city 3792621 1086908 347380 420212 1838822 \n", | |
| "1187 San Diego city 1307402 589702 82497 204347 376020 \n", | |
| "1197 San Jose city 945942 271382 27508 300022 313636 \n", | |
| "1191 San Francisco city 805235 337451 46781 265700 121774 \n", | |
| "500 Fresno city 494665 148598 37885 60939 232055 \n", | |
| "\n", | |
| " place state \n", | |
| "789 44000 06 \n", | |
| "1187 66000 06 \n", | |
| "1197 68000 06 \n", | |
| "1191 67000 06 \n", | |
| "500 27000 06 \n", | |
| "\n", | |
| "[5 rows x 8 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 28 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#create new descriptively named columns with values population by race/ethnicity\n", | |
| "ca_places_2010_df['African-American, not Hispanic'] = ca_places_2010_df['P0050004']\n", | |
| "ca_places_2010_df['White, not Hispanic'] = ca_places_2010_df['P0050003']\n", | |
| "ca_places_2010_df['Asian, not Hispanic'] = ca_places_2010_df['P0050006']\n", | |
| "ca_places_2010_df['Total Pop'] = ca_places_2010_df['P0010001']\n", | |
| "ca_places_2010_df['Hispanic'] = ca_places_2010_df['P0050010']\n", | |
| "\n", | |
| "#show only columns that have legible names; set index by tract\n", | |
| "alameda_places_df_2010 = ca_places_2010_df[['place','NAME','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']] \n", | |
| "\n", | |
| "alameda_places_df_2010.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>place</th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 00135</td>\n", | |
| " <td> Acalanes Ridge CDP</td>\n", | |
| " <td> 1137</td>\n", | |
| " <td> 5</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 50</td>\n", | |
| " <td> 908</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 00156</td>\n", | |
| " <td> Acampo CDP</td>\n", | |
| " <td> 341</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 3</td>\n", | |
| " <td> 199</td>\n", | |
| " <td> 113</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 00212</td>\n", | |
| " <td> Acton CDP</td>\n", | |
| " <td> 7596</td>\n", | |
| " <td> 54</td>\n", | |
| " <td> 151</td>\n", | |
| " <td> 1373</td>\n", | |
| " <td> 5782</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 00296</td>\n", | |
| " <td> Adelanto city</td>\n", | |
| " <td> 31765</td>\n", | |
| " <td> 6196</td>\n", | |
| " <td> 522</td>\n", | |
| " <td> 18513</td>\n", | |
| " <td> 5395</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 00310</td>\n", | |
| " <td> Adin CDP</td>\n", | |
| " <td> 272</td>\n", | |
| " <td> 2</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 32</td>\n", | |
| " <td> 224</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 30, | |
| "text": [ | |
| " place NAME Total Pop African-American, not Hispanic \\\n", | |
| "0 00135 Acalanes Ridge CDP 1137 5 \n", | |
| "1 00156 Acampo CDP 341 0 \n", | |
| "2 00212 Acton CDP 7596 54 \n", | |
| "3 00296 Adelanto city 31765 6196 \n", | |
| "4 00310 Adin CDP 272 2 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "0 125 50 908 \n", | |
| "1 3 199 113 \n", | |
| "2 151 1373 5782 \n", | |
| "3 522 18513 5395 \n", | |
| "4 0 32 224 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 30 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#find place ID of Oakland by sorting on towns in CA starting with O by population\n", | |
| "o_towns_2000 = alameda_places_df_2000[alameda_places_df_2000['NAME'].str.startswith('O')]\n", | |
| "o_towns_2000_new = o_towns_2000.sort('Total Pop', ascending=False).set_index(['place'])\n", | |
| "o_towns_2000_new.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>place</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>53000</th>\n", | |
| " <td> Oakland city</td>\n", | |
| " <td> 399484</td>\n", | |
| " <td> 146510</td>\n", | |
| " <td> 65267</td>\n", | |
| " <td> 87467</td>\n", | |
| " <td> 101996</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>54652</th>\n", | |
| " <td> Oxnard city</td>\n", | |
| " <td> 170358</td>\n", | |
| " <td> 6541</td>\n", | |
| " <td> 13793</td>\n", | |
| " <td> 112807</td>\n", | |
| " <td> 37354</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>53322</th>\n", | |
| " <td> Oceanside city</td>\n", | |
| " <td> 161029</td>\n", | |
| " <td> 10914</td>\n", | |
| " <td> 11082</td>\n", | |
| " <td> 48691</td>\n", | |
| " <td> 90451</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>53896</th>\n", | |
| " <td> Ontario city</td>\n", | |
| " <td> 158007</td>\n", | |
| " <td> 12107</td>\n", | |
| " <td> 6863</td>\n", | |
| " <td> 94610</td>\n", | |
| " <td> 44183</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>53980</th>\n", | |
| " <td> Orange city</td>\n", | |
| " <td> 128821</td>\n", | |
| " <td> 2216</td>\n", | |
| " <td> 13070</td>\n", | |
| " <td> 41434</td>\n", | |
| " <td> 72481</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 6 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 35, | |
| "text": [ | |
| " NAME Total Pop African-American, not Hispanic \\\n", | |
| "place \n", | |
| "53000 Oakland city 399484 146510 \n", | |
| "54652 Oxnard city 170358 6541 \n", | |
| "53322 Oceanside city 161029 10914 \n", | |
| "53896 Ontario city 158007 12107 \n", | |
| "53980 Orange city 128821 2216 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "place \n", | |
| "53000 65267 87467 101996 \n", | |
| "54652 13793 112807 37354 \n", | |
| "53322 11082 48691 90451 \n", | |
| "53896 6863 94610 44183 \n", | |
| "53980 13070 41434 72481 \n", | |
| "\n", | |
| "[5 rows x 6 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 35 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#find place ID of Oakland by sorting on towns in CA starting with O by population\n", | |
| "o_towns_2010 = ca_places_2010_df[ca_places_2010_df['NAME'].str.startswith('O')]\n", | |
| "o_towns_2010_new = o_towns_2010[['place','NAME','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']].sort('Total Pop', ascending=False).set_index(['place'])\n", | |
| "\n", | |
| "o_towns_2010_new.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>place</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>53000</th>\n", | |
| " <td> Oakland city</td>\n", | |
| " <td> 390724</td>\n", | |
| " <td> 106637</td>\n", | |
| " <td> 65127</td>\n", | |
| " <td> 99068</td>\n", | |
| " <td> 101308</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>54652</th>\n", | |
| " <td> Oxnard city</td>\n", | |
| " <td> 197899</td>\n", | |
| " <td> 4754</td>\n", | |
| " <td> 14084</td>\n", | |
| " <td> 145551</td>\n", | |
| " <td> 29410</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>53322</th>\n", | |
| " <td> Oceanside city</td>\n", | |
| " <td> 167086</td>\n", | |
| " <td> 7101</td>\n", | |
| " <td> 10638</td>\n", | |
| " <td> 59947</td>\n", | |
| " <td> 80849</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>53896</th>\n", | |
| " <td> Ontario city</td>\n", | |
| " <td> 163924</td>\n", | |
| " <td> 9598</td>\n", | |
| " <td> 8078</td>\n", | |
| " <td> 113085</td>\n", | |
| " <td> 29898</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>53980</th>\n", | |
| " <td> Orange city</td>\n", | |
| " <td> 136416</td>\n", | |
| " <td> 1895</td>\n", | |
| " <td> 15116</td>\n", | |
| " <td> 52014</td>\n", | |
| " <td> 63805</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 6 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 33, | |
| "text": [ | |
| " NAME Total Pop African-American, not Hispanic \\\n", | |
| "place \n", | |
| "53000 Oakland city 390724 106637 \n", | |
| "54652 Oxnard city 197899 4754 \n", | |
| "53322 Oceanside city 167086 7101 \n", | |
| "53896 Ontario city 163924 9598 \n", | |
| "53980 Orange city 136416 1895 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "place \n", | |
| "53000 65127 99068 101308 \n", | |
| "54652 14084 145551 29410 \n", | |
| "53322 10638 59947 80849 \n", | |
| "53896 8078 113085 29898 \n", | |
| "53980 15116 52014 63805 \n", | |
| "\n", | |
| "[5 rows x 6 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 33 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": [ | |
| "Overall Population Change in Oakland" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Total Oakland population decrease from 2000 to 2010\n", | |
| "o_pop_change = o_towns_2010_new.ix[['53000']]['Total Pop'] - o_towns_2000_new.ix[['53000']]['Total Pop']\n", | |
| "o_pop_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 37, | |
| "text": [ | |
| "53000 -8760\n", | |
| "Name: Total Pop, dtype: int64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 37 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#change over 2000 total population is an overall decrease by 2% since 2000\n", | |
| "o_pop_percent_change = o_pop_change/o_towns_2000_new.ix[['53000']]['Total Pop']\n", | |
| "o_pop_percent_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 38, | |
| "text": [ | |
| "53000 -0.021928\n", | |
| "Name: Total Pop, dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 38 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": [ | |
| "Population Change in Oakland's African-American Community" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#change in African-American population between 2000 and 2010\n", | |
| "af_am_total_change = o_towns_2010_new.ix[['53000']]['African-American, not Hispanic'] - \\\n", | |
| "o_towns_2000_new.ix[['53000']]['African-American, not Hispanic']\n", | |
| "\n", | |
| "af_am_total_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 39, | |
| "text": [ | |
| "53000 -39873\n", | |
| "Name: African-American, not Hispanic, dtype: int64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 39 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Percentage of African-Americans in 2000\n", | |
| "af_am_percent_2000 = o_towns_2000_new.ix[['53000']]['African-American, not Hispanic']\\\n", | |
| "/o_towns_2000_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "af_am_percent_2000" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 52, | |
| "text": [ | |
| "53000 0.366748\n", | |
| "dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 52 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Percentage of African-Americans in 2010\n", | |
| "af_am_percent_2010 = o_towns_2010_new.ix[['53000']]['African-American, not Hispanic']\\\n", | |
| "/o_towns_2010_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "af_am_percent_2010" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 53, | |
| "text": [ | |
| "53000 0.272922\n", | |
| "dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 53 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#9.4% decrease in percentage of African-American community in ten year span\n", | |
| "af_am_percent_change = af_am_percent_2010 - af_am_percent_2000 \n", | |
| "af_am_percent_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 54, | |
| "text": [ | |
| "53000 -0.093827\n", | |
| "dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 54 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pop_changes = [af_am_percent_change[0]*100, o_pop_percent_change[0]*100]\n", | |
| "\n", | |
| "communities = ('African-American Community', 'All Oakland')\n", | |
| "pos = np.arange(len(communities)) + .5\n", | |
| "error = np.random.rand(len(communities))\n", | |
| "\n", | |
| "plt.barh(pos, pop_changes, align='center', color=\"#669999\", alpha=0.7)\n", | |
| "plt.yticks(pos, communities)\n", | |
| "plt.grid()\n", | |
| "plt.xlabel('Population Change (%)')\n", | |
| "plt.title('Oakland between 2000-2010')\n", | |
| "\n", | |
| "plt.show()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAEZCAYAAABl+QfrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4TXf+B/D3vYglCYkIghCqSGRPbNWQ2CtUxAiq9jJq\nqWmnJX4eJJ2qlsagWtvooCrSaMloVauWWMaaiFhSIZLYakkkIgmNxPf3h8n5urKeVnPieL+ex/M4\n99xz7ve+cd+553MjBiGEABEREemCUesFEBER0dPDYiciItIRFjsREZGOsNiJiIh0hMVORESkIyx2\nIiIiHWGxEz3HjEYjLl68qHrfH7F3717Y29v/rjURUdlY7ETPsLVr18LFxQXm5uaws7PDpEmTcOfO\nHa2XpZnK/kVBYmIiBgwYgPr168PGxgZ9+vRBYmKiyX3++c9/ws7ODnXq1MG4ceOQl5en7Lt9+zYG\nDhwICwsLODg4IDw83OTYXbt2oU2bNjA3N0e3bt1w6dKlEtdy+PBh9OzZEzY2Nqhfvz6CgoJw/fp1\nk/vMmDED9erVQ7169RAcHGyyb/bs2XBxcUG1atUQGhpa5PwbN25Es2bNYGFhgYEDByIjI6PcOdEf\nw2InekaFhYUhODgYYWFhyMrKwuHDh5GamoqePXviwYMHWi9PM5X5/9y6c+cOAgICkJiYiBs3bqB9\n+/YYMGCAsv/HH3/Exx9/jN27dyM1NRUXL17E3Llzlf2TJ09GjRo1cPPmTXz11Vd48803cfbsWQBA\nWloaBg0ahHnz5iEjIwPe3t4YMmRIiWvJzMzExIkTkZqaitTUVFhaWmLMmDHK/pUrVyIqKgrx8fGI\nj4/Htm3bsHLlSmX/iy++iIULF8Lf3x8Gg8Hk3GfOnMHEiRPx1Vdf4caNG6hVqxYmTZr0h/OjchJE\n9My5c+eOsLCwEJGRkSa3Z2dnC1tbW/HFF18IIYQ4cuSI6Nixo7CyshJ2dnZiypQpIi8vT7m/wWAQ\nSUlJQggh9u/fL+zt7UV0dHSRfd99951wd3cXtWvXFvb29iIkJEQ5R3JysjAYDGLdunWiadOmol69\nemLevHnK/tzcXDFq1ChhbW0tnJycxIIFC0STJk1KfG4Gg0EsXbpUtGjRQtSrV0+899574uHDh8r+\nNWvWCEdHR2FtbS169+4tUlNThRBC+Pj4CIPBIMzNzYWlpaWIiIgQXbt2Fd98840QQogDBw4Ig8Eg\nvv/+eyGEED///LNwd3cv87xCCJGQkCB69Ogh6tatK1q3bi2+/vprZd+oUaPEpEmThL+/v7C0tBQd\nOnRQcitLenq6MBgM4vbt20IIIYYNGyZmzZql7N+9e7do2LChEOLRn62ZmZk4f/68sn/kyJEiODhY\nCCHEypUrRefOnZV9OTk5ombNmuLcuXPlWktMTIywtLRUtjt16iRWr16tbH/xxReiY8eORY57/fXX\nTf4+CCHEzJkzxfDhw5XtpKQkYWZmJrKzs8u1Fvpj+I6d6Bn03//+F/fv30dgYKDJ7ebm5ujbty92\n7twJAKhatSqWLFmC9PR0HDp0CLt27cLnn39e5Hw7duzAa6+9hm+//RZdunQpst/CwgIbNmzAnTt3\n8P3332P58uWIiooyuc/BgweRmJiIXbt24f3338e5c+cAAKGhoUhOTsbFixfx448/Yt26dUXe4T1p\n69atiImJQWxsLKKiovDFF18AAKKiojB//nxs2bIFaWlp8PHxwbBhwwAA+/btAwDEx8cjKysLQUFB\n6Nq1K/bu3QsAiI6ORosWLZT7RUdHw9fXt8zz5uTkoGfPnnj99ddx69YtbNq0CZMmTUJCQoKy3oiI\nCISEhCAjIwMtW7bErFmzSn1+hfbt2wc7OztYW1sDAM6ePQs3Nzdlv6urK27cuIGMjAwkJiaiatWq\naNmypbLfzc0NZ86cAfDoXfLjx9aqVQstW7bE6dOny70WZ2dnZbu4tRQ+VlmePLZFixaoXr16kbED\n/TlY7ETPoLS0NNSrVw9GY9F/wg0bNkRaWhoAwNPTE+3bt4fRaESzZs0wYcIEREdHm9w/IiICEydO\nxI4dO+Dt7V3s43Xt2hVt27YFALi4uGDo0KFFzjN37lxUr14drq6ucHNzw8mTJwEAkZGRmDVrFqys\nrNCkSRNMmzatzMvlM2bMgJWVFezt7fG3v/1NmSWvWLECM2fOROvWrWE0GjFz5kzExcXh8uXLJa67\ncJ379+/HzJkzle3o6Gh07dq11PNeunQJ3333HZo3b45Ro0bBaDTC3d0dgYGBiIyMVB4nMDAQ3t7e\nqFKlCoYPH464uLhSnx8AXLlyBVOmTMGiRYuU27Kzs1GnTh1lu3bt2gCAu3fvIjs7W9kuZGlpibt3\n7yrHPrm/du3ayM7OLnMt8fHx+Mc//oGFCxeWupbynKu4YwuPL1wr/blY7ETPoHr16iEtLQ0PHz4s\nsu/XX3+Fra0tgEcf1urXr5/yYaxZs2YhPT3d5P5Lly7FkCFD4OTkVOLjHTlyBH5+fqhfvz6srKyw\ncuXKIudp2LCh8vtatWopJXDt2jWTT8E3bdq0zOf35P2vXbsGAEhNTcW0adNgbW0Na2tr2NjYAACu\nXr1a7Hk6duyIxMRE3Lx5E3FxcRg5ciQuX76M9PR0HDt2TLk6Udp5U1NTceTIEWWftbU1Nm7ciBs3\nbgAADAYDGjRooDxmzZo1yyzAW7duoVevXpg8ebLJHNzCwgJZWVnKduEHIS0tLYvsK9xfWOaWlpbF\n7re0tMTly5dhaWkJS0vLIuV/4cIF9O3bF0uXLkXnzp1LXYuFhUWpz+vxY5/8EGfhWujPx2InegZ1\n6tQJ1atXxzfffGNye3Z2Nnbs2IHu3bsDAN588004OTnhwoULuHPnDubNm1fki4HIyEhs2bIFS5cu\nLfHxXnvtNQQEBODKlSvKh66K+6KiOHZ2diafzi7tk9rF3efSpUto3LgxgEclv2rVKmRkZCi/cnJy\n0LFjx2LPU6tWLXh5eWHx4sXKJ7hfeuklhIWFoWXLlqhbt26p5+3UqROaNm2Krl27muy7e/cuPvvs\ns3I9/ydlZGSgV69eCAgIwMyZM032tW3b1uTd/smTJ9GgQQNYW1ujVatWyM/Px4ULF0z2F15Jadu2\nrXKVBHg0QkhKSkLbtm1hb2+Pu3fv4u7duyZlXfhhyzlz5mD48OFlruXxS/WPe3K08uRakpKSkJeX\nh1atWpWZD/1xLHaiZ1CdOnUwd+5cTJ06FT/++CMePHiAlJQUBAUFwd7eHiNGjADwqOgtLS1Rq1Yt\n/PLLL1i+fHmRczVq1Ai7du3CkiVLsGLFimIfLzs7G9bW1jAzM8PRo0excePGMufkhYKCgjB//nxk\nZmbiypUr+PTTT8s85pNPPkFmZiYuX76sXFEAgIkTJ+LDDz9UPgl+584dk0viDRo0QFJSksm5unbt\nis8++0y57O7r64tly5Yp22Wdt1+/fkhMTMSGDRvw4MEDPHjwAMeOHcMvv/wCQN2n8LOystC7d2+8\n/PLL+PDDD4vsHzlyJNasWYOEhARkZGTgH//4h/JJdXNzcwQGBmLOnDnIzc3FgQMHsG3bNuXPeuDA\ngTh9+jS+/fZb3L9/H6GhoXB3dy+xTK9evYpu3bphypQpmDBhQrFrWbRoEa5du4arV69i0aJFGD16\ntLI/Pz8f9+/fR0FBAR48eID79+8rX+wNHz4c27Ztw4EDB5CTk4PZs2dj0KBBMDc3L3dW9Ado/ek9\nIvr91qxZI5ydnUXNmjVFgwYNxMSJE0VmZqayf9++faJNmzbCwsJC+Pj4iDlz5ggfHx9lv9FoVD7B\nnZycLJo1aybWrFkjhDD9VPzmzZtFs2bNhKWlpejXr5+YOnWqGDFihHKc0WgUBQUFynl9fX2V8+Tm\n5oqRI0cKKysr0bZtW7Fw4UJhb29f4nMyGAzi008/FS1atBA2Njbi3XffNTn3l19+KVxcXJRP6I8b\nN07Zt2LFCmFnZyesrKyU7xj48ccfhdFoFPv27RNCCHHq1ClhNBpNPtle1nnPnTsn/P39ha2trbCx\nsRHdu3cXJ0+eFEIIMXr0aDF79mzlvnv27Cnx+a1du1b55L6FhYWwsLAQlpaW4vLly8p9Fi1aJBo0\naCBq164txo4da/JdDLdv3xYBAQHC3NxcNGvWTISHh5uc/+effxZt2rQRNWvWFH5+fiaf7H9SSEiI\nMBgMyjoK1/K46dOni7p164q6deuKGTNmmOwbNWqUMBgMJr/WrVun7N+4caNo2rSpMDc3FwEBASIj\nI6PEtdDTZRCiEn/TJxEREanCS/FEREQ6wmInIiLSERY7ERGRjrDYiYiIdKSq1gug55O7u7vJ97kS\nEVHZ3NzcyvyfDfmOnTRx8uRJCCH4SwjMnTtX8zVUll/Mglkwi9J/lecNEYudSGMpKSlaL6HSYBYS\ns5CYhTosdiIiIh1hsRNp7PH/pvN5xywkZiExC3X4P8+RJgwGA/hXj4hInfK8dvIdO5HG9u7dq/US\nKg1mITELiVmow2InIiLSEV6KJ03wUjwRkXq8FE9ERPScYbETaYzzQ4lZSMxCYhbq8L+UJSIizQUM\nGoT0jIxi92VmZMDK2rqCV/Ts4oydNMEZOxE9zqdbNwyZPl3rZVR6U195hTN2IiKi5wmLnUhjnB9K\nzEJiFtL5+Hitl/BMYbETERHpCIudSGO+vr5aL6HSYBYSs5BedHXVegnPFBY7ERGRjrDYiTTGWarE\nLCRmIXHGrg6LnYiISEdY7EQa4yxVYhYSs5A4Y1eHxU5ERKQjLHYijXGWKjELiVlInLGrw2InIiLS\nERY7kcY4S5WYhcQsJM7Y1WGxExER6QiLnUhjnKVKzEJiFhJn7Oqw2ImIiHSExU6kMc5SJWYhMQuJ\nM3Z1WOxEREQ6wmIn0hhnqRKzkJiFxBm7Oix2IiIiHWGxE2mMs1SJWUjMQuKMXR0WOxERkY6w2Ik0\nxlmqxCwkZiFxxq4Oi52IiEhHWOxEGuMsVWIWErOQOGNXh8VORESkIyx2Io1xlioxC4lZSJyxq8Ni\nJyIi0hEWO5HGOEuVmIXELCTO2NVhsRMREekIi51IY5ylSsxCYhYSZ+zqsNiJiIh0hMVOpDHOUiVm\nITELiTN2dVjsREREOsJiJ9IYZ6kSs5CYhcQZuzosdiIiIh1hsRNpjLNUiVlIzELijF0dFjsREZGO\nsNiJNMZZqsQsJGYhccauDou9Etm6dSuMRiPOnTun3JaSkgIXFxcAj/6h9+/fv9hjDxw4gA4dOsDR\n0RGOjo5YvXp1mY8XEhKCsLCwIrePHj0a33zzze98FqZ8fX0RExPzVM5FRERlY7FXIuHh4ejXrx/C\nw8NVHXf9+nUMHz4cK1euREJCAg4cOICVK1di+/btpR5nMBhKvL2kfWo9zXPpFWepErOQmIXEGbs6\nLPZKIjs7G0eOHMGyZcsQERGh6tjPPvsMY8aMgbu7OwDAxsYGCxYswEcffQQA2LZtGzp27AhPT0/0\n7NkTN2/eVI4tLN3Vq1ejb9++uH//vsm533//fbRv3x4uLi7461//qtzu6+uL4OBgdOjQAa1bt8aB\nAwcAAPfu3cPQoUPh5OSEwMBA3Lt3D0II9YEQEdHvwmKvJKKiotCnTx80bdoUtra2iI2NLfexZ8+e\nhZeXl8ltXl5eOHPmDADAx8cHhw8fRmxsLIYMGYIFCxYo9xNCYNmyZdi+fTuioqJQo0YN5XYAmDp1\nKo4ePYpTp07h3r17+O677wA8+oKgoKAAR44cweLFixEaGgoAWL58OSwsLHD27FmEhoYiJiaG79jL\nwFmqxCwkZiFxxq5OVa0XQI+Eh4fj7bffBgAMHjwY4eHh8PT0LPfxpb0rvnz5MoKCgnD9+nXk5eWh\nRYsWyjHr16+Hvb09oqKiUKVKFeWYwjLevXs3Fi5ciNzcXNy+fRvOzs7o168fACAwMBAA4OnpiZSU\nFADA/v37MW3aNACAi4sLXEu5hDZ69Gg4ODgAAKysrODu7q5cfix8UeP287VdqLKsR8vtuLi4SrWe\nP3s7MyMDhQqLvPAS/JWkJJPtJ/freft8fDwO79wJALBp0ADlYRC8Tqq527dvw97eHra2tso7YYPB\ngNTUVKSkpKB///44deoU9u7di7CwMGzbts3k+NmzZ8NoNCrvmoFHhRwaGoro6Gj4+vri3XffRb9+\n/RAdHY2QkBDs2bMHoaGhOH/+PE6ePIlt27YpJTtmzBj0798fffv2hYODA2JiYtC4cWOEhobCYDBg\nzpw58PPzQ1hYGDw9PZGWloZ27dohOTkZAwcOxFtvvQU/Pz8Aj64crF69usgXKQaDgZfoiUjh060b\nhkyfrvUyKr2pr7xS5msnL8VXAps3b8bIkSORkpKC5ORkXLp0Cc2bN8f+/fvLdfzkyZOxdu1anDx5\nEgCQnp6O4OBgTP/fP5KsrCw0atQIALB27VrlOCEEPDw8sGLFCrz66qv49ddfTc5bOG+3sbFBdnY2\nIiMjy1xLly5dsHHjRgDA6dOnEc9LaEREFYrFXgls2rQJAwcONLlt0KBB2LRpU5FPlRc3r27YsCE2\nbNiA8ePHw9HREZ07d8a4cePg7+8P4NG3tQ0ePBje3t7KVYHCcxkMBnTu3BmffPIJ/P39kZ6erpzX\nysoK48ePh7OzM/r06YMOHTqU+BwKz/nmm28iOzsbTk5OmDt3Lry9vX9/MM+JJy9DP8+YhcQsJM7Y\n1eGleNIEL8VLe/fuVWaNzztmIT1vWZR2Kf58fDy/5e1/eCme6BnwPL14l4VZSMxCYqmrw2InIiLS\nERY7kcY4S5WYhcQsJM7Y1WGxExER6QiLnUhjnKVKzEJiFhJn7Oqw2ImIiHSExU6kMc5SJWYhMQuJ\nM3Z1WOxEREQ6wmIn0hhnqRKzkJiFxBm7Oix2IiIiHWGxE2mMs1SJWUjMQuKMXR0WOxERkY6w2Ik0\nxlmqxCwkZiFxxq4Oi52IiEhHWOxEGuMsVWIWErOQOGNXh8VORESkIyx2Io1xlioxC4lZSJyxq8Ni\nJyIi0hEWO5HGOEuVmIXELCTO2NVhsRMREekIi51IY5ylSsxCYhYSZ+zqsNiJiIh0hMVOpDHOUiVm\nITELiTN2dVjsREREOsJiJ9IYZ6kSs5CYhcQZuzosdiIiIh1hsRNpjLNUiVlIzELijF0dFjsREZGO\nsNiJNMZZqsQsJGYhccauDoudiIhIR1jsRBrjLFViFhKzkDhjV4fFTkREpCMsdiKNcZYqMQuJWUic\nsavDYiciItIRFjuRxjhLlZiFxCwkztjVYbETERHpCIudSGOcpUrMQmIWEmfs6rDYiYiIdITFTqQx\nzlIlZiExC4kzdnVY7ERERDpiEEIIrRdBzx+DwQD+1SOiQgGDBiE9I0PrZVR6B/bsKfO1k8VOmmCx\nExGpV57XTl6KJ9IYZ6kSs5CYhcQs1GGxExER6QgvxZMmeCmeiEg9XoonIiJ6zrDYiTTG+aHELCRm\nITELdVjsREREOsIZO2mCM3YiIvU4YyciInrOsNiJNMb5ocQsJGYhMQt1WOxEREQ6whk7aYIzdiIi\n9ThjJyIies6w2Ik0xvmhxCwkZiExC3VY7ERERDrCGTtpgjN2IiL1OGMnIiJ6zrDYiTTG+aHELCRm\nITELdVjsREREOsIZO2mCM3YiIvU4YyciInrOVNV6AURPQ8CgQUjPyNB6Gb9LZkYGrKyttV5GpcAs\nJGYhMQt1WOykC+kZGRgyfbrWy/hdzsfH40VXV62XUSkwC4lZSMxCOrBnT5n34aV4Io3xBUtiFhKz\nkJiFOix2IiIiHWGxE2nsfHy81kuoNJiFxCwkZqEOi52IiEhHWOxEGuP8UGIWErOQmIU6LHYiIiId\nYbETaYzzQ4lZSMxCYhbqsNiJiIh0hMVOpDHODyVmITELiVmow2InIiLSERY7kcY4P5SYhcQsJGah\nDoudiIhIR1jsRBrj/FBiFhKzkJiFOix2IiIiHWGxE2mM80OJWUjMQmIW6rDYiYiIdITFTqQxzg8l\nZiExC4lZqMNiJyIi0hEWO5HGOD+UmIXELCRmoQ6LnYiISEdY7EQa4/xQYhYSs5CYhTosdiIiIh1h\nsRNpjPNDiVlIzEJiFuqw2ImIiHSExU6kMc4PJWYhMQuJWajDYiciItIRFjuRxjg/lJiFxCwkZqEO\ni52IiEhHWOxEGuP8UGIWErOQmIU6LHYiIiIdYbETaYzzQ4lZSMxCYhbqsNiJiIh0hMVOpDHODyVm\nITELiVmow2InIiLSERY7kcY4P5SYhcQsJGahDoudiIhIR1jsRBrj/FBiFhKzkJiFOix2IiIiHWGx\nE2mM80OJWUjMQmIW6pSr2Ldu3Qqj0Yhz584pt926dQsdOnSAl5cXDh48WOSY8ePHIyEh4emttATu\n7u4YNmzYn/oYf/ZzefDgAYKDg9GqVSt4eXnhpZdewo4dO/60x3sa/P39kZWVhTt37mD58uVaL4eI\niP7HIIQQZd1pyJAhuHfvHjw9PRESEgIA2LRpE3bt2oXVq1cXuf/Dhw9hNP75FwMSEhIwZswY3Lx5\nE6dPn0atWrWe+mNUxHMJDg7GjRs3sGrVKlSrVg03b95EdHQ0Bg8e/Kc+7tOQkpKC/v3749SpU6qO\nMxgMKMdfvXLz6dYNQ6ZPf2rnIyKqjKa+8kqZr51lNlZ2djaOHDmCZcuWISIiAgAQFxeHGTNmICoq\nCp6enrh//z4sLCzw7rvvwt3dHYcOHYKvry9iYmIAADt27ICXlxfc3d3Rs2dPAMDRo0fx0ksvwdPT\nE507d0ZiYiIAYO3atQgMDMQrr7yCVq1aYcaMGSWuLTw8HMOGDUOvXr0QFRWl3O7r64t33nkH7dq1\ng6OjI44dO4aBAweiVatWmD17tnK/DRs2oEOHDvDw8MDEiRPx8OFDAKjQ55Kbm4t//etf+PTTT1Gt\nWjUAQP369ZVSDw8Ph6urK1xcXBAcHKwcZ2FhgenTp8PZ2Rk9e/bE4cOH0bVrV7zwwgvYtm2b8vgB\nAQHo1asXmjdvjmXLluGTTz6Bp6cnOnXqhIyMDCWvwueXlpaG5s2bl7l+BwcHpKenIzg4GElJSfDw\n8MD06dMxatQokz+L4cOH4z//+U+Jf4ZERPR0lVnsUVFR6NOnD5o2bQpbW1vExsbC3d0d77//PoYO\nHYrY2FjUqFEDubm56NixI+Li4tC5c2cYDAYYDAbcunULEyZMwLfffou4uDhERkYCABwdHbF//37E\nxsYiNDQU//d//6c85smTJ/H111/j1KlTiIiIwNWrV4td29dff42goCAEBQUhPDxcud1gMKB69eo4\nduwY3nzzTQwYMAArVqzA6dOnsXbtWmRkZCAhIQFff/01/vvf/+LEiRMwGo346quvAKBCn8uFCxfQ\ntGlTWFhYFHl+165dQ3BwMPbs2YO4uDgcO3ZMKc3c3Fx0794dp0+fhqWlJebMmYPdu3djy5YtmDNn\njnKOM2fOYMuWLTh27BhmzZqF2rVrIzY2Fp06dcL69euVvAwGQ7EZl7T+wmM+/vhjvPDCCzhx4gQW\nLFiAcePGYe3atQCAO3fu4NChQ+jXr1+x56ZHOD+UmIXELCRmoU7Vsu4QHh6Ot99+GwAwePBghIeH\nw9PTE0IIk8sBVapUwaBBg0yOFULg8OHD6NKlC5o1awYAsLKyAgBkZmZi5MiRuHDhAgwGA/Lz85Xj\nunfvDktLSwCAk5MTUlJS0LhxY5NzHz9+HLa2trCzs0P9+vUxevRoZGZmKud/9dVXAQDOzs5wdnZG\ngwYNAAAtWrTApUuXsH//fsTExMDb2xsAcO/ePTRs2FCT51KSY8eOwc/PDzY2NgAevfvdt28fBgwY\nADMzM/Tu3RsA4OLigho1aqBKlSpwdnZGSkqKcg4/Pz+Ym5vD3NwcVlZW6N+/v3JMfDn+sTy5/tTU\nVJP1P3lJqEuXLpg0aRLS0tKwefNm/OUvfylxlDF69Gg4ODgAeJSlu7s7fH19AQB79+4FgHJvZ2Zk\n4Hx8vPJtMYUvBNx+trYLVZb1aLl9JSmpUq1Hy+0rSUmVaj0VuX0+Ph6Hd+4EANj8r8fKUmqx3759\nG3v27MHp06dhMBhQUFAAo9GIhQsXFrlvjRo1in3XV9I7wdmzZ6N79+7YsmULUlNTlRdoAKhevbry\n+ypVqiA/Px9bt25FaGgoDAYDVq9ejfDwcCQkJCiXjbOysrB582a88cYbJucwGo0m5zMajUrxjho1\nCh9++GGFPpeCggKTY1u2bIlLly7h7t27SoE+/niPF6cQQllD4WX7wudkZmZW5Pk9+fiPZ/H4/apW\nraqMIe7fv2+yhuL+LMoycuRIfPnll4iIiFDevRentH2PZ1iebStra5PvdX3y+14r83Zx36NbmdbH\nbW22n9W/z3/Gtt/AgZVqPRX9+vD49g//u7JcmlIvxW/evBkjR45ESkoKkpOTcenSJTg4OGD//v0l\nltzjDAYDOnbsiH379invIgvnullZWWjUqBEA4N///neZ5woICMCJEycQGxsLDw8PREZG4vTp00hO\nTkZycjK2bt1qcjm+rHV1794dmzdvxq1btwA8+iLm0qVLf/pzefIdbq1atTBu3DhMmzYNDx48APDo\nOw42b96M9u3bIzo6Gunp6SgoKMCmTZvQtWvXcj3Hsjy+DgcHBxw/fhzAoz9zNSwtLXH37l2T20aP\nHo3FixfDYDCgTZs2f3yxRERUbqUW+6ZNmzDwia+UBg0apBTo4+VeUtHXq1cPq1atQmBgINzd3TF0\n6FAAwPTp0zFz5kx4enqioKBAOb64ee+T2/v370eTJk2US+cA4OPjg4SEBFy/fr3IscWtzdHRER98\n8AF69eoFNzc39OrVSzm2Ip8LAHzwwQewtbWFk5MTXFxc0L9/f9SpUwcNGzbERx99BD8/P7i7u8Pb\n21u5lF7aeUt6/Cd/X7j97rvvYvny5fD09ER6enqp63+SjY0NOnfuDBcXF+XDdfXr14eTkxPGjBlT\n6rH0COeHErOQmIXELNQp17e7EamRm5sLV1dXnDhxosh4oRC/3U16/LMBzztmITELiVlIT+Xb3YjU\n+Pnnn+H4ih7pAAAOs0lEQVTk5IS33nqrxFInU3zBkpiFxCwkZqFOmZ+KJ1KjR48eJp/KJyKiisV3\n7EQa4/xQYhYSs5CYhTosdiIiIh1hsRNpjPNDiVlIzEJiFuqw2ImIiHSExU6kMc4PJWYhMQuJWajD\nYiciItIRFjuRxjg/lJiFxCwkZqEOi52IiEhHWOxEGuP8UGIWErOQmIU6LHYiIiIdYbETaYzzQ4lZ\nSMxCYhbqsNiJiIh0hMVOpDHODyVmITELiVmow2InIiLSERY7kcY4P5SYhcQsJGahDoudiIhIR1js\nRBrj/FBiFhKzkJiFOix2IiIiHWGxE2mM80OJWUjMQmIW6rDYiYiIdITFTqQxzg8lZiExC4lZqMNi\nJyIi0hEWO5HGOD+UmIXELCRmoQ6LnYiISEdY7EQa4/xQYhYSs5CYhTosdiIiIh1hsRNpjPNDiVlI\nzEJiFuqw2ImIiHSExU6kMc4PJWYhMQuJWajDYiciItIRFjuRxjg/lJiFxCwkZqEOi52IiEhHWOxE\nGuP8UGIWErOQmIU6LHYiIiIdYbETaYzzQ4lZSMxCYhbqsNiJiIh0hMVOpDHODyVmITELiVmow2In\nIiLSEYMQQmi9CHr+GAwGPM2/egGDBiE9I+OpnY+IqDI6sGdPma+dLHbSxNMudiKi50F5Xjt5KZ5I\nY3v37tV6CZUGs5CYhcQs1GGxExER6QgvxZMmeCmeiEg9XoonIiJ6zrDYiTTG+aHELCRmITELdVjs\nRBqLi4vTegmVBrOQmIXELNRhsRNpLDMzU+slVBrMQmIWErNQh8VORESkIyx2Io2lpKRovYRKg1lI\nzEJiFurw291IE+7u7jh58qTWyyAieqa4ubmV+ZkDFjsREZGO8FI8ERGRjrDYiYiIdITFThUmMjIS\nbdu2RZUqVRAbG2uyb/78+XjxxRfRpk0b/PTTTxqtUBtHjx5F+/bt4eHhgXbt2uHYsWNaL0lTn376\nKRwdHeHs7IwZM2ZovRzNhYWFwWg04vbt21ovRTPvvfceHB0d4ebmhsDAQNy5c0frJVW4HTt2oE2b\nNnjxxRfx8ccfl35nQVRBEhISxLlz54Svr6+IiYlRbj9z5oxwc3MTeXl5Ijk5WbzwwguioKBAw5VW\nrK5du4odO3YIIYTYvn278PX11XhF2tm9e7fo0aOHyMvLE0IIcfPmTY1XpK1Lly6J3r17CwcHB5Ge\nnq71cjTz008/Ka8JM2bMEDNmzNB4RRUrPz9fvPDCCyI5OVnk5eUJNzc3cfbs2RLvz3fsVGHatGmD\nVq1aFbk9KioKw4YNQ7Vq1eDg4ICWLVvi6NGjGqxQG3Z2dso7kMzMTDRu3FjjFWln+fLlmDlzJqpV\nqwYAsLW11XhF2nrnnXewYMECrZehuZ49e8JofFRXHTp0wJUrVzReUcU6evQoWrZsCQcHB1SrVg1D\nhw5FVFRUifdnsZPmrl27hiZNmijbTZo0wdWrVzVcUcX66KOP8Pe//x1NmzbFe++9h/nz52u9JM2c\nP38e+/btQ8eOHeHr64vjx49rvSTNREVFoUmTJnB1ddV6KZXKF198gb59+2q9jAp19epV2NvbK9tl\nvUZWrYhF0fOjZ8+euH79epHbP/zwQ/Tv37/c5zEYDE9zWZorKZd58+Zh6dKlWLp0KQYOHIjIyEiM\nHTsWO3fu1GCVFaO0LPLz85GRkYHDhw/j2LFjCAoKwsWLFzVYZcUoLYv58+ebfN5E6Pw7k8vz2jFv\n3jyYmZnhtddeq+jlaUrt6yGLnZ6q31NIjRs3xuXLl5XtK1eu6O5ydGm5vP766/j5558BAH/5y1/w\nxhtvVNSyNFFaFsuXL0dgYCAAoF27djAajUhPT4eNjU1FLa9ClZTF6dOnkZycDDc3NwCP/k14eXnh\n6NGjqF+/fkUuscKU9dqxdu1abN++Hbt27aqgFVUeT75GXr582eQq55N4KZ408fi7j1dffRWbNm1C\nXl4ekpOTcf78ebRv317D1VWsli1bIjo6GgCwe/fuYj+H8LwICAjA7t27AQCJiYnIy8vTbamXxtnZ\nGTdu3EBycjKSk5PRpEkTxMbG6rbUy7Jjxw4sXLgQUVFRqFGjhtbLqXDe3t44f/48UlJSkJeXh4iI\nCLz66qsl3p/v2KnCbNmyBW+99RbS0tLg7+8PDw8P/PDDD3ByckJQUBCcnJxQtWpVfP7557q7FF+a\nVatWYfLkyfjtt99Qs2ZNrFq1SuslaWbs2LEYO3YsXFxcYGZmhvXr12u9pErhefr3UJypU6ciLy8P\nPXv2BAB06tQJn3/+ucarqjhVq1bFsmXL0Lt3bxQUFGDcuHFwdHQs8f78L2WJiIh0hJfiiYiIdITF\nTkREpCMsdiIiIh1hsRMREekIi52IiEhHWOxEREQ6wmInIlWqVKkCDw8PuLi4ICgoCPfu3Xuq5/f1\n9UVMTEyp91m8eLHJ4/r7+yMrK+upPP769evh4uICV1dXeHp6IiwsrNzrqig3b96Ev78/AODgwYNw\nc3NDu3btcOHCBQCPfphQ7969TY7p3r077t69W+FrpYrHYiciVWrVqoUTJ07g1KlTMDMzw4oVK57q\n+Q0GQ5n/IcuSJUuQm5urbH///feoXbv2H37sH374AUuWLMHOnTsRHx+Pw4cPw8rKSllXZbFs2TKM\nHj0aALBo0SL88MMPWLx4sfJn8cEHH2DWrFkmxwwdOhSrV6+u6KWSBljsRPS7vfzyy7hw4QIyMjIQ\nEBAANzc3dOrUCadOnQIAhISEYMSIEXjppZfQqlUr/Otf/wIA7N271+SHAk2ZMgXr1q0rcv5Jkyah\nXbt2cHZ2RkhICABg6dKluHbtGvz8/NC9e3cAgIODA27fvg3gUdG5uLjAxcUFS5YsAQCkpKTA0dER\nEyZMgLOzM3r37o379+8Xebz58+cjLCwMDRs2BACYmZlh3Lhxyv7IyEh06NABrVu3xoEDB5Rzd+nS\nBV5eXvDy8sKhQ4eU5+jr64vBgwfD0dERr7/+unKe7du3w9HREd7e3njrrbeULHJycjB27Fh06NAB\nnp6e+M9//lNs7ps3b1besVerVg05OTnIycmBmZkZkpKScOXKFXTp0sXkmML/upmeAxX0c+KJSCcs\nLCyEEEI8ePBADBgwQKxYsUJMmTJFvP/++0IIIXbv3i3c3d2FEELMnTtXuLu7i/v374u0tDRhb28v\nrl27Jvbs2SP69eunnHPKlCli3bp1QgghfH19RUxMjBBCiNu3bwshhMjPzxe+vr7i1KlTQgghHBwc\nRHp6unJ84fbx48eFi4uLyM3NFdnZ2aJt27bixIkTIjk5WVStWlWcPHlSCCFEUFCQ2LBhQ5HnVrdu\nXZGVlVXs8/b19RXvvvuuEEKI7du3ix49egghhMjNzRX3798XQgiRmJgovL29hRBC7NmzR9SpU0dc\nvXpVPHz4UHTq1EkcPHhQ3Lt3T9jb24uUlBQhhBDDhg0T/fv3F0IIMXPmTGVdGRkZolWrViInJ8dk\nHb/++qtwdnZWtuPi4kTHjh1Ft27dxJUrV8TQoUPFhQsXin0OzZs3F9nZ2cXuI/3gO3YiUuXevXvw\n8PBAu3bt0KxZM4wdOxYHDx7EiBEjAAB+fn5IT0/H3bt3YTAYMGDAAFSvXh02Njbw8/PD0aNHy31Z\nOyIiAl5eXvD09MSZM2dw9uzZEu8rhMCBAwcQGBiImjVrwtzcHIGBgdi/fz8MBgOaN2+u/GxzLy8v\npKSkqH7uhT95ztPTUzk+Ly8Pb7zxBlxdXREUFISEhATl/u3bt0ejRo1gMBjg7u6O5ORk/PLLL2jR\nogWaNWsGABg2bJjyQ5F++uknfPTRR/Dw8ICfnx9+++03k5/qBQCpqamws7NTtt3c3HDo0CHs2rUL\nSUlJaNSoER4+fIghQ4ZgxIgRuHnzpnLfBg0aFDkf6Q9/CAwRqVKzZk2cOHGiyO2inD92wmg0omrV\nqnj48KFyW3EfwEtOTkZYWBiOHz+OOnXqYMyYMcVePn+cwWAwWYcQQvkionr16srtVapUKfYx27Zt\ni+PHj8PPz6/Y8xeeo0qVKsjPzwcA/POf/4SdnR2+/PJLFBQUmPz0sScfMz8/v8gXNU/m9u233+LF\nF18s9XkWl7UQAvPmzcOmTZswdepUfPLJJ0hOTsbSpUvxwQcfKPepTJ8VoD8H37ET0R/m4+ODr776\nCsCj2bKtrS0sLS0hhEBUVBR+++03pKenY+/evWjXrh2aNm2Ks2fPIi8vD5mZmcqPan1cVlYWzM3N\nUbt2bdy4cQM//PCDss/S0rLIp+ANBgN8fHywdetW3Lt3Dzk5Odi6dSt8fHzK/UXHzJkz8d577+HG\njRsAHr0bX7NmTanHZGVlKTP59evXo6CgoMT7GgwGtG7dGhcvXkRqaiqAR1clCsu2d+/eWLp0qXL/\n4r6AatasGa5fv17k9vXr18Pf3x/W1tbIzc1VPoT4+IcMb9y4UerP8SZ94Dt2IlKluHd8ISEhGDt2\nLNzc3GBubq58EM5gMMDV1RV+fn5IS0vDnDlzlBIMCgqCs7MzmjdvDk9PzyLndHNzg4eHB9q0aQN7\ne3u8/PLLyr4JEyagT58+aNy4MXbt2qXc7uHhgdGjR6N9+/YAgPHjx8PNzQ0pKSlF1l3c83jllVdw\n48YN9OjRQ3l3+/iH54o7ftKkSRg0aBDWr1+PPn36wMLCotTHqFGjBj7//HP06dMH5ubmaNeunXK/\n2bNn429/+xtcXV3x8OFDtGjRosgH6Bo2bIj8/Hzk5OTA3NwcAJCbm4t169Zh586dAIB33nkHffv2\nRfXq1bFx40YAwPXr12FjY6McQ/rFH9tKRH+a0NBQWFhY4O9//7vWS6lUHi/lyZMno1WrVpg2bVq5\njw8JCYGjoyOGDBlS7mNWrVqFnJwcvP3226rXS88WXoonoj8VZ7pFrV69Gh4eHmjbti2ysrLw17/+\nVdXxkydPLvbbA0sTERGB8ePHqzqGnk18x05ERKQjfMdORESkIyx2IiIiHWGxExER6QiLnYiISEdY\n7ERERDrCYiciItKR/wdT9pF+qkqX1wAAAABJRU5ErkJggg==\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x108f8d710>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 177 | |
| }, | |
| { | |
| "cell_type": "heading", | |
| "level": 2, | |
| "metadata": {}, | |
| "source": [ | |
| "Demographic Changes in Oakland of White, Asian, and Hispanic Communities" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#change in White population between 2000 and 2010\n", | |
| "white_total_change = o_towns_2010_new.ix[['53000']]['White, not Hispanic'] - \\\n", | |
| "o_towns_2000_new.ix[['53000']]['White, not Hispanic']\n", | |
| "\n", | |
| "white_total_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 44, | |
| "text": [ | |
| "53000 -688\n", | |
| "Name: White, not Hispanic, dtype: int64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 44 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#change in Asian population between 2000 and 2010\n", | |
| "asian_total_change = o_towns_2010_new.ix[['53000']]['Asian, not Hispanic'] - \\\n", | |
| "o_towns_2000_new.ix[['53000']]['Asian, not Hispanic']\n", | |
| "\n", | |
| "asian_total_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 45, | |
| "text": [ | |
| "53000 -140\n", | |
| "Name: Asian, not Hispanic, dtype: int64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 45 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#change in Hispanic population between 2000 and 2010\n", | |
| "hisp_total_change = o_towns_2010_new.ix[['53000']]['Hispanic'] - \\\n", | |
| "o_towns_2000_new.ix[['53000']]['Hispanic']\n", | |
| "\n", | |
| "hisp_total_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 46, | |
| "text": [ | |
| "53000 11601\n", | |
| "Name: Hispanic, dtype: int64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 46 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "All Oakland Total Change of Each Community in Numbers" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#compare total numbers for each demographic group changing in Oakland over 10 year period\n", | |
| "all_race_changes = [af_am_total_change, asian_total_change, hisp_total_change, white_total_change]\n", | |
| "\n", | |
| "\n", | |
| "diff_df = DataFrame(all_race_changes)\n", | |
| "diff_df.rename(columns={'53000': 'Oakland'}, inplace=True)\n", | |
| "diff_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Oakland</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <td>-39873</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <td> -140</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Hispanic</th>\n", | |
| " <td> 11601</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " <td> -688</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>4 rows \u00d7 1 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 162, | |
| "text": [ | |
| " Oakland\n", | |
| "African-American, not Hispanic -39873\n", | |
| "Asian, not Hispanic -140\n", | |
| "Hispanic 11601\n", | |
| "White, not Hispanic -688\n", | |
| "\n", | |
| "[4 rows x 1 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 162 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Percentage of Asians in 2000\n", | |
| "asian_percent_2000 = o_towns_2000_new.ix[['53000']]['Asian, not Hispanic']\\\n", | |
| "/o_towns_2000_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "#Percentage of Asians in 2010\n", | |
| "asian_percent_2010 = o_towns_2010_new.ix[['53000']]['Asian, not Hispanic']\\\n", | |
| "/o_towns_2010_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "#less than 1% increase in percentage of Asian community in ten year span\n", | |
| "asian_percent_change = asian_percent_2010 - asian_percent_2000 \n", | |
| "asian_percent_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 57, | |
| "text": [ | |
| "53000 0.003305\n", | |
| "dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 57 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Percentage of Hispanics in 2000\n", | |
| "hispanic_percent_2000 = o_towns_2000_new.ix[['53000']]['Hispanic']\\\n", | |
| "/o_towns_2000_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "#Percentage of Hispanics in 2010\n", | |
| "hispanic_percent_2010 = o_towns_2010_new.ix[['53000']]['Hispanic']\\\n", | |
| "/o_towns_2010_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "#3% increase in percentage of Hispanic community in ten year span\n", | |
| "hispanic_percent_change = hispanic_percent_2010 - hispanic_percent_2000 \n", | |
| "hispanic_percent_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 58, | |
| "text": [ | |
| "53000 0.0346\n", | |
| "dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 58 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Percentage of Whites in 2000\n", | |
| "white_percent_2000 = o_towns_2000_new.ix[['53000']]['White, not Hispanic']\\\n", | |
| "/o_towns_2000_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "#Percentage of Whites in 2010\n", | |
| "white_percent_2010 = o_towns_2010_new.ix[['53000']]['White, not Hispanic']\\\n", | |
| "/o_towns_2010_new.ix[['53000']]['Total Pop']\n", | |
| "\n", | |
| "#9.4% decrease in percentage of White community in ten year span\n", | |
| "white_percent_change = white_percent_2010 - white_percent_2000 \n", | |
| "white_percent_change" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 67, | |
| "text": [ | |
| "pandas.core.series.Series" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 67 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "changes_over_time = {\"Hispanic\": Series([hispanic_percent_2000[0], hispanic_percent_2010[0]], index=['2000','2010']),\\\n", | |
| " \"Asian\": Series([asian_percent_2000[0], asian_percent_2010[0]], index=['2000','2010']),\\\n", | |
| " \"African-American\": Series([af_am_percent_2000[0], af_am_percent_2010[0]], index=['2000','2010']),\\\n", | |
| " \"White\": Series([white_percent_2000[0], white_percent_2010[0]], index=['2000','2010'])}\n", | |
| " \n", | |
| " \n", | |
| "race_perc_df = DataFrame(changes_over_time)\n", | |
| "race_perc_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>African-American</th>\n", | |
| " <th>Asian</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2000</th>\n", | |
| " <td> 0.366748</td>\n", | |
| " <td> 0.163378</td>\n", | |
| " <td> 0.21895</td>\n", | |
| " <td> 0.255319</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2010</th>\n", | |
| " <td> 0.272922</td>\n", | |
| " <td> 0.166683</td>\n", | |
| " <td> 0.25355</td>\n", | |
| " <td> 0.259283</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>2 rows \u00d7 4 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 88, | |
| "text": [ | |
| " African-American Asian Hispanic White\n", | |
| "2000 0.366748 0.163378 0.21895 0.255319\n", | |
| "2010 0.272922 0.166683 0.25355 0.259283\n", | |
| "\n", | |
| "[2 rows x 4 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 88 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "race_perc_df.ix['2000']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 89, | |
| "text": [ | |
| "African-American 0.366748\n", | |
| "Asian 0.163378\n", | |
| "Hispanic 0.218950\n", | |
| "White 0.255319\n", | |
| "Name: 2000, dtype: float64" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 89 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "race_perc_df.columns\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 91, | |
| "text": [ | |
| "Index([u'African-American', u'Asian', u'Hispanic', u'White'], dtype='object')" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 91 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#http://matplotlib.org/examples/api/barchart_demo.html\n", | |
| "\n", | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "N = 4\n", | |
| "\n", | |
| "#x locations for the groups, width of the bars\n", | |
| "ind = np.arange(N)\n", | |
| "width = 0.3 \n", | |
| "\n", | |
| "perc_00 = race_perc_df.ix['2000']*100\n", | |
| "fig, ax = plt.subplots()\n", | |
| "rects1 = ax.bar(ind, perc_00, width, edgecolor='#ede5e5', facecolor='#b04c4c', align='center')\n", | |
| "\n", | |
| "perc_10 = race_perc_df.ix['2010']*100\n", | |
| "rects2 = ax.bar(ind+width, perc_10, width, edgecolor='#e5eeee', facecolor='#99bbbb', align='center')\n", | |
| "\n", | |
| "# add labeling\n", | |
| "ax.set_ylabel('Percent')\n", | |
| "ax.set_title('Percent of Total Population by Census Categories for Race/Ethnicity')\n", | |
| "ax.set_xticks(ind+width)\n", | |
| "ax.set_xticklabels(race_perc_df.columns)\n", | |
| "ax.legend( (rects1[0], rects2[0]), ('2000', '2010') )\n", | |
| "\n", | |
| "\n", | |
| "def autolabel(rects):\n", | |
| " # attach some text labels\n", | |
| " for rect in rects:\n", | |
| " height = rect.get_height()\n", | |
| " ax.text(rect.get_x()+rect.get_width()/2., 1.025*height, '%d'%int(height),\n", | |
| " ha='center', va='bottom')\n", | |
| "\n", | |
| "autolabel(rects1)\n", | |
| "autolabel(rects2)\n", | |
| "\n", | |
| "plt.show()\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEKCAYAAAC/hjrSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFHf+P/DXgIAiSJEmUo1HRAHBRrGtIWhOxWCJiopY\nUONFfyaai5rEuCRGTaJJLPleNGesd9gL1pwixB5jgYgl2AAVVBAQUBB2ef/+4JhjYZeywg7I+/l4\n8HiwOzOfeX+mvWdm5zMfgYgIjDHGmIT0pA6AMcYY42TEGGNMcpyMGGOMSY6TEWOMMclxMmKMMSY5\nTkaMMcYk1+STUUFBAYKDg2Fubo5Ro0ZJEsOECROwYMECSeatTnJyMvT09FBSUqLV9EuWLMGUKVPq\nOCpgw4YN6N27d52Xy3Tr5MmT6NChQ52X+49//AO2trZo1aoVsrOz67z8xiAuLg6Ojo5aT29qaork\n5OQqx0lNTYWpqSnqulVQtcnIxcUFxsbGMDU1hZ2dHSZOnIhnz57VaRAvQy6XIywsTOvpd+7ciceP\nHyMrKwvbtm1TGfbuu+/C1NQUpqamMDIygqGhofh50KBBGst0cXHB8ePHaxyDIAgQBEHtsA0bNkBf\nXx+mpqYwMzODj48PDh48WOOy65u6jX/+/Pn46aefJIqo5n755Rf06dMHrVq1go2NDWQyGfbv3y91\nWDVSVFQEuVwONzc3mJiYwNXVFZMnT0ZKSkq1077sAetl9e7dGzdu3KjTMouLizFnzhzExMQgNzcX\nFhYWL11mxWNfWFgYcnNz6yDa6g0YMABHjx6FXC6HgYGBeNwxNTWFpaWlOJ6enh7u3LlTZ/PNy8uD\ni4tLleM4OTkhLy9PPGbJZDKsW7fupeddbTISBAEHDhxAXl4eLl26hAsXLmDRokW1mgkR1XkWrSsp\nKSlwc3ODnl7lRfHjjz8iLy8PeXl5+PjjjzF69Gjxc1UJQRCEWte3qvF79uyJvLw85OTkYPLkyRg5\nciSePn1aq/KZqp07d2LkyJGYMGECHjx4gMePH+Pzzz9vNMloxIgROHDgAKKiopCbm4uEhAR069YN\nMTExUodWJYVCUS/lPnz4EIWFhXB3d6/1tJqOT+WPfQkJCbhy5Uqtj33aePbsGS5evAiZTAYACA0N\nFY87eXl5yMrKqhS/lDSdSNcaVcPFxYViYmLEzx9++CENHjyYiIjOnj1L/v7+ZG5uTp07d6a4uDhx\nvL59+9Inn3xCAQEB1KJFC7p9+zYlJibSm2++SZaWlmRra0uLFy8mIiKlUklLliyh1157jVq3bk0j\nR46krKwsIiK6e/cuCYJAGzduJCcnJ7KysqIvv/ySiIgOHz5MhoaGZGBgQCYmJuTt7a22DteuXaO+\nffuSubk5derUiaKjo4mI6LPPPlOZ/ueff9a4HBYuXEjjxo0TP+/bt486duxI5ubmJJPJ6Pr160RE\nNG7cONLT06MWLVqQiYkJffPNN0RENGLECLKzsyMzMzPq06cPXb16VSxrwoQJ9Omnn6qd7/r166lX\nr17i5/z8fBIEgS5evEg5OTkUFhZG1tbW5OzsTIsWLaKSkhJxuoCAAJoxYwaZmZlRhw4dVNajs7Mz\nHTt2TG39ypa5UqkkIqKff/6Z3N3dydTUlNq1a0dr1qwRY2nevDnp6emRiYkJmZqaUlpaWo2XVVkc\ny5YtIy8vLzIzM6NRo0ZRYWGhxmXRs2dPtXXavn07de3aVWX85cuX09tvv12pnJKSEnJ0dKRly5ap\nnU+ZdevWkbu7O1lYWNCAAQMoJSVFHCYIAv3444/0l7/8hczNzem9994Th928eZP69OlDZmZmZGVl\nRaNGjVK7XIlK95N//vOfVU5X0dGjR6lFixZ0//59jbHXZp2lp6dTSUmJxn2QiMT9r3Xr1vTFF1+o\nbD+FhYU0a9Yssre3J3t7e3r//ffpxYsXREQUGxtLbdu2pa+++ors7Oxo/PjxFBsbSw4ODmLZDx48\noGHDhpG1tTW5urrSypUrxWG//fYbde3alVq1akW2trY0e/bsSnX9888/qWXLliQIApmYmFBgYCAR\nEZ0+fZq6detGZmZm1L17dzpz5ozKcq94fKqo4rHv73//Ow0cOFD8XLa8TE1NqWPHjrRnzx6V6deu\nXSuug44dO9KlS5eqrS9R6f5Stt1W3JfK6927NwmCQC1btiQTExPavn27uGyXL19ONjY21KZNG1q/\nfr04TXh4OP3tb3+jQYMGkampKfn6+qrUXRAE8fPz589p9uzZ5OzsTGZmZtSrVy8qLCwUt2OFQkEf\nf/wx6evrU/PmzcnExIRmzJhB7733Hs2ZM0cl1uDgYPruu+/U1qNMjZJR2UaXmppKnTp1os8++4zu\n379PrVu3psOHDxNR6Q7SunVryszMJKLSle3s7EzXrl0jpVJJubm5ZGdnR99++y29ePGC8vLy6Lff\nfiMiou+//578/f3pwYMHVFRURNOmTaPQ0FAi+t8OPHXqVCosLKSEhAQyMjKiGzduEBGRXC6nsLAw\njfEXFRXRa6+9RkuWLKHi4mI6fvw4mZqa0p9//lmj6cuU3yjKNv5jx46RQqGgr7/+mtq3b0/FxcXi\nMiu/EROVHkjz8/OpqKiI3n//fZXEWdNkVFxcTN9//z21atWKnj59SmFhYRQSEkL5+fmUnJxMbm5u\ntG7dOnG6Zs2a0ffff08KhYK2bdtGZmZmlJ2drTZGuVyuMRkdPHiQ7ty5Q0REv/76KxkbG4s7Vlxc\nnMqBpWJZNVlWvr6+lJ6eTllZWeTu7k4//vijxmWhqU6FhYVkaWmpkui8vb1p9+7dlcq5fv06CYJA\nycnJaudDRLR3715q37493bhxg5RKJS1atIgCAgLE4YIgUHBwMD19+pRSU1PJ2tqafvnlFyIiGj16\ntHii9eLFCzp9+rTa5UpEJJPJxHWmabqK5s6dSzKZTGPsRLVfZ1Xtg1evXiUTExM6ffo0FRUV0Ycf\nfkgGBgbi9rNgwQLy9/enjIwMysjIoICAAFqwYAERlSajZs2a0bx586ioqIgKCgpUkpFSqaQuXbrQ\nF198QcXFxXTnzh1q166duCz9/Pxoy5YtRET07NkzOnfunNr6JicnqyzbJ0+ekLm5OW3ZsoWUSiVF\nRUWRhYWFmGArHp/Ktsfyyh/77t27R56enhQZGSkO37FjB6WnpxMR0bZt26hly5b08OFDIio9OWrb\nti1duHCBiIhu3bpFKSkp1daXiGjatGm0du1aIqo6GRGpJo/yy3vhwoWkUCjo0KFDZGxsTDk5OURU\nmoxat25Nv//+OykUCho7diyNHj1abXl/+9vfqF+/fpSWlkZKpZLOnj1LL168qLQdl9+GiYjOnz9P\n9vb24olxRkYGGRsb0+PHjzXWg6gGycjZ2ZlMTEzI3NycnJ2d6b333qOCggJaunRppYP4gAEDaOPG\njWKACxcuFIf9+9//pi5duqidh7u7u8qBMS0tjQwMDEipVIoVf/DggTi8R48etG3bNiKqfmWdOHGC\n7OzsVL4LDQ0luVxeo+nLlB/v888/VzlrLSkpobZt29Kvv/5KROqTUXnZ2dkkCALl5uYSUfXJqFmz\nZmRubk5WVlbk7+9PMTExpFAoyNDQUOXgu2bNGvEgtX79erK3t1cpq0ePHuKOXTHGqq6MKgoJCaEV\nK1YQEVU6y9VmWf3rX/8Sh3/00Uf07rvvalwW6uq0efNmIiJ699136ZNPPiEiosTERLKwsKCioqJK\n5Zw6dYoEQRDP3tV56623VHYwpVJJxsbGlJqaSkSlO235ZDFy5Ej66quviIho/PjxNHXq1EpXLtUl\nI03TVRQREaFyAKmJ6taZpn1QoVBQZGQkjRkzRhz2/PlzMjQ0FMd/7bXXxJNSIqJffvmFXFxcxHkZ\nGhqqLOvy8z937hw5OTmpxLJ48WKaOHEiERH16dOHFi5cSBkZGVXWr+Ky3bRpE/n6+qqM4+/vTxs2\nbCCiyscndcqOfaampiQIAoWEhGjcJ4hKT37K7rr079+/0hVPTepLROTk5CRuAwsXLiRDQ0MyNzcX\n/9544w1xXHXJqEWLFipx2tjYiCf+4eHhNGXKFHHYoUOHqEOHDpXKUyqV1KJFC/rjjz8q1UFdMiq7\nui/j7u5OR48eJSKiVatW0aBBg9Qus/Jq9JvRvn37kJ2djeTkZKxevRrNmzdHSkoKduzYAQsLC/Hv\n9OnTePjwoTht+R9J7927h3bt2qmdR3JyMoYOHSqW07FjRzRr1gyPHj0Sx7GzsxP/NzY2Rn5+fo1u\nQ6alpVX6sdbZ2RkPHjyo0fSaynRychI/C4IAR0dHjWWWlJRg3rx5aN++PczMzODq6goAyMzMrNH8\n/Pz8kJ2djYyMDJw5cwZvvPEGMjMzUVxcDGdnZ3E8JycnlRjatm2rUo6zszPS0tJqXM8yhw8fhp+f\nH1q3bg0LCwscOnQIT548qdG0NVlW5ddtixYtqly36uqUnp4OAAgPD8e///1vAMDmzZsxatQoGBgY\nVCqjdevWACBOp05KSgpmzZolbpNl02iK29jYGHl5eQCAr7/+GkSEHj16wMPDA+vXr9c4n/JqOp2V\nlVWVsQO1X2dV7YPp6elwcHAQx23RooW4PIDSdVxxOyy/nVlbW8PQ0FDtfFNSUpCWlqZyHFmyZAke\nP34MAFi3bh2SkpLg7u6OHj161PjhnYrbHVB5+6/uIY6yY19ubi7i4uJw/PhxXLhwQRy+adMm+Pj4\niHEnJiaK+/T9+/fx2muv1bq+V65cgZmZmcp2PmrUKGRnZ4t/1f0u2Lp1a5XfwMsfLwVBgK2trThM\n0/6WmZmJwsJCtXVQp+LvRuPHj8eWLVsAAFu2bKnRQ2ZaP9rt5OSEsLAwlYWUl5eHjz76SG2ATk5O\nGp/6cHJywpEjR1TKev78Odq0aVNtHNX9eGZvb4979+6p/MiXkpKisnPVVtu2bVWeWiIi3Lt3T9yA\nKsb0r3/9C9HR0YiJicHTp09x9+5dcTptWVlZwcDAQOUxzNTUVJV6VUyOKSkpsLe3BwC0bNlS5anI\n8icR5b148QLDhw/HRx99hMePHyM7OxsDBw4UY69u+Ve3rCqqrryq6uTn5wdDQ0OcOHECUVFRGneA\n119/HY6Ojti5c6fG+Tg5OWHt2rUq2+SzZ8/g5+dXZXwAYGtri7Vr1+LBgwdYs2YN/va3v+HOnTto\n2bIlAOD58+fiuOWXu6bpKnrzzTdx/vx5jSc/2qwzTfugvb092rRpg/v374vjFhQUqCQ2e3v7Stth\n2TrRNL8yjo6OcHV1VZlvbm4uDhw4AABo3749/v3vfyMjIwNz587FiBEjUFBQoLG8MhW3O6B0Wym/\n3dXmh/c+ffpg5syZmDt3rljW1KlT8cMPPyArKwvZ2dnw8PAQl7GjoyNu3bpVqRwnJ6cq63vo0CGV\nJ3W1eRiqLlhZWaF58+Zq61CRuuU4btw47Nu3DwkJCbhx4wZCQkKqLUfrZDRu3Djs378f//nPf6BU\nKlFYWIi4uDiVHaT8Qhw8eDDS09OxYsUKvHjxAnl5eTh//jyA0keoP/74Y6SmpgIAMjIyEB0dXaM4\n7OzskJycrHGF+fn5wdjYGF9//TWKi4sRFxeHAwcOYPTo0dpWHe+88w4OHjyI48ePo7i4GMuXL0fz\n5s0REBAAoPSgcvv2bXH8/Px8GBkZwdLSEs+ePcPHH3+sUp42G5u+vj5GjhyJTz75BPn5+UhJScF3\n332HcePGieM8fvwYK1euRHFxMXbs2IEbN25g4MCBAABvb29s3boVCoUCFy5cwK5du9RuVEVFRSgq\nKoKVlRX09PRw+PBh/Oc//xGH29ra4smTJxofea1uWVVU3bKoWKc///xTrBMAhIWFYcaMGTA0NNQ4\nD0EQ8O233+KLL77Ahg0bkJubi5KSEpw6dQrTpk0DULpNLl68GNeuXQMAPH36FDt27NAYV/m4d+zY\nIR68zc3NIQgC9PT0YG1tjbZt22Lz5s1QKpX4+eefVbYTTdNVFBgYiKCgIAwdOhSXLl2CQqFAXl4e\nfvzxR6xfvx7FxcW1XmdV7YMjRozA/v37cfbsWfGR8vL1DQ0NxaJFi5CZmYnMzEx8/vnnNW5u0aNH\nD5iamuLrr79GQUEBlEolEhMTxSuQLVu2ICMjAwBgZmamcZlUNHDgQCQlJSEqKgoKhQLbtm3DjRs3\nMHjwYHGc2u5377//Ps6fP4/ffvsNz549gyAIsLKyQklJCdavX4/ExERx3IiICCxbtgyXLl0CEeHW\nrVtITU2ttr6HDx9WSUbVxVjxWFOdmtZZT08PkyZNwuzZs5Geng6lUimu/5rE4ODggG7dumH8+PEY\nMWIEjIyMqp9nzapQmYODA/bt24fFixfDxsYGTk5OWL58uUplyx/cTExMcPToUezfvx9t2rSBm5sb\n4uLiAACzZs3CkCFD0L9/f7Rq1Qr+/v5ioqpYTkXvvPMOgNJL027dulUabmBggP379+Pw4cOwtrbG\njBkzsHnzZri5uYll1+QMqfx4r7/+OrZs2YKZM2fC2toaBw8exP79+9GsWTMApe1sFi1aBAsLC3z7\n7bcYP348nJ2d0bZtW3h4eMDf319lnlXFUNWwVatWoWXLlmjXrh169+6NsWPHYuLEieJwX19f3Lx5\nE9bW1liwYAF27doltr/44osvcPv2bVhYWEAul2Ps2LGV5guUNoJbuXIlRo4cCUtLS0RFReHtt98W\nx+vQoQNCQ0PRrl07WFpaIj09vVbLqjb1FQQBfn5+KnXauXOnSpuSsLAwXL16VSUpqzN8+HBs27YN\nP//8M9q2bQs7Ozt89tln4hlcSEgI5s6di9GjR8PMzAyenp745ZdfKi0fdXFfuHABfn5+MDU1xdtv\nv42VK1eKbTd++uknfPPNN7CyssK1a9fQs2dPsYyqpqto586dGDhwIEaNGgVzc3N4enri0qVLCAoK\ngomJSa3W2cOHD6vcBzt27IhVq1Zh9OjRsLe3h6mpKWxsbMQDzKeffopu3brBy8sLXl5e6NatGz79\n9FONy6r8d/r6+jhw4ADi4+PRrl07WFtbY+rUqWKi/OWXX+Dh4QFTU1N88MEH2Lp1q8YDW/n5WFpa\n4sCBA1i+fDmsrKywbNkyHDhwQKWNTm0fSbayskJ4eDi++uordOzYEXPmzIG/vz/s7OyQmJiIXr16\nieOOGDECn3zyCcaMGYNWrVph2LBhyM7Ohp6ensb65uTk4Nq1ayonUYIgYNu2bSrtjFq1aiXeDpTL\n5QgPD4eFhQV27txZ7fFM3fCKx6Iyy5Ytg6enJ7p3747WrVtj/vz5aq+uZ82ahZ07d8LS0hLvv/++\n+H14eDiuXLlS4xMTgSS4BlQqlejWrRscHBywf/9+ZGVlYdSoUUhJSYGLiwu2b98Oc3NzXYf1Stmw\nYQPWrVuHkydPSh2KThUUFMDW1haXL1+u8f1uVjv5+fmwsLDArVu3VH4rYi9n+/bt2L17N7Zu3Sp1\nKHXi5MmTGDduXI0aYgMSvQ5oxYoV6Nixo5hdly5diqCgICQlJSEwMBBLly6VIiz2CvjHP/6BHj16\ncCKqY/v378fz58/x7NkzfPjhh/Dy8uJEVMcsLCzwwQcfSB1GnSguLsb3339fq9eC6TwZ3b9/H4cO\nHUJERIR4yRcdHY3w8HAApZd2e/fu1XVYr5ya3n58lbi4uGDVqlVYvny51KG8cqKjo9G2bVu0bdsW\nt2/ffmXO3huSoKAg+Pr6Sh3GS7t+/TosLCzw6NEjldt21dH5bbp33nkHH3/8MXJzc7Fs2TLs378f\nFhYW4osNiQiWlpZN9kWHjDHWFOn0yujAgQOwsbGBj4+Pxqc6muIZPWOMNXXqH2mqJ2fOnEF0dDQO\nHTqEwsJC5ObmIiwsDLa2tnj48CHs7OyQnp4OGxubStN6e3sjISFBl+Eyxlij17lzZ8THx0sdRvWq\nfUdDPYmLixNfuPr3v/+dli5dSkSlLx+cO3dupfElDLXBqe41Jqx2eHnWHV6WdasulmdjOXZK2rle\n2e24efPm4ejRo3Bzc8Px48cxb948KcNijDGmYzq9TVde37590bdvXwClDdSOHTsmVSiMMcYk1uS7\nHddWYWEhfH194e3tjY4dO2L+/PnisFWrVsHd3R0eHh7iu6zqUlmnW6xu8PKsO7ws61ZTWp6SvIFB\nG1K9MLAqz58/h7GxMRQKBXr16oVly5ahuLgYixcvxqFDh2BgYICMjAxYW1tLHSpjrIlqiMdOdSS7\nTfcqMDY2BlD6MlGlUgkLCwt8/vnnmD9/vth1AScixuoGtz+smoWFRaUuyRsTvk33EkpKSuDt7Q1b\nW1v069cPnTp1QlJSEk6cOAE/Pz/IZDKV/k8YY9rLzs4GlXYIyn9q/hp7ouYro5egp6eH+Ph4PH36\nFAMGDEBcXBwUCgWys7Nx7tw5/P777xg5cqTGfpwYY4yV4iujOmBmZoZBgwbhwoULcHBwwLBhwwAA\n3bt3h56eXo17RWWMsaaKk5GWMjMzkZOTA6C024KjR4/Cx8cHISEhOH78OAAgKSkJRUVFKl00M8YY\nq4xv02kpPT0d4eHhKCkpQUlJCcLCwhAYGIg+ffpg0qRJ8PT0hKGhITZt2iR1qIwx1uDxo92MsUZB\n3THgyf37EGrQDbm2qKQErR0cqhynqKgI06dPR0xMDLKysvDaa69hyZIleOuttwAAMTExeO+993Dv\n3j34+vpiw4YNcHJyEqefO3cu1q1bB6C0u/Ly/bklJydj4sSJOH/+PJycnLB69WoEBgaqjUPTMbKx\nHDv5yogx1mgJeno4OW1avZXfe82aasdRKBRwcnLCiRMn4OTkhIMHD2LkyJFITEyEsbExhg0bhp9/\n/hnBwcH49NNPMWrUKJw9exYAsGbNGuzbtw9//PEHgNI+jVxdXTHtv3UKDQ1Fz549ceTIERw8eBAj\nRozAzZs3YWVlVW91lgpfGTHGGgV1x4CstLR6T0aW9va1nq5z585YuHAhMjMzsWnTJpw6dQpAaUN5\nKysrxMfHw83NDQEBAZg0aRIiIiIAAOvXr8fatWtx9uxZJCUlwcvLC0+ePEHLli0BlL5GbcyYMWKy\nKq+xXxnxAwyMMVaHHj16hKSkJHh4eODq1avo3LmzOMzY2Bjt27fH1atXAQDXrl1TGe7l5SUOu3r1\nKtq1aycmIqA0yZUNf9VwMmKMsTpSXFyMsWPHYsKECXBzc8OzZ8/QqlUrlXFatWqFvLw8AEB+fj7M\nzMxUhuXn56sdVnHaVw0nI8YYqwNlT9U2b94cq1evBgCYmJggNzdXZbynT5/C1NRU7fCnT5/CxMRE\n47Q5OTmVkturgh9gqEJ9P6lTpiZP7DDGGi4iwuTJk5GRkYFDhw5BX18fANCpUyds3LhRHO/Zs2e4\nffs2OnXqJA6Pj49Ht27dAAAJCQnw8PAQh925cwf5+fligkpISEBYWJguq6YznIyqUN9P6pSpyRM7\njLGGa/r06bhx4waOHTsGIyMj8fuhQ4fi73//O3bv3o2BAwciMjIS3t7ecHNzAwCMHz8e3377LQYO\nHAgiwrfffotZs2YBANzc3ODt7Y3IyEh88cUXOHToEBITEzF8+HBJ6ljfOBkxxhotKimp15M5Kimp\ndpyUlBSsXbsWzZs3h52dnfj92rVrERoail27dmHGjBkYN24c/Pz8sHXrVnGcadOm4c6dO/D09AQA\nTJkyBVOnThWHb926FRMmTIClpSWcnZ2xa9euV/aNLvxodxXq+7HRMto+PspYU9JYHlGWCj/azRhj\njL0knSYjTV11y+VyODg4wMfHBz4+Pjhy5Iguw2KMMSYxnf5m1Lx5c8TGxqp01X3q1CkIgoDZs2dj\n9uzZugyHMcZYA6Hz23TquuoG0CjuaTLGGKsfOk9G6rrqBoBVq1ahc+fOmDx5sthPEGOMsaZB58mo\nrKvu+/fv48SJE4iLi8P06dNx9+5dxMfHo02bNpgzZ46uw2KMMSYhydoZle+qWyaTid9HREQgODhY\n7TRyuVz8XyaTqUzHGGMMiIuLQ1xcnNRh1JpOk1FmZiaaNWsGc3NzsavuhQsX4uHDh2JjsT179ogN\nwCoqn4wYY4xVVvFEPTIyUrpgakGnyUhTV93jx49HfHw8BEGAq6sr1vDrcRhjrEnRaTLy9PTEpUuX\nKn2/adMmXYbBGHtFpGVlAYJQfzMggr2lZZWjvEy347Gxsfj8889x+fJlWFhY4O7duypl16bb8caO\n303HGGu8BAEHLl6st+IHd+1a7Tgv0+24iYkJIiIi8Pz5cyxevLhS2U2p23F+HRBjjL0EY2NjLFy4\nULzaGTRoEFxdXXHhwgXs3r0bnp6eGD58OAwNDSGXy5GQkICkpCQAQPfu3TF27Fi4urpWKjcpKQmX\nL19GZGQkjIyMMGzYMHh5eWHXrl06rZ+ucDJijLE6VJNuxxMTE6sth7sdZ4wxppWadjte1rV4Vbjb\nccYYY7WmTbfjVWlq3Y5zMmKMsZdUvtvxXbt2qXQ7npCQII5XsdvxqpTvdrxMQkJCjaZtjDgZMcbY\nSyrrdjw6OrpSt+OJiYnYvXs3CgsLK3U7TkQoLCxEcXExiAgvXrxAUVERANVuxwsLC7F7927udpwx\nxhokoho9fv0y5VfnZbod//XXX/HGG28AKO2RtUWLFpDJZDh+/DgA7na8QeJuxxlr2hpL99lS4W7H\nGWOMsZfEyYgxxpjkOBkxxhiTHCcjxhhjkuNkxBhjTHKcjBhjjEmO2xkxxhoFCwsLCPXZd1EjZ2Fh\nIXUIL4WTEWOsUcjKypI6BFaP+DYdY4wxyXEyYowxJjmdJqPCwkL4+vrC29sbHTt2xPz58wGUXn4H\nBQXBzc0N/fv3R05Oji7DYowxJjGdJqPmzZsjNjYW8fHx+OOPPxAbG4tTp05h6dKlCAoKQlJSEgID\nA7F06VJdhsUYY0xiOr9NZ2xsDAAoKiqCUqmEhYUFoqOjER4eDgAIDw/H3r17dR0WY4wxCek8GZWU\nlMDb2xu2trbo168fOnXqhEePHsHW1hYAYGtri0ePHuk6LMYYYxLS+aPdenp6iI+Px9OnTzFgwADE\nxsaqDBfu2LycAAAb1klEQVQEQWNbArlcLv4vk8kgk8nqMVLGGGt84uLiEBcXJ3UYtSZZOyMzMzMM\nGjQIFy9ehK2tLR4+fAg7Ozukp6fDxsZG7TTlkxFjjLHKKp6oR0ZGShdMLej0Nl1mZqb4pFxBQQGO\nHj0KHx8fDBkyBBs3bgQAbNy4ESEhIboMq0G7d++eeDvTw8MDK1euBACMGjUKPj4+8PHxgaurK3x8\nfCSOlDHGtKfTK6P09HSEh4ejpKQEJSUlCAsLQ2BgIHx8fDBy5EisW7cOLi4u2L59uy7DatAMDAzw\n3XffwdvbG/n5+ejatSuCgoKwbds2cZwPP/wQ5ubmEkbJGGMvR6fJyNPTE5cuXar0vaWlJY4dO6bL\nUBoNOzs72NnZAQBMTEzg7u6OtLQ0uLu7AwCICNu3b6/02xtjjDUm/AaGRiQ5ORmXL1+Gr6+v+N3J\nkydha2uL1157TcLIGGPs5XAyaiTy8/MxYsQIrFixAiYmJuL3UVFRGDNmjISRMcbYy+O3djcCxcXF\nGD58OMaNG6fycIdCocCePXvU3vpkjLHGhK+MGjgiwuTJk9GxY0e8//77KsOOHTsGd3d32NvbSxQd\nY4zVDU5GDdzp06exZcsWxMbGio9yHzlyBACwbds2hIaGShwhY4y9PL5N18D16tULJSUlaoetX79e\nx9EwxurLvXv3MH78eDx+/BiCIGDq1Kn4f//v/0Eul+Of//wnrK2tAQBLlizBW2+9JXG0dY+TEWOM\nNQCa2hQKgoDZs2dj9uzZUodYr/g2HWOMVUPTm1DkcjkcHBwq3ULXhp2dHby9vQH8r03hgwcPAJT+\ndvyq42TEGNOKLg7QDUXZVcvVq1dx7tw5/PDDD7h+/bp41XL58mVcvny5zm6flbUp9PPzAwCsWrUK\nnTt3xuTJk1/Zzkc5GTHGtKLrA7SUdHnVUrFN4fTp03H37l3Ex8ejTZs2mDNnTp3Or6HgZMQY00pT\nva1Un1ct6toU2tjYiF3rRERE4Pz58y9dh4aIH2BoAAqMjJCWnV2/MyGCvaVl/c6DNVnlD9CnT5/G\nqlWrsGnTJnTr1g3Lly9/ZV7kq+6q5bPPPgMALFiwAHPmzMG6deu0KltTm8L09HS0adMGALBnzx54\nenq+fEUaIIEaySmMIAg6P9vKSkvDyWnT6n0+3TdtwoGLF+t1HoO7doW9hUW9zoM1Tfn5+ZDJZPj0\n008REhKCx48fi48hL1iwAOnp6VofoBuS4uJiDB48GH/9618rNUAHShNycHAwrly5olX5p06dQp8+\nfeDl5SV2MLp48WJERUUhPj4egiDA1dUVa9asEXvGrgkpjp3a4CsjxpjWNN1WKhMREYHg4GCpwqsz\nurhq0dSm8K9//avWZTYmnIwYY1ppSreVyt6E4uXlJXZkqemqhWmHkxFjTCtN6QDd1K9adIGTEWNM\nK3yAZnWJH+1mjDEmOb4yYowxHUnLygL++6RcvWmkzTh0moya+ltpGWNNnCDopBlHY6TTZNTU30rL\nGGu4nty/D0Gvnn+5aNGifstvxHSajOzs7GBnZwegab0+hLHGqindVhL09Oq9kXv3TZvqtfzGTLLf\njJrK60MYa9T4thLTEUmSkbbvd5LL5eL/MpkMMplMRxEzxljjcObUKSTW8wlEfdB5MnqZ14eUT0aM\nMcYqC+jVCyPKHUMjIyMljKbmdNrOqKrXh5R5VV4fwhhjrOZ0emXUlF4fwhhjrOZ0moz49SGMMcbU\n4dcBMfYKunfvHvr164dOnTrBw8MDK1euBADs2LEDnTp1gr6+Pi5duiRxlIz9D78OiLFXkKYG5p6e\nntizZw+m6aDTSMZqg5MRY68gdQ3M09LSEBgYKHFkjKnHt+kYe8WVNTD39fWVOhTGNOJkxNgrrGID\nc8YaKk5GjL2i1DUwZ6yh0ioZnTp1qtJ3p0+ffulgGGN1Q1MD84rjMNZQaJWMZs6cWem7GTNmvHQw\njLG6UdbAPDY2Fj4+PvDx8cHhw4exd+9eODo64ty5cxg0aBC38WMNRq2epjt79izOnDmDjIwMfPvt\nt+KZVV5entrGrIwxaWhqYA6Ab9mxBqlWyaioqAh5eXlQKpXIy8sTv2/VqhV27txZ58ExxhhrGmqV\njPr27Yu+fftiwoQJcHFxqaeQGGOMNTVaNXp98eIFpkyZguTkZCgUCgCAIAg4fvx4nQbHGGOsadAq\nGb3zzjuYPn06IiIioK+vD6A0GTHGGGPa0CoZGRgYYPr06XUdC2OsFp7cvw9Br56bCrZoUb/lM/Zf\nWiWj4OBg/PDDDxg2bBiMjIzE7y0tLessMMZY1QQ9PZys5xeedt+0qV7LZ6yMVslow4YNEAQBy5Yt\nU/n+7t27dRIUY4yxpkWrZJScnFzHYTDGGGvKtLrh/OzZM3zxxReYMmUKAODmzZs4cOBAnQbGGGOs\n6dAqGU2cOBGGhoY4c+YMAMDe3h6ffPJJnQbGGGOs6dAqGd2+fRtz586FoaEhAKBly5Y1mk5TV8hZ\nWVkICgqCm5sb+vfvj5ycHG3CYowx1khplYyMjIxQUFAgfr59+7bKU3WalHWFfPXqVZw7dw4//PAD\nrl+/jqVLlyIoKAhJSUkIDAzE0qVLtQmLMcZYI6VVMpLL5Xjrrbdw//59jBkzBm+88Qa++uqraqez\ns7ODt7c3gP91hfzgwQNER0cjPDwcABAeHo69e/dqExZjjLFGSqun6fr3748uXbrg3LlzAICVK1fC\nysqqVmWU7wr50aNHsLW1BQDY2tri0aNH2oTFGGOskdIqGe3evRtvvPEGBg8eDADIycnB3r17a/xq\n+vz8fAwfPhwrVqyAqampyjBBEDS+Wkgul4v/y2QyyGQybcJnjLFX1plTp5B48aLUYdSaVskoMjIS\nw4YNEz+bm5tDLpfXKBmVdYUcFhYmjm9ra4uHDx/Czs4O6enpsLGxUTtt+WTEGGOssoBevTAiOFj8\nHBkZKWE0NafVb0bquitWKpU1mk5dV8hDhgzBxo0bAQAbN27kzr8YY6yJ0SoZde3aFbNnz8bt27dx\n69YtfPDBB+jatWu106nrCvnIkSOYN28ejh49Cjc3Nxw/fhzz5s3TJizGGGONlFa36VavXo3PP/8c\no0aNAgAEBQXhhx9+qHa6qrpCPnbsmDahMMYYewXUOhkpFAoMHjwYsbGx9REPY4yxJqjWt+maNWsG\nPT09fksCY4yxOqPVbbqWLVvC09MTQUFB4quABEEQX+/DWEM0adIkHDx4EDY2Nrhy5Yr4/apVq/B/\n//d/0NfXx6BBg2rUgJsxVre0SkbDhg3DsGHDxPZARMTdjrMGb+LEiZg5cybGjx8vfhcbG4vo6Gj8\n8ccfMDAwQEZGhoQRMtZ0aZWMJkyYgOfPnyM1NRUdOnSo65hYE6SLq5bevXtX6ovrH//4B+bPnw8D\nAwMAgLW1tdblM8a0p9Wj3dHR0fDx8cFbb70FALh8+TKGDBlSp4GxpmXixIk4cuSIynflr1oSExPx\n4Ycf1vl8b968iRMnTsDPzw8ymQwXLlyo83kwxqqn9YtSf/vtN1hYWAAAfHx8cOfOnToNjDUtvXv3\nFrenMrq4alEoFMjOzsa5c+fwzTffYOTIkXU+D8ZY9bRKRgYGBjA3N1ctSE+rohjTSBdXLQ4ODuKr\nrbp37w49PT08efKkzufDGKuaVhmkU6dO+Ne//gWFQoGbN29i5syZCAgIqOvYWBOni6uWkJAQHD9+\nHACQlJSEoqIitG7dus7nwxirmlbJaPXq1bh69SqMjIwQGhqKVq1a4fvvv6/r2FgTV9dXLaGhoQgI\nCEBSUhIcHR2xfv16TJo0CXfu3IGnpydCQ0OxadOmugqfMVYLtXqarqCgAD/++CNu3boFLy8vnD17\nVryfz1hdK7tq6du3b51ctURFRan9fvPmzVqXyRirG7W6MgoPD8fFixfh6emJw4cP18vTTaxp4qsW\nxpq2Wl0ZXb9+XWwDEhERge7du9dLUKzp4asWxpq2Wl0ZNWvWTO3/jDHG2MuoVUb5448/VLoJLygo\nED8LgoDc3Ny6jY6xWkrLygLq+9VURLC3tKzfeTDWxNQqGdWkN1fGJCUIOHDxYr3OYnANOpJkjNUO\n32tjOvPk/n0I9d04ukWL+i2fMVYvOBkxnRH09HBy2rR6nUd3fuKOsUaJ3+HDGGNMcjpNRpMmTYKt\nrS08PT3F7+RyORwcHODj4wMfH59Kb25mjDH26tNpMlLXTYAgCJg9ezYuX76My5cvi91SMMYYazp0\nmozUdRMAlPYUyxhjrOlqEL8ZrVq1Cp07d8bkyZORk5MjdTiMMcZ0TPKn6aZPn47PPvsMALBgwQLM\nmTMH69atUzuuXC4X/5fJZJDJZDqIkDHGGo8zp04hsZ7b2tUHyZORjY2N+H9ERASCg4M1jls+GTHG\nGKssoFcvjCh3HI2MjJQwmpqT/DZdenq6+P+ePXtUnrRjjDHWNOj0yig0NBS//vorMjMz4ejoiMjI\nSMTFxSE+Ph6CIMDV1RVr1qzRZUiMMcYaAJ0mI3XdBEyaNEmXITDGGGuAJL9NxxhjjHEyYowxJjlO\nRowxxiTHyYgxxpjkOBkxxhiTHCcjxhhjkuNkxBhjTHKcjBhjjEmOkxFjjDHJcTJijDEmOU5GjDHG\nJMfJiDHGmOQ4GTHGGJMcJyPGGGOS42TEGGNMcpyMGGOMSY6TEWOMMclxMmKMMSY5TkaMMcYkp9Nk\nNGnSJNja2sLT01P8LisrC0FBQXBzc0P//v2Rk5Ojy5AYY4w1ADpNRhMnTsSRI0dUvlu6dCmCgoKQ\nlJSEwMBALF26VJchMcYYawB0mox69+4NCwsLle+io6MRHh4OAAgPD8fevXt1GRJjjLEGQPLfjB49\negRbW1sAgK2tLR49eiRxRIwxxnStmdQBlCcIAgRB0DhcLpeL/8tkMshksvoPijHGGpEzp04h8eJF\nqcOoNcmTka2tLR4+fAg7Ozukp6fDxsZG47jlkxFjjLHKAnr1wojgYPFzZGSkhNHUnOS36YYMGYKN\nGzcCADZu3IiQkBCJI2KMMaZrOk1GoaGhCAgIwJ9//glHR0esX78e8+bNw9GjR+Hm5objx49j3rx5\nugyJMcZYA6DT23RRUVFqvz927Jguw2CMMdbASH6bjjHGGONkxBhjTHKcjBhjjEmOkxFjjDHJcTJi\njDEmOU5GjDHGJMfJiDHGmOQ4GTHGGJMcJyPGGGOS42TEGGNMcpyMGGOMSY6TEWOMMclxMmKMMSY5\nTkaMMcYkx8mIMcaY5DgZMcYYkxwnI8YYY5LjZMQYY0xyOu12vCouLi5o1aoV9PX1YWBggPPnz0sd\nEmOMMR1pMMlIEATExcXB0tJS6lAYY4zpWIO6TUdEUofAGGNMAg0mGQmCgDfffBPdunXDTz/9JHU4\njDHGdKjB3KY7ffo02rRpg4yMDAQFBaFDhw7o3bu31GExxhjTgQaTjNq0aQMAsLa2xtChQ3H+/PlK\nyUgul4v/y2QyyGQyHUbIGGMN35lTp5B48aLUYdRag0hGz58/h1KphKmpKZ49e4b//Oc/WLhwYaXx\nyicjxhhjlQX06oURwcHi58jISAmjqbkGkYwePXqEoUOHAgAUCgXGjh2L/v37SxwVY4wxXWkQycjV\n1RXx8fFSh8EYY0wiDeZpOsYYY00XJyPGGGOS42TEGGNMcpyMGGOMSY6TEWOMMclxMmKMMSY5TkaM\nMcYkx8mIMcaY5DgZMcYYkxwnI8YYY5LjZMQYY0xynIwYY4xJjpMRY4wxyXEyYowxJjlORowxxiTH\nyYgxxpjkOBkxxhiTHCcjxhhjkuNkxBhjTHINJhkdOXIEHTp0wF/+8hd89dVXUofDGGNMhxpEMlIq\nlZgxYwaOHDmCa9euISoqCtevX5c6rAbrz4QEqUN4pfDyrDu8LOtWU1qeDSIZnT9/Hu3bt4eLiwsM\nDAwwevRo7Nu3T+qwGqykJrSB6gIvz7rDy7JuNaXl2SCS0YMHD+Do6Ch+dnBwwIMHDySMiDHGmC41\niGQkCILUITDGGJNQM6kDAIC2bdvi3r174ud79+7BwcFBZZzOnTu/uknL0rLWkxzYvLkeAnkFaLEs\nAV6eGvG2WbckWJ6dO3d+qel1RSAikjoIhUKB119/HTExMbC3t0ePHj0QFRUFd3d3qUNjjDGmAw3i\nyqhZs2ZYvXo1BgwYAKVSicmTJ3MiYoyxJqRBXBkxxhhr2hrEAwwNyd69e6Gnp4c///wTAJCRkQFf\nX1907doVp0+frjT+lClTdNImytvbG6GhofU6D13Vpb5VXIeaDBo0CLm5uTqKqmEyMTFR+bxhwwbM\nnDkTALBmzRps1tHvPwsXLkRMTIxO5iWFDz74ACtWrBA/DxgwAFOmTBE/z5kzB9999x2Cg4PVTj9l\nyhTcuHEDALB48eL6DVYifGVUwahRo1BQUIAuXbpALpdj69atiImJwU8//VRp3JKSEujp1X8+v379\nOiZOnIjHjx8jMTERxsbGdT4PXdVFFyquQ6aZqakp8vLyxM8bN27EhQsXsGrVKgmjevXs2rUL27dv\nx7Zt21BSUoIePXrAyMhIPMENCAjA22+/jVOnTmH//v1VllVxnb0qXo2jTx3Jz8/Hb7/9htWrV2Pb\ntm1ISEjA3LlzsW/fPnTp0gWFhYUwMTHBhx9+CG9vb5w9exYymQwXL14EUPpKo65du8Lb2xtBQUEA\nShv0BgQEoEuXLujZsyeSkpIAlJ6BDhs2DH/961/h5uaGuXPnaowrKioKoaGh6N+/v0pjYJlMhtmz\nZ6N79+5wd3fH77//jqFDh8LNzQ0LFiwQx9uyZQt8fX3h4+ODd999FyUlJQAgSV3qW8V1CADp6eno\n06cPfHx84OnpKR4AXFxckJWVBQAYOnQounXrBg8PD5UTDxMTE3z66afw9vaGv78/Hj9+rPtK6VD5\nc1O5XI7ly5cDAFauXIlOnTqhc+fOGDNmjDg8LCwMAQEBcHNzwz//+U8ApevgzTffRNeuXeHl5YXo\n6GgAQHJyMtzd3TF16lR4eHhgwIABKCwsBABMmDABu3btAgD8/vvv6NmzJ7y9veHr64v8/Hyd1b++\n+Pv74+zZswCAq1evwsPDA6ampsjJycGLFy9w/fp1dOnSBfn5+XjnnXfg7u6OcePGidOX7Zvz5s1D\nQUEBfHx8EBYWBkDz/t3oEBNt2bKFpk2bRkREvXv3posXL9KGDRtoxowZ4jiCINCOHTvEzzKZjC5e\nvEiPHz8mR0dHSk5OJiKi7OxsIiLKzc0lhUJBRERHjx6l4cOHExHR+vXrqV27dpSbm0uFhYXk7OxM\n9+/fVxvX66+/TmlpaRQTE0PBwcEq8543bx4REa1YsYLatGlDDx8+pBcvXpCDgwNlZWXRtWvXKDg4\nWIxh+vTptGnTJsnqUt/UrcPly5fTl19+SURESqWS8vLyiIjIxcWFnjx5QkREWVlZRET0/Plz8vDw\nED8LgkAHDhwgIqKPPvqIFi1apNP61Dd9fX3y9vYW/5ycnGjmzJlERCSXy2n58uVERGRvb09FRUVE\nRPT06VMiIlq4cCF5e3tTYWEhZWZmkqOjI6WlpZFCoaDc3FwiIsrIyKD27dsTEdHdu3epWbNmlJCQ\nQEREI0eOpC1bthAR0YQJE2jXrl304sULateuHV24cIGIiPLy8sRtrrFzdXWl1NRUWrNmDf3444+0\nYMECOnToEJ06dYp69+5NcXFxZGZmRg8ePKCSkhLy9/en06dPE9H/9k0iIhMTE7HMqvbvxqZBPE3X\nUERFReGDDz4AALzzzjuIioqCh4eHyjj6+voYPny4yndEhHPnzqFPnz5wdnYGAJibmwMAcnJyMH78\neNy6dQuCIEChUIjTBQYGwtTUFADQsWNHJCcno23btiplX7hwAdbW1mjTpg1sbGwwYcIE5OTkiOUP\nGTIEAODh4QEPDw/Y2toCANq1a4fU1FScPHkSFy9eRLdu3QAABQUFsLOzk6QuuqBuHQ4ZMgSTJk1C\ncXExQkJC1La7WLFiBfbu3QugtJ3bzZs30aNHDxgaGmLQoEEAgK5du+Lo0aO6q4wOtGjRApcvXxY/\nl92mq8jLywtjxoxBSEgIQkJCAJQ2Vn/77bdhZGQEIyMj9OvXD+fPn8egQYMwf/58nDx5Enp6ekhL\nSxOvKF1dXeHl5QWgdHkmJyeL8yAi/Pnnn2jTpg26du0KoPJvWo1ZQEAAzpw5gzNnzmD27Nl48OAB\nzpw5AzMzM/Ts2RMA0KNHD9jb2wMo/Z04OTkZAQEBGsuMiYnRuH83NpyM/isrKwuxsbFITEyEIAhQ\nKpUQBAGdOnVSGa958+ZqG99qapC7YMECBAYGYs+ePUhJSYFMJhOHGRkZif/r6+tDoVBg7969iIyM\nhCAI+Omnn8SXxrq6ugIAcnNzsXPnTkRERKiUoaenp1Kenp6emCzCw8PV/uhZn3VRKpVqy6hPmtbh\nN998gxMnTuDgwYOYMGECZs+eLd7iAIC4uDjExMTg3LlzaN68Ofr16yfePjIwMBDHK79MX1VU4Sfk\nss8HDx7EiRMnsH//fnz55Ze4cuWK2ukFQcCWLVuQmZmJS5cuQV9fH66uruLyrLidFBQUVJr+VdWz\nZ0+cPn0aV65cgaenJxwdHbFs2TKYmZlh0qRJANQfE6qjaf9ubPg3o//auXMnxo8fj+TkZNy9exep\nqalwdXVVeTOEJoIgwM/PDydOnBDP9LKzswGUJo+yM53169dXW1ZISAguX76MS5cuwcfHBzt27EBi\nYiLu3r2Lu3fvYu/evYiKiqpRnQRBQGBgIHbu3ImMjAwApQfs1NTUeq9LxYOaLmhahydOnICNjQ0i\nIiIwefJklSsBoLReFhYWaN68OW7cuIFz587pPPaGqGwdEhFSU1Mhk8mwdOlSPH36FPn5+SAi7Nu3\nDy9evMCTJ08QFxeHHj16IDc3FzY2NtDX10dsbCxSUlJqND9BEPD6668jPT1dvDrLy8uT5MSmPgQE\nBODAgQNo3bo1BEGAhYUFcnJycPbsWQQEBNR4nzEwMBCTVG3374aMk9F/bd26FUOHDlX5bvjw4Viy\nZInK2ZqmMzcrKyusXbsWw4YNg7e3N0aPHg0A+OijjzB//nx06dJFPFMvK6diWRU/nzx5Eg4ODiqX\n3b1798b169fx8OHDStOqi83d3R2LFi1C//790blzZ/Tv31+cVpd10QVN63DChAnw9vZGly5dsGPH\nDsyaNUtlnLfeegsKhQIdO3bE/Pnz4e/vLw6ruO5ftTN3deut4npVKpUICwuDl5cXunTpglmzZsHM\nzAyCIMDLywv9+vWDv78/PvvsM9jZ2WHs2LG4cOECvLy8sHnzZpUG7NVtJwYGBti2bRtmzpwJb29v\nlYccGjsPDw88efIEfn5+4ndeXl4wNzeH5X9fE1ST7Wvq1Knw8vJCWFhYlft3Y8OPdjPGtBIZGQkT\nExPMmTNH6lDYK4CvjBhjWnvVrhSZdPjKiDHGmOT4yogxxpjkOBkxxhiTHCcjxhhjkuNkxBhjTHKc\njBhjjEmOkxFjjDHJ/X9v8aLAksnVZgAAAABJRU5ErkJggg==\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x108902fd0>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 205 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#hmmm, there's greater than 100% population in Oakland in 2000? Must be due to rounding. \n", | |
| "df.ix['2000'].sum()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 129, | |
| "text": [ | |
| "1.0043956704148351" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 129 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#The missing 5% percent must be people we didn't count, like American Indians. Perhaps Oakland is overall more diverse in 2010 \n", | |
| "#than in 2000 in the sense that there are more represented groups in the population.\n", | |
| "df.ix['2010'].sum()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 207, | |
| "text": [ | |
| "0.95243701436307981" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 207 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "def tracts(variables=\"NAME\", year=2010):\n", | |
| " \n", | |
| " states_fips = set([s.fips for s in us.states.STATES])\n", | |
| " geo={'for':'tract:*',\n", | |
| " 'in':'state:06 county:001'}\n", | |
| " \n", | |
| " for tract in c.sf1.get(variables, geo=geo, year=year):\n", | |
| " yield tract\n", | |
| "\n", | |
| " \n", | |
| "tracts().next()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 209, | |
| "text": [ | |
| "{u'NAME': u'Census Tract 4001',\n", | |
| " u'county': u'001',\n", | |
| " u'state': u'06',\n", | |
| " u'tract': u'400100'}" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 209 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#P001001/Total Pop, P010004/African-American Not Hispanic, P011001/Hispanic, P010006/Asian, not Hispanic \n", | |
| "#P010003/White, not Hispanic \n", | |
| "o_tracts_2000 = [tract for tract in tracts(variables=\"NAME,P001001,P010004,P011001,P010006,P010003\", year=2000)]\n", | |
| "\n", | |
| "#put list into dataframe\n", | |
| "tracts_2000_df = pd.DataFrame(o_tracts_2000)\n", | |
| "\n", | |
| "populations = ['P001001', 'P010004', 'P011001', 'P010006', 'P010003']\n", | |
| "tracts_2000_df[(populations)] = tracts_2000_df[(populations)].astype(int)\n", | |
| "tracts_2000_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>P001001</th>\n", | |
| " <th>P010003</th>\n", | |
| " <th>P010004</th>\n", | |
| " <th>P010006</th>\n", | |
| " <th>P011001</th>\n", | |
| " <th>county</th>\n", | |
| " <th>state</th>\n", | |
| " <th>tract</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> Census Tract 4001</td>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 1987</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 305</td>\n", | |
| " <td> 97</td>\n", | |
| " <td> 1</td>\n", | |
| " <td> 6</td>\n", | |
| " <td> 400100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> Census Tract 4002</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 1567</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 177</td>\n", | |
| " <td> 117</td>\n", | |
| " <td> 1</td>\n", | |
| " <td> 6</td>\n", | |
| " <td> 400200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> Census Tract 4003</td>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 3401</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 418</td>\n", | |
| " <td> 314</td>\n", | |
| " <td> 1</td>\n", | |
| " <td> 6</td>\n", | |
| " <td> 400300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> Census Tract 4004</td>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 2494</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 308</td>\n", | |
| " <td> 241</td>\n", | |
| " <td> 1</td>\n", | |
| " <td> 6</td>\n", | |
| " <td> 400400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> Census Tract 4005</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 1387</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 216</td>\n", | |
| " <td> 363</td>\n", | |
| " <td> 1</td>\n", | |
| " <td> 6</td>\n", | |
| " <td> 400500</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 9 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 212, | |
| "text": [ | |
| " NAME P001001 P010003 P010004 P010006 P011001 county \\\n", | |
| "0 Census Tract 4001 2498 1987 125 305 97 1 \n", | |
| "1 Census Tract 4002 1910 1567 71 177 117 1 \n", | |
| "2 Census Tract 4003 4878 3401 768 418 314 1 \n", | |
| "3 Census Tract 4004 3659 2494 671 308 241 1 \n", | |
| "4 Census Tract 4005 3410 1387 1510 216 363 1 \n", | |
| "\n", | |
| " state tract \n", | |
| "0 6 400100 \n", | |
| "1 6 400200 \n", | |
| "2 6 400300 \n", | |
| "3 6 400400 \n", | |
| "4 6 400500 \n", | |
| "\n", | |
| "[5 rows x 9 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 212 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#create new descriptively named columns with values population by race/ethnicity\n", | |
| "tracts_2000_df['African-American, not Hispanic'] = tracts_2000_df['P010004']\n", | |
| "tracts_2000_df['White, not Hispanic'] = tracts_2000_df['P010003']\n", | |
| "tracts_2000_df['Asian, not Hispanic'] = tracts_2000_df['P010006']\n", | |
| "tracts_2000_df['Total Pop'] = tracts_2000_df['P001001']\n", | |
| "tracts_2000_df['Hispanic'] = tracts_2000_df['P011001']\n", | |
| "\n", | |
| "#show only columns that have legible names\n", | |
| "alameda_tracts_2000_df = tracts_2000_df[['tract','Total Pop','African-American, not Hispanic',\\\n", | |
| " 'White, not Hispanic', 'Asian, not Hispanic', 'Hispanic']]\n", | |
| "\n", | |
| "alameda_tracts_2000_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 400100</td>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 1987</td>\n", | |
| " <td> 305</td>\n", | |
| " <td> 97</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 400200</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 1567</td>\n", | |
| " <td> 177</td>\n", | |
| " <td> 117</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 400300</td>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 3401</td>\n", | |
| " <td> 418</td>\n", | |
| " <td> 314</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 400400</td>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 2494</td>\n", | |
| " <td> 308</td>\n", | |
| " <td> 241</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 1387</td>\n", | |
| " <td> 216</td>\n", | |
| " <td> 363</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 6 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 220, | |
| "text": [ | |
| " tract Total Pop African-American, not Hispanic White, not Hispanic \\\n", | |
| "0 400100 2498 125 1987 \n", | |
| "1 400200 1910 71 1567 \n", | |
| "2 400300 4878 768 3401 \n", | |
| "3 400400 3659 671 2494 \n", | |
| "4 400500 3410 1510 1387 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic \n", | |
| "0 305 97 \n", | |
| "1 177 117 \n", | |
| "2 418 314 \n", | |
| "3 308 241 \n", | |
| "4 216 363 \n", | |
| "\n", | |
| "[5 rows x 6 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 220 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "alameda_tracts_2000_df['AfAm_ratio_2000'] = tracts_2000_df['P010004']/tracts_2000_df['P001001']\n", | |
| "alameda_tracts_2000_df['White_ratio_2000'] = tracts_2000_df['P010003']/tracts_2000_df['P001001']\n", | |
| "alameda_tracts_2000_df['Asian_ratio_2000'] = tracts_2000_df['P010006']/tracts_2000_df['P001001']\n", | |
| "alameda_tracts_2000_df['Hispanic_ratio_2000'] = tracts_2000_df['P011001']/tracts_2000_df['P001001']\n", | |
| "\n", | |
| "alameda_tracts_2000_df.head() #.set_index(['tract']).head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>AfAm_ratio_2000</th>\n", | |
| " <th>White_ratio_2000</th>\n", | |
| " <th>Asian_ratio_2000</th>\n", | |
| " <th>Hispanic_ratio_2000</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 400100</td>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 1987</td>\n", | |
| " <td> 305</td>\n", | |
| " <td> 97</td>\n", | |
| " <td> 0.050040</td>\n", | |
| " <td> 0.795436</td>\n", | |
| " <td> 0.122098</td>\n", | |
| " <td> 0.038831</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 400200</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 1567</td>\n", | |
| " <td> 177</td>\n", | |
| " <td> 117</td>\n", | |
| " <td> 0.037173</td>\n", | |
| " <td> 0.820419</td>\n", | |
| " <td> 0.092670</td>\n", | |
| " <td> 0.061257</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 400300</td>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 3401</td>\n", | |
| " <td> 418</td>\n", | |
| " <td> 314</td>\n", | |
| " <td> 0.157442</td>\n", | |
| " <td> 0.697212</td>\n", | |
| " <td> 0.085691</td>\n", | |
| " <td> 0.064371</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 400400</td>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 2494</td>\n", | |
| " <td> 308</td>\n", | |
| " <td> 241</td>\n", | |
| " <td> 0.183383</td>\n", | |
| " <td> 0.681607</td>\n", | |
| " <td> 0.084176</td>\n", | |
| " <td> 0.065865</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 1387</td>\n", | |
| " <td> 216</td>\n", | |
| " <td> 363</td>\n", | |
| " <td> 0.442815</td>\n", | |
| " <td> 0.406745</td>\n", | |
| " <td> 0.063343</td>\n", | |
| " <td> 0.106452</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 10 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 221, | |
| "text": [ | |
| " tract Total Pop African-American, not Hispanic White, not Hispanic \\\n", | |
| "0 400100 2498 125 1987 \n", | |
| "1 400200 1910 71 1567 \n", | |
| "2 400300 4878 768 3401 \n", | |
| "3 400400 3659 671 2494 \n", | |
| "4 400500 3410 1510 1387 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic AfAm_ratio_2000 White_ratio_2000 \\\n", | |
| "0 305 97 0.050040 0.795436 \n", | |
| "1 177 117 0.037173 0.820419 \n", | |
| "2 418 314 0.157442 0.697212 \n", | |
| "3 308 241 0.183383 0.681607 \n", | |
| "4 216 363 0.442815 0.406745 \n", | |
| "\n", | |
| " Asian_ratio_2000 Hispanic_ratio_2000 \n", | |
| "0 0.122098 0.038831 \n", | |
| "1 0.092670 0.061257 \n", | |
| "2 0.085691 0.064371 \n", | |
| "3 0.084176 0.065865 \n", | |
| "4 0.063343 0.106452 \n", | |
| "\n", | |
| "[5 rows x 10 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 221 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "x = range(0,1)\n", | |
| "y = alameda_tracts_2000_df['tract']\n", | |
| "alameda_tracts_2000_df['AfAm_ratio_2000'].plot()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 224, | |
| "text": [ | |
| "<matplotlib.axes.AxesSubplot at 0x108f78190>" | |
| ] | |
| }, | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FNXd/z+b7CYhCTe5QwIrJJAgEKIoorWuRRtjH+P1\nqVHrAxZt1GJr+7Nae7WtImhbb7FK6wVrFfGOz6PGK6soSEQuooEQLoEQLhJIIDd2k835/fHlZGZn\n57b3mXDer1de2dmZnfnO7O5nvvs533OOgzHGIBAIBII+R0qyAxAIBAJBfBACLxAIBH0UIfACgUDQ\nRxECLxAIBH0UIfACgUDQRxECLxAIBH0UQ4GvqqpCQUEB8vPzsWjRopD1zc3NuOyyy1BUVISZM2fi\nm2++iUugAoFAIAgPXYEPBAKYP38+qqqqUFNTg6VLl2Lz5s1B2yxYsACnnnoqNm7ciH//+9/4+c9/\nHteABQKBQGAOXYGvrq5GXl4e3G43XC4XysvLsXz58qBtNm/ejPPOOw8AMGnSJNTX1+PgwYPxi1gg\nEAgEptAV+MbGRuTm5vYu5+TkoLGxMWiboqIivPbaawDohrBr1y7s2bMnDqEKBAKBIBx0Bd7hcBju\n4Ne//jVaWlpQXFyMyspKFBcXIzU1NWYBCgQCgSAynHorx4wZg4aGht7lhoYG5OTkBG3Tv39/PP30\n073LJ598MsaPH6+6r71790Ybr0AgEJxQTJgwAdu2bYvsxUyHrq4uNn78eLZz507m8/lYUVERq6mp\nCdqmpaWF+Xw+xhhj//znP9mcOXNU92VwKMvzxz/+MdkhRIWd47dz7IyJ+JON3eOPRjt1M3in04nK\nykqUlJQgEAhg3rx5KCwsxOLFiwEAFRUVqKmpwdy5c+FwODBlyhQ89dRTkd1pLE59fX2yQ4gKO8dv\n59gBEX+ysXv80aAr8ABQWlqK0tLSoOcqKip6H8+aNQu1tbWxj0wgEAgEUSF6sppk7ty5yQ4hKuwc\nv51jB0T8ycbu8UeD47jHE/8DORxI0KEEAoGgzxCNdooM3iRerzfZIUSFneO3c+yAiD/Z2D3+aBAC\nLxAIBH0UYdEIBAKBhREWjUAgEAhCEAJvErv7eHaO386xAyL+ZGP3+KNBCLxAIBD0UYQHLxAIBBZG\nePACgUAgCEEIvEns7uPZOX47xw6I+JON3eOPBiHwAoFA0EcRHrxAIBBYGOHBCwQCgSAEIfAmsbuP\nZ+f47Rw7IOJPNnaPPxqEwAsEAkEfxdCDr6qqwm233YZAIIAbbrgBd955Z9D6pqYm/OhHP8L+/fvR\n3d2N22+/XXX8ZeHBCwQCQfhEo526Ah8IBDBp0iR88MEHGDNmDE4//XQsXboUhYWFvdvcfffd8Pl8\nuO+++9DU1IRJkybhwIEDcDqDJ4sSAi8QCAThE7dG1urqauTl5cHtdsPlcqG8vBzLly8P2mbUqFE4\nevQoAODo0aMYMmRIiLj3Bezu49k5fjvHDoj4k43d448GXSVubGxEbm5u73JOTg7WrFkTtM2NN96I\n733vexg9ejRaW1vx0ksvxSdSBY8/DjAG3HJLQg4nEAgEtkNX4B0Oh+EOFixYgOnTp8Pr9WL79u24\n4IILsHHjRvTv3z9k27lz58LtdgMABg0ahOnTp8Pj8QCQ7rJGyxkZHuzZA6xc6UVbG3DLLeG9PtJl\n/ly89i/i1172eDyWikfEb634+lr8Xq8XS5YsAYBevYwUXQ/+888/x913342qqioAwH333YeUlJSg\nhtaLLroIv/3tb3H22WcDAGbPno1FixZhxowZwQeKkQf/6KPA118D/fsDdXWAwjESCASCPkXcPPgZ\nM2agrq4O9fX18Pv9WLZsGcrKyoK2KSgowAcffAAAOHDgAGprazF+/PiIgjFDTw/Q1QX4/cC+fXE7\nTAj8DmtX7By/nWMHRPzJxu7xR4OuReN0OlFZWYmSkhIEAgHMmzcPhYWFWLx4MQCgoqICv/nNb3D9\n9dejqKgIPT09uP/++3HSSSfFLWDGSNy7uhIr8AKBQGA3bDcWzd//DqxZQxbNs88CPh+QIrprafLA\nA8BNN9H1EggE9uOEGotGbtF0dwOHDiU7Imvz+OPA7t3JjkIgECQDWwo8t2iAxNk0dvXxfD76s2v8\ngL1jB0T8ycbu8UeDLQW+q0sS+KVLgR07khuTlfH76U8gEJx42M6DX7AAeP998pRXrgRaWoDHHhMd\nnrQYMAD4v/8DvvvdZEciEAgioc978OvXA7ffTo8ZkzL4yy8HTjkFCASSG5+V8fvJohEIBCcethD4\nhgbgm2/osdyDv/pqYPbsxAi8HX08xkjc/X57xs+xc+yAiD/Z2D3+aLCFwHd3k7ADwVU0LheQmioy\neC26u+m/yOAFghMTWwo8z+ATKfB8zAg7wYXd77dn/Bw7xw6I+JON3eOPBlsIfFdXaAbf1QWkpQFO\np8jgteDVM6KKRiA4MbGFwMszeHkjayIzeDv6eDyDF3XwyUXEn1zsHn802E7guUUjPHhjRAYvEJzY\nWEbg9URIrZFVePDGyDN4O8bPsXPsgIg/2dg9/miwjMBPmAC0t6uv02pkTUsTGbweIoMXCE5sLCHw\njAGNjdrlfFYok7SjjyevorFj/Bw7xw6I+JON3eOPBksI/LFjJPJcxJUoG1mVZZK83lsQDM/cRR28\nQHBiYgmB7+ig/1qZuDKD7+4m8UqkRWNHH0/UwVsDEX9ysXv80WAo8FVVVSgoKEB+fj4WLVoUsv6v\nf/0riouLUVxcjKlTp8LpdKKlpSWsILj3rszgjxyh/0qBB+imIKpo9BEZvEBwYqMr8IFAAPPnz0dV\nVRVqamqwdOlSbN68OWib22+/HevXr8f69etx3333wePxYNCgQWEFwQVeLtS1tcA559BjNYEPBIQH\nb4Tw4K2BiD+52D3+aNAV+OrqauTl5cHtdsPlcqG8vBzLly/X3P6FF17A1VdfHXYQagLf2EhDAQPq\nAg9QL1aRwWujrKKZPFkaR18gEPR9dAW+sbERubm5vcs5OTlobGxU3bajowPvvvsurrjiirCD4B68\nXLwPHgQ6O+mxfKgCPiyyywU4HMKD10NeB3/uuR5s3gw0Nyc3pkiw47WXI+JPLnaPPxqceisdDofp\nHf3v//4vvvOd7+jaM3PnzoXb7QYADBo0CDt3Tsef/uQ5nsF7sWoVcPLJHgDAqlVetLUBgAfd3UBr\nqxdeL9DTQ+tTUmg5NdWDQED6GcbfTLHsxVdfAZmZHvj9wAcf0PrmZg+GD7dGfGJZLIvl0GWv14sl\nS5YAQK9eRgzTYfXq1aykpKR3ecGCBWzhwoWq21566aVs6dKlmvtSO1RBAWNr1jD28suMAYzV1krr\n/vAHxhwOxnp6GPv5z2lbxhi78UbaduBAWl6yhLH/+R+9s4gNK1asiP9BYswTTzA2fDhjF1/M2Ntv\nr2AAY59/nuyowseO116OiD+52D1+A5nWRdeimTFjBurq6lBfXw+/349ly5ahrKwsZLsjR47gk08+\nwSWXXBLWzaW9nWwYtTLJb7+Vat7VPPi0NPovPHhg61aaFEWJ309TG/r90jWyo0UjEAgiQ1fgnU4n\nKisrUVJSgsmTJ+Oqq65CYWEhFi9ejMWLF/du98Ybb6CkpAT9+vUL6+Dt7STuamWSBw/S/85OdYF3\nuei/8OCBhx8Gnn8+9HmfTxL4M8/0AJAaru2Ela+9GUT8ycXu8UeDrgcPAKWlpSgtLQ16rqKiImh5\nzpw5mDNnTtgH5xm8WhUNF/iOjtCerEDiBd7KHDwIDBsW+jzP4H0+qXpGZPACwYlD0nqyBgIkPEYC\nb5UMnjeCWBF5xZEceQb/ySdeAPYUeCtfezOI+JOL3eOPhqQJPBd1uQevtGiGDtUWeLkHf6KPRaMl\n8PIMnl8jO1o0AoEgMpIu8HIPnmfigQBlmrm5oRaN8OBDaWqiAduUyDP4007zALBnBm/la28GEX9y\nsXv80ZB0gZdbNFy8Dx8GBg4EsrOtY9FYlZ4eEni9DJ6PvgmIDF4gOJGwhMAryyRbW4EBA4DMzFCB\n542siS6TTJSP5/VK5yjH5wM2bAh9vqWFzl8tg/f76Sbp8wGff+4FYM8M3u4eqog/udg9/mhIusCr\nlUn6fCTg/fqRwMuHKujrGXxZWbAId3QAzzwDrFwJ3HJL6PbyxmglcoumuxtISREZvEBwIpF0gVer\novH5gPR0Eng1D97h6LsePJ9QnLNzJ/CnPwFHj+L40A3BNDXRf6NG1mnTPBgyxJ4ZvN09VBF/crF7\n/NFgGYHPzAwVeDWLpqcHyMjouxk8n1CcEwiQuLe2qs9Zy6uNjBpZu7qA4cPtKfACgSAykirwDofk\nwffvH2zR8AxeTeDT0yUP3unsOx58ICBNKi5/7uhR+tMS+Nxc7Qw+O5v+r13rxZAhtB+7YXcPVcSf\nXOwefzQkVeBPOkny4Pv3N2fRMEbr+mIGzzN3ZQYfCAAHDqgLfFOTtsD7fHQNU1LocWYmXb8Tvd+A\nQHCikFSB5x2ZWluBQYNCM3gtiyYZAp8IH48LuzyD52K8Zw9dM2WFTXs7DVOgVUWTnk5/J5/sgctF\n9pbdpvCzu4cq4k8udo8/GpIq8MOG0f+WFhJ7LtRcmLQsmoyMvjmapJrA83Pbs4fEXZmp+/3UZ0Ar\ng09Lo7/2droppqer3wwEAkHfI+kZ/J49JFBpaeoWjVUy+ET4eFoWDUDXCQi1afx+6jOgJfC8vWLj\nRm9vBm83gbe7hyriTy52jz8aLCHww4aRUKtZNGplksoqmr7iKetl8HymRC2BVxPtjg66hhkZdANw\nOu1p0QgEgshIusB3d9P/lBRzGXyyGlkT6cHLM3h+8+I18MpaeF4p09UVeh3kAj90qMe2GbzdPVQR\nf3Kxe/zRkHSBB+i/WgavZdFkZdE6QBL4l14CduxI/HnEEr0MHqCbYHMzzXYlf016urpwd3TQtcrI\noIZsq3vwajaTQCCIHEOBr6qqQkFBAfLz87Fo0SLVbbxeL4qLizFlyhTTd0veyArQf7UMnls0yqEK\nbr4Z+PWvaZkL/H/+A7z3nqlDR0QiPXgtgR82jM7zppuk5/x+Eu5+/UKFm3cgy8gA6uqs78HPng1s\n3hz6vN09VBF/crF7/NGgO6NTIBDA/Pnz8cEHH2DMmDE4/fTTUVZWhsLCwt5tWlpa8NOf/hTvvvsu\ncnJy0MT7zhugzOA7O/UzeIDsmZ4eapQdNIie4wLv9/edDF6tkRUARo+m+VflAu33UyMq99nlr/P7\n6Xm+zuoC39ysXusvEAgiQzeDr66uRl5eHtxuN1wuF8rLy7F8+fKgbV544QVcccUVyMnJAQAM5apt\nQGcnCbXDITWy6nV0Akjce3oo2+ckSuCTVQcvF/hRo+gc5RYNF3hlBt/ZSdm7w8FF3vp18D6fenuK\n3T1UEX9ysXv80aAr8I2NjcjNze1dzsnJQSMv5zhOXV0dDh8+jPPOOw8zZszAc889Z+rA8uxSq5E1\nOztU4Bkj0eL09QxeXiE0fDjQ0CCNIAloZ/DcngHs48H7/cGzegkEgujQtWgcciXVoKurC+vWrcOH\nH36Ijo4OzJo1C2eeeSby8/NDtp07dy7cbjcAoLFxEDZunI7MTA+GDgW+/dZ73H/1wOcDGhq8+Oor\noK3Nc1zkvFixAujp8SAlRfLVJk/2IBAAmpq8x2vFPQCk9fzuHe3yQw89hOnTp8dsf2rLNN67B36/\ntD4QoPUZGV4cOQIw5kFrK/Dee16kpQFdXZSZd3V58emnwNSptP1HH3mP/9LxID0dqK9/CI2N05GR\n4cGxY/GJP9rl1lbpfOXr5R6qleI1uyziF/GHG++SJUsAoFcvI4bpsHr1alZSUtK7vGDBArZw4cKg\nbRYuXMj++Mc/9i7PmzePvfzyyyH7Uh5q4kTGtmxhLCeHsepqxm68kbEnnqB1FRWM/eMfjDU1MXbS\nSYz168cYwFhHB2NnnsnYqlXSfg4dYmzwYMaKimibw4f1zihyVqxYEZ8dy3jvPTqHRx+VnvvPfxjr\n35+x0aMZu+suWg8wtns3rT/7bMZWrmTsnHMY+/hj6XVff83Y5Mn0+LrrGBs6dAX7858ZmzOHsaef\njvupRET//sHnwEnEtY8nIv7kYvf4DWRaF12LZsaMGairq0N9fT38fj+WLVuGsrKyoG0uueQSfPrp\npwgEAujo6MCaNWswefJkwxsLtxbKy4G8PPUyyexsqvvu7qZOOkYefHp6/GwafqeNJ1qNrIMH02Bs\nWVn03JAhkk1j1qLhmb7VPXg1iyYR1z6eiPiTi93jjwZdi8bpdKKyshIlJSUIBAKYN28eCgsLsXjx\nYgBARUUFCgoKcOGFF2LatGlISUnBjTfeGJbAP/AALaeoePBpadJoipmZxgI/enRwA6Td0GpkLSwE\nTjtNEvgpU6TzlDeyygWe18AD9vDgGaNz6SvjCgkEVsCwDr60tBS1tbXYtm0b7rrrLgAk7BUVFb3b\n3H777fjmm2+wadMm/OxnPzN1YC5MHLUM3uGgLN7hkDJ4vUZW+aQhsUbu48ULrUbWMWOAe+8lwR48\nmJZ5Bt/VpV7+qMzge3qsXQfPz1ktg0/EtY8nIv7kYvf4oyFpPVnVBF6ewfN12dkk7ikp2hl8d3f8\nBT4RaGXwzuO/s7KyqJJm+HBzGbxc4AFr18Fz28jO759AYDUsI/BqFg1gTuB5Bt+vX/wGHkukB68U\n+NRUepydDYwYQf0GjDx4pUUDWNuD5zEJD956iPjti64HH0/MWDQAiZSewKekSP5tZqa9R5bUamTl\nAj97NuB2A2vWANu303P8OqanB98YlBYNYG0PXk/gBQJBZCQlg+eZOhcuIDiD5xUxgHEG73DQMu+5\n2Rc8eOWMTvw6ZWUB06ZRRQ0fVZKPRZOeHpyZh1o01vbg9Swau3uoIv7kYvf4oyEpAq/M3gHtDF4p\n8MpGVvlr42nRJIKuLjoXrQyeI/fbu7qkDF4p8MEWjTQevJUFXmTwAkHssJTAq3nwWVmUoWpl8Py1\nTidtF68MPhE+nt9P56vVyMqRC7zcopELfKhFkzwPvqYGeOMN/W34OYuxaKyHiN++WEbguYAD4TWy\nAiTwaWm0nd0zeDWBV2bwfBhl3vZgzqJJnge/ejXw8sv624gMXiCIPZYReK0M3qzAu1zxnb4vUR58\nVpZ5iyYQILuK3+CUjazBFo3kwXd0AB9/HO+zkejqCo5NDeHBWxcRv32xjMBHWiYJ0Hqewdu5jlot\ng5c3snK4wMuvo9kMPiMDWLcOuPba+J2HEt5PQQ+RwQsEsccyAm+2TFKrkTUtLb4ZfKLq4DMzQzN4\npQcvn+lKT+C16uAPHkyskIaTwYs6eOsh4rcvSamDj3UGf6J58GYyeK06eH6zSLTAGzXsip6sAkHs\nsVwGzxsOzQ5VwF8bb4smUR58ZmZsBL6zU5qYXOnBA9bL4Pl6MRaN9RDx2xdLCTwfcoCXRQLGPVn5\na+Nt0SSCcBtZfT66VkBoI+uxY5KYK+vggcQKfDgevMjgBYLYYRmB5xaN3J4BrJPBJ8qDN9PI6nJR\nO0RHh3YGL7+OSg8esF4GLzx46yLity+WEXhu0SjXjRlD47ybaWTtCx68mUZWgLL4I0fCEXgkVeDN\nevCiikYgiB2GAl9VVYWCggLk5+dj0aJFIeu9Xi8GDhyI4uJiFBcX45577jE8qF4GrxS04mLqJJNs\niyaRdfBGHjxgLPByi4aEnjz4IUOAd9+1bgYv6uCth4jfvuhW0QQCAcyfPx8ffPABxowZg9NPPx1l\nZWUoLCwM2u7cc8/Fm2++afqgehm8miUBJN+iSQR8REwjDx6g7VpaJA9eL4Pn/7m1c9ZZ1vXgRQYv\nEMQO3Qy+uroaeXl5cLvdcLlcKC8vx/Lly0O2o3lhzRNOBi9fn8wM3koePBCawSsbWX2+4MZVp9PT\nezOQDwuRCMxYNGIsGusi4rcvugLf2NiI3Nzc3uWcnBw0NjYGbeNwOLBq1SoUFRXhoosuQk1NjeFB\n45HB8xpvu3vwZgYbA8xZNPLG6v79peVkCLzI4AWCxKMr8A5la6YKp556KhoaGrBx40bceuutuPTS\nSw1fo1cmaZTBGzWy2r0O3kyZJEAWjZbA9/QE93IFgMcf92LgQHrscFhT4LVuPHb3UEX8ycXu8UeD\nrgc/ZswYNDQ09C43NDQgJycnaJv+/fv3Pi4tLcUtt9yCw4cP46STTgrZ39y5c+F2u/HFF0Bz8yB4\nvdN7fz7V1nqxdy/Q3e1Baqr0pvD1ra1erF0L9PR4kJISvD41FTh82Ivt2+n1QOjro13esGFDTPen\ntvztt0BWlgd+v7Q+EFC/Hp2dXtTUAC4XLa9d60VrKwB4jvcl8OLjj6Xt9+3bAK+XlskO8/Yux+t8\n+HJ3N+Dz6R9vxw4v0tLofOMdj1gWy1Ze9nq9WLJkCQDA7XYjKpgOXV1dbPz48Wznzp3M5/OxoqIi\nVlNTE7TN/v37WU9PD2OMsTVr1rBx48ap7kt+qIceYuxnPwte/8ILjJWXM7ZpE2OnnBL6+rPOYuzT\nTxnLymKstTV03Y9/zNg//8nYDTfonZG1Oftsxt59l7GMDOm5K69kbNmy0G3Lyhi75hrGrriCllta\nGOvfnx43NzM2YID2cbq7GUtJiV3cRvz3fzMG0HG1+PGPGRs6lLF7701cXAKBHTCQaV10M3in04nK\nykqUlJQgEAhg3rx5KCwsxOLFiwEAFRUVeOWVV/D444/D6XQiMzMTL774ouFNRa+RNdoqmr7mwWtd\nD27RDBhAy2lpkkWj7CymhF/LRCGfipAPn6DE54vvlIsCwYmIYR18aWkpamtrsW3bNtx1110ASNgr\nKioAAD/96U/x9ddfY8OGDVi1ahXOPPNMw4PqNbJatYqG/4SKJ11dVPnCmCR04TSy+v30WnkNPEce\nP2/DCLP4KWLU5ppVwsVfePDWQ8RvXyzTk9VsBp+sRtZE0NVF1UBpaZIoGnV0kpc+Op1SSaJeBs+3\nT1QWz2+6egLPM3hRRSMQxA7LCLy8TNKKGTxvDIknXOBdruC6cDNVNIBUSSOvgeco40+kwPOblV4t\nvM9HNy1RB289RPz2xVICz8skT+SerOFk8C0t6gKvrIFXIxkCb5TBa1k0AoEgMiwj8HKLJtIMPp6N\nrIny4NPSgjN4revRrx9w9Cgwbpz0HG9oVbNolPFbTeB5+4MYi8Z6iPjti2UEXt7IqpXB8y9/Mqbs\nSwRcmNPSzFk0ubnA8bZuAFJDq5pFo8RqHnwgQDc2kcELBLHDMgJvJoMPBELFHQgeqkDLojl6FDjt\ntMhjToSP19ZG49+bsWguuwx4/fXgskM9iybZHnxqqr4H39ND76Hw4K2HiN++WGZOVjNlkt3dofYM\nf62RRfPtt0BtbfSxxws+2UlmprlG1rFj6U+OXiOrkkQLvLK+X4nI4AWC2GPJDF7LojESeD2LpqUl\neIyXcIm3j9fWRiLocARn8Fq/aNTQy+CT7cEr55pVwjN4UQdvPUT89qVPZPCnngrk59NjLYumpUXq\nCGRiDLWEw+0ZwFwGr4ZeI6uSRHvw2dnmMng7V0EJBFYjaRk876DD4WWSkWTwv/oVcM45xhk8EHkj\nbLx9PLnAm2lkVUOvkTXZHnxWljkPXszJaj1E/PYlKQLPO/QEBZJiPFywViMrR6+RtbmZ/hsNW5ss\nlAJv1MiqRjh18IkcMjgcD15k8AJB7EiKwKuJuJkJP7QyeI5eIyvP4CMV+ER48Hzk5UgtmvR0oLPT\nmnXwwoO3LyJ++5IUgVdrODSTwRsJvBmLxqoZfGuregYfbiPrNdcAr71mroomUYONhePBiyoagSB2\nWEbgY5XBx8uiSaQHH2kGX1AAjBoFbNhgvTp4sx68qIO3HiJ++2IZgY9FBh9PiybexKKR9U9/An7x\nC3qtHevgnU6RwQsEsSRpAq8ULTNVNEaNrPG0aBLpwUfayApIY9NYxYNnjN4Tsx68GIvGeoj47Yuh\nwFdVVaGgoAD5+flYtGiR5nZffPEFnE4nXnvtNcOD6jWyRpvB69XBA9F1doonehaNWQ8e0BZ4JYkS\n+ECAjpWRITx4gSDR6Ap8IBDA/PnzUVVVhZqaGixduhSbN29W3e7OO+/EhRdeCGai5U7PoonGg9fL\n4JubjUVGj3j7eHqNrOFk8Hz4AqvUwcsnMTHy4NPSRB28FRHx2xddga+urkZeXh7cbjdcLhfKy8ux\nfPnykO0effRRXHnllRg2bJipgxo1ssYrgx8xwh4efKSNrABw0knkd1slg+cCzzthaSHq4AWC2KMr\n8I2NjcjNze1dzsnJQWNjY8g2y5cvx8033wwAcJgYB8CokTVedfDDh8feg9+zJ7L9KYlFIytAbRTj\nxunPyQokTuD5ey0/JzX0Glnt7qGK+JOL3eOPBl2BNyPWt912GxYuXAiHwwHGmGmLRq2R1SiDj7SR\n1eej5wcOjG0Gf+wYMGlSbPal7OgUaSMrAJSUBE8EokYyLJpIG1kFAkFk6DbfjRkzBg0NDb3LDQ0N\nyMnJCdrmyy+/RHl5OQCgqakJ77zzDlwuF8rKykL2N3fuXLjdbjQ3A888Mwgez/Ref2zNGi86OoBA\nwIPUVOmuy9fv2+dFczOQkkLLyvVerxft7fR65fr2diA93Yu2NsDv13693jJ/Tr7+6FGgo8ODri7g\ns8/C259yedcuL7ZvBwAP0tKA2lovvF6gu9sDpzO8/f3977Ts9WrH39npxZo1wOTJkcVrdjkvzwOX\nC6iv92LnTjo/te19Pi/q6oCentD1Ho8nbvElYlnEL+IPZ9nr9WLJkiUAALfbjahgOnR1dbHx48ez\nnTt3Mp/Px4qKilhNTY3m9nPnzmWvvvqq6jr5oYYPZ2z//uD1e/cyNmIEY7/5DWN/+Uvo6+fPZ+wX\nv2DM7daOt72dsX79Qp9vaGBs9GjGLruMMY3wIqKhgTGAsZYW9fWdnYwdPGhuX7NmMfbpp/T4z39m\n7He/o8epqYz5/dHHqmTqVMY2boz9fpXs2MHYuHGMPfkkY9dfr71dVhZjy5YxVloa/5gEAjthINO6\n6Fo0TqcOnJLgAAAgAElEQVQTlZWVKCkpweTJk3HVVVehsLAQixcvxuLFiyO+qeg1skbjwWtZNO3t\n1PAob7wMF36HldPZSf87OtRfs2wZcMcd5vYfq0ZWLZTxpyTYg5fbTmroNbKqXXs7IeJPLnaPPxoM\nK6xLS0tRWloa9FyFfCJQGc8884ypgxqVSWp58D5fZFU0HR3U0SbNwAcOFyOBb24m4TaDWpkkF2C9\nc46URAl8uB68qIMXCGKHpXqyGnV0Mmpk5aKlbOft6KAMngtnJHCvTI6RwLe2UkOsGY4epUZgQMrg\nw+3kpIcy/kQNF8wFPpoMXu3a2wkRf3Kxe/zRkDSBj0dHJ4dDGvJATnt7cjL4tjZzAs8YCbx8qAK/\nP/xOTuGQjAxeT+BFBi8QxJ6kCHy8hioA1GvhY2HRROLBm83gjx2j8+edk7gYxsp/B9Q9+EQMFyz3\n4LWuPTVVizp4qyLity8JF3jG1IUrFhk8oN7QyhtZE53BmxX4o0eBAQOkZblFcyJk8D09FI/ary+B\nQBA5CRd4LlpKL51/uWORwStFIhYZvJqPx4U9WotGKfDxyOCV8Sda4PUyeD4gmVZMdvdQRfzJxe7x\nR0PCBV6rSsbMhB9Gjax8P2oWTbIyeL6NHvIGViA+jaxKkiHwehl8aqr0HgsEgtiQFIHXE/B4ZPCx\naGSNpwevlsHHupE12XXwehYNz+D5TV6J3T1UEX9ysXv80ZAUi0ZLwAESgWg8eL1G1mg6OqkRT4GP\ntUWjxEoWjcjgBYL4YBmLBqAv+bFj0WXw8bJoIqmDj9SD52IYzoTbRiTLg/f7jRtZjTJ4u3uoIv7k\nYvf4oyFODq82eqLVrx+JYrQZvJZFA8R2RqfOTvLO45XBd3eTOMaDRAn8sWP0vprN4EUdvEAQOyyV\nwXOBj7QnK5D4OvghQ9QFnjES+O5u7THqOVoZfFdX7DL4ZHnwnZ2SwBtl8FoWjd09VBF/crF7/NFg\nmUZWgISgtdU+dfAdHdoC7/OROGdmAnv3Avv3a+9Hr5HV7hk8F3i9a88zeC2Lxi709AB33pnsKAQC\nCcs0sgIkhq2t9qmD18vg+eBhGRnAI48Af/+79r61LJpYZvDJ8uDlFk2kGbxdPNRjx4D77w/tIWyX\n+LUQ8dsXy1k08cjg41kHryfw/fuTwO/bpz/htFYdfF/J4DMyjHuymsngd+8Grr8+PnHGAn5+Vp33\nV3DiYUmB18vgzXjwiayDHzrUWOD379dv3D1yJP4ZvBU8+Eh7svLY9+8H1q2LX6zRws9PeZ5294BF\n/PbFUgKfmSllc0r4z/dkDTamhl4GzyfwyMgADhzQP65emWS8MvhEDResbGRVG+DMbB28mQbrZMJv\n4vJfa62tyYmlL8MYUF2d7CjsgaHAV1VVoaCgAPn5+Vi0aFHI+uXLl6OoqAjFxcU47bTT8NFHH+nu\nz6iRFYh9HXwsZnSKxIPnGfyBA/oZvHyoYEC6EfUVDz4jQ6pzVxNos3XwvKezVeGfLS7w33wDnH++\n/T1gq8W/dy9wySXmt7da/IlEVz4CgQDmz5+PDz74AGPGjMHpp5+OsrIyFBYW9m5z/vnn45LjV3vT\npk247LLLsG3bNs19Glk0QOzr4JOZwbe1AYcO6R+3vV2azQlIXB18IoYL5hk8IGXxynPqqxn80aPA\n4cPJi6evwr8bAmN05bK6uhp5eXlwu91wuVwoLy/H8uXLg7bJysrqfdzW1oahQ4fqHtCoigaIz3jw\n0Tayqvl4emWSfj+N756RQUKql8HzXxicvlgHD2g3tJodi8bqAq/M4H0++mzY3QO2Wvzd3eH9krNa\n/IlEVy4bGxuRm5vbu5yTk4PGxsaQ7d544w0UFhaitLQUjzzyiO4BzWTw0TSyKm0Axkhk0tOjm7JP\nDZ7Bt7eHruNd9DMypGUt5D1tASnTVct2Y0WiLRpA2yIz25PV6haNsorG79fu5SyIHD5vhMAY3fzQ\nYaSmx7n00ktx6aWXYuXKlbjuuutQW1urut3cuXPBmBsNDcBDDw3C9OnTe/0xr9eLpiYA8CA1Vbrr\n8vV1dV50dAApKdL28vV82en0IBCQls85xwOHA1i50ovduwG/X//1Wsv8Ofn6o0eBIUM86OwM3X7T\nJjqfjAxa3r/fC69Xff/t7cDatV6kpdEyWVRerFtH5xNJvEbxHzzoxddfA0Bs9q+13NnpQb9+tEy/\nZEK3DwSAjg4vVq0CAoHQ9R6PB16vF+vXA93d8Y03muXNmwHAA5+PlteuBTo6pPiTHV+ky1aLv7sb\n8Pm0v09Wj99o2ev1YsmSJQAAt9uNqGA6rF69mpWUlPQuL1iwgC1cuFDvJWz8+PGsqakp5Hl+qPfe\nY2z2bPXX/u53NHnbli2h6558krHhwxn7wQ90D89+8APG3nxTWu7sZCwtjR7v2MGY263/+nDIyGDs\n6FHGHA7GenqC11VWMnbLLYxdcw2dk9Y5+/2MpaaGvj4jg7F//Yuxq6+OXbxyrr2Wseeei8++5Zx5\nJmOffUaPx45lbOfO0G3Wr2esqIix5mbGBg7U3tfrrzM2dGhcwowJn35K7/Unn9DyK6/QcldXcuPq\na2zYIH2nTwQMZFoXXYtmxowZqKurQ319Pfx+P5YtW4aysrKgbbZv3w52vLVu3fEi5SFDhmjuM9GN\nrPKGyvR0c4N/qcHvsJxjx8hOyM6meJXWg99PlpCRRcPbB5Q/llwuWmd3D15p0eh58Ckajaw8dqtb\nNGoePAC8+643KfHECuVnJ9mE2xZjtfgTia58OJ1OVFZWoqSkBIFAAPPmzUNhYSEWL14MAKioqMCr\nr76Kf//733C5XMjOzsaLL76oe0C9RtZYlEnyRtZ33gEuuCC4oTIjI3KBV3LgADBiBAlzv360Xz5p\nNiB58PyctLx/ZQMrJy2NBN7uHryZRlazPVmt3siqrKJRCr4gNgQC9DlhzLhN7kTHMD8sLS1FaWlp\n0HMVFRW9j++44w7ccccdpg9o1NEJ0M/gzTay3nor8OabwLBhkkhGI/ByLxugXpUjR9Ljfv2koYM5\nPIPngqWVwesJfGenNevg588HbrsNyMsz3lZZJqm8Du++S6WkPIPXq4O3usBrZfDTp3uSEk+sUH52\nkg3/DJid0tJq8ScSS/VkNcrgzfZkDQQom/L5QjN4ny+6+u8PP6QvsprAy+nqkiyaAQOk7O5f/wKe\neELaTllBw3G5aJ0V52RdsQJ4/nlz2xpl8E88AXzyibk6eKtbNGpVNIB6lZUgcrjAW/lmbxWSIvBG\nPVljMWVfdzdl63IPPiWFHkfyk5n7eHPnAq++aizwcg9+6FDpy/7pp8Att9CNAkicRRNLD97nA155\nxdy2RmWSVBHRd+vgAargsjNW87DlGbwZrBZ/IrFUBm/U0clMBs8tGi7wys5C3C+PlJYWYMmSYIHP\nyFAXeF4HP2yYlN11dJC18dln0rKawMe6kVVJtAK/ZQuN7miEWk9WOYEA7c9sT1buvVoR4cEnBpHB\nmyfhAm+mkVUtg+eFOWYtGp4ZKjsLRerDezwedHWRYH3xBbBhQ3AGr9wnz+CHDQPGjZO+/O3tQHEx\nwLsKJCqDj6UH7/PRrxKjbvhckPk5pKn0JJZn8Py91RpPnYu/VW0arQx+4kRPUuKJFVbzsPn7b1bg\nrRZ/IrFUBq/nwZ96Kv03yt6UGbxyPJeMDOCrr4D/+q/wYz9yhBpSPR7g7bfNefBz5gAPPih9+Ts6\nSOC3bqVlI4G3agY/eLBxL01uz/CGcbUMnr9P/KauF5fVMzetDF548LElXIvmRMZSAq9XRXPSSfS/\nrk5///IMXsui2bGDLIZw8Hq9aG4mYZs9m768Rh68PHNVy+AZ0xZ4btFY1YMfPNhYuOT2DKDeyCrP\n4Hlcyi+u3IOX/7caysZVLvTr1nmTEk+ssJqHHe7nwGrxJxJLCbxeBs8xmvBBr5EVoIyyqYmycSP2\n7QvOUuUCD5hrZAWCrYmODiAnh2rmDxzQrqKJdwYf6XjwjJnP4JUCr9fIym/qerXwVrdotDL4WPW9\nEBBWv9FbCdtU0QCSsOph1MiakUHD97a0GNs9d95JFTMA+XgtLcCgQcCkScDNNwNjxkhxa1k0QLA1\nwQV90iTK4o0aWePpwUfSWOn30/XMzjZv0XC0LBqjDF5eBy//bzXUPPj+/YGcHE/SYooFVvOww73R\nWy3+RBKn/FAbo0bWlBTtzkxvvEHCrIfTSSLS00NfMGUG368fZfDd3driyunoUM/gHQ7gH/+Qnteq\notHK4LOygFGjpAxePhY8x6oevM9Hvz6yssLP4LUaWRmj6wroZ/BWF/iuLrp5yzN4M1aWIDys/jmw\nEpayaLKy9AU3O5vsDT2cTukLxjN4pUVz6BA9NrJpfD5pX3IPXolWFQ0/Lv9FEggEzw/b1WW/Onif\nj65hZmZkFk00HrzVLRq/nz6j8gx+8GBgyxZvUuOKFqt52KIO3jyWEvh+/XB8yNXISU0NFXhlIysN\nS2z8a+DYsWDh5haNWtx6GTwgZa+dncGzSxk1slo1g49E4NUaWeV18ID9M/j+/YMbWwcNEh58rLH6\n58BKWErgAcnXjhSnU/pC6TWyAuYyeL4vj8ejm8HrefAAxXD0KIljSoqxwFu1Dj4cgVfz4I0aWdXi\nspMHr5bBn3SSJ6lxRYvVPOxwPwdWiz+RWKqRNRakpkqirByLBgi2aIwyeLnAAwhL4OUWDUCPW1qk\nihm5wGuNRRPLKfuUWCWD543hehYNx+oWTVdXsMALDz4+WP1zYCUsl8FHi1EG368fZdJAeALv9Xo1\nLRqjRlaAHre0SNk6F3ithl55BU4siKUHzwU+3Dr4SMsk7VQHr5bB797tTWpc0WI1D1vUwZvHUkMV\nxAKlwKs1sgIkUOE0sgL6GbzSZ1WzaJQZPJ+UWasOnp9PPEiWRRNJI6t8W/l/q8E9eHkGP2iQGIsm\n1lj9c2Al+lwGL7doeAavtGgA8vrDyeC5Bx9NI6taBs8FUwm/KVnNg+cTm8SyTFI+VIFaBm+nsWiy\ns4Pr4UeMABjzJDWuaLGahx1uFY3V4k8kpgS+qqoKBQUFyM/Px6JFi0LWP//88ygqKsK0adNw9tln\n46uvvtLcVyIsGvlPZGUGzwVnzBjjDF5ZRSMfQVJONB68lsD3hQw+nDp4eQZv5yoapQeflwc0NCQ3\nrr5GuIONncgYCnwgEMD8+fNRVVWFmpoaLF26FJsVtYzjx4/HJ598gq+++gq///3v8ZOf/ERzf/Fu\nZFXz4GORwX/4oRfffksdlJREk8Erp/rjxDqDj4cHH65Foybw/Msqr6KJ11g0Tz2lPXViLFDz4CmR\n8IZ8PuyE1TxsUQdvHkOBr66uRl5eHtxuN1wuF8rLy7F8+fKgbWbNmoWBx+ermzlzJvbs2aO5v0RY\nNEYdnYDwBb6lhfx3NcFVa2Q18uDT0+2bwUfa0Ymfsxz+ZeUZvJmxaCIV+N/+Fti7N7LXAsCePTS9\noBZqHjyf8EXnKyEIE6v/krMShgLf2NiI3Nzc3uWcnBw0NjZqbv/UU0/hoosu0lyfjEZWZUcnABg9\nOrxGVrfbg9Gj1bcLx6JR8+DlWS4n1lU0yaiDV7NolA2O/Esq9+CVX1xlHXykHnxXl/bcuGb47W+l\nsYnUUMvg09NpPHg72zRW87BFHbx5DKXWEca05StWrMDTTz+Nz/h0RQrmzp2LDRvcaGoC2toGYfr0\n6b0Xn/+MinY5NdVzXOC9OHgQ6O72wOWS1mdk0PaHD3uPf+nU9/fhh97jDYC0/O673uNCHLo99Y71\nwuuVXt/Z6cWaNUBpKS13dHhRWwvk59Pyjh1e7NoF+HwepKeHHn/XLlp2OmN7ffjyzp009ILW+Wst\n83g3bfIe7zCmvf327dJkF3zZ5wvevrublvfto+vnctHEKmr7o+zbg+7uyM6/sxPw+yO/fvX1QEeH\n9vpvvwWysz3w+2m5vR1IS/MgNxd47z0vUlJi9/6dyMsk7F5s3AhcfHHy44n1stfrxZIlSwAAbrcb\nUcEMWL16NSspKeldXrBgAVu4cGHIdhs3bmQTJkxgdXV1qvvhh7r2Wsaee87oqJHzwguMjR/PWL9+\njJ1yCmP33svYXXdJ6197jTGAsY8+YuzUU7X3095O2512Gi3/4hcr2I03qm+7ZQtj+fnBzzmdjPl8\n0vL3vsdYaSljv/gFLT/3HF2L9HTGOjtD91lZScdfs8b4nM2wYsWKoOUHHmDsl78Mfz+PPcbYTTcx\n1tjI2MiR+tvOmcPY009Lyy+/zNjll0vLPT10jgBjP/sZPXfqqYytXase+5VX0rZVVeHHzRhjGRmM\nrVsX2WsZY+ziixl78EHt9WedxdhLL0nXJTOTsbY2xq65ZgX7y18iP26yUX52ks0vf0mfg5dfNre9\n1eIPFxMyrYmhRTNjxgzU1dWhvr4efr8fy5YtQ1lZWdA2u3fvxuWXX47//Oc/yMvL091fohpZs7P1\nG1mHDg21VeTIfXyAhjfQsmiUdgVjoR2s0tLU6+CVjbEc/lorevCRWjTp6cEWjdxqSTn+SVTrDMWJ\n1qLx+6OzaJQ9m9X2zz93fPu0NGD4cFFJE0uEB28eQ/lwOp2orKxESUkJAoEA5s2bh8LCQixevBgA\nUFFRgT//+c9obm7GzTffDABwuVyorq5W3V+i6uAHDpQ8eLmAZmSQ0GRnhyfwaWnaHnz//lLvWEDy\n/eXulpoH39ZG26Wo3GZ5zLG6VkofMiXC8eCjGS5Y2cgq/4Lym75aZygeezRf7J4e+otW4PU6LXV1\nUeLQ2irNR+t0At/7ngdPPBH5cZON8rOTbEQdvHlMyUdpaSlKS0uDnquoqOh9/OSTT+LJJ580dcC2\nNv0hgaOF18FnZ1PFRHd3cE/Rfv3o+P366QuUz0cCzb/Qe/dqD4TWvz912+/pIeFUy8rT0oDGRmny\n8LQ0EgK1Chog9mWSSqLN4HlcyiolOWplknKBlAs1v8mlqYxXwwkEaH0kAs/3GU2ZpJkMPjOTPl8H\nD1KsDgdVX5mZQUxgDpHBmyfhPVnr6qjzR7yQWzRqHZ0yMiSBN8rgBwyQvtC1tV7NDD41lfbZ2krL\nyl8NgDSaJC9IMhL4WGfwvBGHE6nAy+v2jWyacCwaeQavzLKlBll6/yKxaLiwh5PBd3RI7ylgLoN3\nuWj+4H37pOu0ZYs36Bee3VB+dpJNuOWyVos/kSRU4H0+ymJPPjl+x0hNpQ9AVpZ6HfyYMUBJCYmT\nkcBzmwfQ9+ABuhnwLE1ZIglIy2PH0n+zAm/VDB4wHnDMqCerWgavZtHIt09Pjy6DD0fgn3gCuOce\nadlMBp+WRr/S9u2T3kP5zV8QPbx9y6pDVliJhAr8jh0kcPESLUDKeDMySMCOHQvOgocNA/71L4qB\nN4aqceyYNFmDzwd0dnowbJj2cQcOlHx4LYsGMJ/Bx7qRVc2Dj6ajE2D8K0hp0SgzeDUPXs2i4bEH\nAvEV+O5uSkA4zc3B1orZDH7IELL0+Ht7wQUeW2fwVvOww73RWy3+RJJQgd+6FZg4Mb7HkP/Uz8gg\nz1/rhqInUNzHDwSoF+LIkeqNoZyBA4MzeDWLZuBAyvQBWs8nAFHDDhl8RoZ+RhtOI6vZKpp4WjQv\nvABcf7203NYW/Asl0gy+f3+6mYfbqH377WIseTWi+RycaCRU4Gtr4y/wPON1OiWB15siUE/g09Np\nHzt3AtnZXt3jcovmwAFg8WL1DF7WIbjXrlDrxQrEPoOPlQcvF3ijDN6oJ6vZKhq5Bx/PDL6qSprt\nCyBxlbcxhOPBb90qjTy6erU3qMHeDIEA8MgjdKNINlbzsMP9HFgt/kSSUIGvqwPy8+N7DKXAHz2q\nn8FrNRLKBX7HDip/04NbNJ99BjzwgLoHrxR4wN4ZfLgCr2bR8Buc2SqaSAVePk+qGj09wPvv43jv\nXiKaDH7NmuDP+oAB2j78Aw8AK1YEP7d3L10HOw9SFi8CAfrciCoaYxIq8EeOUHYTT+SZ4IABwOHD\n0Wfw27cDRUUe3eNyi4YPKqWWwfMGVvn6RFXRxNKDN2vRGI0m2d0t3QD0qmjkdfDxsmg2baJrffiw\n9Fxbm/kMPhCgY6Snk8Bv2yZVi3k8npC+EnLWrqXjc+6/n24QgDUE3moeNs/gRR28MQkVeOUXPh7I\nM/iBA2n+Va0sWK+ShpcDpqdTBq9XQQNIFg3vsagU+GnTAPnnzEjgrV4HD+jfIBkLHUhNrUxSmcHr\nVdHEs5G1sREoKiJR58Iht2j4+Wjd0Fpa6DOQmir1dZCXA+tl8MeOBY9s+uSTVAgA0PXdsMH4/E4k\norHqTjQSLvDyn+zxQC7wAwboC7xRBp+RIVk0R496dY/LLZqGBiqLUx6zvJz+OInO4BPtwR87Rucg\nb5hWa2RVZvBqFk0iPPiWFvp1OXCgJLZyi4a/XiuDb2qShJ3/SuUWjdfr7W1oVaOzM9gaam4GPvxQ\nWnf66ckts7Sah81/yQkP3piECnxnZ/wzeC4UXOCVZZJyzFo0W7fS1Gt6cIumoQGYPVt9fBk5ZjL4\n1NTg4Q5iSTQdnfh7qGfRqP1a42O9yzuqqGXwyaii4ROqDx4sia3colEOXaHk0CFJ4NUyeD2LRi7w\njNFjfo6HD9N5yxt/T3T4LzlRRWNMn7ZoeElipBk8t2g6OoB58zy6x5VbNNdeC0ydqh+nmQw+lmP2\nxMqD7+iQhprQu37KBlaAblZym0bLg49nHbyW/cMnVB88WPLh5RaNfIx3NQ4dkhrihw6lElueFHg8\nHl2LprOTbjB79lAcqan0/gwfLgn7oUPmzzXWWM3DDjeDt1r8iSSOw36FkgiBl2fwxyeZ0s3gzVTR\nTJlCGZgeAwfSl3P/fuDSS4Ef/lB/ezMCH88OYQ5H5ALPx/YJV+ABqaE1M5O+oNzGkVfR6GXw8bRo\nhg8neyWSDF5u0Zx8MuD1Bv/60svgjx2jY86ZA1x2GXXGKykBvv1WEvh4ZfB6YwlZlXAbWU9kRAZv\nwqI580xjH2/gQKrzHzLE2J4BSNCcTm2Bz86ObUlprDz4jg5JuPv1C8+iAUIzeKdTsqOA+I1FY1Qm\nqWbRtLfT56Onh2Lu189cBu9wAKedFhy/mQy+oQH45huK4amngHHj4ivwfM5Yow5YVvOwRR28efp8\nIysQXRVN//7AWWcZH3fAAKrzl3+xjUhL077hZWUB69aZ31e4RDpcsDyDV5uLlqOVwcsbWuUCn+wq\nmuZmSeC57+33S0mAfPC5w4dDbzLyDF4NMx58YyNQU0MxADg+Uxg9jodF09REo17qzTNrRcK1aE5k\n+nQjqxmLxqiK5oknyFM38vEmTgR++Utg6VLzsaalaWfwsSaWHny0Fo08g09NDc3g9caDj6dFwz34\n5mbK3rOypHHv5YPPXXutVOXCkWfwSsx48Hv30nE2b5YEPjMzdhn8pk2h5873aTSUsdU8bF5eK+rg\njREWjYFFM2SIucbOAQOAv/3N2KuXk0iBVxKJwHd3S515AH2L5uhR6frLkVs0fAJ2+aQnRh58vKto\nuAff3k42GR8S2eej99bvJzGW160D0WXwx45J53TwYHwy+J/8hHpZK2MG7DdWvaiDN48pga+qqkJB\nQQHy8/OxaNGikPVbtmzBrFmzkJGRgb/97W+a+0mWwEeSwcu9ZiA+Pl4iBT4WHnxnJwkebzzUs2iO\nHJF+QcmRC7iWB69VBx+tRZOaat6D5xPTZGWR2HMP3umk8WGUg4DpZfBerxcDB+L4pOHB8A5UgwdL\nyYFS4B2O6DN4ftOSY1bgreZhCw/ePIYCHwgEMH/+fFRVVaGmpgZLly7F5s2bg7YZMmQIHn30Udx+\n++2GB4x3i72yDl7vmHpVNM3N8R9WwW4ZvNyeAfRvkFoCr9XIqufBHzxIvUyjtWiysow9+CFDJF9a\nmcHzRveDB9XFUi+DLymhRvhXXgl+nncIGzwYKC6m55QCP3o0DWL37LOh71kgQIOkffml/vmrCTz/\nVWDXDF5U0RhjKPDV1dXIy8uD2+2Gy+VCeXk5li9fHrTNsGHDMGPGDLgM1Dve2TsQOlSB/DklegIl\n77gCxMfHs5sHHwuBN8rg1Sya1FQPtmyJ3qLREnjGKN5Bg2hAuD171C0a3i8CCE/gPR4PBg4E/vIX\nGpJYDi88GDwYOPVUek4u8F1dVE3z2WfA3LnA3/9OQxf87ne0zV//Ctx4I3DDDdrnzhj9QlEmMzyD\nV9pNavFbiXAHG7Na/InEUOAbGxuRKxsGMScnB43yWRHCIBECH24GryVQhw+LDF4Jt2g4ej1ZY5nB\nf/klCXO0o0lqCXxbm2S/jB0L7N6tbtHwDB4IFvhDh+g6GPV2zs2lTFwOb4wePBgYP15q6AUki3Dc\nODr3228HHn4YOP98yuY7OoAHHwTeeotq5rdsUT/usWN03pFaNFZDVNGYx7D50BHDvvIdHXNx991u\nAMCgQYMwffr03rsr98miXf7ud2l5xw4vNm4EAA9cLvXtd+6kmZrU9rd3rxdbt0qjSD700EMxj5dK\nMWN7/lrLyvg3bfIe/4Kb319tLZCZGbysdf1qarxwu0P3n57ugc9HyzSCI70/W7Z44fUCLpcHXV3B\n+3v/fXrscND23d3hn//mzV4wBvj9oetbWoCMDDr+ued60N4OfPyxF52dwNChHnR0AOvXe9HSIr1f\nPF6Px4MNG4Bx47z45BP14/PHDQ3AgQPB63NzPcjIAEaPpuVRozwYPJjW19XR9Rs7FujXz4uzzgJ+\n9SsP3nkHuOEGLx56CJg82YNp04CzzvJi4UJgyZLg/Z97rud4hu49PmKltP6bb4CRIz04ckT/+sk9\n7Hh9PsNZ7u4Gdu/2Hh8r33h7q8VvJt4lS5YAANz0JYocZsDq1atZSUlJ7/KCBQvYwoULVbe9++67\n2V//+lfVdQDYhAlGR4sNDgdj//wnY4EAYwBjBw+qb7d8OWMXX6y+LiODsfZ2aXnFihUxj/Ossxh7\n8XuAP/EAABb5SURBVMWY71YVZfwffMDY974X3j4+/pixc86RlletYmzmTPVtr7mGseeeC33+0ksZ\ne/VVevz004zNmcPYqacy9sor9Nw77zD2/e9L2/f0MDZw4Ao2bBhjaWmMPfssY9ddF17cjDF23310\nvc8+O3TdunWMTZkiLefnM3bnnRTbddcxdtppjJWUMDZ3LmOnnEKfqYoKafsHHmDs1lu1j82vfUsL\nY9nZwes2bWJs8mRp+Z57GKuvp8cffkjHuv9+xlpbg1930kmM3X03YzfdRMv/93+MXXBB6LH/+78Z\nW7SI9vOHPwSvu+ACuh533aUduzx+qzBkCGOLF9NnyQxWiz9cTMi0JoYWzYwZM1BXV4f6+nr4/X4s\nW7YMZWVlWjcL3X3Fu5MTJzVVKr1zu7WPK59mTw73KuV2hPDgQz34aC0aXiapV0Vz8CB58NOm0bap\nqbFvZF2xgnorc8aNA1auJMslM5MsohUrgj14uZ+9fr3kn6vBr/2AARS73CpRdv777W/p+IB0rbOy\nqD1AzqhRNGY8n2OguJjikH8FGaO4+djyPGY+1s6hQzQgmt3q4MNti7Fa/InEUOCdTicqKytRUlKC\nyZMn46qrrkJhYSEWL16MxYsXAwD279+P3NxcPPjgg7jnnnswduxYtKl0j0uEB08xSw2r27dLg2Mp\nGTJEvfxM2cAaL4YNg+5E3vEkFgIfy0ZWLQ++vp7GdhkyRLpxx1rgly8HLrlEWh47Fli1iipf+Pn6\n/ZIHP3JksEhv2ABMn24cg8NBNw25D6/X+Y8Lv9rnd+RIoLpamiVs1Ci6hvLmsW3b6PP99de03N5O\nopiXB6xeTesmTLCfBx9NW8yJhqk6+NLSUtTW1mLbtm246667AAAVFRWoqKgAAIwcORINDQ04cuQI\nmpubsXv3bmQrUw4kR+BTdM5w6FD1DiRqDaxyHy9WvPQScPbZMd+tKsr45QK/bh3w858b7yOeZZJa\nVTT19UBmpre3w5nTKWVuPT36c6zK0RL4w4cp8509W3pu7FiqSf/OdyhznjFDij09ndbLBb6xUcq6\n1ZBfezWB1/qFqSfwo0bRZ5dn8A6HlMXfey/w+OMk4pmZJPQAvX9ff00lk489Rr+OzAh8PD770SDG\ngzdPQnuyJkrgefd3I4YMoS+J0llKVAafTOQCX11Ng1sZiWWsLRou8BkZwTNYyTP4XbtIFIcODbVo\nnnsOuOUW9ePPmUP14ZyuLhJr5Tl+9RXV2MtFtrAQKCujm838+cCLL0qxZ2SQmHOBDwSo4kbtXNUY\nOZJGHOVEI/BA8Dy/xcVkJ731FvDGG8CnnwI/+AG9z0OHUsyrVgHnnQc8/zwwbx4NNnbkCF3Tzz83\ndw7JRtTBmyehAp8oD16ewevhcpFgyTOY1avpC6IUeLv7eMr45cMF79xJX35lV3Yl8bJo/vEPaTpD\nNYH/znc8QRk8F/g1a6QpEpWsXUszcXG0yiS3bqVxhOT88Id08wBoCOEJE+jzkJ5O+zj5ZLpeGzdS\nMtC/v/4vRfm1V2bwer27jQTe4SCB5syeTcK+cSMJ+euvAz/9Ka0bM4bev1WrgGuuoZvf3/8utUM9\n9xz9mlSbHtBqn/1wO7xZLf5E0mczeLOTZQwdSl8Inr08/jh98ONdA59s5Bn8jh00NPG77+q/xqzA\n9/TQwFpGY9FwgXe7pSGWlRbNrl2UMcs9eJ65rV9P9d9yVq2ievDt24OFVMuiqatTH5ZZWR188skU\ne2UlDTbW3k5TMFZVhfdZiVUGP3Ik/fHrBgDnnks3vEmTyGc/5RRg1izpRtDeTje+M86g9gWXiwS+\nqQl44AHg6quBO+80fy5maWjQ74gVDj099Nl1uYQHb4Y+KfBmM3iABL6ykqoXAPqJm5ISmsHb3cdT\n8+C5NbVzJ2V1RsMTKwWe2yrKL1pbG23HfXU5mZmSvcEFXo5aBn/woOTBc4smECB75eDB4Nc/9hi9\nlz5fsPhrCbxaBq8GF/gRI6gjUns7jS2zZYvUMUkL+bWPlcCffHLojcnlosbiWbOAm28msU5Lo5h5\nBr9vH5CTI72G25QzZpDIq2Xw0X72t241Th7Mwj8zqanmLRq7f3ejIaEzOllR4IcMoazv6FH627mT\nvEm5t9kXUWbw550nec1adHSEZqsZGZQBjhwpPadlzwAkLvz7xocLliMXeMYkD15p0WzbRsc4eJC2\n4xl3YyO9n0CowGdmRi7w8+dLPVX5ML4+nzmBlzNmDPD229KynsCnpEi2kJKZM4PbGDj330//5QOf\n5eTQcT/6iN5Debx8qsn0dPo8HDmiHdPBg/T+DBpkfJ7K1337bfD7FCn8MxNpNdWJRp/M4MO1aPbu\npazzxRfpZ+0TT1AGJMfuPp5WHfyRIyR6p51GXfT1ujIoM3gAqKgALr44uORy1y5tgR87ltYDUh28\nnLQ0SeBbWiieiy/2YOJEskQGDaIsdNUq8ozT04OH4d27l15fUGCcwXd30w19wgTtc+Z897tkfQC0\nH24zbdlibNHIr31ubnC7gdEIq/n56oLqcKiL8NChoaNa3nQT2Te7d1NZrlJkeW1/SgrdDHh8a9cC\nTz4JzJzpQVsb8PvfAw89FPxatclPDhyg7xCnqYmuu9GYN2bw+UKrqYyw+3c3Gk7oRlZAsmI8Hhq4\nacYM+qDHcIQGS8IFvraWxkDJzqb3R2l5yFET+L/+lQR3925a3rMHuPxyGjdFjXHjJIHXsmi4CHP/\n3eEgkfvLX6jixe+nxz/8IQkWF3LGKIOfOpXEX03gu7qkIXpnzqQOTuF+LtPTpUbVbdvCy+CVAq+X\nwQM0UUc4cwyoMW8eMHkynfvw4frbjhsnvZcffQQ8/TS9x7ffTm1V27cHb3/RRWQL8XLj1lbq9HXL\nLVLHKv6ZUraXRMLHHwOnnx55h7cTjT6ZwYfrwWdmUiPQ+PHAH/+ovp3dfTw1D769nbK7OXPoOfmX\nWw01gXc4KFuuraXlt9+mBrzrr1ffR24uZdmBgLEHzwVeHntKCrUXNDfTL4fhwyUBOXKEvviPPkrV\nI0qBT0+Xftrv2kX7WLFC+3y1cDjoZuF00n7D8eCHDiVR5+0QRgIfK/j7ZiTw8l9Y9fV0g3n7bRpn\nZ9MmqTLptttIbL/+ml5TWEjTDT73HN00c3Kk6887EyoHWouEV14BrrgiPIvG7t/daOiTHny4Fs3E\niVQZce218Y3LSqSkUPb5/e/TVIOAlF3zjj1KjhwJFXiArIstW0jY33svuFeoEj5L1t696gIvt2i4\nwCu59VaqBMnIoAyeC/zevTR2+rnn0q+TtjbK9nlljsslPW5spJtNpL/UsrIoIdi4MbwM3uGQsviC\ngtCJZeIFf9+MRryU/8LauZOu4Zdf0vVMT6cMft8+aszes4fsqX/8g6zNOXNIzJ95BvjVr0jQ3W56\nf1JSohP4VavoZvjWW9QY3N6uPZeDQKJPZvBnny11BDFi8mTggguMt7O7j6fmwQP0852LnPzLreTw\nYeCLL4LHbOHwDL67m37Wn3++fizjxlG1RmurOYtGGfvIkdJNhFs0PCvndeEpKcH2TVcX7Tsri467\nd29wDXm4ZGVJwxOE48EDJPD8l5LWTSzWpKTQ989MBs9jq6+n2AYM8OA736Eb55EjJO7jxwNvvknC\nDtAvwTPOAP7wB9pu+HBJ0JuaqGwzEoump4cE/Yor6BhPPEHf7fHj6T3lvxz1sPt3NxoSKvCJ6h36\nxBPmv7znnCNVHpxI8MbUiy+Wnhs7lr7UarzwAlBaqi5mkybRF23tWhIvo5vruHHAZZeRv6sUeF5V\nEwiYE7/hwym7O/VUmhBj9OjgdUqBz8+n2vfGxuBtw0Uu8OFk8ECwD791q3odfjzIyjIWeLebYuIV\nTBdfTA3ws2fTzd3tpjHoH3uMbqpc4FNT6bnrr5fG3OHX/uBB2u7AAcrC5WWietx2G73/L79M/VTq\n6oCrrqJ1KSnU1vPqq5FciROHhAr8ddcl8mixxe4+njL+yZNJlOX2wPe/T5VEu3ZR1rVqlZRNv/SS\n9vvHLZp33zX7awi48koSETUrjds0PIPUu/bDhwNLlwI//jHdFOQ39pwc6gwFSAJfUABs3kwCH00G\nP3AgMGUKxR+OBw+QwO/aRde2oYGy0USQmWls0Zx1Fgn8F1/QDeHGG4HZs7343e+oimb8eHq/Z8+m\na8kFXom8x25TE2339de0/6uvlrbbs0e9N/LevTSpyfvvU49ltRv9lVeGToGoht2/u9GQUIHv65Up\ndsLhCK3/njKFOsdceCFVmPzP/1A1RGsrCaXWL93cXKqnfuQRukkYcdNN9Itg1Cj1zlDcptm1CzCa\n72DOHGr8u+02+kUg9/9/9zvq9HToULDAb9kSvcD/5z/Ud2D48PB7PZeUUGNkbS3dhOS9UeOJmQw+\nI4PKUX/7W7r206aR9eJw0N/55wN33EGPH34Y+K//Ut8PF3jGSOAnT6ahE844g24ezz9P4/1897v0\np8zqX32V1hcUaOvGOefQ+/jkk6FlzWo8+6xxhyv+y/arr8wNwGd5YjcsvT4JPJQgSp58krF//IOx\n5mbGhg5lbOFCxs47T/81H37IWP/+jHV0mD/OQw8xtnp16PODB9PzI0fSpC3RMGcOxT99Ok3s8eab\njJWWMjZrFmMrV0a3b8Zo8pJjx8J/XWkpY+efT/8TxeWXM7Z1q/F2W7cy5vEw9utfR36sF15g7Ic/\npM/QgAGMffMN7fPYMZo0ZfRoxq64gj4Dv/89Y9/9LmNdXdLrZ81i7K23jI9TUcFYaipNBqOcFEVO\ndzdjw4bRZ+rdd+m5Tz8NPuaGDYydfDJj335Ln5vUVIo/2USjnULgBbr8+9+MOZ0005ARel+wcBg+\nnLGf/5yxm2+Ofl+rVzOWl8dYYSHNnrR1K32Jx45lbMeO6PcfKbW1NGvYz36WvBjiyYcfkqB//TVd\nfzk33shYZqY0Y1p3N80u9sgjtFxTw9ioUcHiq8XKlYydeSa9/rXXaAawnp7gODZtos/BlCmMPfEE\nzXK1dy8J+KJF9DdxIs0sNmECY7NnMzZwIO132bLYXI9oiKvAv/POO2zSpEksLy9Pc6q+W2+9leXl\n5bFp06axdevWxTxIK2D3ab+iif+bb2i6uURx2WX05Xv/fVqOJvaeHhIap5OxhgYSjaFDGUtJiSzz\njgSt+F96KTa/IuJNJNf/66/ppvrgg4zNmxe87uWXQ5/74APGiovp8S9/Gd6vh54exh5+mLLzk05i\n7IYb6PlAgAS7qGgFu+MO2if/RXHzzSTkLhdjF15IU2deeCFjBw4w9pe/0C+9ykrGxo1j7PbbabrK\n++4L7xdqrIibwHd3d7MJEyawnTt3Mr/fz4qKilhNTU3QNm+99RYrPf478/PPP2czNSbptLvAP/jg\ng8kOISrsFP+xY4w99hhjfj8txyJ2eVZ34ADNYZoo7HTt1Ygk/kOHyLI780zKrI3o7mYsJ4fm6R0y\nhLFdu8I7Xns7Y598wti2bXQDr61l7PXXyZobPPhBNnKkZE899hhl6NXVjO3bF/zZkHPkCGXweXm0\nfUkJY7/5TXhxxYJotFO3O1B1dTXy8vJ6Z/YuLy/H8uXLUVhY2LvNm2++iTnHu0LOnDkTLS0tOHDg\nAEYYNdfbjJZYDKSRROwUf3p68EQesYhd3lA3fDhNhJEo7HTt1Ygk/pNOonGKHn7YuF8EQI3tCxcC\nv/kNcM890kxVZsnMpEZXgDpZnXYaVYgtWQK88UYL7rqLRuAE6LN1883GRR8DBtBwGG43dWi78Ub7\nTTKiW0XT2NiIXNmwijk5OWiUT/qosc2ePXtiHKZAILAbCxfSbGFmx9K59lqqnLrppuiOe8cd1Flr\n1y4aK2f0aEncOeFU9J1xBok7oF71ZWV0M3iHyavAFEMQmn2dnajX6gFkE+wcv51jB07c+FNTzU1G\nHg/kfRPsfv2jQs+/Wb16NSspKeldXrBgQUhDa0VFBVu6dGnv8qRJk9j+/ftD9jVhwgQGQPyJP/En\n/sRfGH8TJkyIjwc/Y8YM1NXVob6+HqNHj8ayZcuwdOnSoG3KyspQWVmJ8vJyfP755xg0aJCq/76N\nT+0uEAgEgoSgK/BOpxOVlZUoKSlBIBDAvHnzUFhYiMWLFwMAKioqcNFFF+Htt99GXl4esrKy8Mwz\nzyQkcIFAIBDo42BKA10gEAgEfYK4j0VTVVWFgoIC5OfnY9GiRfE+XExwu92YNm0aiouLccYZZwAA\nDh8+jAsuuAATJ07E97//fUuVvv34xz/GiBEjMHXq1N7n9OK97777kJ+fj4KCArz33nvJCDkItfjv\nvvtu5OTkoLi4GMXFxXjnnXd611kp/oaGBpx33nk45ZRTMGXKFDzyyCMA7HP9teK3y/U/duwYZs6c\nienTp2Py5Mm46667ANjn+mvFH7PrH7F7bwIzHaWsiNvtZocOHQp67le/+hVbtGgRY4yxhQsXsjvv\nvDMZoanyySefsHXr1rEpU6b0PqcV7zfffMOKioqY3+9nO3fuZBMmTGCBaAd8iRK1+O+++272t7/9\nLWRbq8W/b98+tn79esYYY62trWzixImspqbGNtdfK367XH/GGGs/PuZBV1cXmzlzJlu5cqVtrj9j\n6vHH6vrHNYOXd5RyuVy9HaXsAFM4V/IOXXPmzMEbb7yRjLBUOeecczBYMWatVrzLly/H1VdfDZfL\nBbfbjby8PFRXVyc8Zjlq8QOh7wFgvfhHjhyJ6cdrAbOzs1FYWIjGxkbbXH+t+AF7XH8AyDw+XZXf\n70cgEMDgwYNtc/0B9fiB2Fz/uAq8mY5SVsThcOD888/HjBkz8K9//QsAgnrnjhgxAgdiMcFkHNGK\nd+/evcjJyendzsrvyaOPPoqioiLMmzev9ye2leOvr6/H+vXrMXPmTFtefx7/mcen7bLL9e/p6cH0\n6dMxYsSIXrvJTtdfLX4gNtc/rgJv1w5Pn332GdavX4933nkHjz32GFauXBm03uFw2OrcjOK14rnc\nfPPN2LlzJzZs2IBRo0bh//2//6e5rRXib2trwxVXXIGHH34Y/RVdN+1w/dva2nDllVfi4YcfRnZ2\ntq2uf0pKCjZs2IA9e/bgk08+wQrFTOpWv/7K+L1eb8yuf1wFfsyYMWiQTdfS0NAQdPexKqOOzzk3\nbNgwXHbZZaiursaIESOw//isBPv27cNwo5kTkoxWvMr3ZM+ePRgTzcwXcWL48OG9X8wbbrih92eo\nFePv6urCFVdcgeuuuw6XXnopAHtdfx7/j370o9747XT9OQMHDsQPfvADfPnll7a6/hwe/9q1a2N2\n/eMq8PKOUn6/H8uWLUNZWVk8Dxk1HR0daG1tBQC0t7fjvffew9SpU1FWVoZnn30WAPDss8/2fhGs\nila8ZWVlePHFF+H3+7Fz507U1dX1VgpZiX379vU+fv3113srbKwWP2MM8+bNw+TJk3Hbbbf1Pm+X\n668Vv12uf1NTU6990dnZiffffx/FxcW2uf5a8e+XTXEV1fWPQ6NwEG+//TabOHEimzBhAluwYEG8\nDxc1O3bsYEVFRayoqIidcsopvTEfOnSIzZ49m+Xn57MLLriANVthqpfjlJeXs1GjRjGXy8VycnLY\n008/rRvvvffeyyZMmMAmTZrEqqqqkhg5oYz/qaeeYtdddx2bOnUqmzZtGrvkkkuChr+wUvwrV65k\nDoeDFRUVsenTp7Pp06ezd955xzbXXy3+t99+2zbX/6uvvmLFxcWsqKiITZ06ld1///2MMf3vqx3i\nj9X1Fx2dBAKBoI+S0Em3BQKBQJA4hMALBAJBH0UIvEAgEPRRhMALBAJBH0UIvEAgEPRRhMALBAJB\nH0UIvEAgEPRRhMALBAJBH+X/A/iIZV+w5BrpAAAAAElFTkSuQmCC\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x108960d90>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 224 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "from numpy.random import randn\n", | |
| "\n", | |
| "\n", | |
| "for item in alameda_tracts_2000_df['AfAm_ratio_2000']:\n", | |
| " \n", | |
| "\n", | |
| "spacing = len(alameda_tracts_2000_df['AfAm_ratio_2000'])\n", | |
| "width = .35\n", | |
| "fig = plt.figure()\n", | |
| "\n", | |
| "ax1 = fig.add_subplot(2, 2, 1)\n", | |
| "ax2 = fig.add_subplot(2, 2, 2)\n", | |
| "ax3 = fig.add_subplot(2, 2, 3)\n", | |
| "ax4 = fig.add_subplot(2, 2, 4)\n", | |
| "\n", | |
| "ax1.bar(spacing, test, width, edgecolor='#ede5e5', facecolor='#327676', align='center')\n", | |
| "ax2.scatter(np.arange(30), np.arange(30) + 3 * randn(30))\n", | |
| "ax3.plot(randn(50).cumsum(), 'k--')\n", | |
| "ax4.plot(randn(50).cumsum(), 'k--')\n", | |
| "\n", | |
| "\n", | |
| "fig.show()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "ename": "AssertionError", | |
| "evalue": "incompatible sizes: argument 'height' must be length 1 or scalar", | |
| "output_type": "pyerr", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-235-e50fa6d6ecd6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0max4\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0max1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mspacing\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwidth\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0medgecolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'#ede5e5'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfacecolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'#327676'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malign\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'center'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 15\u001b[0m \u001b[0max2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m3\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0max3\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrandn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcumsum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'k--'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m//anaconda/lib/python2.7/site-packages/matplotlib/axes.pyc\u001b[0m in \u001b[0;36mbar\u001b[0;34m(self, left, height, width, bottom, **kwargs)\u001b[0m\n\u001b[1;32m 4997\u001b[0m assert len(height) == nbars, (\"incompatible sizes: argument 'height' \"\n\u001b[1;32m 4998\u001b[0m \u001b[0;34m\"must be length %d or scalar\"\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4999\u001b[0;31m nbars)\n\u001b[0m\u001b[1;32m 5000\u001b[0m assert len(width) == nbars, (\"incompatible sizes: argument 'width' \"\n\u001b[1;32m 5001\u001b[0m \u001b[0;34m\"must be length %d or scalar\"\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mAssertionError\u001b[0m: incompatible sizes: argument 'height' must be length 1 or scalar" | |
| ] | |
| }, | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGbpJREFUeJzt3V9I1fcfx/FXoRf+YrTMiDoKy6Oz5OQxsJlEkRsj5zYH\nqwt31SxkRBF11VgX2S6sbVdRF23DioVJYwsMpudikhtL+0M2hYywsDg5iqzEWKBH9/ldRIdMO3+/\n5xz9+HyAkJyP3/fnwMv3+XaO3+97jjHGCABglbmp3gAAwHk0dwCwEM0dACxEcwcAC9HcAcBCNHcA\nsFDY5r5161YtXrxYK1eufO2aXbt2KT8/X16vV9euXXN0g0AikGvYLmxzr6mpkc/ne+3jLS0tunXr\nlvr6+vTDDz9o+/btjm4QSARyDduFbe7r1q3TggULXvv4uXPntGXLFklSaWmphoaG9ODBA+d2CCQA\nuYbt4n7PfWBgQDk5OcHvs7Ozde/evXgPC6QUucZM58gHqq/ewWDOnDlOHBZIKXKNmSwt3gO4XC75\n/f7g9/fu3ZPL5Zq0Li8vT7dv3463HDAlt9utW7duOXa8SHMtkW0kVqzZjvvMvaqqSj/99JMk6eLF\ni3rzzTe1ePHiSetu374tY0zSv/bv35+SuqmsPRufs9PNNdJcz8Zsz8Z8pfI5x5rtsGfun332mf74\n4w8NDg4qJydHBw4cUCAQkCR98cUXqqysVEtLi/Ly8jRv3jydOHEipo0AyUSuYbuwzb2pqSnsQY4e\nPerIZoBkIdewnfVXqG7YsGHW1Z6Nz3k2Il/2143HHGNMUoZ1zJkzR0kqhVkolfki20ikWPNl/Zk7\nAMxGNHcAsBDNHQAsRHMHAAvR3AHAQjR3ALAQzR0ALERzBwAL0dwBwEJhm7vP59Py5cuVn5+vb775\nZtLjg4ODqqioUHFxsTwej06ePJmIfQKOI9uwWcjbD4yPj6ugoEC///67XC6XVq9eraamJq1YsSK4\npq6uTiMjIzp48KAGBwdVUFCgBw8eKC1t4j3JuEQbiRRtvsg2ZoqE3H7g8uXLysvL01tvvaX09HRV\nV1erubl5wpolS5ZoeHhYkjQ8PKyFCxdOCj8w3ZBt2C5kUqeaI3np0qUJa2pra/Xuu+9q6dKlevr0\nqX7++efE7BRwENmG7UKeuUcyM7K+vl7FxcX6559/9Pfff2vHjh16+vSpYxsEEoFsw3Yhz9xfnSPp\n9/uVnZ09YU1HR4f27dsn6fmsv2XLlunmzZsqKSmZdLy6urrgvzds2DAj75GM6aG9vV3t7e0x/zzZ\nxnQVb7aDTAiBQMDk5uaa/v5+MzIyYrxer+nt7Z2wZs+ePaaurs4YY8z9+/eNy+Uyjx49mnSsMKWA\nuESbL7KNmSLWfIU8c09LS9PRo0e1ceNGjY+Pa9u2bVqxYoW+//57Sc9nTX711VeqqamR1+vVf//9\np2+//VaZmZnxv+oACUS2YTsmMcEKTGKCrZjEBAAIorkDgIVo7gBgIZo7AFiI5g4AFqK5A4CFaO4A\nYCGaOwBYiOYOABaiuQOAhWjuAGAhmjsAWCjuAdnS8/sPr1q1Sh6Ph/tYY8Yg27BaqPsBj42NGbfb\nbfr7+83o6OiU97x+8uSJKSwsNH6/3xhjzMOHDx29JzEQiWjzRbYxU8Sar7gHZJ8+fVqbNm0KTrHJ\nyspKzKsQ4CCyDduFbO5TDREeGBiYsKavr0+PHz9WeXm5SkpKdOrUqcTsFHAQ2YbtQk5iimSIcCAQ\nUFdXl9ra2vTs2TOVlZVpzZo1ys/Pn7SWOZNwSrxzJsk2piunZqjGPSA7JydHWVlZysjIUEZGhtav\nX6/u7u6wvwBAPF5toAcOHIjq58k2pqt4s/1CyLdlSkpK1NfXpzt37mh0dFRnzpxRVVXVhDWffPKJ\n/vrrL42Pj+vZs2e6dOmSCgsLY9oMkCxkG7aLe0D28uXLVVFRoaKiIs2dO1e1tbX8AmDaI9uwHQOy\nYQUGZMNWDMgGAATR3AHAQjR3ALAQzR0ALERzBwAL0dwBwEI0dwCwEM0dACxEcwcAC9HcAcBCNHcA\nsJAjM1Ql6cqVK0pLS9PZs2cd3SCQKGQbNgvZ3MfHx7Vz5075fD719vaqqalJN27cmHLd3r17VVFR\nwQ2UMCOQbdgu7hmqknTkyBFt3rxZixYtSthGASeRbdgu7hmqAwMDam5u1vbt2yVFNr4MSDWyDdvF\nPUN19+7dOnToUPCew6H+68qcSTglGTNUyTZSwakZqiGHdVy8eFF1dXXy+XySpIMHD2ru3Lnau3dv\ncE1ubm4w9IODg/rf//6nH3/8cdLIMgYaIJGizRfZxkwRa75CNvexsTEVFBSora1NS5cu1TvvvKOm\npiatWLFiyvU1NTX6+OOP9emnnzq2QSAS0eaLbGOmiDVfcc9QBWYisg3bMUMVVmCGKmzFDFUAQBDN\nHQAsRHMHAAvR3AHAQjR3ALAQzR0ALERzBwAL0dwBwEI0dwCwEM0dACxEcwcAC0XU3MPNmmxsbJTX\n61VRUZHWrl2rnp4exzcKOI1cw2omjLGxMeN2u01/f78ZHR01Xq/X9Pb2TljT0dFhhoaGjDHGtLa2\nmtLS0knHiaAUELNo8+VUrmOpDUQj1nyFPXOPZNZkWVmZ5s+fL0kqLS3VvXv3nH8VAhxErmG7sM09\nklmTL2toaFBlZaUzuwMShFzDdiGHdUjRDQU+f/68jh8/rgsXLsS1KSDRyDVsF7a5u1wu+f3+4Pd+\nv1/Z2dmT1vX09Ki2tlY+n08LFiyY8lgMEYZT4h0i7GSuJbIN5zg1IDvsO/WBQMDk5uaa/v5+MzIy\nMuUHT3fv3jVut9t0dnY6/qEAEIlo8+VUrmOpDUQj1nyFPXOPZNbk119/rSdPnmj79u2SpPT0dF2+\nfDn+Vx4gQcg1bMcMVViBGaqwFTNUAQBBNHcAsBDNHQAsRHMHAAvR3AHAQjR3ALAQzR0ALERzBwAL\n0dwBwEI0dwCwEM0dACxEcwcAC4Vt7uGGCEvSrl27lJ+fL6/Xq2vXrjm+yXg4cl/kGVZ7Nj7nWJDt\nmVU3lbVnUq5fCNncx8fHtXPnTvl8PvX29qqpqUk3btyYsKalpUW3bt1SX1+ffvjhh+DtUacLgjh7\nakeDbM+8uqmsPVNy/bKQzT2SIcLnzp3Tli1bJD0fIjw0NKQHDx4kbseAA8g2bBeyuUcyRHiqNUyJ\nx3RHtmG7kJOYIh0i/OqN5Kf6ObfbHdVQYicdOHAgJXVTWXu2PWe32x3VerI9M+umsnaq6kab7RdC\nNvdIhgi/uubevXtyuVyTjnXr1q2YNggkAtmG7UK+LVNSUqK+vj7duXNHo6OjOnPmjKqqqiasqaqq\n0k8//SRJunjxot58800tXrw4cTsGHEC2YbuQZ+6RDBGurKxUS0uL8vLyNG/ePJ04cSIpGwfiQbZh\nu6QNyAYAJI/jV6im6sKQcHUbGxvl9XpVVFSktWvXqqenJyl1X7hy5YrS0tJ09uxZR+pGWru9vV2r\nVq2Sx+PRhg0bklJ3cHBQFRUVKi4ulsfj0cmTJx2pu3XrVi1evFgrV6587ZpEXXSUygueyDbZlmLI\nl3HQ2NiYcbvdpr+/34yOjhqv12t6e3snrPntt9/MBx98YIwx5uLFi6a0tDQpdTs6OszQ0JAxxpjW\n1tak1X2xrry83Hz44Yfml19+ibtupLWfPHliCgsLjd/vN8YY8/Dhw6TU3b9/v/nyyy+DNTMzM00g\nEIi79p9//mm6urqMx+OZ8vFEZMuY1OU60tpkm2xPxdEz91RdGBJJ3bKyMs2fPz9Y14m/V46kriQd\nOXJEmzdv1qJFi+KuGU3t06dPa9OmTcG/AsnKykpK3SVLlmh4eFiSNDw8rIULFyotLeTHOxFZt26d\nFixY8NrHE3XRUSoveCLbZFuKLV+ONvdUXRgSSd2XNTQ0qLKyMq6akdYdGBhQc3Nz8NJ1p/4eOpLa\nfX19evz4scrLy1VSUqJTp04lpW5tba2uX7+upUuXyuv16vDhw3HXjXVvTjS6VF7wRLbJ9uv2Fi5f\n8b/kvMTJC0MSUVeSzp8/r+PHj+vChQtx1Yy07u7du3Xo0CHNmTNHxphJzz2RtQOBgLq6utTW1qZn\nz56prKxMa9asUX5+fkLr1tfXq7i4WO3t7bp9+7bef/99dXd364033oi5bqSczlY0x0hlbYlsk+2J\nHG3uTl4Y4nRdSerp6VFtba18Pl/I/wI5Wffq1auqrq6W9PzDmNbWVqWnp0/6m+pE1M7JyVFWVpYy\nMjKUkZGh9evXq7u7O65fgEjqdnR0aN++fZKeX123bNky3bx5UyUlJTHXjWVvTmRrquMmK9eR1pbI\nNtmeQtyfBLwkEAiY3Nxc09/fb0ZGRsJ+8NTZ2enIhz+R1L17965xu92ms7Mz7nrR1H3Z559/bn79\n9dek1b5x44Z57733zNjYmPn333+Nx+Mx169fT3jdPXv2mLq6OmOMMffv3zcul8s8evQorrov9Pf3\nR/Shk1PZMiZ1uY60Ntkm21NxtLkbY0xLS4t5++23jdvtNvX19cYYY44dO2aOHTsWXLNjxw7jdrtN\nUVGRuXr1alLqbtu2zWRmZpri4mJTXFxsVq9enZS6L3PyFyDS2t99950pLCw0Ho/HHD58OCl1Hz58\naD766CNTVFRkPB6PaWxsdKRudXW1WbJkiUlPTzfZ2dmmoaEhKdkyJnW5jqQ22SbbU+EiJgCwEGP2\nAMBCNHcAsFDY5p7KS76BRCHXsF3Y5l5TUyOfz/fax6f7nElgKuQatgvb3FN1yTeQSOQatov7PXfm\nTMJG5BoznSNXqL7615RTXRabl5en27dvO1EOmMTtdjs+7i6SXEtkG4kVa7bjPnOP9LLY27dvB+8/\nkcyv/fv3p6RuKmvPxufsdHON5nLv2Zbt2ZivVD7nWLMdd3NnziRsRK4x04V9W+azzz7TH3/8ocHB\nQeXk5OjAgQMKBAKSmDOJmYtcw3Zhm3tTU1PYgxw9etSRzSSCU+O3ZlLt2ficozXTcy2Rr9lQNx5J\nu7fMi3s+A4mQynyRbSRSrPni9gMAYCGaOwBYiOYOABaiuQOAhWjuAGAhmjsAWIjmDgAWorkDgIVo\n7gBgIZo7AFgobHP3+Xxavny58vPz9c0330x6fHBwUBUVFSouLpbH49HJkycTsU/AcWQbNgt5b5nx\n8XEVFBTo999/l8vl0urVq9XU1KQVK1YE19TV1WlkZEQHDx7U4OCgCgoK9ODBA6WlTbwnGfffQCJF\nmy+yjZkiIfeWuXz5svLy8vTWW28pPT1d1dXVam5unrBmyZIlGh4eliQNDw9r4cKFk8IPTDdkG7YL\nmdSp5kheunRpwpra2lq9++67Wrp0qZ4+faqff/45MTsFHES2YbuQZ+6vmxn5svr6ehUXF+uff/7R\n33//rR07dujp06eObRBIBLIN24U8c391jqTf71d2dvaENR0dHdq3b5+k54Ncly1bpps3b6qkpGTS\n8erq6oL/3rBhw4y8AT6mh/b2drW3t8f882Qb01W82Q4yIQQCAZObm2v6+/vNyMiI8Xq9pre3d8Ka\nPXv2mLq6OmOMMffv3zcul8s8evRo0rHClALiEm2+yDZmiljzFfLMPS0tTUePHtXGjRs1Pj6ubdu2\nacWKFfr+++8lPZ81+dVXX6mmpkZer1f//fefvv32W2VmZsb/qgMkENmG7RizByswZg+2YsweACCI\n5g4AFqK5A4CFaO4AYCGaOwBYiOYOABaiuQOAhWjuAGAhmjsAWIjmDgAWorkDgIVo7gBgobgHZEvP\n7z+8atUqeTwe7mONGYNsw2qh7gc8NjZm3G636e/vN6Ojo1Pe8/rJkyemsLDQ+P1+Y4wxDx8+dPSe\nxEAkos0X2cZMEWu+4h6Qffr0aW3atCk4xSYrKysxr0KAg8g2bBeyuU81RHhgYGDCmr6+Pj1+/Fjl\n5eUqKSnRqVOnErNTwEFkG7YLOYkpkiHCgUBAXV1damtr07Nnz1RWVqY1a9YoPz9/0lrmTMIp8c6Z\nJNuYrpyaoRr3gOycnBxlZWUpIyNDGRkZWr9+vbq7u8P+AgDxeLWBHjhwIKqfJ9uYruLN9gsh35Yp\nKSlRX1+f7ty5o9HRUZ05c0ZVVVUT1nzyySf666+/ND4+rmfPnunSpUsqLCyMaTNAspBt2C7uAdnL\nly9XRUWFioqKNHfuXNXW1vILgGmPbMN2DMiGFRiQDVsxIBsAEERzBwAL0dwBwEI0dwCwEM0dACxE\ncwcAC9HcAcBCNHcAsBDNHQAsRHMHAAvR3AHAQo7MUJWkK1euKC0tTWfPnnV0g0CikG3YLGRzHx8f\n186dO+Xz+dTb26umpibduHFjynV79+5VRUUFN1DCjEC2Ybu4Z6hK0pEjR7R582YtWrQoYRsFnES2\nYbu4Z6gODAyoublZ27dvlxTZ+DIg1cg2bBf3DNXdu3fr0KFDwXsOh/qvK3Mm4ZRkzFAl20gFp2ao\nhhzWcfHiRdXV1cnn80mSDh48qLlz52rv3r3BNbm5ucHQDw4O6n//+59+/PHHSSPLGGiARIo2X2Qb\nM0Ws+QrZ3MfGxlRQUKC2tjYtXbpU77zzjpqamrRixYop19fU1Ojjjz/Wp59+6tgGgUhEmy+yjZki\n1nzFPUMVmInINmzHDFVYgRmqsBUzVAEAQTR3ALAQzR0ALERzBwAL0dwBwEI0dwCwEM0dACxEcwcA\nC9HcAcBCNHcAsBDNHQAsFFFzDzdrsrGxUV6vV0VFRVq7dq16enoc3yjgNHINq5kwxsbGjNvtNv39\n/WZ0dNR4vV7T29s7YU1HR4cZGhoyxhjT2tpqSktLJx0nglJAzKLNl1O5jqU2EI1Y8xX2zD2SWZNl\nZWWaP3++JKm0tFT37t1z/lUIcBC5hu3CNvdIZk2+rKGhQZWVlc7sDkgQcg3bhRzWIUU3FPj8+fM6\nfvy4Lly4ENemgEQj17Bd2Obucrnk9/uD3/v9fmVnZ09a19PTo9raWvl8Pi1YsGDKYzFEGE6Jd4iw\nk7mWyDac49SA7LDv1AcCAZObm2v6+/vNyMjIlB883b1717jdbtPZ2en4hwJAJKLNl1O5jqU2EI1Y\n8xX2zD2SWZNff/21njx5ou3bt0uS0tPTdfny5fhfeYAEIdewHTNUYQVmqMJWzFAFAATR3AHAQjR3\nALAQzR0ALERzBwAL0dwBwEI0dwCwEM0dACxEcwcAC9HcAcBCNHcAsFDY5h5uzqQk7dq1S/n5+fJ6\nvbp27ZrjmwQSgWzDaqFuGRnJnMnffvvNfPDBB8YYYy5evDjt5kyeP38+JXVTWXs2Pudo80W2Z17d\nVNZO5XOONV8hz9wjmTN57tw5bdmyRdLzOZNDQ0N68OBBYl6JYuDITe9nWO3Z+JyjRbZnXt1U1p4p\nuX5ZyOYeyZzJqdYwSBjTHdmG7UI290jnTJpX7jUczXxKIBXINqwX6j2bzs5Os3HjxuD39fX15tCh\nQxPWfPHFF6apqSn4fUFBgbl///6kY7ndbiOJL74S8uV2u6N6P5Js8zVTvqLN9gshm3skcyZf/tCp\ns7PztR86AdMJ2YbtQs5QjWTOZGVlpVpaWpSXl6d58+bpxIkToQ4JTAtkG7ZL2gxVAEDyOH6Faqou\nDAlXt7GxUV6vV0VFRVq7dq16enqSUveFK1euKC0tTWfPnnWkbqS129vbtWrVKnk8Hm3YsCEpdQcH\nB1VRUaHi4mJ5PB6dPHnSkbpbt27V4sWLtXLlyteuSdRFR6m84Ilsk20phnw5+R6PkxeGOF23o6PD\nDA0NGWOMaW1tTVrdF+vKy8vNhx9+aH755Ze460Za+8mTJ6awsND4/X5jjDEPHz5MSt39+/ebL7/8\nMlgzMzPTBAKBuGv/+eefpqury3g8nikfT0S2jEldriOtTbbJ9lQcPXNP1YUhkdQtKyvT/Pnzg3Wd\n+HvlSOpK0pEjR7R582YtWrQo7prR1D59+rQ2bdqk7OxsSVJWVlZS6i5ZskTDw8OSpOHhYS1cuFBp\naSE/3onIunXrtGDBgtc+nqiLjlJ5wRPZJttSbPlytLmn6sKQSOq+rKGhQZWVlXHVjLTuwMCAmpub\ntX37dknO/Z10JLX7+vr0+PFjlZeXq6SkRKdOnUpK3draWl2/fl1Lly6V1+vV4cOH464b696caHSp\nvOCJbJPt1+0tXL7if8l5SaouDInm58+fP6/jx4/rwoULcdWMtO7u3bt16NAhzZkzR+b5n57GXTfS\n2oFAQF1dXWpra9OzZ89UVlamNWvWKD8/P6F16+vrVVxcrPb2dt2+fVvvv/++uru79cYbb8RcN1JO\nZyuaY6SytkS2yfZEjjZ3l8slv98f/N7v9wf/2/S6Nffu3ZPL5Up4XUnq6elRbW2tfD5fyP8COVn3\n6tWrqq6ulvT8w5jW1lalp6erqqoq4bVzcnKUlZWljIwMZWRkaP369eru7o7rFyCSuh0dHdq3b58k\nye12a9myZbp586ZKSkpirhvL3pzI1lTHTVauI60tkW2yPYW4Pwl4SaouDImk7t27d43b7TadnZ1x\n14um7ss+//xz8+uvvyat9o0bN8x7771nxsbGzL///ms8Ho+5fv16wuvu2bPH1NXVGWOMuX//vnG5\nXObRo0dx1X2hv78/og+dnLzoKJUXPJFtsm1MbPly/F6lLS0t5u233zZut9vU19cbY4w5duyYOXbs\nWHDNjh07jNvtNkVFRebq1atJqbtt2zaTmZlpiouLTXFxsVm9enVS6r7MyV+ASGt/9913prCw0Hg8\nHnP48OGk1H348KH56KOPTFFRkfF4PKaxsdGRutXV1WbJkiUmPT3dZGdnm4aGhqRky5jU5TqS2mSb\nbE+Fi5gAwEKM2QMAC9HcAcBCNHcAsBDNHQAsRHMHAAvR3AHAQjR3ALAQzR0ALPR/atWGFIiuhDUA\nAAAASUVORK5CYII=\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x1093c5b10>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 235 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#sort by highest African-American populations\n", | |
| "tracts_w_ratio_2000 = alameda_tracts_2000_df.sort('AfAm_ratio_2000', ascending=False)\n", | |
| "\n", | |
| "#52 tracts have an African-American population greater than 40% \n", | |
| "tracts_w_ratio_2000[(tracts_w_ratio_2000['AfAm_ratio_2000']>.4) & (tracts_w_ratio_2000['Total Pop'] > 1)] " | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>AfAm_ratio_2000</th>\n", | |
| " <th>White_ratio_2000</th>\n", | |
| " <th>Asian_ratio_2000</th>\n", | |
| " <th>Hispanic_ratio_2000</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>22 </th>\n", | |
| " <td> 402300</td>\n", | |
| " <td> 453</td>\n", | |
| " <td> 364</td>\n", | |
| " <td> 58</td>\n", | |
| " <td> 19</td>\n", | |
| " <td> 15</td>\n", | |
| " <td> 0.803532</td>\n", | |
| " <td> 0.128035</td>\n", | |
| " <td> 0.041943</td>\n", | |
| " <td> 0.033113</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>20 </th>\n", | |
| " <td> 402100</td>\n", | |
| " <td> 1161</td>\n", | |
| " <td> 927</td>\n", | |
| " <td> 21</td>\n", | |
| " <td> 161</td>\n", | |
| " <td> 58</td>\n", | |
| " <td> 0.798450</td>\n", | |
| " <td> 0.018088</td>\n", | |
| " <td> 0.138674</td>\n", | |
| " <td> 0.049957</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>99 </th>\n", | |
| " <td> 409800</td>\n", | |
| " <td> 3250</td>\n", | |
| " <td> 2542</td>\n", | |
| " <td> 370</td>\n", | |
| " <td> 97</td>\n", | |
| " <td> 249</td>\n", | |
| " <td> 0.782154</td>\n", | |
| " <td> 0.113846</td>\n", | |
| " <td> 0.029846</td>\n", | |
| " <td> 0.076615</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>24 </th>\n", | |
| " <td> 402500</td>\n", | |
| " <td> 1779</td>\n", | |
| " <td> 1369</td>\n", | |
| " <td> 86</td>\n", | |
| " <td> 231</td>\n", | |
| " <td> 108</td>\n", | |
| " <td> 0.769533</td>\n", | |
| " <td> 0.048342</td>\n", | |
| " <td> 0.129848</td>\n", | |
| " <td> 0.060708</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23 </th>\n", | |
| " <td> 402400</td>\n", | |
| " <td> 2588</td>\n", | |
| " <td> 1978</td>\n", | |
| " <td> 166</td>\n", | |
| " <td> 298</td>\n", | |
| " <td> 171</td>\n", | |
| " <td> 0.764297</td>\n", | |
| " <td> 0.064142</td>\n", | |
| " <td> 0.115147</td>\n", | |
| " <td> 0.066074</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17 </th>\n", | |
| " <td> 401800</td>\n", | |
| " <td> 1953</td>\n", | |
| " <td> 1490</td>\n", | |
| " <td> 88</td>\n", | |
| " <td> 39</td>\n", | |
| " <td> 308</td>\n", | |
| " <td> 0.762929</td>\n", | |
| " <td> 0.045059</td>\n", | |
| " <td> 0.019969</td>\n", | |
| " <td> 0.157706</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9 </th>\n", | |
| " <td> 401000</td>\n", | |
| " <td> 5709</td>\n", | |
| " <td> 4176</td>\n", | |
| " <td> 649</td>\n", | |
| " <td> 404</td>\n", | |
| " <td> 547</td>\n", | |
| " <td> 0.731477</td>\n", | |
| " <td> 0.113680</td>\n", | |
| " <td> 0.070765</td>\n", | |
| " <td> 0.095814</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14 </th>\n", | |
| " <td> 401500</td>\n", | |
| " <td> 2413</td>\n", | |
| " <td> 1717</td>\n", | |
| " <td> 314</td>\n", | |
| " <td> 142</td>\n", | |
| " <td> 255</td>\n", | |
| " <td> 0.711562</td>\n", | |
| " <td> 0.130128</td>\n", | |
| " <td> 0.058848</td>\n", | |
| " <td> 0.105678</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>102</th>\n", | |
| " <td> 410100</td>\n", | |
| " <td> 2784</td>\n", | |
| " <td> 1968</td>\n", | |
| " <td> 268</td>\n", | |
| " <td> 122</td>\n", | |
| " <td> 448</td>\n", | |
| " <td> 0.706897</td>\n", | |
| " <td> 0.096264</td>\n", | |
| " <td> 0.043822</td>\n", | |
| " <td> 0.160920</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6 </th>\n", | |
| " <td> 400700</td>\n", | |
| " <td> 4451</td>\n", | |
| " <td> 3104</td>\n", | |
| " <td> 879</td>\n", | |
| " <td> 221</td>\n", | |
| " <td> 299</td>\n", | |
| " <td> 0.697371</td>\n", | |
| " <td> 0.197484</td>\n", | |
| " <td> 0.049652</td>\n", | |
| " <td> 0.067176</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>92 </th>\n", | |
| " <td> 409100</td>\n", | |
| " <td> 2163</td>\n", | |
| " <td> 1489</td>\n", | |
| " <td> 30</td>\n", | |
| " <td> 39</td>\n", | |
| " <td> 607</td>\n", | |
| " <td> 0.688396</td>\n", | |
| " <td> 0.013870</td>\n", | |
| " <td> 0.018031</td>\n", | |
| " <td> 0.280629</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13 </th>\n", | |
| " <td> 401400</td>\n", | |
| " <td> 4765</td>\n", | |
| " <td> 3167</td>\n", | |
| " <td> 342</td>\n", | |
| " <td> 558</td>\n", | |
| " <td> 706</td>\n", | |
| " <td> 0.664638</td>\n", | |
| " <td> 0.071773</td>\n", | |
| " <td> 0.117104</td>\n", | |
| " <td> 0.148164</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>78 </th>\n", | |
| " <td> 407700</td>\n", | |
| " <td> 4599</td>\n", | |
| " <td> 3036</td>\n", | |
| " <td> 826</td>\n", | |
| " <td> 226</td>\n", | |
| " <td> 530</td>\n", | |
| " <td> 0.660144</td>\n", | |
| " <td> 0.179604</td>\n", | |
| " <td> 0.049141</td>\n", | |
| " <td> 0.115242</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>85 </th>\n", | |
| " <td> 408400</td>\n", | |
| " <td> 3782</td>\n", | |
| " <td> 2496</td>\n", | |
| " <td> 138</td>\n", | |
| " <td> 91</td>\n", | |
| " <td> 1026</td>\n", | |
| " <td> 0.659968</td>\n", | |
| " <td> 0.036489</td>\n", | |
| " <td> 0.024061</td>\n", | |
| " <td> 0.271285</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>83 </th>\n", | |
| " <td> 408200</td>\n", | |
| " <td> 4388</td>\n", | |
| " <td> 2882</td>\n", | |
| " <td> 753</td>\n", | |
| " <td> 206</td>\n", | |
| " <td> 560</td>\n", | |
| " <td> 0.656791</td>\n", | |
| " <td> 0.171604</td>\n", | |
| " <td> 0.046946</td>\n", | |
| " <td> 0.127621</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>103</th>\n", | |
| " <td> 410200</td>\n", | |
| " <td> 3550</td>\n", | |
| " <td> 2298</td>\n", | |
| " <td> 183</td>\n", | |
| " <td> 158</td>\n", | |
| " <td> 891</td>\n", | |
| " <td> 0.647324</td>\n", | |
| " <td> 0.051549</td>\n", | |
| " <td> 0.044507</td>\n", | |
| " <td> 0.250986</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>91 </th>\n", | |
| " <td> 409000</td>\n", | |
| " <td> 3327</td>\n", | |
| " <td> 2132</td>\n", | |
| " <td> 141</td>\n", | |
| " <td> 79</td>\n", | |
| " <td> 968</td>\n", | |
| " <td> 0.640818</td>\n", | |
| " <td> 0.042381</td>\n", | |
| " <td> 0.023745</td>\n", | |
| " <td> 0.290953</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8 </th>\n", | |
| " <td> 400900</td>\n", | |
| " <td> 2456</td>\n", | |
| " <td> 1570</td>\n", | |
| " <td> 575</td>\n", | |
| " <td> 135</td>\n", | |
| " <td> 202</td>\n", | |
| " <td> 0.639251</td>\n", | |
| " <td> 0.234121</td>\n", | |
| " <td> 0.054967</td>\n", | |
| " <td> 0.082248</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>98 </th>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 5208</td>\n", | |
| " <td> 3281</td>\n", | |
| " <td> 222</td>\n", | |
| " <td> 180</td>\n", | |
| " <td> 1471</td>\n", | |
| " <td> 0.629992</td>\n", | |
| " <td> 0.042627</td>\n", | |
| " <td> 0.034562</td>\n", | |
| " <td> 0.282450</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>100</th>\n", | |
| " <td> 409900</td>\n", | |
| " <td> 3499</td>\n", | |
| " <td> 2199</td>\n", | |
| " <td> 994</td>\n", | |
| " <td> 210</td>\n", | |
| " <td> 149</td>\n", | |
| " <td> 0.628465</td>\n", | |
| " <td> 0.284081</td>\n", | |
| " <td> 0.060017</td>\n", | |
| " <td> 0.042584</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>21 </th>\n", | |
| " <td> 402200</td>\n", | |
| " <td> 1844</td>\n", | |
| " <td> 1138</td>\n", | |
| " <td> 181</td>\n", | |
| " <td> 117</td>\n", | |
| " <td> 411</td>\n", | |
| " <td> 0.617137</td>\n", | |
| " <td> 0.098156</td>\n", | |
| " <td> 0.063449</td>\n", | |
| " <td> 0.222885</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>26 </th>\n", | |
| " <td> 402700</td>\n", | |
| " <td> 1946</td>\n", | |
| " <td> 1200</td>\n", | |
| " <td> 105</td>\n", | |
| " <td> 180</td>\n", | |
| " <td> 450</td>\n", | |
| " <td> 0.616650</td>\n", | |
| " <td> 0.053957</td>\n", | |
| " <td> 0.092497</td>\n", | |
| " <td> 0.231244</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>87 </th>\n", | |
| " <td> 408600</td>\n", | |
| " <td> 5232</td>\n", | |
| " <td> 3218</td>\n", | |
| " <td> 188</td>\n", | |
| " <td> 147</td>\n", | |
| " <td> 1623</td>\n", | |
| " <td> 0.615061</td>\n", | |
| " <td> 0.035933</td>\n", | |
| " <td> 0.028096</td>\n", | |
| " <td> 0.310206</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>144</th>\n", | |
| " <td> 424002</td>\n", | |
| " <td> 1998</td>\n", | |
| " <td> 1228</td>\n", | |
| " <td> 389</td>\n", | |
| " <td> 150</td>\n", | |
| " <td> 268</td>\n", | |
| " <td> 0.614615</td>\n", | |
| " <td> 0.194695</td>\n", | |
| " <td> 0.075075</td>\n", | |
| " <td> 0.134134</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5 </th>\n", | |
| " <td> 400600</td>\n", | |
| " <td> 1707</td>\n", | |
| " <td> 1037</td>\n", | |
| " <td> 446</td>\n", | |
| " <td> 98</td>\n", | |
| " <td> 148</td>\n", | |
| " <td> 0.607499</td>\n", | |
| " <td> 0.261277</td>\n", | |
| " <td> 0.057411</td>\n", | |
| " <td> 0.086702</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15 </th>\n", | |
| " <td> 401600</td>\n", | |
| " <td> 1933</td>\n", | |
| " <td> 1170</td>\n", | |
| " <td> 263</td>\n", | |
| " <td> 164</td>\n", | |
| " <td> 322</td>\n", | |
| " <td> 0.605277</td>\n", | |
| " <td> 0.136058</td>\n", | |
| " <td> 0.084842</td>\n", | |
| " <td> 0.166580</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7 </th>\n", | |
| " <td> 400800</td>\n", | |
| " <td> 3368</td>\n", | |
| " <td> 1990</td>\n", | |
| " <td> 792</td>\n", | |
| " <td> 336</td>\n", | |
| " <td> 301</td>\n", | |
| " <td> 0.590855</td>\n", | |
| " <td> 0.235154</td>\n", | |
| " <td> 0.099762</td>\n", | |
| " <td> 0.089371</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>27 </th>\n", | |
| " <td> 402800</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 1122</td>\n", | |
| " <td> 354</td>\n", | |
| " <td> 280</td>\n", | |
| " <td> 154</td>\n", | |
| " <td> 0.587435</td>\n", | |
| " <td> 0.185340</td>\n", | |
| " <td> 0.146597</td>\n", | |
| " <td> 0.080628</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>84 </th>\n", | |
| " <td> 408300</td>\n", | |
| " <td> 4799</td>\n", | |
| " <td> 2816</td>\n", | |
| " <td> 1075</td>\n", | |
| " <td> 249</td>\n", | |
| " <td> 712</td>\n", | |
| " <td> 0.586789</td>\n", | |
| " <td> 0.224005</td>\n", | |
| " <td> 0.051886</td>\n", | |
| " <td> 0.148364</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>93 </th>\n", | |
| " <td> 409200</td>\n", | |
| " <td> 3111</td>\n", | |
| " <td> 1786</td>\n", | |
| " <td> 78</td>\n", | |
| " <td> 142</td>\n", | |
| " <td> 1057</td>\n", | |
| " <td> 0.574092</td>\n", | |
| " <td> 0.025072</td>\n", | |
| " <td> 0.045644</td>\n", | |
| " <td> 0.339762</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>86 </th>\n", | |
| " <td> 408500</td>\n", | |
| " <td> 5307</td>\n", | |
| " <td> 3037</td>\n", | |
| " <td> 139</td>\n", | |
| " <td> 156</td>\n", | |
| " <td> 1924</td>\n", | |
| " <td> 0.572263</td>\n", | |
| " <td> 0.026192</td>\n", | |
| " <td> 0.029395</td>\n", | |
| " <td> 0.362540</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>88 </th>\n", | |
| " <td> 408700</td>\n", | |
| " <td> 7504</td>\n", | |
| " <td> 4270</td>\n", | |
| " <td> 402</td>\n", | |
| " <td> 294</td>\n", | |
| " <td> 2541</td>\n", | |
| " <td> 0.569030</td>\n", | |
| " <td> 0.053571</td>\n", | |
| " <td> 0.039179</td>\n", | |
| " <td> 0.338619</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>134</th>\n", | |
| " <td> 423300</td>\n", | |
| " <td> 3468</td>\n", | |
| " <td> 1929</td>\n", | |
| " <td> 960</td>\n", | |
| " <td> 240</td>\n", | |
| " <td> 405</td>\n", | |
| " <td> 0.556228</td>\n", | |
| " <td> 0.276817</td>\n", | |
| " <td> 0.069204</td>\n", | |
| " <td> 0.116782</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>105</th>\n", | |
| " <td> 410400</td>\n", | |
| " <td> 3366</td>\n", | |
| " <td> 1842</td>\n", | |
| " <td> 224</td>\n", | |
| " <td> 115</td>\n", | |
| " <td> 1195</td>\n", | |
| " <td> 0.547237</td>\n", | |
| " <td> 0.066548</td>\n", | |
| " <td> 0.034165</td>\n", | |
| " <td> 0.355021</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>97 </th>\n", | |
| " <td> 409600</td>\n", | |
| " <td> 5235</td>\n", | |
| " <td> 2799</td>\n", | |
| " <td> 144</td>\n", | |
| " <td> 156</td>\n", | |
| " <td> 2060</td>\n", | |
| " <td> 0.534670</td>\n", | |
| " <td> 0.027507</td>\n", | |
| " <td> 0.029799</td>\n", | |
| " <td> 0.393505</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>12 </th>\n", | |
| " <td> 401300</td>\n", | |
| " <td> 2810</td>\n", | |
| " <td> 1468</td>\n", | |
| " <td> 782</td>\n", | |
| " <td> 349</td>\n", | |
| " <td> 249</td>\n", | |
| " <td> 0.522420</td>\n", | |
| " <td> 0.278292</td>\n", | |
| " <td> 0.124199</td>\n", | |
| " <td> 0.088612</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>16 </th>\n", | |
| " <td> 401700</td>\n", | |
| " <td> 1878</td>\n", | |
| " <td> 979</td>\n", | |
| " <td> 263</td>\n", | |
| " <td> 103</td>\n", | |
| " <td> 568</td>\n", | |
| " <td> 0.521299</td>\n", | |
| " <td> 0.140043</td>\n", | |
| " <td> 0.054846</td>\n", | |
| " <td> 0.302449</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>104</th>\n", | |
| " <td> 410300</td>\n", | |
| " <td> 3728</td>\n", | |
| " <td> 1938</td>\n", | |
| " <td> 123</td>\n", | |
| " <td> 133</td>\n", | |
| " <td> 1490</td>\n", | |
| " <td> 0.519850</td>\n", | |
| " <td> 0.032994</td>\n", | |
| " <td> 0.035676</td>\n", | |
| " <td> 0.399678</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>101</th>\n", | |
| " <td> 410000</td>\n", | |
| " <td> 2846</td>\n", | |
| " <td> 1435</td>\n", | |
| " <td> 1100</td>\n", | |
| " <td> 189</td>\n", | |
| " <td> 173</td>\n", | |
| " <td> 0.504216</td>\n", | |
| " <td> 0.386507</td>\n", | |
| " <td> 0.066409</td>\n", | |
| " <td> 0.060787</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>79 </th>\n", | |
| " <td> 407800</td>\n", | |
| " <td> 2453</td>\n", | |
| " <td> 1174</td>\n", | |
| " <td> 794</td>\n", | |
| " <td> 225</td>\n", | |
| " <td> 282</td>\n", | |
| " <td> 0.478598</td>\n", | |
| " <td> 0.323685</td>\n", | |
| " <td> 0.091724</td>\n", | |
| " <td> 0.114961</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>143</th>\n", | |
| " <td> 424001</td>\n", | |
| " <td> 3875</td>\n", | |
| " <td> 1821</td>\n", | |
| " <td> 964</td>\n", | |
| " <td> 323</td>\n", | |
| " <td> 810</td>\n", | |
| " <td> 0.469935</td>\n", | |
| " <td> 0.248774</td>\n", | |
| " <td> 0.083355</td>\n", | |
| " <td> 0.209032</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>90 </th>\n", | |
| " <td> 408900</td>\n", | |
| " <td> 3339</td>\n", | |
| " <td> 1569</td>\n", | |
| " <td> 135</td>\n", | |
| " <td> 79</td>\n", | |
| " <td> 1520</td>\n", | |
| " <td> 0.469901</td>\n", | |
| " <td> 0.040431</td>\n", | |
| " <td> 0.023660</td>\n", | |
| " <td> 0.455226</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>77 </th>\n", | |
| " <td> 407600</td>\n", | |
| " <td> 6681</td>\n", | |
| " <td> 3115</td>\n", | |
| " <td> 691</td>\n", | |
| " <td> 761</td>\n", | |
| " <td> 2033</td>\n", | |
| " <td> 0.466248</td>\n", | |
| " <td> 0.103428</td>\n", | |
| " <td> 0.113905</td>\n", | |
| " <td> 0.304296</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>89 </th>\n", | |
| " <td> 408800</td>\n", | |
| " <td> 5174</td>\n", | |
| " <td> 2396</td>\n", | |
| " <td> 133</td>\n", | |
| " <td> 628</td>\n", | |
| " <td> 1981</td>\n", | |
| " <td> 0.463085</td>\n", | |
| " <td> 0.025705</td>\n", | |
| " <td> 0.121376</td>\n", | |
| " <td> 0.382876</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35 </th>\n", | |
| " <td> 403600</td>\n", | |
| " <td> 4400</td>\n", | |
| " <td> 2028</td>\n", | |
| " <td> 1609</td>\n", | |
| " <td> 510</td>\n", | |
| " <td> 316</td>\n", | |
| " <td> 0.460909</td>\n", | |
| " <td> 0.365682</td>\n", | |
| " <td> 0.115909</td>\n", | |
| " <td> 0.071818</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25 </th>\n", | |
| " <td> 402600</td>\n", | |
| " <td> 977</td>\n", | |
| " <td> 439</td>\n", | |
| " <td> 75</td>\n", | |
| " <td> 416</td>\n", | |
| " <td> 46</td>\n", | |
| " <td> 0.449335</td>\n", | |
| " <td> 0.076766</td>\n", | |
| " <td> 0.425793</td>\n", | |
| " <td> 0.047083</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4 </th>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 1387</td>\n", | |
| " <td> 216</td>\n", | |
| " <td> 363</td>\n", | |
| " <td> 0.442815</td>\n", | |
| " <td> 0.406745</td>\n", | |
| " <td> 0.063343</td>\n", | |
| " <td> 0.106452</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>95 </th>\n", | |
| " <td> 409400</td>\n", | |
| " <td> 4455</td>\n", | |
| " <td> 1929</td>\n", | |
| " <td> 133</td>\n", | |
| " <td> 62</td>\n", | |
| " <td> 2255</td>\n", | |
| " <td> 0.432997</td>\n", | |
| " <td> 0.029854</td>\n", | |
| " <td> 0.013917</td>\n", | |
| " <td> 0.506173</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>94 </th>\n", | |
| " <td> 409300</td>\n", | |
| " <td> 5492</td>\n", | |
| " <td> 2355</td>\n", | |
| " <td> 224</td>\n", | |
| " <td> 178</td>\n", | |
| " <td> 2679</td>\n", | |
| " <td> 0.428806</td>\n", | |
| " <td> 0.040787</td>\n", | |
| " <td> 0.032411</td>\n", | |
| " <td> 0.487800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>57 </th>\n", | |
| " <td> 405700</td>\n", | |
| " <td> 3757</td>\n", | |
| " <td> 1508</td>\n", | |
| " <td> 392</td>\n", | |
| " <td> 1229</td>\n", | |
| " <td> 660</td>\n", | |
| " <td> 0.401384</td>\n", | |
| " <td> 0.104339</td>\n", | |
| " <td> 0.327123</td>\n", | |
| " <td> 0.175672</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>96 </th>\n", | |
| " <td> 409500</td>\n", | |
| " <td> 3555</td>\n", | |
| " <td> 1425</td>\n", | |
| " <td> 116</td>\n", | |
| " <td> 190</td>\n", | |
| " <td> 1795</td>\n", | |
| " <td> 0.400844</td>\n", | |
| " <td> 0.032630</td>\n", | |
| " <td> 0.053446</td>\n", | |
| " <td> 0.504923</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>34 </th>\n", | |
| " <td> 403500</td>\n", | |
| " <td> 6346</td>\n", | |
| " <td> 2540</td>\n", | |
| " <td> 2321</td>\n", | |
| " <td> 1056</td>\n", | |
| " <td> 515</td>\n", | |
| " <td> 0.400252</td>\n", | |
| " <td> 0.365742</td>\n", | |
| " <td> 0.166404</td>\n", | |
| " <td> 0.081153</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>52 rows \u00d7 10 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 241, | |
| "text": [ | |
| " tract Total Pop African-American, not Hispanic White, not Hispanic \\\n", | |
| "22 402300 453 364 58 \n", | |
| "20 402100 1161 927 21 \n", | |
| "99 409800 3250 2542 370 \n", | |
| "24 402500 1779 1369 86 \n", | |
| "23 402400 2588 1978 166 \n", | |
| "17 401800 1953 1490 88 \n", | |
| "9 401000 5709 4176 649 \n", | |
| "14 401500 2413 1717 314 \n", | |
| "102 410100 2784 1968 268 \n", | |
| "6 400700 4451 3104 879 \n", | |
| "92 409100 2163 1489 30 \n", | |
| "13 401400 4765 3167 342 \n", | |
| "78 407700 4599 3036 826 \n", | |
| "85 408400 3782 2496 138 \n", | |
| "83 408200 4388 2882 753 \n", | |
| "103 410200 3550 2298 183 \n", | |
| "91 409000 3327 2132 141 \n", | |
| "8 400900 2456 1570 575 \n", | |
| "98 409700 5208 3281 222 \n", | |
| "100 409900 3499 2199 994 \n", | |
| "21 402200 1844 1138 181 \n", | |
| "26 402700 1946 1200 105 \n", | |
| "87 408600 5232 3218 188 \n", | |
| "144 424002 1998 1228 389 \n", | |
| "5 400600 1707 1037 446 \n", | |
| "15 401600 1933 1170 263 \n", | |
| "7 400800 3368 1990 792 \n", | |
| "27 402800 1910 1122 354 \n", | |
| "84 408300 4799 2816 1075 \n", | |
| "93 409200 3111 1786 78 \n", | |
| "86 408500 5307 3037 139 \n", | |
| "88 408700 7504 4270 402 \n", | |
| "134 423300 3468 1929 960 \n", | |
| "105 410400 3366 1842 224 \n", | |
| "97 409600 5235 2799 144 \n", | |
| "12 401300 2810 1468 782 \n", | |
| "16 401700 1878 979 263 \n", | |
| "104 410300 3728 1938 123 \n", | |
| "101 410000 2846 1435 1100 \n", | |
| "79 407800 2453 1174 794 \n", | |
| "143 424001 3875 1821 964 \n", | |
| "90 408900 3339 1569 135 \n", | |
| "77 407600 6681 3115 691 \n", | |
| "89 408800 5174 2396 133 \n", | |
| "35 403600 4400 2028 1609 \n", | |
| "25 402600 977 439 75 \n", | |
| "4 400500 3410 1510 1387 \n", | |
| "95 409400 4455 1929 133 \n", | |
| "94 409300 5492 2355 224 \n", | |
| "57 405700 3757 1508 392 \n", | |
| "96 409500 3555 1425 116 \n", | |
| "34 403500 6346 2540 2321 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic AfAm_ratio_2000 White_ratio_2000 \\\n", | |
| "22 19 15 0.803532 0.128035 \n", | |
| "20 161 58 0.798450 0.018088 \n", | |
| "99 97 249 0.782154 0.113846 \n", | |
| "24 231 108 0.769533 0.048342 \n", | |
| "23 298 171 0.764297 0.064142 \n", | |
| "17 39 308 0.762929 0.045059 \n", | |
| "9 404 547 0.731477 0.113680 \n", | |
| "14 142 255 0.711562 0.130128 \n", | |
| "102 122 448 0.706897 0.096264 \n", | |
| "6 221 299 0.697371 0.197484 \n", | |
| "92 39 607 0.688396 0.013870 \n", | |
| "13 558 706 0.664638 0.071773 \n", | |
| "78 226 530 0.660144 0.179604 \n", | |
| "85 91 1026 0.659968 0.036489 \n", | |
| "83 206 560 0.656791 0.171604 \n", | |
| "103 158 891 0.647324 0.051549 \n", | |
| "91 79 968 0.640818 0.042381 \n", | |
| "8 135 202 0.639251 0.234121 \n", | |
| "98 180 1471 0.629992 0.042627 \n", | |
| "100 210 149 0.628465 0.284081 \n", | |
| "21 117 411 0.617137 0.098156 \n", | |
| "26 180 450 0.616650 0.053957 \n", | |
| "87 147 1623 0.615061 0.035933 \n", | |
| "144 150 268 0.614615 0.194695 \n", | |
| "5 98 148 0.607499 0.261277 \n", | |
| "15 164 322 0.605277 0.136058 \n", | |
| "7 336 301 0.590855 0.235154 \n", | |
| "27 280 154 0.587435 0.185340 \n", | |
| "84 249 712 0.586789 0.224005 \n", | |
| "93 142 1057 0.574092 0.025072 \n", | |
| "86 156 1924 0.572263 0.026192 \n", | |
| "88 294 2541 0.569030 0.053571 \n", | |
| "134 240 405 0.556228 0.276817 \n", | |
| "105 115 1195 0.547237 0.066548 \n", | |
| "97 156 2060 0.534670 0.027507 \n", | |
| "12 349 249 0.522420 0.278292 \n", | |
| "16 103 568 0.521299 0.140043 \n", | |
| "104 133 1490 0.519850 0.032994 \n", | |
| "101 189 173 0.504216 0.386507 \n", | |
| "79 225 282 0.478598 0.323685 \n", | |
| "143 323 810 0.469935 0.248774 \n", | |
| "90 79 1520 0.469901 0.040431 \n", | |
| "77 761 2033 0.466248 0.103428 \n", | |
| "89 628 1981 0.463085 0.025705 \n", | |
| "35 510 316 0.460909 0.365682 \n", | |
| "25 416 46 0.449335 0.076766 \n", | |
| "4 216 363 0.442815 0.406745 \n", | |
| "95 62 2255 0.432997 0.029854 \n", | |
| "94 178 2679 0.428806 0.040787 \n", | |
| "57 1229 660 0.401384 0.104339 \n", | |
| "96 190 1795 0.400844 0.032630 \n", | |
| "34 1056 515 0.400252 0.365742 \n", | |
| "\n", | |
| " Asian_ratio_2000 Hispanic_ratio_2000 \n", | |
| "22 0.041943 0.033113 \n", | |
| "20 0.138674 0.049957 \n", | |
| "99 0.029846 0.076615 \n", | |
| "24 0.129848 0.060708 \n", | |
| "23 0.115147 0.066074 \n", | |
| "17 0.019969 0.157706 \n", | |
| "9 0.070765 0.095814 \n", | |
| "14 0.058848 0.105678 \n", | |
| "102 0.043822 0.160920 \n", | |
| "6 0.049652 0.067176 \n", | |
| "92 0.018031 0.280629 \n", | |
| "13 0.117104 0.148164 \n", | |
| "78 0.049141 0.115242 \n", | |
| "85 0.024061 0.271285 \n", | |
| "83 0.046946 0.127621 \n", | |
| "103 0.044507 0.250986 \n", | |
| "91 0.023745 0.290953 \n", | |
| "8 0.054967 0.082248 \n", | |
| "98 0.034562 0.282450 \n", | |
| "100 0.060017 0.042584 \n", | |
| "21 0.063449 0.222885 \n", | |
| "26 0.092497 0.231244 \n", | |
| "87 0.028096 0.310206 \n", | |
| "144 0.075075 0.134134 \n", | |
| "5 0.057411 0.086702 \n", | |
| "15 0.084842 0.166580 \n", | |
| "7 0.099762 0.089371 \n", | |
| "27 0.146597 0.080628 \n", | |
| "84 0.051886 0.148364 \n", | |
| "93 0.045644 0.339762 \n", | |
| "86 0.029395 0.362540 \n", | |
| "88 0.039179 0.338619 \n", | |
| "134 0.069204 0.116782 \n", | |
| "105 0.034165 0.355021 \n", | |
| "97 0.029799 0.393505 \n", | |
| "12 0.124199 0.088612 \n", | |
| "16 0.054846 0.302449 \n", | |
| "104 0.035676 0.399678 \n", | |
| "101 0.066409 0.060787 \n", | |
| "79 0.091724 0.114961 \n", | |
| "143 0.083355 0.209032 \n", | |
| "90 0.023660 0.455226 \n", | |
| "77 0.113905 0.304296 \n", | |
| "89 0.121376 0.382876 \n", | |
| "35 0.115909 0.071818 \n", | |
| "25 0.425793 0.047083 \n", | |
| "4 0.063343 0.106452 \n", | |
| "95 0.013917 0.506173 \n", | |
| "94 0.032411 0.487800 \n", | |
| "57 0.327123 0.175672 \n", | |
| "96 0.053446 0.504923 \n", | |
| "34 0.166404 0.081153 \n", | |
| "\n", | |
| "[52 rows x 10 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 241 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#P0010001/Total Pop, P0050004/African-American Not Hispanic, P0050010/Hispanic, \n", | |
| "#P0050006/Asian, not Hispanic P0050003/White, not Hispanic \n", | |
| "o_tracts_2010 = [tract for tract in tracts(variables=\"NAME,P0010001,P0050004,P0050010,P0050006,P0050003\")]\n", | |
| "\n", | |
| "#put list into dataframe\n", | |
| "tract_df_2010 = pd.DataFrame(o_tracts_2010)\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 245 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#make all population column values into integers\n", | |
| "tract_df_2010.P0050004 = tract_df_2010.P0050004.astype(float)\n", | |
| "tract_df_2010.P0050003 = tract_df_2010.P0050003.astype(float)\n", | |
| "tract_df_2010.P0050006 = tract_df_2010.P0050006.astype(float)\n", | |
| "tract_df_2010.P0010001 = tract_df_2010.P0010001.astype(float)\n", | |
| "tract_df_2010.P0050010 = tract_df_2010.P0050010.astype(float)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 246 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#create new descriptively named columns with values population by race/ethnicity\n", | |
| "tract_df_2010['African-American, not Hispanic'] = tract_df_2010['P0050004']\n", | |
| "tract_df_2010['White, not Hispanic'] = tract_df_2010['P0050003']\n", | |
| "tract_df_2010['Asian, not Hispanic'] = tract_df_2010['P0050006']\n", | |
| "tract_df_2010['Total Pop'] = tract_df_2010['P0010001']\n", | |
| "tract_df_2010['Hispanic'] = tract_df_2010['P0050010']\n", | |
| "\n", | |
| "#show only columns that have legible names; set index by tract\n", | |
| "alameda_tracts_df_2010 = tract_df_2010[['NAME','tract','Total Pop','African-American, not Hispanic']] \n", | |
| "\n", | |
| "alameda_tracts_df_2010.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> Census Tract 4001</td>\n", | |
| " <td> 400100</td>\n", | |
| " <td> 2937</td>\n", | |
| " <td> 140</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> Census Tract 4002</td>\n", | |
| " <td> 400200</td>\n", | |
| " <td> 1974</td>\n", | |
| " <td> 31</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> Census Tract 4003</td>\n", | |
| " <td> 400300</td>\n", | |
| " <td> 4865</td>\n", | |
| " <td> 512</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> Census Tract 4004</td>\n", | |
| " <td> 400400</td>\n", | |
| " <td> 3703</td>\n", | |
| " <td> 448</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> Census Tract 4005</td>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3517</td>\n", | |
| " <td> 933</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 4 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 247, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic\n", | |
| "0 Census Tract 4001 400100 2937 140\n", | |
| "1 Census Tract 4002 400200 1974 31\n", | |
| "2 Census Tract 4003 400300 4865 512\n", | |
| "3 Census Tract 4004 400400 3703 448\n", | |
| "4 Census Tract 4005 400500 3517 933\n", | |
| "\n", | |
| "[5 rows x 4 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 247 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#create new column for ratio of African-American community in each tract\n", | |
| "alameda_tracts_df_2010['AfAm_ratio_2010'] = tract_df_2010['P0050004']/tract_df_2010['P0010001']\n", | |
| "\n", | |
| "alameda_tracts_df_2010.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>AfAm_ratio_2010</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> Census Tract 4001</td>\n", | |
| " <td> 400100</td>\n", | |
| " <td> 2937</td>\n", | |
| " <td> 140</td>\n", | |
| " <td> 0.047668</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> Census Tract 4002</td>\n", | |
| " <td> 400200</td>\n", | |
| " <td> 1974</td>\n", | |
| " <td> 31</td>\n", | |
| " <td> 0.015704</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> Census Tract 4003</td>\n", | |
| " <td> 400300</td>\n", | |
| " <td> 4865</td>\n", | |
| " <td> 512</td>\n", | |
| " <td> 0.105242</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> Census Tract 4004</td>\n", | |
| " <td> 400400</td>\n", | |
| " <td> 3703</td>\n", | |
| " <td> 448</td>\n", | |
| " <td> 0.120983</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> Census Tract 4005</td>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3517</td>\n", | |
| " <td> 933</td>\n", | |
| " <td> 0.265283</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 5 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 248, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic \\\n", | |
| "0 Census Tract 4001 400100 2937 140 \n", | |
| "1 Census Tract 4002 400200 1974 31 \n", | |
| "2 Census Tract 4003 400300 4865 512 \n", | |
| "3 Census Tract 4004 400400 3703 448 \n", | |
| "4 Census Tract 4005 400500 3517 933 \n", | |
| "\n", | |
| " AfAm_ratio_2010 \n", | |
| "0 0.047668 \n", | |
| "1 0.015704 \n", | |
| "2 0.105242 \n", | |
| "3 0.120983 \n", | |
| "4 0.265283 \n", | |
| "\n", | |
| "[5 rows x 5 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 248 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#alameda_tracts_df_2010.set_index(['tract'])\n", | |
| "\n", | |
| "#highest proportion of African-American community in Oakland\n", | |
| "common_tracts = set(alameda_tracts_df_2010['tract']) & set(alameda_tracts_2000_df['tract'])\n", | |
| "\n", | |
| "len(set(alameda_tracts_df_2010['tract']))\n", | |
| "\n", | |
| "len(set(alameda_tracts_2000_df['tract']))\n", | |
| "\n", | |
| "# in common but we have to check if they're geographically related to each other\n", | |
| "len(common_tracts) \n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 249, | |
| "text": [ | |
| "279" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 249 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#sort by highest African-American populations in 2010 tracts\n", | |
| "tracts_w_ratio_2010 = alameda_tracts_df_2010.sort('AfAm_ratio_2010', ascending=False)\n", | |
| "\n", | |
| "#32 tracts have an African-American population greater than 40% as compared to 52 in 2000 \n", | |
| "tracts_w_ratio_2010[(tracts_w_ratio_2010['AfAm_ratio_2010']>.4) & (tracts_w_ratio_2010['Total Pop'] > 1)] " | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>AfAm_ratio_2010</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>20 </th>\n", | |
| " <td> Census Tract 4025</td>\n", | |
| " <td> 402500</td>\n", | |
| " <td> 1784</td>\n", | |
| " <td> 1191</td>\n", | |
| " <td> 0.667601</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>102</th>\n", | |
| " <td> Census Tract 4098</td>\n", | |
| " <td> 409800</td>\n", | |
| " <td> 2887</td>\n", | |
| " <td> 1884</td>\n", | |
| " <td> 0.652581</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>109</th>\n", | |
| " <td> Census Tract 4105</td>\n", | |
| " <td> 410500</td>\n", | |
| " <td> 2193</td>\n", | |
| " <td> 1360</td>\n", | |
| " <td> 0.620155</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>105</th>\n", | |
| " <td> Census Tract 4101</td>\n", | |
| " <td> 410100</td>\n", | |
| " <td> 2406</td>\n", | |
| " <td> 1482</td>\n", | |
| " <td> 0.615960</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>19 </th>\n", | |
| " <td> Census Tract 4024</td>\n", | |
| " <td> 402400</td>\n", | |
| " <td> 2351</td>\n", | |
| " <td> 1358</td>\n", | |
| " <td> 0.577627</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>17 </th>\n", | |
| " <td> Census Tract 4018</td>\n", | |
| " <td> 401800</td>\n", | |
| " <td> 1703</td>\n", | |
| " <td> 977</td>\n", | |
| " <td> 0.573693</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>22 </th>\n", | |
| " <td> Census Tract 4027</td>\n", | |
| " <td> 402700</td>\n", | |
| " <td> 1569</td>\n", | |
| " <td> 881</td>\n", | |
| " <td> 0.561504</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>106</th>\n", | |
| " <td> Census Tract 4102</td>\n", | |
| " <td> 410200</td>\n", | |
| " <td> 3062</td>\n", | |
| " <td> 1642</td>\n", | |
| " <td> 0.536251</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>103</th>\n", | |
| " <td> Census Tract 4099</td>\n", | |
| " <td> 409900</td>\n", | |
| " <td> 3308</td>\n", | |
| " <td> 1756</td>\n", | |
| " <td> 0.530834</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>14 </th>\n", | |
| " <td> Census Tract 4015</td>\n", | |
| " <td> 401500</td>\n", | |
| " <td> 2630</td>\n", | |
| " <td> 1392</td>\n", | |
| " <td> 0.529278</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>86 </th>\n", | |
| " <td> Census Tract 4082</td>\n", | |
| " <td> 408200</td>\n", | |
| " <td> 4054</td>\n", | |
| " <td> 2144</td>\n", | |
| " <td> 0.528860</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>88 </th>\n", | |
| " <td> Census Tract 4084</td>\n", | |
| " <td> 408400</td>\n", | |
| " <td> 3323</td>\n", | |
| " <td> 1702</td>\n", | |
| " <td> 0.512188</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>81 </th>\n", | |
| " <td> Census Tract 4077</td>\n", | |
| " <td> 407700</td>\n", | |
| " <td> 4109</td>\n", | |
| " <td> 2094</td>\n", | |
| " <td> 0.509613</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9 </th>\n", | |
| " <td> Census Tract 4010</td>\n", | |
| " <td> 401000</td>\n", | |
| " <td> 5678</td>\n", | |
| " <td> 2848</td>\n", | |
| " <td> 0.501585</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6 </th>\n", | |
| " <td> Census Tract 4007</td>\n", | |
| " <td> 400700</td>\n", | |
| " <td> 4206</td>\n", | |
| " <td> 2068</td>\n", | |
| " <td> 0.491679</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>101</th>\n", | |
| " <td> Census Tract 4097</td>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 4696</td>\n", | |
| " <td> 2305</td>\n", | |
| " <td> 0.490843</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>104</th>\n", | |
| " <td> Census Tract 4100</td>\n", | |
| " <td> 410000</td>\n", | |
| " <td> 2805</td>\n", | |
| " <td> 1369</td>\n", | |
| " <td> 0.488057</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13 </th>\n", | |
| " <td> Census Tract 4014</td>\n", | |
| " <td> 401400</td>\n", | |
| " <td> 4314</td>\n", | |
| " <td> 2090</td>\n", | |
| " <td> 0.484469</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>15 </th>\n", | |
| " <td> Census Tract 4016</td>\n", | |
| " <td> 401600</td>\n", | |
| " <td> 2163</td>\n", | |
| " <td> 1005</td>\n", | |
| " <td> 0.464632</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>89 </th>\n", | |
| " <td> Census Tract 4085</td>\n", | |
| " <td> 408500</td>\n", | |
| " <td> 4972</td>\n", | |
| " <td> 2265</td>\n", | |
| " <td> 0.455551</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>90 </th>\n", | |
| " <td> Census Tract 4086</td>\n", | |
| " <td> 408600</td>\n", | |
| " <td> 5492</td>\n", | |
| " <td> 2476</td>\n", | |
| " <td> 0.450838</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>87 </th>\n", | |
| " <td> Census Tract 4083</td>\n", | |
| " <td> 408300</td>\n", | |
| " <td> 4167</td>\n", | |
| " <td> 1875</td>\n", | |
| " <td> 0.449964</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8 </th>\n", | |
| " <td> Census Tract 4009</td>\n", | |
| " <td> 400900</td>\n", | |
| " <td> 2302</td>\n", | |
| " <td> 1005</td>\n", | |
| " <td> 0.436577</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>91 </th>\n", | |
| " <td> Census Tract 4087</td>\n", | |
| " <td> 408700</td>\n", | |
| " <td> 7207</td>\n", | |
| " <td> 3142</td>\n", | |
| " <td> 0.435965</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>94 </th>\n", | |
| " <td> Census Tract 4090</td>\n", | |
| " <td> 409000</td>\n", | |
| " <td> 3552</td>\n", | |
| " <td> 1539</td>\n", | |
| " <td> 0.433277</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>148</th>\n", | |
| " <td> Census Tract 4240.02</td>\n", | |
| " <td> 424002</td>\n", | |
| " <td> 2172</td>\n", | |
| " <td> 906</td>\n", | |
| " <td> 0.417127</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>92 </th>\n", | |
| " <td> Census Tract 4088</td>\n", | |
| " <td> 408800</td>\n", | |
| " <td> 5547</td>\n", | |
| " <td> 2295</td>\n", | |
| " <td> 0.413737</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23 </th>\n", | |
| " <td> Census Tract 4028</td>\n", | |
| " <td> 402800</td>\n", | |
| " <td> 3345</td>\n", | |
| " <td> 1378</td>\n", | |
| " <td> 0.411958</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>95 </th>\n", | |
| " <td> Census Tract 4091</td>\n", | |
| " <td> 409100</td>\n", | |
| " <td> 2255</td>\n", | |
| " <td> 924</td>\n", | |
| " <td> 0.409756</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7 </th>\n", | |
| " <td> Census Tract 4008</td>\n", | |
| " <td> 400800</td>\n", | |
| " <td> 3594</td>\n", | |
| " <td> 1463</td>\n", | |
| " <td> 0.407067</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>108</th>\n", | |
| " <td> Census Tract 4104</td>\n", | |
| " <td> 410400</td>\n", | |
| " <td> 3792</td>\n", | |
| " <td> 1540</td>\n", | |
| " <td> 0.406118</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>96 </th>\n", | |
| " <td> Census Tract 4092</td>\n", | |
| " <td> 409200</td>\n", | |
| " <td> 3152</td>\n", | |
| " <td> 1263</td>\n", | |
| " <td> 0.400698</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>32 rows \u00d7 5 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 254, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic \\\n", | |
| "20 Census Tract 4025 402500 1784 1191 \n", | |
| "102 Census Tract 4098 409800 2887 1884 \n", | |
| "109 Census Tract 4105 410500 2193 1360 \n", | |
| "105 Census Tract 4101 410100 2406 1482 \n", | |
| "19 Census Tract 4024 402400 2351 1358 \n", | |
| "17 Census Tract 4018 401800 1703 977 \n", | |
| "22 Census Tract 4027 402700 1569 881 \n", | |
| "106 Census Tract 4102 410200 3062 1642 \n", | |
| "103 Census Tract 4099 409900 3308 1756 \n", | |
| "14 Census Tract 4015 401500 2630 1392 \n", | |
| "86 Census Tract 4082 408200 4054 2144 \n", | |
| "88 Census Tract 4084 408400 3323 1702 \n", | |
| "81 Census Tract 4077 407700 4109 2094 \n", | |
| "9 Census Tract 4010 401000 5678 2848 \n", | |
| "6 Census Tract 4007 400700 4206 2068 \n", | |
| "101 Census Tract 4097 409700 4696 2305 \n", | |
| "104 Census Tract 4100 410000 2805 1369 \n", | |
| "13 Census Tract 4014 401400 4314 2090 \n", | |
| "15 Census Tract 4016 401600 2163 1005 \n", | |
| "89 Census Tract 4085 408500 4972 2265 \n", | |
| "90 Census Tract 4086 408600 5492 2476 \n", | |
| "87 Census Tract 4083 408300 4167 1875 \n", | |
| "8 Census Tract 4009 400900 2302 1005 \n", | |
| "91 Census Tract 4087 408700 7207 3142 \n", | |
| "94 Census Tract 4090 409000 3552 1539 \n", | |
| "148 Census Tract 4240.02 424002 2172 906 \n", | |
| "92 Census Tract 4088 408800 5547 2295 \n", | |
| "23 Census Tract 4028 402800 3345 1378 \n", | |
| "95 Census Tract 4091 409100 2255 924 \n", | |
| "7 Census Tract 4008 400800 3594 1463 \n", | |
| "108 Census Tract 4104 410400 3792 1540 \n", | |
| "96 Census Tract 4092 409200 3152 1263 \n", | |
| "\n", | |
| " AfAm_ratio_2010 \n", | |
| "20 0.667601 \n", | |
| "102 0.652581 \n", | |
| "109 0.620155 \n", | |
| "105 0.615960 \n", | |
| "19 0.577627 \n", | |
| "17 0.573693 \n", | |
| "22 0.561504 \n", | |
| "106 0.536251 \n", | |
| "103 0.530834 \n", | |
| "14 0.529278 \n", | |
| "86 0.528860 \n", | |
| "88 0.512188 \n", | |
| "81 0.509613 \n", | |
| "9 0.501585 \n", | |
| "6 0.491679 \n", | |
| "101 0.490843 \n", | |
| "104 0.488057 \n", | |
| "13 0.484469 \n", | |
| "15 0.464632 \n", | |
| "89 0.455551 \n", | |
| "90 0.450838 \n", | |
| "87 0.449964 \n", | |
| "8 0.436577 \n", | |
| "91 0.435965 \n", | |
| "94 0.433277 \n", | |
| "148 0.417127 \n", | |
| "92 0.413737 \n", | |
| "23 0.411958 \n", | |
| "95 0.409756 \n", | |
| "7 0.407067 \n", | |
| "108 0.406118 \n", | |
| "96 0.400698 \n", | |
| "\n", | |
| "[32 rows x 5 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 254 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "cols = ['tract', 'Total Pop_00', 'Total Pop_10','African-American, not Hispanic_00', \\\n", | |
| " 'African-American, not Hispanic_10','AfAm_ratio_2000', 'AfAm_ratio_2010']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 92 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "combined_df = pd.merge(tracts_w_ratio_2010, tracts_w_ratio_2000, on='tract', sort=True,\n", | |
| " suffixes=('_10', '_00'), copy=True)\n", | |
| "\n", | |
| "combined_df[(cols)].head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop_00</th>\n", | |
| " <th>Total Pop_10</th>\n", | |
| " <th>African-American, not Hispanic_00</th>\n", | |
| " <th>African-American, not Hispanic_10</th>\n", | |
| " <th>AfAm_ratio_2000</th>\n", | |
| " <th>AfAm_ratio_2010</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 400100</td>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 2937</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 140</td>\n", | |
| " <td> 0.050040</td>\n", | |
| " <td> 0.047668</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 400200</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 1974</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 31</td>\n", | |
| " <td> 0.037173</td>\n", | |
| " <td> 0.015704</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 400300</td>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 4865</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 512</td>\n", | |
| " <td> 0.157442</td>\n", | |
| " <td> 0.105242</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 400400</td>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 3703</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 448</td>\n", | |
| " <td> 0.183383</td>\n", | |
| " <td> 0.120983</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 3517</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 933</td>\n", | |
| " <td> 0.442815</td>\n", | |
| " <td> 0.265283</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 93, | |
| "text": [ | |
| " tract Total Pop_00 Total Pop_10 African-American, not Hispanic_00 \\\n", | |
| "0 400100 2498 2937 125 \n", | |
| "1 400200 1910 1974 71 \n", | |
| "2 400300 4878 4865 768 \n", | |
| "3 400400 3659 3703 671 \n", | |
| "4 400500 3410 3517 1510 \n", | |
| "\n", | |
| " African-American, not Hispanic_10 AfAm_ratio_2000 AfAm_ratio_2010 \n", | |
| "0 140 0.050040 0.047668 \n", | |
| "1 31 0.037173 0.015704 \n", | |
| "2 512 0.157442 0.105242 \n", | |
| "3 448 0.183383 0.120983 \n", | |
| "4 933 0.442815 0.265283 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 93 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "combined_df['percent change in AfAm'] = combined_df['AfAm_ratio_2010'] - \\\n", | |
| "combined_df['AfAm_ratio_2000']\n", | |
| "\n", | |
| "cols.append('percent change in AfAm')" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 94 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "print cols" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "['tract', 'Total Pop_00', 'Total Pop_10', 'African-American, not Hispanic_00', 'African-American, not Hispanic_10', 'AfAm_ratio_2000', 'AfAm_ratio_2010', 'percent change in AfAm']\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 95 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#showing percent change of AfAm community by tract\n", | |
| "combined_df[(cols)].head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop_00</th>\n", | |
| " <th>Total Pop_10</th>\n", | |
| " <th>African-American, not Hispanic_00</th>\n", | |
| " <th>African-American, not Hispanic_10</th>\n", | |
| " <th>AfAm_ratio_2000</th>\n", | |
| " <th>AfAm_ratio_2010</th>\n", | |
| " <th>percent change in AfAm</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 400100</td>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 2937</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 140</td>\n", | |
| " <td> 0.050040</td>\n", | |
| " <td> 0.047668</td>\n", | |
| " <td>-0.002372</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 400200</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 1974</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 31</td>\n", | |
| " <td> 0.037173</td>\n", | |
| " <td> 0.015704</td>\n", | |
| " <td>-0.021469</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 400300</td>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 4865</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 512</td>\n", | |
| " <td> 0.157442</td>\n", | |
| " <td> 0.105242</td>\n", | |
| " <td>-0.052200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 400400</td>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 3703</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 448</td>\n", | |
| " <td> 0.183383</td>\n", | |
| " <td> 0.120983</td>\n", | |
| " <td>-0.062400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 400500</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 3517</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 933</td>\n", | |
| " <td> 0.442815</td>\n", | |
| " <td> 0.265283</td>\n", | |
| " <td>-0.177532</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 8 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 118, | |
| "text": [ | |
| " tract Total Pop_00 Total Pop_10 African-American, not Hispanic_00 \\\n", | |
| "0 400100 2498 2937 125 \n", | |
| "1 400200 1910 1974 71 \n", | |
| "2 400300 4878 4865 768 \n", | |
| "3 400400 3659 3703 671 \n", | |
| "4 400500 3410 3517 1510 \n", | |
| "\n", | |
| " African-American, not Hispanic_10 AfAm_ratio_2000 AfAm_ratio_2010 \\\n", | |
| "0 140 0.050040 0.047668 \n", | |
| "1 31 0.037173 0.015704 \n", | |
| "2 512 0.157442 0.105242 \n", | |
| "3 448 0.183383 0.120983 \n", | |
| "4 933 0.442815 0.265283 \n", | |
| "\n", | |
| " percent change in AfAm \n", | |
| "0 -0.002372 \n", | |
| "1 -0.021469 \n", | |
| "2 -0.052200 \n", | |
| "3 -0.062400 \n", | |
| "4 -0.177532 \n", | |
| "\n", | |
| "[5 rows x 8 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 118 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#tract with greatest increase and decrease\n", | |
| "change_range = [combined_df['percent change in AfAm'].max(), combined_df['percent change in AfAm'].min()]" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 99, | |
| "text": [ | |
| "(0.057652969187467429, -0.27863964908719824)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 99 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#tracts in which the negative percent change was the greatest\n", | |
| "neg_perc_change = combined_df[(cols)].sort('percent change in AfAm', ascending=True)[:10]" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 106 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Total population in 2010 and 2000 for the tracts where the AfAm community changed the most\n", | |
| "neg_perc_change['Total Pop_10'].sum(), neg_perc_change['Total Pop_00'].sum()\n", | |
| "\n", | |
| "#Change is only about +100 people!" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 112, | |
| "text": [ | |
| "(34195.0, 34088)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 112 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#Total AfAm population in these tracts where the percentage change was greatest\n", | |
| "neg_perc_change['African-American, not Hispanic_10'].sum(), \\\n", | |
| "neg_perc_change['African-American, not Hispanic_00'].sum()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 116, | |
| "text": [ | |
| "(13772.0, 21312)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 116 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#difference is more than 7 times the change of the overall population (and negative)\n", | |
| "neg_perc_change['African-American, not Hispanic_10'].sum()-neg_perc_change['African-American, not Hispanic_00'].sum()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 117, | |
| "text": [ | |
| "-7540.0" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 117 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#positive percent change (greatest growth in AfAm community)\n", | |
| "combined_df[(cols)].sort('percent change in AfAm', ascending=True).tail(10)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop_00</th>\n", | |
| " <th>Total Pop_10</th>\n", | |
| " <th>African-American, not Hispanic_00</th>\n", | |
| " <th>African-American, not Hispanic_10</th>\n", | |
| " <th>AfAm_ratio_2000</th>\n", | |
| " <th>AfAm_ratio_2010</th>\n", | |
| " <th>percent change in AfAm</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>195</th>\n", | |
| " <td> 436700</td>\n", | |
| " <td> 2989</td>\n", | |
| " <td> 3284</td>\n", | |
| " <td> 172</td>\n", | |
| " <td> 280</td>\n", | |
| " <td> 0.057544</td>\n", | |
| " <td> 0.085262</td>\n", | |
| " <td> 0.027718</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>189</th>\n", | |
| " <td> 436300</td>\n", | |
| " <td> 6378</td>\n", | |
| " <td> 7129</td>\n", | |
| " <td> 628</td>\n", | |
| " <td> 906</td>\n", | |
| " <td> 0.098463</td>\n", | |
| " <td> 0.127087</td>\n", | |
| " <td> 0.028623</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>200</th>\n", | |
| " <td> 437300</td>\n", | |
| " <td> 3270</td>\n", | |
| " <td> 3111</td>\n", | |
| " <td> 344</td>\n", | |
| " <td> 418</td>\n", | |
| " <td> 0.105199</td>\n", | |
| " <td> 0.134362</td>\n", | |
| " <td> 0.029163</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>171</th>\n", | |
| " <td> 433400</td>\n", | |
| " <td> 6014</td>\n", | |
| " <td> 6305</td>\n", | |
| " <td> 428</td>\n", | |
| " <td> 634</td>\n", | |
| " <td> 0.071167</td>\n", | |
| " <td> 0.100555</td>\n", | |
| " <td> 0.029388</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>117</th>\n", | |
| " <td> 422900</td>\n", | |
| " <td> 2416</td>\n", | |
| " <td> 4336</td>\n", | |
| " <td> 135</td>\n", | |
| " <td> 374</td>\n", | |
| " <td> 0.055877</td>\n", | |
| " <td> 0.086255</td>\n", | |
| " <td> 0.030377</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>191</th>\n", | |
| " <td> 436402</td>\n", | |
| " <td> 2844</td>\n", | |
| " <td> 2618</td>\n", | |
| " <td> 270</td>\n", | |
| " <td> 330</td>\n", | |
| " <td> 0.094937</td>\n", | |
| " <td> 0.126050</td>\n", | |
| " <td> 0.031114</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>169</th>\n", | |
| " <td> 433200</td>\n", | |
| " <td> 6562</td>\n", | |
| " <td> 6897</td>\n", | |
| " <td> 807</td>\n", | |
| " <td> 1067</td>\n", | |
| " <td> 0.122981</td>\n", | |
| " <td> 0.154705</td>\n", | |
| " <td> 0.031724</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>156</th>\n", | |
| " <td> 430900</td>\n", | |
| " <td> 4667</td>\n", | |
| " <td> 4681</td>\n", | |
| " <td> 246</td>\n", | |
| " <td> 412</td>\n", | |
| " <td> 0.052711</td>\n", | |
| " <td> 0.088015</td>\n", | |
| " <td> 0.035305</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>161</th>\n", | |
| " <td> 432200</td>\n", | |
| " <td> 3939</td>\n", | |
| " <td> 4080</td>\n", | |
| " <td> 660</td>\n", | |
| " <td> 831</td>\n", | |
| " <td> 0.167555</td>\n", | |
| " <td> 0.203676</td>\n", | |
| " <td> 0.036121</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>158</th>\n", | |
| " <td> 431100</td>\n", | |
| " <td> 3137</td>\n", | |
| " <td> 3225</td>\n", | |
| " <td> 252</td>\n", | |
| " <td> 445</td>\n", | |
| " <td> 0.080332</td>\n", | |
| " <td> 0.137984</td>\n", | |
| " <td> 0.057653</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>10 rows \u00d7 8 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 103, | |
| "text": [ | |
| " tract Total Pop_00 Total Pop_10 African-American, not Hispanic_00 \\\n", | |
| "195 436700 2989 3284 172 \n", | |
| "189 436300 6378 7129 628 \n", | |
| "200 437300 3270 3111 344 \n", | |
| "171 433400 6014 6305 428 \n", | |
| "117 422900 2416 4336 135 \n", | |
| "191 436402 2844 2618 270 \n", | |
| "169 433200 6562 6897 807 \n", | |
| "156 430900 4667 4681 246 \n", | |
| "161 432200 3939 4080 660 \n", | |
| "158 431100 3137 3225 252 \n", | |
| "\n", | |
| " African-American, not Hispanic_10 AfAm_ratio_2000 AfAm_ratio_2010 \\\n", | |
| "195 280 0.057544 0.085262 \n", | |
| "189 906 0.098463 0.127087 \n", | |
| "200 418 0.105199 0.134362 \n", | |
| "171 634 0.071167 0.100555 \n", | |
| "117 374 0.055877 0.086255 \n", | |
| "191 330 0.094937 0.126050 \n", | |
| "169 1067 0.122981 0.154705 \n", | |
| "156 412 0.052711 0.088015 \n", | |
| "161 831 0.167555 0.203676 \n", | |
| "158 445 0.080332 0.137984 \n", | |
| "\n", | |
| " percent change in AfAm \n", | |
| "195 0.027718 \n", | |
| "189 0.028623 \n", | |
| "200 0.029163 \n", | |
| "171 0.029388 \n", | |
| "117 0.030377 \n", | |
| "191 0.031114 \n", | |
| "169 0.031724 \n", | |
| "156 0.035305 \n", | |
| "161 0.036121 \n", | |
| "158 0.057653 \n", | |
| "\n", | |
| "[10 rows x 8 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 103 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "path = '../df_complete.csv'\n", | |
| "\n", | |
| "crime_df = pd.read_csv(path)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 196 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "del crime_df['Unnamed: 0']\n", | |
| "crime_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>DEPARTMENT</th>\n", | |
| " <th>TRACT00</th>\n", | |
| " <th>TRACT10</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> PETTY THEFT</td>\n", | |
| " <td> 409100</td>\n", | |
| " <td> 409100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> OTHER</td>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 409700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> WEAPONS</td>\n", | |
| " <td> 401100</td>\n", | |
| " <td> 401100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> STOLEN VEHICLE</td>\n", | |
| " <td> 407100</td>\n", | |
| " <td> 407102</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> VANDALISM</td>\n", | |
| " <td> 400700</td>\n", | |
| " <td> 400700</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 3 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 197, | |
| "text": [ | |
| " DEPARTMENT TRACT00 TRACT10\n", | |
| "0 PETTY THEFT 409100 409100\n", | |
| "1 OTHER 409700 409700\n", | |
| "2 WEAPONS 401100 401100\n", | |
| "3 STOLEN VEHICLE 407100 407102\n", | |
| "4 VANDALISM 400700 400700\n", | |
| "\n", | |
| "[5 rows x 3 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 197 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "crime_df['tract'] = crime_df['TRACT10']\n", | |
| "crime_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>DEPARTMENT</th>\n", | |
| " <th>TRACT00</th>\n", | |
| " <th>TRACT10</th>\n", | |
| " <th>tract</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> PETTY THEFT</td>\n", | |
| " <td> 409100</td>\n", | |
| " <td> 409100</td>\n", | |
| " <td> 409100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> OTHER</td>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 409700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> WEAPONS</td>\n", | |
| " <td> 401100</td>\n", | |
| " <td> 401100</td>\n", | |
| " <td> 401100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> STOLEN VEHICLE</td>\n", | |
| " <td> 407100</td>\n", | |
| " <td> 407102</td>\n", | |
| " <td> 407102</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> VANDALISM</td>\n", | |
| " <td> 400700</td>\n", | |
| " <td> 400700</td>\n", | |
| " <td> 400700</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 4 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 198, | |
| "text": [ | |
| " DEPARTMENT TRACT00 TRACT10 tract\n", | |
| "0 PETTY THEFT 409100 409100 409100\n", | |
| "1 OTHER 409700 409700 409700\n", | |
| "2 WEAPONS 401100 401100 401100\n", | |
| "3 STOLEN VEHICLE 407100 407102 407102\n", | |
| "4 VANDALISM 400700 400700 400700\n", | |
| "\n", | |
| "[5 rows x 4 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 198 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "del crime_df['DEPARTMENT']\n", | |
| "del crime_df['TRACT00']\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 199 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#agg_crime_2010_df = DataFrame(crime_df.groupby('tract').count())\n", | |
| "crime_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>TRACT10</th>\n", | |
| " <th>tract</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> 409100</td>\n", | |
| " <td> 409100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 409700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 401100</td>\n", | |
| " <td> 401100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> 407102</td>\n", | |
| " <td> 407102</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> 400700</td>\n", | |
| " <td> 400700</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 2 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 201, | |
| "text": [ | |
| " TRACT10 tract\n", | |
| "0 409100 409100\n", | |
| "1 409700 409700\n", | |
| "2 401100 401100\n", | |
| "3 407102 407102\n", | |
| "4 400700 400700\n", | |
| "\n", | |
| "[5 rows x 2 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 201 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 203 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "crime_race_df = pd.merge(agg_crime_2010_df, combined_df, on='tract', left_index=True, sort=True,\n", | |
| " suffixes=('_crime', '_race'), copy=True)\n", | |
| "\n", | |
| "crime_race_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <td>Int64Index([], dtype='int64')</td>\n", | |
| " <td>Empty DataFrame</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>0 rows \u00d7 18 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 204, | |
| "text": [ | |
| "Empty DataFrame\n", | |
| "Columns: [Total Crimes, tract, NAME_10, Total Pop_10, African-American, not Hispanic_10, Asian, not Hispanic_10, Hispanic_10, White, not Hispanic_10, AfAm_ratio_2010, NAME_00, Total Pop_00, African-American, not Hispanic_00, Asian, not Hispanic_00, Hispanic_00, White, not Hispanic_00, AfAm_ratio, AfAm_ratio_2000, percent change in AfAm]\n", | |
| "Index: []\n", | |
| "\n", | |
| "[0 rows x 18 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 204 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "combined_df[(cols)].set_index(['tract'])" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Total Pop_00</th>\n", | |
| " <th>Total Pop_10</th>\n", | |
| " <th>African-American, not Hispanic_00</th>\n", | |
| " <th>African-American, not Hispanic_10</th>\n", | |
| " <th>AfAm_ratio_2000</th>\n", | |
| " <th>AfAm_ratio_2010</th>\n", | |
| " <th>percent change in AfAm</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>tract</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>400100</th>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 2937</td>\n", | |
| " <td> 125</td>\n", | |
| " <td> 140</td>\n", | |
| " <td> 0.050040</td>\n", | |
| " <td> 0.047668</td>\n", | |
| " <td>-0.002372</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400200</th>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 1974</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 31</td>\n", | |
| " <td> 0.037173</td>\n", | |
| " <td> 0.015704</td>\n", | |
| " <td>-0.021469</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400300</th>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 4865</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 512</td>\n", | |
| " <td> 0.157442</td>\n", | |
| " <td> 0.105242</td>\n", | |
| " <td>-0.052200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400400</th>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 3703</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 448</td>\n", | |
| " <td> 0.183383</td>\n", | |
| " <td> 0.120983</td>\n", | |
| " <td>-0.062400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400500</th>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 3517</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 933</td>\n", | |
| " <td> 0.442815</td>\n", | |
| " <td> 0.265283</td>\n", | |
| " <td>-0.177532</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400600</th>\n", | |
| " <td> 1707</td>\n", | |
| " <td> 1571</td>\n", | |
| " <td> 1037</td>\n", | |
| " <td> 615</td>\n", | |
| " <td> 0.607499</td>\n", | |
| " <td> 0.391470</td>\n", | |
| " <td>-0.216028</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400700</th>\n", | |
| " <td> 4451</td>\n", | |
| " <td> 4206</td>\n", | |
| " <td> 3104</td>\n", | |
| " <td> 2068</td>\n", | |
| " <td> 0.697371</td>\n", | |
| " <td> 0.491679</td>\n", | |
| " <td>-0.205693</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400800</th>\n", | |
| " <td> 3368</td>\n", | |
| " <td> 3594</td>\n", | |
| " <td> 1990</td>\n", | |
| " <td> 1463</td>\n", | |
| " <td> 0.590855</td>\n", | |
| " <td> 0.407067</td>\n", | |
| " <td>-0.183788</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>400900</th>\n", | |
| " <td> 2456</td>\n", | |
| " <td> 2302</td>\n", | |
| " <td> 1570</td>\n", | |
| " <td> 1005</td>\n", | |
| " <td> 0.639251</td>\n", | |
| " <td> 0.436577</td>\n", | |
| " <td>-0.202674</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401000</th>\n", | |
| " <td> 5709</td>\n", | |
| " <td> 5678</td>\n", | |
| " <td> 4176</td>\n", | |
| " <td> 2848</td>\n", | |
| " <td> 0.731477</td>\n", | |
| " <td> 0.501585</td>\n", | |
| " <td>-0.229892</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401100</th>\n", | |
| " <td> 4007</td>\n", | |
| " <td> 4156</td>\n", | |
| " <td> 1395</td>\n", | |
| " <td> 975</td>\n", | |
| " <td> 0.348141</td>\n", | |
| " <td> 0.234601</td>\n", | |
| " <td>-0.113540</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401200</th>\n", | |
| " <td> 2432</td>\n", | |
| " <td> 2416</td>\n", | |
| " <td> 589</td>\n", | |
| " <td> 421</td>\n", | |
| " <td> 0.242188</td>\n", | |
| " <td> 0.174255</td>\n", | |
| " <td>-0.067933</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401300</th>\n", | |
| " <td> 2810</td>\n", | |
| " <td> 3528</td>\n", | |
| " <td> 1468</td>\n", | |
| " <td> 1255</td>\n", | |
| " <td> 0.522420</td>\n", | |
| " <td> 0.355726</td>\n", | |
| " <td>-0.166694</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401400</th>\n", | |
| " <td> 4765</td>\n", | |
| " <td> 4314</td>\n", | |
| " <td> 3167</td>\n", | |
| " <td> 2090</td>\n", | |
| " <td> 0.664638</td>\n", | |
| " <td> 0.484469</td>\n", | |
| " <td>-0.180169</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401500</th>\n", | |
| " <td> 2413</td>\n", | |
| " <td> 2630</td>\n", | |
| " <td> 1717</td>\n", | |
| " <td> 1392</td>\n", | |
| " <td> 0.711562</td>\n", | |
| " <td> 0.529278</td>\n", | |
| " <td>-0.182285</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401600</th>\n", | |
| " <td> 1933</td>\n", | |
| " <td> 2163</td>\n", | |
| " <td> 1170</td>\n", | |
| " <td> 1005</td>\n", | |
| " <td> 0.605277</td>\n", | |
| " <td> 0.464632</td>\n", | |
| " <td>-0.140644</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401700</th>\n", | |
| " <td> 1878</td>\n", | |
| " <td> 2667</td>\n", | |
| " <td> 979</td>\n", | |
| " <td> 884</td>\n", | |
| " <td> 0.521299</td>\n", | |
| " <td> 0.331459</td>\n", | |
| " <td>-0.189841</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>401800</th>\n", | |
| " <td> 1953</td>\n", | |
| " <td> 1703</td>\n", | |
| " <td> 1490</td>\n", | |
| " <td> 977</td>\n", | |
| " <td> 0.762929</td>\n", | |
| " <td> 0.573693</td>\n", | |
| " <td>-0.189235</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402200</th>\n", | |
| " <td> 1844</td>\n", | |
| " <td> 2385</td>\n", | |
| " <td> 1138</td>\n", | |
| " <td> 868</td>\n", | |
| " <td> 0.617137</td>\n", | |
| " <td> 0.363941</td>\n", | |
| " <td>-0.253195</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402400</th>\n", | |
| " <td> 2588</td>\n", | |
| " <td> 2351</td>\n", | |
| " <td> 1978</td>\n", | |
| " <td> 1358</td>\n", | |
| " <td> 0.764297</td>\n", | |
| " <td> 0.577627</td>\n", | |
| " <td>-0.186670</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402500</th>\n", | |
| " <td> 1779</td>\n", | |
| " <td> 1784</td>\n", | |
| " <td> 1369</td>\n", | |
| " <td> 1191</td>\n", | |
| " <td> 0.769533</td>\n", | |
| " <td> 0.667601</td>\n", | |
| " <td>-0.101933</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402600</th>\n", | |
| " <td> 977</td>\n", | |
| " <td> 1151</td>\n", | |
| " <td> 439</td>\n", | |
| " <td> 340</td>\n", | |
| " <td> 0.449335</td>\n", | |
| " <td> 0.295395</td>\n", | |
| " <td>-0.153939</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402700</th>\n", | |
| " <td> 1946</td>\n", | |
| " <td> 1569</td>\n", | |
| " <td> 1200</td>\n", | |
| " <td> 881</td>\n", | |
| " <td> 0.616650</td>\n", | |
| " <td> 0.561504</td>\n", | |
| " <td>-0.055145</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402800</th>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 3345</td>\n", | |
| " <td> 1122</td>\n", | |
| " <td> 1378</td>\n", | |
| " <td> 0.587435</td>\n", | |
| " <td> 0.411958</td>\n", | |
| " <td>-0.175476</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>402900</th>\n", | |
| " <td> 1291</td>\n", | |
| " <td> 1434</td>\n", | |
| " <td> 419</td>\n", | |
| " <td> 289</td>\n", | |
| " <td> 0.324555</td>\n", | |
| " <td> 0.201534</td>\n", | |
| " <td>-0.123020</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403000</th>\n", | |
| " <td> 2734</td>\n", | |
| " <td> 2788</td>\n", | |
| " <td> 115</td>\n", | |
| " <td> 123</td>\n", | |
| " <td> 0.042063</td>\n", | |
| " <td> 0.044118</td>\n", | |
| " <td> 0.002055</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403100</th>\n", | |
| " <td> 1647</td>\n", | |
| " <td> 2238</td>\n", | |
| " <td> 470</td>\n", | |
| " <td> 679</td>\n", | |
| " <td> 0.285367</td>\n", | |
| " <td> 0.303396</td>\n", | |
| " <td> 0.018029</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403300</th>\n", | |
| " <td> 2310</td>\n", | |
| " <td> 4054</td>\n", | |
| " <td> 207</td>\n", | |
| " <td> 455</td>\n", | |
| " <td> 0.089610</td>\n", | |
| " <td> 0.112235</td>\n", | |
| " <td> 0.022624</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403400</th>\n", | |
| " <td> 3697</td>\n", | |
| " <td> 4146</td>\n", | |
| " <td> 1128</td>\n", | |
| " <td> 816</td>\n", | |
| " <td> 0.305112</td>\n", | |
| " <td> 0.196816</td>\n", | |
| " <td>-0.108296</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403600</th>\n", | |
| " <td> 4400</td>\n", | |
| " <td> 4482</td>\n", | |
| " <td> 2028</td>\n", | |
| " <td> 1699</td>\n", | |
| " <td> 0.460909</td>\n", | |
| " <td> 0.379072</td>\n", | |
| " <td>-0.081837</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403800</th>\n", | |
| " <td> 3453</td>\n", | |
| " <td> 3461</td>\n", | |
| " <td> 605</td>\n", | |
| " <td> 334</td>\n", | |
| " <td> 0.175210</td>\n", | |
| " <td> 0.096504</td>\n", | |
| " <td>-0.078706</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>403900</th>\n", | |
| " <td> 3794</td>\n", | |
| " <td> 3584</td>\n", | |
| " <td> 999</td>\n", | |
| " <td> 573</td>\n", | |
| " <td> 0.263310</td>\n", | |
| " <td> 0.159877</td>\n", | |
| " <td>-0.103433</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404000</th>\n", | |
| " <td> 2885</td>\n", | |
| " <td> 2819</td>\n", | |
| " <td> 577</td>\n", | |
| " <td> 401</td>\n", | |
| " <td> 0.200000</td>\n", | |
| " <td> 0.142249</td>\n", | |
| " <td>-0.057751</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404200</th>\n", | |
| " <td> 3176</td>\n", | |
| " <td> 3483</td>\n", | |
| " <td> 133</td>\n", | |
| " <td> 171</td>\n", | |
| " <td> 0.041877</td>\n", | |
| " <td> 0.049096</td>\n", | |
| " <td> 0.007219</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404300</th>\n", | |
| " <td> 3089</td>\n", | |
| " <td> 3218</td>\n", | |
| " <td> 209</td>\n", | |
| " <td> 141</td>\n", | |
| " <td> 0.067659</td>\n", | |
| " <td> 0.043816</td>\n", | |
| " <td>-0.023843</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404400</th>\n", | |
| " <td> 4699</td>\n", | |
| " <td> 5314</td>\n", | |
| " <td> 234</td>\n", | |
| " <td> 253</td>\n", | |
| " <td> 0.049798</td>\n", | |
| " <td> 0.047610</td>\n", | |
| " <td>-0.002188</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404501</th>\n", | |
| " <td> 1575</td>\n", | |
| " <td> 1677</td>\n", | |
| " <td> 83</td>\n", | |
| " <td> 72</td>\n", | |
| " <td> 0.052698</td>\n", | |
| " <td> 0.042934</td>\n", | |
| " <td>-0.009765</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404502</th>\n", | |
| " <td> 5493</td>\n", | |
| " <td> 5784</td>\n", | |
| " <td> 396</td>\n", | |
| " <td> 363</td>\n", | |
| " <td> 0.072092</td>\n", | |
| " <td> 0.062759</td>\n", | |
| " <td>-0.009332</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404600</th>\n", | |
| " <td> 4296</td>\n", | |
| " <td> 4353</td>\n", | |
| " <td> 264</td>\n", | |
| " <td> 261</td>\n", | |
| " <td> 0.061453</td>\n", | |
| " <td> 0.059959</td>\n", | |
| " <td>-0.001494</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404700</th>\n", | |
| " <td> 1927</td>\n", | |
| " <td> 1954</td>\n", | |
| " <td> 221</td>\n", | |
| " <td> 156</td>\n", | |
| " <td> 0.114686</td>\n", | |
| " <td> 0.079836</td>\n", | |
| " <td>-0.034850</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404800</th>\n", | |
| " <td> 2683</td>\n", | |
| " <td> 2684</td>\n", | |
| " <td> 677</td>\n", | |
| " <td> 530</td>\n", | |
| " <td> 0.252329</td>\n", | |
| " <td> 0.197466</td>\n", | |
| " <td>-0.054863</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>404900</th>\n", | |
| " <td> 4356</td>\n", | |
| " <td> 4129</td>\n", | |
| " <td> 546</td>\n", | |
| " <td> 462</td>\n", | |
| " <td> 0.125344</td>\n", | |
| " <td> 0.111891</td>\n", | |
| " <td>-0.013453</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405000</th>\n", | |
| " <td> 3204</td>\n", | |
| " <td> 3136</td>\n", | |
| " <td> 458</td>\n", | |
| " <td> 302</td>\n", | |
| " <td> 0.142946</td>\n", | |
| " <td> 0.096301</td>\n", | |
| " <td>-0.046645</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405100</th>\n", | |
| " <td> 4161</td>\n", | |
| " <td> 4197</td>\n", | |
| " <td> 750</td>\n", | |
| " <td> 497</td>\n", | |
| " <td> 0.180245</td>\n", | |
| " <td> 0.118418</td>\n", | |
| " <td>-0.061827</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405200</th>\n", | |
| " <td> 4991</td>\n", | |
| " <td> 4597</td>\n", | |
| " <td> 1088</td>\n", | |
| " <td> 699</td>\n", | |
| " <td> 0.217992</td>\n", | |
| " <td> 0.152056</td>\n", | |
| " <td>-0.065937</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405500</th>\n", | |
| " <td> 4147</td>\n", | |
| " <td> 3643</td>\n", | |
| " <td> 1046</td>\n", | |
| " <td> 737</td>\n", | |
| " <td> 0.252231</td>\n", | |
| " <td> 0.202306</td>\n", | |
| " <td>-0.049925</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405600</th>\n", | |
| " <td> 3734</td>\n", | |
| " <td> 3137</td>\n", | |
| " <td> 1095</td>\n", | |
| " <td> 710</td>\n", | |
| " <td> 0.293251</td>\n", | |
| " <td> 0.226331</td>\n", | |
| " <td>-0.066920</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405700</th>\n", | |
| " <td> 3757</td>\n", | |
| " <td> 3243</td>\n", | |
| " <td> 1508</td>\n", | |
| " <td> 1047</td>\n", | |
| " <td> 0.401384</td>\n", | |
| " <td> 0.322849</td>\n", | |
| " <td>-0.078535</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>405800</th>\n", | |
| " <td> 4777</td>\n", | |
| " <td> 3965</td>\n", | |
| " <td> 1446</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 0.302700</td>\n", | |
| " <td> 0.193695</td>\n", | |
| " <td>-0.109006</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406000</th>\n", | |
| " <td> 3655</td>\n", | |
| " <td> 3450</td>\n", | |
| " <td> 451</td>\n", | |
| " <td> 419</td>\n", | |
| " <td> 0.123393</td>\n", | |
| " <td> 0.121449</td>\n", | |
| " <td>-0.001943</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406100</th>\n", | |
| " <td> 4301</td>\n", | |
| " <td> 4381</td>\n", | |
| " <td> 545</td>\n", | |
| " <td> 460</td>\n", | |
| " <td> 0.126715</td>\n", | |
| " <td> 0.104999</td>\n", | |
| " <td>-0.021716</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406201</th>\n", | |
| " <td> 5802</td>\n", | |
| " <td> 4649</td>\n", | |
| " <td> 934</td>\n", | |
| " <td> 720</td>\n", | |
| " <td> 0.160979</td>\n", | |
| " <td> 0.154872</td>\n", | |
| " <td>-0.006107</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406202</th>\n", | |
| " <td> 5084</td>\n", | |
| " <td> 4718</td>\n", | |
| " <td> 705</td>\n", | |
| " <td> 561</td>\n", | |
| " <td> 0.138670</td>\n", | |
| " <td> 0.118906</td>\n", | |
| " <td>-0.019764</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406300</th>\n", | |
| " <td> 4410</td>\n", | |
| " <td> 4113</td>\n", | |
| " <td> 1374</td>\n", | |
| " <td> 749</td>\n", | |
| " <td> 0.311565</td>\n", | |
| " <td> 0.182106</td>\n", | |
| " <td>-0.129459</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406400</th>\n", | |
| " <td> 2276</td>\n", | |
| " <td> 2145</td>\n", | |
| " <td> 886</td>\n", | |
| " <td> 589</td>\n", | |
| " <td> 0.389279</td>\n", | |
| " <td> 0.274592</td>\n", | |
| " <td>-0.114687</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406500</th>\n", | |
| " <td> 6253</td>\n", | |
| " <td> 5930</td>\n", | |
| " <td> 1670</td>\n", | |
| " <td> 1167</td>\n", | |
| " <td> 0.267072</td>\n", | |
| " <td> 0.196796</td>\n", | |
| " <td>-0.070276</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406700</th>\n", | |
| " <td> 5224</td>\n", | |
| " <td> 5048</td>\n", | |
| " <td> 789</td>\n", | |
| " <td> 685</td>\n", | |
| " <td> 0.151034</td>\n", | |
| " <td> 0.135697</td>\n", | |
| " <td>-0.015336</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406800</th>\n", | |
| " <td> 3611</td>\n", | |
| " <td> 3428</td>\n", | |
| " <td> 667</td>\n", | |
| " <td> 519</td>\n", | |
| " <td> 0.184713</td>\n", | |
| " <td> 0.151400</td>\n", | |
| " <td>-0.033313</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>406900</th>\n", | |
| " <td> 3695</td>\n", | |
| " <td> 3719</td>\n", | |
| " <td> 1030</td>\n", | |
| " <td> 810</td>\n", | |
| " <td> 0.278755</td>\n", | |
| " <td> 0.217800</td>\n", | |
| " <td>-0.060955</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>407000</th>\n", | |
| " <td> 6652</td>\n", | |
| " <td> 5885</td>\n", | |
| " <td> 1827</td>\n", | |
| " <td> 1488</td>\n", | |
| " <td> 0.274654</td>\n", | |
| " <td> 0.252846</td>\n", | |
| " <td>-0.021808</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>279 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 122, | |
| "text": [ | |
| " Total Pop_00 Total Pop_10 African-American, not Hispanic_00 \\\n", | |
| "tract \n", | |
| "400100 2498 2937 125 \n", | |
| "400200 1910 1974 71 \n", | |
| "400300 4878 4865 768 \n", | |
| "400400 3659 3703 671 \n", | |
| "400500 3410 3517 1510 \n", | |
| "400600 1707 1571 1037 \n", | |
| "400700 4451 4206 3104 \n", | |
| "400800 3368 3594 1990 \n", | |
| "400900 2456 2302 1570 \n", | |
| "401000 5709 5678 4176 \n", | |
| "401100 4007 4156 1395 \n", | |
| "401200 2432 2416 589 \n", | |
| "401300 2810 3528 1468 \n", | |
| "401400 4765 4314 3167 \n", | |
| "401500 2413 2630 1717 \n", | |
| "401600 1933 2163 1170 \n", | |
| "401700 1878 2667 979 \n", | |
| "401800 1953 1703 1490 \n", | |
| "402200 1844 2385 1138 \n", | |
| "402400 2588 2351 1978 \n", | |
| "402500 1779 1784 1369 \n", | |
| "402600 977 1151 439 \n", | |
| "402700 1946 1569 1200 \n", | |
| "402800 1910 3345 1122 \n", | |
| "402900 1291 1434 419 \n", | |
| "403000 2734 2788 115 \n", | |
| "403100 1647 2238 470 \n", | |
| "403300 2310 4054 207 \n", | |
| "403400 3697 4146 1128 \n", | |
| "403600 4400 4482 2028 \n", | |
| "403800 3453 3461 605 \n", | |
| "403900 3794 3584 999 \n", | |
| "404000 2885 2819 577 \n", | |
| "404200 3176 3483 133 \n", | |
| "404300 3089 3218 209 \n", | |
| "404400 4699 5314 234 \n", | |
| "404501 1575 1677 83 \n", | |
| "404502 5493 5784 396 \n", | |
| "404600 4296 4353 264 \n", | |
| "404700 1927 1954 221 \n", | |
| "404800 2683 2684 677 \n", | |
| "404900 4356 4129 546 \n", | |
| "405000 3204 3136 458 \n", | |
| "405100 4161 4197 750 \n", | |
| "405200 4991 4597 1088 \n", | |
| "405500 4147 3643 1046 \n", | |
| "405600 3734 3137 1095 \n", | |
| "405700 3757 3243 1508 \n", | |
| "405800 4777 3965 1446 \n", | |
| "406000 3655 3450 451 \n", | |
| "406100 4301 4381 545 \n", | |
| "406201 5802 4649 934 \n", | |
| "406202 5084 4718 705 \n", | |
| "406300 4410 4113 1374 \n", | |
| "406400 2276 2145 886 \n", | |
| "406500 6253 5930 1670 \n", | |
| "406700 5224 5048 789 \n", | |
| "406800 3611 3428 667 \n", | |
| "406900 3695 3719 1030 \n", | |
| "407000 6652 5885 1827 \n", | |
| " ... ... ... \n", | |
| "\n", | |
| " African-American, not Hispanic_10 AfAm_ratio_2000 AfAm_ratio_2010 \\\n", | |
| "tract \n", | |
| "400100 140 0.050040 0.047668 \n", | |
| "400200 31 0.037173 0.015704 \n", | |
| "400300 512 0.157442 0.105242 \n", | |
| "400400 448 0.183383 0.120983 \n", | |
| "400500 933 0.442815 0.265283 \n", | |
| "400600 615 0.607499 0.391470 \n", | |
| "400700 2068 0.697371 0.491679 \n", | |
| "400800 1463 0.590855 0.407067 \n", | |
| "400900 1005 0.639251 0.436577 \n", | |
| "401000 2848 0.731477 0.501585 \n", | |
| "401100 975 0.348141 0.234601 \n", | |
| "401200 421 0.242188 0.174255 \n", | |
| "401300 1255 0.522420 0.355726 \n", | |
| "401400 2090 0.664638 0.484469 \n", | |
| "401500 1392 0.711562 0.529278 \n", | |
| "401600 1005 0.605277 0.464632 \n", | |
| "401700 884 0.521299 0.331459 \n", | |
| "401800 977 0.762929 0.573693 \n", | |
| "402200 868 0.617137 0.363941 \n", | |
| "402400 1358 0.764297 0.577627 \n", | |
| "402500 1191 0.769533 0.667601 \n", | |
| "402600 340 0.449335 0.295395 \n", | |
| "402700 881 0.616650 0.561504 \n", | |
| "402800 1378 0.587435 0.411958 \n", | |
| "402900 289 0.324555 0.201534 \n", | |
| "403000 123 0.042063 0.044118 \n", | |
| "403100 679 0.285367 0.303396 \n", | |
| "403300 455 0.089610 0.112235 \n", | |
| "403400 816 0.305112 0.196816 \n", | |
| "403600 1699 0.460909 0.379072 \n", | |
| "403800 334 0.175210 0.096504 \n", | |
| "403900 573 0.263310 0.159877 \n", | |
| "404000 401 0.200000 0.142249 \n", | |
| "404200 171 0.041877 0.049096 \n", | |
| "404300 141 0.067659 0.043816 \n", | |
| "404400 253 0.049798 0.047610 \n", | |
| "404501 72 0.052698 0.042934 \n", | |
| "404502 363 0.072092 0.062759 \n", | |
| "404600 261 0.061453 0.059959 \n", | |
| "404700 156 0.114686 0.079836 \n", | |
| "404800 530 0.252329 0.197466 \n", | |
| "404900 462 0.125344 0.111891 \n", | |
| "405000 302 0.142946 0.096301 \n", | |
| "405100 497 0.180245 0.118418 \n", | |
| "405200 699 0.217992 0.152056 \n", | |
| "405500 737 0.252231 0.202306 \n", | |
| "405600 710 0.293251 0.226331 \n", | |
| "405700 1047 0.401384 0.322849 \n", | |
| "405800 768 0.302700 0.193695 \n", | |
| "406000 419 0.123393 0.121449 \n", | |
| "406100 460 0.126715 0.104999 \n", | |
| "406201 720 0.160979 0.154872 \n", | |
| "406202 561 0.138670 0.118906 \n", | |
| "406300 749 0.311565 0.182106 \n", | |
| "406400 589 0.389279 0.274592 \n", | |
| "406500 1167 0.267072 0.196796 \n", | |
| "406700 685 0.151034 0.135697 \n", | |
| "406800 519 0.184713 0.151400 \n", | |
| "406900 810 0.278755 0.217800 \n", | |
| "407000 1488 0.274654 0.252846 \n", | |
| " ... ... ... \n", | |
| "\n", | |
| " percent change in AfAm \n", | |
| "tract \n", | |
| "400100 -0.002372 \n", | |
| "400200 -0.021469 \n", | |
| "400300 -0.052200 \n", | |
| "400400 -0.062400 \n", | |
| "400500 -0.177532 \n", | |
| "400600 -0.216028 \n", | |
| "400700 -0.205693 \n", | |
| "400800 -0.183788 \n", | |
| "400900 -0.202674 \n", | |
| "401000 -0.229892 \n", | |
| "401100 -0.113540 \n", | |
| "401200 -0.067933 \n", | |
| "401300 -0.166694 \n", | |
| "401400 -0.180169 \n", | |
| "401500 -0.182285 \n", | |
| "401600 -0.140644 \n", | |
| "401700 -0.189841 \n", | |
| "401800 -0.189235 \n", | |
| "402200 -0.253195 \n", | |
| "402400 -0.186670 \n", | |
| "402500 -0.101933 \n", | |
| "402600 -0.153939 \n", | |
| "402700 -0.055145 \n", | |
| "402800 -0.175476 \n", | |
| "402900 -0.123020 \n", | |
| "403000 0.002055 \n", | |
| "403100 0.018029 \n", | |
| "403300 0.022624 \n", | |
| "403400 -0.108296 \n", | |
| "403600 -0.081837 \n", | |
| "403800 -0.078706 \n", | |
| "403900 -0.103433 \n", | |
| "404000 -0.057751 \n", | |
| "404200 0.007219 \n", | |
| "404300 -0.023843 \n", | |
| "404400 -0.002188 \n", | |
| "404501 -0.009765 \n", | |
| "404502 -0.009332 \n", | |
| "404600 -0.001494 \n", | |
| "404700 -0.034850 \n", | |
| "404800 -0.054863 \n", | |
| "404900 -0.013453 \n", | |
| "405000 -0.046645 \n", | |
| "405100 -0.061827 \n", | |
| "405200 -0.065937 \n", | |
| "405500 -0.049925 \n", | |
| "405600 -0.066920 \n", | |
| "405700 -0.078535 \n", | |
| "405800 -0.109006 \n", | |
| "406000 -0.001943 \n", | |
| "406100 -0.021716 \n", | |
| "406201 -0.006107 \n", | |
| "406202 -0.019764 \n", | |
| "406300 -0.129459 \n", | |
| "406400 -0.114687 \n", | |
| "406500 -0.070276 \n", | |
| "406700 -0.015336 \n", | |
| "406800 -0.033313 \n", | |
| "406900 -0.060955 \n", | |
| "407000 -0.021808 \n", | |
| " ... \n", | |
| "\n", | |
| "[279 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 122 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#now merge 2000 and 2010 tract dataframes\n", | |
| "#add column that gives percent of African-Americans in each tract, and change over the \n", | |
| "# time period. \n", | |
| "#Maybe add in something about density. \n", | |
| "#Then think about same questions for income. " | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#sort by African-American population\n", | |
| "tracts_2000_df.sort('P010004', ascending=False)[['NAME','tract','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']].head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>88</th>\n", | |
| " <td> Census Tract 4087</td>\n", | |
| " <td> 408700</td>\n", | |
| " <td> 7504</td>\n", | |
| " <td> 4270</td>\n", | |
| " <td> 294</td>\n", | |
| " <td> 2541</td>\n", | |
| " <td> 402</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9 </th>\n", | |
| " <td> Census Tract 4010</td>\n", | |
| " <td> 401000</td>\n", | |
| " <td> 5709</td>\n", | |
| " <td> 4176</td>\n", | |
| " <td> 404</td>\n", | |
| " <td> 547</td>\n", | |
| " <td> 649</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>98</th>\n", | |
| " <td> Census Tract 4097</td>\n", | |
| " <td> 409700</td>\n", | |
| " <td> 5208</td>\n", | |
| " <td> 3281</td>\n", | |
| " <td> 180</td>\n", | |
| " <td> 1471</td>\n", | |
| " <td> 222</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>87</th>\n", | |
| " <td> Census Tract 4086</td>\n", | |
| " <td> 408600</td>\n", | |
| " <td> 5232</td>\n", | |
| " <td> 3218</td>\n", | |
| " <td> 147</td>\n", | |
| " <td> 1623</td>\n", | |
| " <td> 188</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>13</th>\n", | |
| " <td> Census Tract 4014</td>\n", | |
| " <td> 401400</td>\n", | |
| " <td> 4765</td>\n", | |
| " <td> 3167</td>\n", | |
| " <td> 558</td>\n", | |
| " <td> 706</td>\n", | |
| " <td> 342</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 31, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic \\\n", | |
| "88 Census Tract 4087 408700 7504 4270 \n", | |
| "9 Census Tract 4010 401000 5709 4176 \n", | |
| "98 Census Tract 4097 409700 5208 3281 \n", | |
| "87 Census Tract 4086 408600 5232 3218 \n", | |
| "13 Census Tract 4014 401400 4765 3167 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "88 294 2541 402 \n", | |
| "9 404 547 649 \n", | |
| "98 180 1471 222 \n", | |
| "87 147 1623 188 \n", | |
| "13 558 706 342 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 31 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#sort by Hispanic population\n", | |
| "tracts_2000_df.sort('P011001', ascending=False)[['NAME','tract','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']].head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>236</th>\n", | |
| " <td> Census Tract 4402</td>\n", | |
| " <td> 440200</td>\n", | |
| " <td> 6346</td>\n", | |
| " <td> 162</td>\n", | |
| " <td> 504</td>\n", | |
| " <td> 5165</td>\n", | |
| " <td> 546</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>73 </th>\n", | |
| " <td> Census Tract 4072</td>\n", | |
| " <td> 407200</td>\n", | |
| " <td> 7039</td>\n", | |
| " <td> 603</td>\n", | |
| " <td> 792</td>\n", | |
| " <td> 5060</td>\n", | |
| " <td> 513</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>226</th>\n", | |
| " <td> Census Tract 4377</td>\n", | |
| " <td> 437700</td>\n", | |
| " <td> 8827</td>\n", | |
| " <td> 951</td>\n", | |
| " <td> 1366</td>\n", | |
| " <td> 4838</td>\n", | |
| " <td> 1342</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>203</th>\n", | |
| " <td> Census Tract 4356</td>\n", | |
| " <td> 435600</td>\n", | |
| " <td> 9524</td>\n", | |
| " <td> 1027</td>\n", | |
| " <td> 721</td>\n", | |
| " <td> 4071</td>\n", | |
| " <td> 3659</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>72 </th>\n", | |
| " <td> Census Tract 4071</td>\n", | |
| " <td> 407100</td>\n", | |
| " <td> 8376</td>\n", | |
| " <td> 2086</td>\n", | |
| " <td> 1559</td>\n", | |
| " <td> 3896</td>\n", | |
| " <td> 826</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 32, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic \\\n", | |
| "236 Census Tract 4402 440200 6346 162 \n", | |
| "73 Census Tract 4072 407200 7039 603 \n", | |
| "226 Census Tract 4377 437700 8827 951 \n", | |
| "203 Census Tract 4356 435600 9524 1027 \n", | |
| "72 Census Tract 4071 407100 8376 2086 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "236 504 5165 546 \n", | |
| "73 792 5060 513 \n", | |
| "226 1366 4838 1342 \n", | |
| "203 721 4071 3659 \n", | |
| "72 1559 3896 826 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 32 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#sort by White population\n", | |
| "tracts_2000_df.sort('P010003', ascending=False)[['NAME','tract','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']].head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>320</th>\n", | |
| " <td> Census Tract 4517.02</td>\n", | |
| " <td> 451702</td>\n", | |
| " <td> 7828</td>\n", | |
| " <td> 107</td>\n", | |
| " <td> 471</td>\n", | |
| " <td> 712</td>\n", | |
| " <td> 6563</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>304</th>\n", | |
| " <td> Census Tract 4507.22</td>\n", | |
| " <td> 450722</td>\n", | |
| " <td> 9326</td>\n", | |
| " <td> 238</td>\n", | |
| " <td> 2010</td>\n", | |
| " <td> 813</td>\n", | |
| " <td> 6361</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>315</th>\n", | |
| " <td> Census Tract 4515.02</td>\n", | |
| " <td> 451502</td>\n", | |
| " <td> 8009</td>\n", | |
| " <td> 231</td>\n", | |
| " <td> 499</td>\n", | |
| " <td> 996</td>\n", | |
| " <td> 6353</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>295</th>\n", | |
| " <td> Census Tract 4506.02</td>\n", | |
| " <td> 450602</td>\n", | |
| " <td> 7890</td>\n", | |
| " <td> 131</td>\n", | |
| " <td> 942</td>\n", | |
| " <td> 538</td>\n", | |
| " <td> 6341</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>302</th>\n", | |
| " <td> Census Tract 4507.03</td>\n", | |
| " <td> 450703</td>\n", | |
| " <td> 7656</td>\n", | |
| " <td> 115</td>\n", | |
| " <td> 1383</td>\n", | |
| " <td> 616</td>\n", | |
| " <td> 5615</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 33, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic \\\n", | |
| "320 Census Tract 4517.02 451702 7828 107 \n", | |
| "304 Census Tract 4507.22 450722 9326 238 \n", | |
| "315 Census Tract 4515.02 451502 8009 231 \n", | |
| "295 Census Tract 4506.02 450602 7890 131 \n", | |
| "302 Census Tract 4507.03 450703 7656 115 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "320 471 712 6563 \n", | |
| "304 2010 813 6361 \n", | |
| "315 499 996 6353 \n", | |
| "295 942 538 6341 \n", | |
| "302 1383 616 5615 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 33 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#sort by Asian population\n", | |
| "tracts_2000_df.sort('P010006', ascending=False)[['NAME','tract','Total Pop','African-American, not Hispanic', \\\n", | |
| " 'Asian, not Hispanic', 'Hispanic', 'White, not Hispanic']].head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>NAME</th>\n", | |
| " <th>tract</th>\n", | |
| " <th>Total Pop</th>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <th>Hispanic</th>\n", | |
| " <th>White, not Hispanic</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>254</th>\n", | |
| " <td> Census Tract 4415.03</td>\n", | |
| " <td> 441503</td>\n", | |
| " <td> 10783</td>\n", | |
| " <td> 323</td>\n", | |
| " <td> 7677</td>\n", | |
| " <td> 544</td>\n", | |
| " <td> 2406</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>261</th>\n", | |
| " <td> Census Tract 4419.01</td>\n", | |
| " <td> 441901</td>\n", | |
| " <td> 11485</td>\n", | |
| " <td> 490</td>\n", | |
| " <td> 4923</td>\n", | |
| " <td> 1437</td>\n", | |
| " <td> 4835</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>277</th>\n", | |
| " <td> Census Tract 4431.01</td>\n", | |
| " <td> 443101</td>\n", | |
| " <td> 9329</td>\n", | |
| " <td> 198</td>\n", | |
| " <td> 4875</td>\n", | |
| " <td> 512</td>\n", | |
| " <td> 3885</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>238</th>\n", | |
| " <td> Census Tract 4403.02</td>\n", | |
| " <td> 440302</td>\n", | |
| " <td> 7432</td>\n", | |
| " <td> 645</td>\n", | |
| " <td> 4377</td>\n", | |
| " <td> 922</td>\n", | |
| " <td> 1546</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>255</th>\n", | |
| " <td> Census Tract 4415.21</td>\n", | |
| " <td> 441521</td>\n", | |
| " <td> 6100</td>\n", | |
| " <td> 244</td>\n", | |
| " <td> 3740</td>\n", | |
| " <td> 373</td>\n", | |
| " <td> 1941</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 7 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 34, | |
| "text": [ | |
| " NAME tract Total Pop African-American, not Hispanic \\\n", | |
| "254 Census Tract 4415.03 441503 10783 323 \n", | |
| "261 Census Tract 4419.01 441901 11485 490 \n", | |
| "277 Census Tract 4431.01 443101 9329 198 \n", | |
| "238 Census Tract 4403.02 440302 7432 645 \n", | |
| "255 Census Tract 4415.21 441521 6100 244 \n", | |
| "\n", | |
| " Asian, not Hispanic Hispanic White, not Hispanic \n", | |
| "254 7677 544 2406 \n", | |
| "261 4923 1437 4835 \n", | |
| "277 4875 512 3885 \n", | |
| "238 4377 922 1546 \n", | |
| "255 3740 373 1941 \n", | |
| "\n", | |
| "[5 rows x 7 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 34 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#transpose so tracts are columns \n", | |
| "alameda_tracts_2000_df.transpose().head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th>tract</th>\n", | |
| " <th>400100</th>\n", | |
| " <th>400200</th>\n", | |
| " <th>400300</th>\n", | |
| " <th>400400</th>\n", | |
| " <th>400500</th>\n", | |
| " <th>400600</th>\n", | |
| " <th>400700</th>\n", | |
| " <th>400800</th>\n", | |
| " <th>400900</th>\n", | |
| " <th>401000</th>\n", | |
| " <th>401100</th>\n", | |
| " <th>401200</th>\n", | |
| " <th>401300</th>\n", | |
| " <th>401400</th>\n", | |
| " <th>401500</th>\n", | |
| " <th>401600</th>\n", | |
| " <th>401700</th>\n", | |
| " <th>401800</th>\n", | |
| " <th>401900</th>\n", | |
| " <th>402000</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>NAME</th>\n", | |
| " <td> Census Tract 4001</td>\n", | |
| " <td> Census Tract 4002</td>\n", | |
| " <td> Census Tract 4003</td>\n", | |
| " <td> Census Tract 4004</td>\n", | |
| " <td> Census Tract 4005</td>\n", | |
| " <td> Census Tract 4006</td>\n", | |
| " <td> Census Tract 4007</td>\n", | |
| " <td> Census Tract 4008</td>\n", | |
| " <td> Census Tract 4009</td>\n", | |
| " <td> Census Tract 4010</td>\n", | |
| " <td> Census Tract 4011</td>\n", | |
| " <td> Census Tract 4012</td>\n", | |
| " <td> Census Tract 4013</td>\n", | |
| " <td> Census Tract 4014</td>\n", | |
| " <td> Census Tract 4015</td>\n", | |
| " <td> Census Tract 4016</td>\n", | |
| " <td> Census Tract 4017</td>\n", | |
| " <td> Census Tract 4018</td>\n", | |
| " <td> Census Tract 4019</td>\n", | |
| " <td> Census Tract 4020</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Total Pop</th>\n", | |
| " <td> 2498</td>\n", | |
| " <td> 1910</td>\n", | |
| " <td> 4878</td>\n", | |
| " <td> 3659</td>\n", | |
| " <td> 3410</td>\n", | |
| " <td> 1707</td>\n", | |
| " <td> 4451</td>\n", | |
| " <td> 3368</td>\n", | |
| " <td> 2456</td>\n", | |
| " <td> 5709</td>\n", | |
| " <td> 4007</td>\n", | |
| " <td> 2432</td>\n", | |
| " <td> 2810</td>\n", | |
| " <td> 4765</td>\n", | |
| " <td> 2413</td>\n", | |
| " <td> 1933</td>\n", | |
| " <td> 1878</td>\n", | |
| " <td> 1953</td>\n", | |
| " <td> 759</td>\n", | |
| " <td> 28</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>African-American, not Hispanic</th>\n", | |
| " <td> 125</td>\n", | |
| " <td> 71</td>\n", | |
| " <td> 768</td>\n", | |
| " <td> 671</td>\n", | |
| " <td> 1510</td>\n", | |
| " <td> 1037</td>\n", | |
| " <td> 3104</td>\n", | |
| " <td> 1990</td>\n", | |
| " <td> 1570</td>\n", | |
| " <td> 4176</td>\n", | |
| " <td> 1395</td>\n", | |
| " <td> 589</td>\n", | |
| " <td> 1468</td>\n", | |
| " <td> 3167</td>\n", | |
| " <td> 1717</td>\n", | |
| " <td> 1170</td>\n", | |
| " <td> 979</td>\n", | |
| " <td> 1490</td>\n", | |
| " <td> 204</td>\n", | |
| " <td> 7</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Asian, not Hispanic</th>\n", | |
| " <td> 305</td>\n", | |
| " <td> 177</td>\n", | |
| " <td> 418</td>\n", | |
| " <td> 308</td>\n", | |
| " <td> 216</td>\n", | |
| " <td> 98</td>\n", | |
| " <td> 221</td>\n", | |
| " <td> 336</td>\n", | |
| " <td> 135</td>\n", | |
| " <td> 404</td>\n", | |
| " <td> 568</td>\n", | |
| " <td> 326</td>\n", | |
| " <td> 349</td>\n", | |
| " <td> 558</td>\n", | |
| " <td> 142</td>\n", | |
| " <td> 164</td>\n", | |
| " <td> 103</td>\n", | |
| " <td> 39</td>\n", | |
| " <td> 69</td>\n", | |
| " <td> 1</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Hispanic</th>\n", | |
| " <td> 97</td>\n", | |
| " <td> 117</td>\n", | |
| " <td> 314</td>\n", | |
| " <td> 241</td>\n", | |
| " <td> 363</td>\n", | |
| " <td> 148</td>\n", | |
| " <td> 299</td>\n", | |
| " <td> 301</td>\n", | |
| " <td> 202</td>\n", | |
| " <td> 547</td>\n", | |
| " <td> 472</td>\n", | |
| " <td> 185</td>\n", | |
| " <td> 249</td>\n", | |
| " <td> 706</td>\n", | |
| " <td> 255</td>\n", | |
| " <td> 322</td>\n", | |
| " <td> 568</td>\n", | |
| " <td> 308</td>\n", | |
| " <td> 386</td>\n", | |
| " <td> 10</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 321 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 35, | |
| "text": [ | |
| "tract 400100 400200 \\\n", | |
| "NAME Census Tract 4001 Census Tract 4002 \n", | |
| "Total Pop 2498 1910 \n", | |
| "African-American, not Hispanic 125 71 \n", | |
| "Asian, not Hispanic 305 177 \n", | |
| "Hispanic 97 117 \n", | |
| "\n", | |
| "tract 400300 400400 \\\n", | |
| "NAME Census Tract 4003 Census Tract 4004 \n", | |
| "Total Pop 4878 3659 \n", | |
| "African-American, not Hispanic 768 671 \n", | |
| "Asian, not Hispanic 418 308 \n", | |
| "Hispanic 314 241 \n", | |
| "\n", | |
| "tract 400500 400600 \\\n", | |
| "NAME Census Tract 4005 Census Tract 4006 \n", | |
| "Total Pop 3410 1707 \n", | |
| "African-American, not Hispanic 1510 1037 \n", | |
| "Asian, not Hispanic 216 98 \n", | |
| "Hispanic 363 148 \n", | |
| "\n", | |
| "tract 400700 400800 \\\n", | |
| "NAME Census Tract 4007 Census Tract 4008 \n", | |
| "Total Pop 4451 3368 \n", | |
| "African-American, not Hispanic 3104 1990 \n", | |
| "Asian, not Hispanic 221 336 \n", | |
| "Hispanic 299 301 \n", | |
| "\n", | |
| "tract 400900 401000 \\\n", | |
| "NAME Census Tract 4009 Census Tract 4010 \n", | |
| "Total Pop 2456 5709 \n", | |
| "African-American, not Hispanic 1570 4176 \n", | |
| "Asian, not Hispanic 135 404 \n", | |
| "Hispanic 202 547 \n", | |
| "\n", | |
| "tract 401100 401200 \\\n", | |
| "NAME Census Tract 4011 Census Tract 4012 \n", | |
| "Total Pop 4007 2432 \n", | |
| "African-American, not Hispanic 1395 589 \n", | |
| "Asian, not Hispanic 568 326 \n", | |
| "Hispanic 472 185 \n", | |
| "\n", | |
| "tract 401300 401400 \\\n", | |
| "NAME Census Tract 4013 Census Tract 4014 \n", | |
| "Total Pop 2810 4765 \n", | |
| "African-American, not Hispanic 1468 3167 \n", | |
| "Asian, not Hispanic 349 558 \n", | |
| "Hispanic 249 706 \n", | |
| "\n", | |
| "tract 401500 401600 \\\n", | |
| "NAME Census Tract 4015 Census Tract 4016 \n", | |
| "Total Pop 2413 1933 \n", | |
| "African-American, not Hispanic 1717 1170 \n", | |
| "Asian, not Hispanic 142 164 \n", | |
| "Hispanic 255 322 \n", | |
| "\n", | |
| "tract 401700 401800 \\\n", | |
| "NAME Census Tract 4017 Census Tract 4018 \n", | |
| "Total Pop 1878 1953 \n", | |
| "African-American, not Hispanic 979 1490 \n", | |
| "Asian, not Hispanic 103 39 \n", | |
| "Hispanic 568 308 \n", | |
| "\n", | |
| "tract 401900 402000 \n", | |
| "NAME Census Tract 4019 Census Tract 4020 ... \n", | |
| "Total Pop 759 28 ... \n", | |
| "African-American, not Hispanic 204 7 ... \n", | |
| "Asian, not Hispanic 69 1 ... \n", | |
| "Hispanic 386 10 ... \n", | |
| "\n", | |
| "[5 rows x 321 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 35 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#http://api.census.gov/data/2000/sf1?get=P001001&for=block+group:1&in=state:06+county:001+tract:400100\n", | |
| "#http://api.census.gov/data/2000/sf1?get=P001001&for=block+group:*&in=state:06+county:001+tract:400100\n", | |
| "#http://api.census.gov/data/2000/sf1?get=P001001&for=block+group:*&in=state:06+county:001\n", | |
| "\n", | |
| "def block_groups(variables='NAME'):\n", | |
| " for state in us.states.STATES:\n", | |
| " \n", | |
| " # handy to print out state to monitor progress\n", | |
| " # print state.fips, state\n", | |
| " counties_in_state={'for':'county:*',\n", | |
| " 'in':'state:{fips}'.format(fips=state.fips)}\n", | |
| " \n", | |
| " for county in c.sf1.get('NAME', geo=counties_in_state, year=2000):\n", | |
| " \n", | |
| " # print county['state'], county['NAME']\n", | |
| " tracts_in_county = {'for':'tract:*',\n", | |
| " 'in': 'state:{s_fips} county:{c_fips}'.format(s_fips=state.fips, \n", | |
| " c_fips=county['county'])}\n", | |
| " \n", | |
| " for tract in c.sf1.get(variables,geo=tracts_in_county, year=2000):\n", | |
| " \n", | |
| " block_group_in_tract = {'for': 'block+group:*', 'in': 'state:{s_fips} county:{c_fips} tract:{t_fips}'.format(s_fips=state.fips, \n", | |
| " c_fips=county['county'], t_fips=400100)}\n", | |
| " \n", | |
| " for block_group in c.sf1.get(variables,geo=block_group_in_tract, year=2000):\n", | |
| " \n", | |
| " yield block_group" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 24 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#example of list comprehension that worked before: \n", | |
| "#show_me_counties = [county for county in counties2(variables='NAME') if county['state'] == '06']\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 25 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#list comprehension for grabbing total & African-American pop from above function by block group\n", | |
| "#bgs = [bg for bg in block_groups(variables=\"NAME,P001001,P010004\")]\n", | |
| "\n", | |
| "bgs = []\n", | |
| "for group in block_groups(variables=\"NAME,P001001,P010004\"):\n", | |
| " bgs.append(group)\n", | |
| "\n", | |
| "#put list into dataframe\n", | |
| "bg_df = pd.DataFrame(bgs)\n", | |
| "bg_df.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "ename": "CensusException", | |
| "evalue": "error: invalid 'for' argument", | |
| "output_type": "pyerr", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mCensusException\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-26-281141b2d33c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mbgs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mgroup\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mblock_groups\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"NAME,P001001,P010004\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mbgs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgroup\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m<ipython-input-24-dc581758eb6c>\u001b[0m in \u001b[0;36mblock_groups\u001b[0;34m(variables)\u001b[0m\n\u001b[1;32m 25\u001b[0m c_fips=county['county'], t_fips=400100)}\n\u001b[1;32m 26\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mblock_group\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msf1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mgeo\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mblock_group_in_tract\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 28\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mblock_group\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m//anaconda/lib/python2.7/site-packages/census/core.pyc\u001b[0m in \u001b[0;36mget\u001b[0;34m(self, fields, geo, year)\u001b[0m\n\u001b[1;32m 133\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 135\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mCensusException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 136\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mCensusException\u001b[0m: error: invalid 'for' argument" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 26 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# oaktown_zips = ['94607','94612','94610','94607','94618','94611','94606','94602','94601','94605','94619','94621']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 70 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<pre>\n", | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Index: 1769 entries, 93637 to 96061\n", | |
| "Data columns (total 4 columns):\n", | |
| "NAME 1769 non-null values\n", | |
| "Total/P0010001 1769 non-null values\n", | |
| "African-American/P0050004 1769 non-null values\n", | |
| "state 1769 non-null values\n", | |
| "dtypes: object(4)\n", | |
| "</pre>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 73, | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "Index: 1769 entries, 93637 to 96061\n", | |
| "Data columns (total 4 columns):\n", | |
| "NAME 1769 non-null values\n", | |
| "Total/P0010001 1769 non-null values\n", | |
| "African-American/P0050004 1769 non-null values\n", | |
| "state 1769 non-null values\n", | |
| "dtypes: object(4)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 73 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#zip_df.xs(key='94607', axis=0) \n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 74, | |
| "text": [ | |
| "NAME ZCTA5 94607\n", | |
| "P0010001 24978\n", | |
| "P0050004 9445\n", | |
| "state 06\n", | |
| "Name: 94607, dtype: object" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 74 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "oaktown_zip_list = {}\n", | |
| "for code in oaktown_zips:\n", | |
| " oaktown_zip_list[code] = zip_df.ix[code]\n", | |
| " \n", | |
| "oaktown_zip_df_2010 = pd.DataFrame(oaktown_zip_list)\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 79 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "import pandas as pd\n", | |
| "from pandas import Series, DataFrame\n", | |
| "from itertools import islice\n", | |
| "\n", | |
| "%pylab --no-import-all inline\n", | |
| "%matplotlib inline\n", | |
| "\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "from pylab import figure, show" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "Populating the interactive namespace from numpy and matplotlib\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 2 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "import os\n", | |
| "import glob\n", | |
| "'''Set the files in the directory which shares parent with current directory.'''\n", | |
| "Zillow_DIR = os.path.join(os.pardir, \"OpenData\", \"Neighborhood\")\n", | |
| "\n", | |
| "assert os.path.exists(Zillow_DIR)\n", | |
| "# glob.glob(Zillow_DIR + \"/*\")[:5]" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 3 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "def generateDFfromFilename(name):\n", | |
| " '''Pass unique name string as parameters, generate dataframe from the file'''\n", | |
| " Zillow_file = os.path.join(Zillow_DIR, '%s.csv' % name)\n", | |
| " df = pd.read_csv(Zillow_file)\n", | |
| " return df.fillna(0)\n", | |
| "def cleanedOakland(df, drop=[]):\n", | |
| " oakland_df = df[(df.State=='CA') & (df.City=='Oakland')]\n", | |
| "# oakland_df.dropna(how='all') vs. df.dropna() for any row w/ NaN\n", | |
| " cleaned_oakland_df = oakland_df.drop(drop,axis=1) \n", | |
| " return cleaned_oakland_df#.set_index(\"RegionName\", inplace=True)\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 15 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "city_homevalue = generateDFfromFilename(\"City_Zhvi_AllHomes\")\n", | |
| "# oak_homevalue = cleanedOakland(city_homevalue)\n", | |
| "oak_history = city_homevalue[(city_homevalue.State=='CA')& (city_homevalue.RegionName==\"Oakland\")].set_index(\"RegionName\").drop([\"State\", \"Metro\", \"CountyName\"], axis=1).transpose()\n", | |
| "oak_history.index = pd.to_datetime(oak_history.index)\n", | |
| "oak_history" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th>RegionName</th>\n", | |
| " <th>Oakland</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>1996-04-01</th>\n", | |
| " <td> 143700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-05-01</th>\n", | |
| " <td> 144300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-06-01</th>\n", | |
| " <td> 144700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-07-01</th>\n", | |
| " <td> 144400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-08-01</th>\n", | |
| " <td> 144300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-09-01</th>\n", | |
| " <td> 144400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-10-01</th>\n", | |
| " <td> 144700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-11-01</th>\n", | |
| " <td> 145100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1996-12-01</th>\n", | |
| " <td> 145600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-01-01</th>\n", | |
| " <td> 146200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-02-01</th>\n", | |
| " <td> 147200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-03-01</th>\n", | |
| " <td> 148000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-04-01</th>\n", | |
| " <td> 148700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-05-01</th>\n", | |
| " <td> 149200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-06-01</th>\n", | |
| " <td> 149900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-07-01</th>\n", | |
| " <td> 150700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-08-01</th>\n", | |
| " <td> 151400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-09-01</th>\n", | |
| " <td> 152200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-10-01</th>\n", | |
| " <td> 153400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-11-01</th>\n", | |
| " <td> 154700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1997-12-01</th>\n", | |
| " <td> 156100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-01-01</th>\n", | |
| " <td> 157800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-02-01</th>\n", | |
| " <td> 159800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-03-01</th>\n", | |
| " <td> 161100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-04-01</th>\n", | |
| " <td> 161800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-05-01</th>\n", | |
| " <td> 162100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-06-01</th>\n", | |
| " <td> 162000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-07-01</th>\n", | |
| " <td> 162200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-08-01</th>\n", | |
| " <td> 163200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-09-01</th>\n", | |
| " <td> 164400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-10-01</th>\n", | |
| " <td> 164800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-11-01</th>\n", | |
| " <td> 164600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1998-12-01</th>\n", | |
| " <td> 164500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-01-01</th>\n", | |
| " <td> 165500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-02-01</th>\n", | |
| " <td> 166800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-03-01</th>\n", | |
| " <td> 168000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-04-01</th>\n", | |
| " <td> 169700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-05-01</th>\n", | |
| " <td> 172200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-06-01</th>\n", | |
| " <td> 175600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-07-01</th>\n", | |
| " <td> 180500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-08-01</th>\n", | |
| " <td> 185400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-09-01</th>\n", | |
| " <td> 189200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-10-01</th>\n", | |
| " <td> 192400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-11-01</th>\n", | |
| " <td> 195700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1999-12-01</th>\n", | |
| " <td> 199400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-01-01</th>\n", | |
| " <td> 204200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-02-01</th>\n", | |
| " <td> 209500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-03-01</th>\n", | |
| " <td> 215400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-04-01</th>\n", | |
| " <td> 221600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-05-01</th>\n", | |
| " <td> 228600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-06-01</th>\n", | |
| " <td> 235600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-07-01</th>\n", | |
| " <td> 241600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-08-01</th>\n", | |
| " <td> 246400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-09-01</th>\n", | |
| " <td> 250800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-10-01</th>\n", | |
| " <td> 255100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-11-01</th>\n", | |
| " <td> 259900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000-12-01</th>\n", | |
| " <td> 264900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2001-01-01</th>\n", | |
| " <td> 269300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2001-02-01</th>\n", | |
| " <td> 273200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2001-03-01</th>\n", | |
| " <td> 275800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>216 rows \u00d7 1 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 77, | |
| "text": [ | |
| "RegionName Oakland\n", | |
| "1996-04-01 143700\n", | |
| "1996-05-01 144300\n", | |
| "1996-06-01 144700\n", | |
| "1996-07-01 144400\n", | |
| "1996-08-01 144300\n", | |
| "1996-09-01 144400\n", | |
| "1996-10-01 144700\n", | |
| "1996-11-01 145100\n", | |
| "1996-12-01 145600\n", | |
| "1997-01-01 146200\n", | |
| "1997-02-01 147200\n", | |
| "1997-03-01 148000\n", | |
| "1997-04-01 148700\n", | |
| "1997-05-01 149200\n", | |
| "1997-06-01 149900\n", | |
| "1997-07-01 150700\n", | |
| "1997-08-01 151400\n", | |
| "1997-09-01 152200\n", | |
| "1997-10-01 153400\n", | |
| "1997-11-01 154700\n", | |
| "1997-12-01 156100\n", | |
| "1998-01-01 157800\n", | |
| "1998-02-01 159800\n", | |
| "1998-03-01 161100\n", | |
| "1998-04-01 161800\n", | |
| "1998-05-01 162100\n", | |
| "1998-06-01 162000\n", | |
| "1998-07-01 162200\n", | |
| "1998-08-01 163200\n", | |
| "1998-09-01 164400\n", | |
| "1998-10-01 164800\n", | |
| "1998-11-01 164600\n", | |
| "1998-12-01 164500\n", | |
| "1999-01-01 165500\n", | |
| "1999-02-01 166800\n", | |
| "1999-03-01 168000\n", | |
| "1999-04-01 169700\n", | |
| "1999-05-01 172200\n", | |
| "1999-06-01 175600\n", | |
| "1999-07-01 180500\n", | |
| "1999-08-01 185400\n", | |
| "1999-09-01 189200\n", | |
| "1999-10-01 192400\n", | |
| "1999-11-01 195700\n", | |
| "1999-12-01 199400\n", | |
| "2000-01-01 204200\n", | |
| "2000-02-01 209500\n", | |
| "2000-03-01 215400\n", | |
| "2000-04-01 221600\n", | |
| "2000-05-01 228600\n", | |
| "2000-06-01 235600\n", | |
| "2000-07-01 241600\n", | |
| "2000-08-01 246400\n", | |
| "2000-09-01 250800\n", | |
| "2000-10-01 255100\n", | |
| "2000-11-01 259900\n", | |
| "2000-12-01 264900\n", | |
| "2001-01-01 269300\n", | |
| "2001-02-01 273200\n", | |
| "2001-03-01 275800\n", | |
| " ...\n", | |
| "\n", | |
| "[216 rows x 1 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 77 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "plt.plot(list(oak_history.index),oak_history['Oakland'].tolist())\n", | |
| "\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 85, | |
| "text": [ | |
| "[<matplotlib.lines.Line2D at 0xbe7ce10>]" | |
| ] | |
| }, | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEACAYAAABLfPrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1clfX9+PEXBWtrpSQl6jk0BM5BEUSWIrW5oQRmTWwx\nI2pCpStpM3NWfuuXitsUrWwrp9VKE21F5UqtJWIuuveYd91oLTZPeDigMwTDOxB5//649ISiAnLg\nOsD7+XicR6frOtd13hddXe/zufcTEUEppZRqgfPMDkAppVTHo8lDKaVUi2nyUEop1WKaPJRSSrWY\nJg+llFItpslDKaVUizUreYSGhjJw4EDi4uKIj48HICcnB6vVSlxcHHFxcaxZs8bz+dzcXGw2G/36\n9aOwsNCzffPmzcTExGCz2Zg8ebJne01NDenp6dhsNhISEigpKfHsy8vLw263Y7fbWbZsWasvWCml\nlBdIM4SGhkpFRcVJ23JycmT+/PmNPrt9+3aJjY2V2tpacTqdEh4eLvX19SIiMmTIEHE4HCIiMmrU\nKFmzZo2IiCxcuFCys7NFRCQ/P1/S09NFRKSiokLCwsKksrJSKisrPe+VUkqZq9nVVnKasYSn27Zq\n1SoyMjIICAggNDSUiIgIHA4H5eXlVFdXe0oumZmZrFy5EoDVq1eTlZUFQFpaGuvXrwdg7dq1pKSk\nEBgYSGBgIMnJyRQUFLQ8QyqllPKqZiUPPz8/rr76agYPHswzzzzj2b5gwQJiY2MZP348VVVVAJSV\nlWG1Wj2fsVqtuN3uRtstFgtutxsAt9tNSEgIAP7+/nTv3p2KiooznksppZS5mpU8PvjgA7Zu3cqa\nNWtYuHAh7733HtnZ2TidTrZt20bv3r2ZOnVqW8eqlFLKR/g350O9e/cG4LLLLuOXv/wlGzduZNiw\nYZ79EyZMYPTo0YBRonC5XJ59paWlWK1WLBYLpaWljbafOGbXrl306dOHuro69u/fT1BQEBaLhaKi\nIs8xLpeLESNGnBTboEGD+OSTT1p42Uop1bXFxsaybdu2cz9BU40iBw8elG+//VZERA4cOCBXXXWV\nrF27VsrLyz2feeyxxyQjI0NEvmswr6mpkZ07d0pYWJinwTw+Pl42bNgg9fX1jRrMJ06cKCIiL774\n4kkN5n379pXKykrZt2+f531DzbiENjdz5kyzQ2jEF2MS8c24fDEmEd+MS2NqPl+Mq2FMrX12Nlny\n2LNnD7/85S8BqKur45ZbbiElJYXMzEy2bduGn58fffv25emnnwYgKiqKG2+8kaioKPz9/Vm0aBF+\nfn4ALFq0iFtvvZXDhw9z7bXXcs011wAwfvx4xo0bh81mIygoiPz8fAB69OjB9OnTGTJkCAAzZ84k\nMDDw3DOlUh3Q0aNw5AjU1UF9PQQGwvnnn/yZ+nrjn+fpyC3VTppMHn379j1t0eZsYy4efPBBHnzw\nwUbbr7jiCj777LNG2y+44AJefvnl057rtttu47bbbmsqTKU6lbo6+OwzSE6G9983koW/v5EcDh2C\nkBAIDYXDh6G0FMrLQcTYfsMNkJ0NYWFmX4XqzJrV5qHOLjEx0ewQGvHFmMA34/KlmETg5ZfhwQfh\noosSmTEDVq6EH/7wu88cPgwlJcbrwgvBaoU+fYx9X30Ff/87DB0KDz0Ed94J3/++9+Lzpb/VCb4Y\nE/hmXN6Mye943VeH5efnd9rxJkp1NC4X3Hor7NsHjz0Gw4ef+7mKi2HSJHA4ICYG3G649FIYNQqm\nT29c7aW6ntY+OzV5KOUD/vUvyMiAyZNh2jTvPdzLy2HHDqM6a+9emDkTLroIXnjBKLWorkuThyYP\n1cHl5xtJ46WXoK1rOmprITPTaGB/6SU43pdFdUGaPDR5qA7srbfglltg/XqIjm6f7zxyxEhSv/iF\n0S6iuqbWPju1wVwpk/z3v3DzzfDKK+2XOMBoQH/1VbjySqM66/i0ckq1iJY8lDKBiNF4PWIE3H+/\nOTF8+aVRAsnLg5EjzYlBmae1z04dUqSUCV57zehdNWWKeTH062e0t9x+O3zzjXlxqI5JSx5KtbOa\nGuPBvWRJ67rjesu99xpjRl55xexIVHvSkodSHczTT8OAAb6ROAD+9CfYtg3WrjU7EtWRaMlDqXZU\nXQ02GxQWwsCBZkfzndWr4f/+Dz791JgGRXV+WvJQqgP5y1/g6qt9K3EAjB5tTHFyfH5TpZqkJQ+l\n2sk33xhtHQ4HhIebHU1jn31mJLYvv4RLLjE7GtXWdJCgJg/VQUydagzQW7jQ7EjOLDsbLrjAKCGp\nzk2ThyYP1QG4XDBoEHz+ORxfmNMn7d0LUVHw3ntGKUl1Xpo8NHmoDmDCBAgOhtmzzY6kafPnw9tv\nwxtvmB2Jakvt0mAeGhrKwIEDiYuLIz4+HoB9+/aRnJyM3W4nJSWFqqoqz+dzc3Ox2Wz069ePwsJC\nz/bNmzcTExODzWZj8uTJnu01NTWkp6djs9lISEigpKTEsy8vLw+73Y7dbj/rAlRK+aovv4RVq+C+\n+8yOpHkmTYJ//1u77qomNGet2tDQUKmoqDhp23333Sfz5s0TEZG5c+fKtGnTROS7Ncxra2vF6XRK\neHi4Zw3zIUOGiMPhEBFptIZ5dna2iIjk5+eftIZ5WFiYVFZWSmVlped9Q828BKVMk5UlMnu22VG0\nzMqVIgMGiNTVmR2JaiutfXY2u6uunFK8Wb16NVnHZ1TLyspi5cqVAKxatYqMjAwCAgIIDQ0lIiIC\nh8NBeXk51dXVnpJLZmam55iG50pLS2P9+vUArF27lpSUFAIDAwkMDCQ5OZmCgoJWJUul2tM33xil\njjvvNDuSlklNNXpcaWFfnUmzkoefnx9XX301gwcP5plnngFgz549BAcHAxAcHMyePXsAKCsrw2q1\neo61Wq243e5G2y0WC263GwC3201ISAgA/v7+dO/enYqKijOeS6mOYvFiuP56CAoyO5KW8fODhx+G\nGTOMZW+VOlWzxpJ+8MEH9O7dm71795KcnEy/U7ph+Pn54WfiqjI5OTme94mJiT65drDqeo4dgyef\nhBUrzI7k3Fx5Jfz4x8YcXL/9rdnRqNYqKiqiqKjIa+drVvLofbxv4WWXXcYvf/lLNm7cSHBwMLt3\n76ZXr16Ul5fTs2dPwChRuFwuz7GlpaVYrVYsFgulpaWNtp84ZteuXfTp04e6ujr2799PUFAQFovl\npIt1uVyMGDGiUXwNk4dSvqKgAC67DAYPNjuSc/f738MddxjjP87T+Sg6tFN/WM+aNatV52vydjh0\n6BDV1dUAHDx4kMLCQmJiYkhNTSUvLw8wekRdf/31AKSmppKfn09tbS1Op5Pi4mLi4+Pp1asX3bp1\nw+FwICIsX76cMWPGeI45ca4VK1aQlJQEQEpKCoWFhVRVVVFZWcm6desYqQsPqA7iqaeMh25H9rOf\nGWuda88r1UhTLeo7d+6U2NhYiY2NlQEDBsicOXNExOgJlZSUJDabTZKTk0/qBTV79mwJDw+XyMhI\nKSgo8GzftGmTREdHS3h4uEyaNMmz/ciRIzJ27FiJiIiQoUOHitPp9OxbsmSJRERESEREhCxdurRR\nfM24BKXaXUmJSI8eIgcOmB1J6y1dKjJqlNlRKG9r7bNTBwkq1QZmzIDKSliwwOxIWu/gQWNUvMsF\n3bubHY3yFp1VVykfc/QoPPtsx+ueeyY//CEMG2a04Sh1giYPpbzs9deNWXOjo82OxHtSU401P5Q6\nQZOHUl721FMwcaLZUXjXL34Ba9YYpSqlQJOHUl61cyds3QppaWZH4l0Wi1Gaev99syNRvkKTh1Je\ntGQJ/PrX8P3vmx2J9113nVH6UAo0eSjlNXV18NxzMH682ZG0jZQUY+11pUCTh1JeU1AAl1/euRrK\nG4qPh6+/ht27zY5E+QJNHkp5ybPPGos+dVb+/jBiBLz1ltmRKF+gyUMpLygvh3fegfR0syNpW1p1\npU7Q5KGUF+Tlwa9+BRddZHYkbetE8qivNzsSZTZNHkq1koixbkdnrrI6ISzMmKJkyxazI1Fm0+Sh\nVCsVFcEFFxgNyl3B6NHwxhtmR6HMpslDqVZauBDuustYfa8rGD3amIJFdW06q65SrVBaCgMHQkkJ\nXHyx2dG0j6NHITgYPvvMGHmuOiadVVcpE/3tb3DzzV0ncQAEBMA112jpo6vT5KHUOTp4EJ5+umuu\n733LLcZoetV1NSt5HDt2jLi4OEaPHg0Ya4ZbrVbi4uKIi4tjTYMJb3Jzc7HZbPTr14/CBh3CN2/e\nTExMDDabjcmTJ3u219TUkJ6ejs1mIyEhgZKSEs++vLw87HY7drudZcuWtfpilfKmp54ylmnt39/s\nSNrfNddAWRl88onZkSjTNGe5wfnz58vNN98so0ePFhGRnJwcmT9/fqPPbd++XWJjY6W2tlacTqeE\nh4dLfX29iIgMGTJEHA6HiIiMGjVK1qxZIyIiCxculOzsbBERyc/Pl/T0dBExlrkNCwuTyspKqays\n9Lw/VTMvQSmvOnRIpHdvkW3bzI7EPDNnivz2t2ZHoc5Va5+dTZY8SktLefPNN5kwYYKncUVETtvQ\nsmrVKjIyMggICCA0NJSIiAgcDgfl5eVUV1cTf7wvY2ZmJitXrgRg9erVZGVlAZCWlsb69esBWLt2\nLSkpKQQGBhIYGEhycjIFupSZ8hHPPmt0zY2NNTsS89x+O7z4Ihw6ZHYkygxNJo8pU6bwyCOPcN55\n333Uz8+PBQsWEBsby/jx46mqqgKgrKwMq9Xq+ZzVasXtdjfabrFYcLvdALjdbkJCQgDw9/ene/fu\nVFRUnPFcSpmtpgbmzYPp082OxFyXXw4JCfDKK2ZHoszgf7adb7zxBj179iQuLo6ioiLP9uzsbGbM\nmAHA9OnTmTp1KosXL27TQM8mJyfH8z4xMZHExETTYlGd33PPGSWOK64wOxLz/eY38OijcLzyQPmw\noqKik57jrXXW5PHhhx+yevVq3nzzTY4cOcK3335LZmbmSY3XEyZM8DSkWywWXC6XZ19paSlWqxWL\nxUJpaWmj7SeO2bVrF3369KGuro79+/cTFBSExWI56UJdLhcjRow4bZwNk4dSbam2FnJz4aWXzI7E\nN1x3nTFAcscOiIoyOxp1Nqf+sJ41a1arznfWaqs5c+bgcrlwOp3k5+czYsQIli1bRnl5ueczr732\nGjExMQCkpqaSn59PbW0tTqeT4uJi4uPj6dWrF926dcPhcCAiLF++nDFjxniOycvLA2DFihUkJSUB\nkJKSQmFhIVVVVVRWVrJu3TpGjhzZqotVqrWWL4fISKO6RhljPm67zRjvorqWs5Y8GhIR/I7Pv3D/\n/ffzySef4OfnR9++fXn66acBiIqK4sYbbyQqKgp/f38WLVrkOWbRokXceuutHD58mGuvvZZrrrkG\ngPHjxzNu3DhsNhtBQUHk5+cD0KNHD6ZPn86QIUMAmDlzJoGBgd67cqVaqK4O5syBpUvNjsS33HEH\n/PjH8Kc/df5ZhTuDujqYOrX159HpSZRqpmXLjPaOt982OxLfc8MNcPXVRhWW8l0HDxpLBxw7BuvW\n6fQkSrW5Y8dg9mztYXUmd98Nf/2rMT298k1VVZCcDL17w5tvtv58mjyUaoaXX4ZLL4Xhw82OxDf9\n/Odw3nnG9PTK99TUQGoqDB5sjFHyb3aDxZlp8lCqCfX1Rn3+jBldZ9r1lvLzMxbDMrHHvjoDEZg4\n0fjx85e/GEneGzR5KNWEggJjsaeUFLMj8W2//rWxSNTxMcPKR7z8MmzcaPQU9FbiAE0eSjVpwQKj\nTl9LHWd36aVGgn3hBbMjUSdUVsKUKUaJ8Ic/9O65tbeVUmfx1Vfw058aiz394AdmR+P7Cgpg5kxw\nOMyORIFRlfiDHxg/gE7V2menJg+lzmLyZLjwQmNUuWra0aPG6oIOB/Tta3Y0XVtREWRmwuefQ7du\njffrSoJKtZHqaqOeODvb7Eg6joAAY8zHyy+bHUnXduSIMXjzr389feLwBk0eSp3BsmVG19zLLzc7\nko7lppvg+EQRyiR/+5sxjU5qatt9h1ZbKXUaIsZEf08+CTpJc8scOwYhIcZI/MhIs6Ppeg4dgogI\nYyDgoEFn/pxWWynVBt56yxhI9fOfmx1Jx3P++cYUGDrzsDmeegquvPLsicMbNHkodRoLFsCkSdo9\n91zddJMmDzMcOwaPPw7/7/+1/Xdp8lDqFDt3wocfwi23mB1Jx5WQYHQ4+PxzsyPpWtavh8suM2Y5\nbmuaPJQ6xZNPwq23en9QVVdy3nmQnq4N5+3t2Wdh/Pj2+S5tMFeqgUOHjN5VGzdCWJjZ0XRsmzZB\nRoYx0FKr/9re3r1gs8HXX0Nzlj7SBnOlvOjvf4errtLE4Q1XXGH0WtuyxexIuoZXXoFrr21e4vCG\nZiWPY8eOERcX51mrfN++fSQnJ2O320lJSaGqwUxoubm52Gw2+vXrR2FhoWf75s2biYmJwWazMXny\nZM/2mpoa0tPTsdlsJCQkUFJS4tmXl5eH3W7HbreftG66Um1B5LuGctV6fn5G1ZU2nLeP114zerm1\nl2Ylj8cff5yoqCjPkrJz584lOTmZr776iqSkJObOnQvAjh07eOmll9ixYwcFBQXcddddnmJRdnY2\nixcvpri4mOLiYgoKCgBYvHgxQUFBFBcXM2XKFKZNmwYYCeoPf/gDGzduZOPGjcyaNeukJKWUt737\nrjG9xtVXmx1J53EieWjNctvat8+oah05sv2+s8nkUVpayptvvsmECRM8iWD16tVkZWUBkJWVxcqV\nKwFYtWoVGRkZBAQEEBoaSkREBA6Hg/Lycqqrq4mPjwcgMzPTc0zDc6WlpbF+/XoA1q5dS0pKCoGB\ngQQGBpKcnOxJOEq1hQUL4He/0/p5b4qJMToebNhgdiSd2+uvQ1JS+3byaDJ5TJkyhUceeYTzGkwE\nv2fPHoKDgwEIDg5mz549AJSVlWG1Wj2fs1qtuN3uRtstFgtutxsAt9tNSEgIAP7+/nTv3p2Kiooz\nnkuptuByGSOiMzPNjqRz8fMzujwvXWp2JJ3bq68ac4q1p7MuRvjGG2/Qs2dP4uLiKDrD+pJ+fn6e\n6iyz5OTkeN4nJiaSqPNJqBZ68kljMaOLLzY7ks7ntttgwAB49FH9+7aFQ4eMHz5NJeiioqIzPsfP\nxVmTx4cffsjq1at58803OXLkCN9++y3jxo0jODiY3bt306tXL8rLy+nZsydglChcLpfn+NLSUqxW\nKxaLhdLS0kbbTxyza9cu+vTpQ11dHfv37ycoKAiLxXLShbpcLkaMGHHaOBsmD6VaqqICnnkGPvrI\n7Eg6pz59jPnB8vPhN78xO5rO5+23jUGBl1xy9s+d+sN61qxZrfres1ZbzZkzB5fLhdPpJD8/nxEj\nRrB8+XJSU1PJy8sDjB5R119/PQCpqank5+dTW1uL0+mkuLiY+Ph4evXqRbdu3XA4HIgIy5cvZ8yY\nMZ5jTpxrxYoVJCUlAZCSkkJhYSFVVVVUVlaybt06RrZna5DqMv70Jxg71phMTrWNO+4w5lzShnPv\ne+MNuO46E75YmqmoqEhGjx4tIiIVFRWSlJQkNptNkpOTpbKy0vO52bNnS3h4uERGRkpBQYFn+6ZN\nmyQ6OlrCw8Nl0qRJnu1HjhyRsWPHSkREhAwdOlScTqdn35IlSyQiIkIiIiJk6dKlp42rBZegVCP/\n/a9IUJDInj1mR9K51dWJxMaK5OWZHUnnUl8vEhIisn17y49t7bNTR5irLm3sWGP20faYSK6r27IF\nrrkGtm0zqrJU6336KVx/Pfz3vy3vJagjzJU6R++/byyX+vvfmx1J1/DjH8OUKRAeDgMHGkv77t1r\ndlQd2z//aVRZmdFnSZOH6pLq642kkZsLP/iB2dF0HQ88AFVVRvvHV1/BT38KNTVmR9Vxvf46HJ/4\no91ptZXqkv7+d2Pdgw0bjBlglTlGjzbmEnvgAbMj6Xj27jU6efzvf3DBBS0/vrXPTk0eqss5dAj6\n9YMXXjB++SrzOJ0wZAh8/DH07Wt2NB3LsmWwcqUxQPBcaJuHUi306KMQH6+Jwxf07Qv33w8TJhhV\niar5zKyyAi15qC7myy9h2DDYvNlYt0OZr64OfvITyMqCu+4yO5qOobYWevaEf/8bjs8U1WKtfXae\ndYS5Up1Jfb0xwnnGDE0cvsTfH/LyjKQ+eLBRKlRn9957RtXruSYOb9BqK9VlzJplNI7rr1vf06+f\nMUVMWho0mMlIncHrr8MvfmFuDFryUF3C6tWwZImxNOr555sdjTqdE4Pdhg835mtqMKm2akDESB7/\n+Ie5cWjyUJ3exx/D+PHGgCozi/mqaVOnwrFj8POfGw/IqCizI/I9//630eYRG2tuHJo8VKf23//C\nmDGweLHWpXcU999vJPnERGOa8WuvNTsi33KiysrsRcu0zUN1Wnv3GnMpzZwJqalmR6NaIivLGMMw\nYQLMm2eURpThlVfaf+Gn09HkoTqlvXth1ChjDe077zQ7GnUurrrKmAHgn/805sVaudJYY74r27kT\nvv7aaBcymyYP1amIGN0Yf/pTo9Txxz+aHZFqjcsvh3feMUqPjz4KISFw773wn/+YHZk5Xn7Z6JHm\n7wMNDpo8VKdQUWFMchgZaZQ0HnjAWOTJ7Hph1Xp+fkY1zfvvG4kkIACuvBIWLep6i0u99JJRmvYF\nZ00eR44cYejQoQwaNIioqCgeOD57WU5ODlarlbi4OOLi4lizZo3nmNzcXGw2G/369aOwsNCzffPm\nzcTExGCz2Zg8ebJne01NDenp6dhsNhISEigpKfHsy8vLw263Y7fbWbZsmdcuWnUuGzZAXBwUF8Py\n5bB9O9x6q9lRqbYQGWn8SPjgA6Pr9ZgxXWda96++gj17jMGUPqGp1aIOHjwoIiJHjx6VoUOHynvv\nvSc5OTkyf/78Rp/dvn27xMbGSm1trTidTgkPD5f6+noRERkyZIg4HA4RERk1apSsWbNGREQWLlwo\n2dnZIiKSn58v6enpImKsVhgWFiaVlZVSWVnpeX+qZlyC6sTeflvksstEVq0yOxLV3mpqRKZNE+nZ\nU+TRR0UOHTI7orb1hz+INFiEtdVa++xsstrqwgsvBKC2tpZjx45xyfFV1uU05cVVq1aRkZFBQEAA\noaGhRERE4HA4KC8vp7q6mvjjfSUzMzNZuXIlAKtXryYrKwuAtLQ01q9fD8DatWtJSUkhMDCQwMBA\nkpOTKSgoaHWyVJ3HZ58ZRfiXXtLeVF3R974Hc+fCv/5llERsNqM00lmrsnypygqa0eZRX1/PoEGD\nCA4OZvjw4QwYMACABQsWEBsby/jx46mqqgKgrKwMa4NhoVarFbfb3Wi7xWLB7XYD4Ha7CQkJAcDf\n35/u3btTUVFxxnMpBbBuHSQlwRNP+EbPE2WeAQOMaclffRUWLuycVVmffw779xttPb6iyeRx3nnn\nsW3bNkpLS3n33XcpKioiOzsbp9PJtm3b6N27N1OnTm2PWJUCjK6bv/41rFjhW7/ElLni4+Gjj6B/\nf2Nd+gZNrh3eCy/AjTf61sJlze7w1b17d6677jo2bdpEYmKiZ/uECRMYfXxSeYvFgsvl8uwrLS3F\narVisVgobTDb2YntJ47ZtWsXffr0oa6ujv379xMUFITFYqGoqMhzjMvlYsSIEaeNLScnx/M+MTHx\npPhU5/Lhh3DbbfDGGzpiXDX2ve8ZgwpHjoTbb4crroA5c4yG9o7q0CF49lmjC3prFBUVnfRMbbWz\nNYjs3bvX00h96NAhGTZsmLz11ltSXl7u+cxjjz0mGRkZIvJdg3lNTY3s3LlTwsLCPA3m8fHxsmHD\nBqmvr2/UYD5x4kQREXnxxRdPajDv27evVFZWyr59+zzvvd3oozqOgwdFfvQjkddfNzsS1REcOiQy\nZ47RoSI1VeSNN0SOHjU7qpZbtMiI39ta++w869GffvqpxMXFSWxsrMTExMjDDz8sIiLjxo2TmJgY\nGThwoIwZM0Z2797tOWb27NkSHh4ukZGRUlBQ4Nm+adMmiY6OlvDwcJnUoMvAkSNHZOzYsRIRESFD\nhw4Vp9Pp2bdkyRKJiIiQiIgIWbp06ekvQJNHlzFzpsjYsWZHoTqagwdF/vY3kYQE48fH0093nCRS\nVydis4m88473z93aZ6euJKg6hK+/NhYK2rJFF3JS5+7DD40BpH5+8OKL0Lu32RGd3cKFkJ8P777r\n/QGvuoa56hJ+/3u45x5NHKp1rrrK6No7fLjxY8SbTQDe5nQa07I884xvzpSgJQ/l89atg4kTjZHj\n3/++2dGozqKw0Ji99//+DxpMeuETRCA52XhNm9Y236ElD9Wp1dbC3XfDn/+siUN5V0qKMbXN008b\ni1DV15sd0XeeeQa+/daIy1dpyUP5tPnz4a234M03fbPorjq+ffuMJXD79IG8PLjgAnPjcbmMKejf\nfhuio9vue1r77NTkoXxWeTnExBiNnHa72dGozuzIERg3zhiZ/tprcHwWpnYnYqyc+JOfwEMPte13\nabWV6pREjHaOiRM1cai29/3vG3NHDRpkzFq7f785ceTlwe7dbdfO4U1a8lA+aelSo53j44+NUcNK\ntZc774SaGuMebE+VlcZI+LVrjSUG2ppWW2ny6HS++spYCXDdOoiNNTsa1dUcOGCUQB591GgLaS/3\n3WeUeP72t/b5Pk0emjw6lQMHICHB6Dr5m9+YHY3qqt55x5h8c8cOuPjitv++r7825uH6/PP2G7io\nyUOTR6dy++1Ge8eSJdq7SpkrMxOCg+GRR9r+u264waiqmj697b/rBE0emjw6jVWrjJHkn3wCF11k\ndjSqq9uzx+gq+69/Gb3+2sqaNTBpklHqaM+xTJo8NHl0Cvv2GYv6vPKK0d6hlC948kn4+9+NuaXa\nYi2NE+0rCxbAqFHeP//ZaPLQ5NEp/O53xgjfRYvMjkSp7xw7ZqzeN3GiUaXqbVlZRlJ67jnvn7sp\nrX12NnsxKKXayrZtRonjiy/MjkSpk51/vtH7KSXFeDVYGbvVnnkGNm2CjRu9d872pIMElalEjFLH\nH/8IPXqRlj/qAAAdaElEQVSYHY1SjQ0aZLRJjB9v3K/esHw55OQY667/8IfeOWd70+ShTPX888aA\nrPHjzY5EqTN74AGoqoKnnmrdeerrjWVxH3jAmLOtIy+Pe9bkceTIEYYOHcqgQYOIiorigQceAGDf\nvn0kJydjt9tJSUmhqqrKc0xubi42m41+/fpR2GAF+s2bNxMTE4PNZmNyg/mPa2pqSE9Px2azkZCQ\nQElJiWdfXl4edrsdu93OsmXLvHbRyjdUVhrTMPz1r0b1gFK+yt/fmDpkxgz4z3/O7RzFxca8Vf/8\nJzgc0L+/d2Nsd00tNXjw4EERETl69KgMHTpU3nvvPbnvvvtk3rx5IiIyd+5cmTZtmoh8t4Z5bW2t\nOJ1OCQ8P96xhPmTIEHE4HCIijdYwz87OFhGR/Pz8k9YwDwsLk8rKSqmsrPS8P1UzLkH5oLo6kZEj\nRaZMMTsSpZrv8cdFBg8WOXCg+cccOCDywAMiQUEi8+aJ1NS0XXwt0dpnZ5PVVhdeeCEAtbW1HDt2\njEsuuYTVq1eTlZUFQFZWFitXrgRg1apVZGRkEBAQQGhoKBERETgcDsrLy6muriY+Ph6AzMxMzzEN\nz5WWlsb69esBWLt2LSkpKQQGBhIYGEhycjIFBQVeTZzKPA89ZKzV8fDDZkeiVPNNmmSM/bjpJqir\nO/tn6+uNyRb794ddu+DTT+H++zvPXG1NJo/6+noGDRpEcHAww4cPZ8CAAezZs4fg4GAAgoOD2bNn\nDwBlZWVYG3RHsFqtuN3uRtstFgtutxsAt9tNSEgIAP7+/nTv3p2Kiooznkt1fK+8Yqwf/dJLRnWA\nUh2Fn5/R+0oERo40ZsBtaMsWo2orJcXoAPLII0a73vPPG+uFdCZN/q973nnnsW3bNvbv38/IkSN5\n++23T9rv5+eHn84joZrpgw/grruMmUMvu8zsaJRquYAAYzaEP/7RGHl+yy1Goli3DkpKjDmx7r4b\nhg7t3Pd4s3/3de/eneuuu47NmzcTHBzM7t276dWrF+Xl5fTs2RMwShQul8tzTGlpKVarFYvFQmlp\naaPtJ47ZtWsXffr0oa6ujv379xMUFITFYqGower0LpeLESNGnDa2nJwcz/vExEQSExObe1mqHb35\npjEo6vnnjZXSlOqozj/f6GqbmWlM3X7woFEldc01RnLxRUVFRSc9U1vtbA0ie/fu9TRSHzp0SIYN\nGyZvvfWW3HfffTJ37lwREcnNzW3UYF5TUyM7d+6UsLAwT4N5fHy8bNiwQerr6xs1mE+cOFFERF58\n8cWTGsz79u0rlZWVsm/fPs97bzf6qLZXXi7y61+LhISIfPCB2dEopURa/+w869GffvqpxMXFSWxs\nrMTExMjDDz8sIsaDPSkpSWw2myQnJ5/0UJ89e7aEh4dLZGSkFBQUeLZv2rRJoqOjJTw8XCZNmuTZ\nfuTIERk7dqxERETI0KFDxel0evYtWbJEIiIiJCIiQpYuXXr6C9Dk4dOeekrk0ktF7r9fpLra7GiU\nUie09tmpc1upNvPII7B4sTGKNirK7GiUUg3p3FbKJy1aZMxI+u673p0PSCnlGzR5KK9btgxyc43V\n2DRxKNU5afJQXiMCf/4zzJ8P69dDWJjZESml2oomD+UVDodR2nA64aOP4PLLzY5IKdWWdFZddc7q\n643BUsOGGdM1jBgBH36oiUOprkBLHqrFRIypRWbOhO7d4d574YYbdKoRpboS/d9dtcjHH8M998Dh\nw0ZvquHDjfl+lFJdi1ZbqWYRgf/3/2DMGGPhpo8/NqqpNHEo1TVpyUM1SQTuuMOYUvqTTzr3ZG9K\nqebR5KGaNG8ebNsGRUUdd71lpZR3afJQZ/Xmm8YysQ6HJg6l1Hd0bit1RmVlxtTpr7xidMdVSnUe\nrX12aoO5Oq36ehg3zli4SROHUupUmjzUaS1ZAgcOGD2slFLqVFptpRrZuxcGDIDCQhg0yOxolFJt\nobXPTk0eqpGbb4bevY0JDpVSnVObt3m4XC6GDx/OgAEDiI6O5oknngCMdcOtVitxcXHExcWxZs0a\nzzG5ubnYbDb69etHYWGhZ/vmzZuJiYnBZrMxefJkz/aamhrS09Ox2WwkJCRQUlLi2ZeXl4fdbsdu\nt7Ns2bJzvlDVPC+9BFu2wB//aHYkSimf1tRSg+Xl5bJ161YREamurha73S47duyQnJwcmT9/fqPP\nn1jHvLa2VpxOp4SHh3vWMR8yZIg4HA4RkUbrmGdnZ4uISH5+/knrmIeFhUllZaVUVlZ63jfUjEtQ\nzVRaKtKzp8jGjWZHopRqa619djZZ8ujVqxeDjld8X3TRRfTv3x+3230i8TT6/KpVq8jIyCAgIIDQ\n0FAiIiJwOByUl5dTXV1NfHw8AJmZmaxcuRKA1atXk5WVBUBaWhrr168HYO3ataSkpBAYGEhgYCDJ\nyckUFBS0OmGqxkSMaUfuuguGDDE7GqWUr2tRb6uvv/6arVu3kpCQAMCCBQuIjY1l/PjxVFVVAVBW\nVoa1wfJxVqsVt9vdaLvFYvEkIbfbTUhICAD+/v50796dioqKM55Led+TT0JFBTz4oNmRKKU6gmaP\nMD9w4AC/+tWvePzxx7nooovIzs5mxowZAEyfPp2pU6eyePHiNgv0bHJycjzvExMTSUxMNCWOjurf\n/4YZM+D99yEgwOxolFJtoaioiKKiIq+dr1nJ4+jRo6SlpfHrX/+a66+/HoCePXt69k+YMIHRo0cD\nRonC5XJ59pWWlmK1WrFYLJSWljbafuKYXbt20adPH+rq6ti/fz9BQUFYLJaTLtblcjFixIhG8TVM\nHqpljh41BgPOmgX9+pkdjVKqrZz6w3rWrFmtOl+T1VYiwvjx44mKiuKee+7xbC8vL/e8f+2114iJ\niQEgNTWV/Px8amtrcTqdFBcXEx8fT69evejWrRsOhwMRYfny5YwZM8ZzTF5eHgArVqwgKSkJgJSU\nFAoLC6mqqqKyspJ169YxcuTIVl2wOtmcOdCjh9HWoZRSzdVkyeODDz7g+eefZ+DAgcTFxQEwZ84c\nXnzxRbZt24afnx99+/bl6aefBiAqKoobb7yRqKgo/P39WbRoEX7HF31YtGgRt956K4cPH+baa6/l\nmmuuAWD8+PGMGzcOm81GUFAQ+fn5APTo0YPp06cz5HgL7syZMwkMDPT+X6GL2rgRFi2CrVt1XQ6l\nVMvoIMEuqq4OYmONpWRvvNHsaJRS7U0nRlTn5IUX4NJLYexYsyNRSnVEWvLogmprjcbxpUvhZz8z\nOxqllBm05KFabPlyCA/XxKGUOne6kmAXU19vTHi4YIHZkSilOjIteXQxBQXwve/BaYbLKKVUs2ny\n6GLmz4epU7VrrlKqdbTBvAvZtg1+8QvYudMofSilui5tMFfNNn8+3H23Jg6lVOtpyaOLKC2FgQON\nUocO0ldKaclDNcuf/wyZmZo4lFLeoSWPLqCsDKKj4fPPoU8fs6NRSvmC1j47NXl0AZMmGe0c8+eb\nHYlSyldo8tDkcVa7dkFcHHzxBTRYgkUp1cVpm4c6q9mz4Y47NHEopbxLSx6d2M6dEB9vLDMbFGR2\nNEopX6IlD3VGDz0Ev/2tJg6llPc1mTxcLhfDhw9nwIABREdH88QTTwCwb98+kpOTsdvtpKSkUFVV\n5TkmNzcXm81Gv379KCws9GzfvHkzMTEx2Gw2Jk+e7NleU1NDeno6NpuNhIQESkpKPPvy8vKw2+3Y\n7XaWLVvmlYvuCt5+Gz74AO6/3+xIlFKdkjShvLxctm7dKiIi1dXVYrfbZceOHXLffffJvHnzRERk\n7ty5Mm3aNBER2b59u8TGxkptba04nU4JDw+X+vp6EREZMmSIOBwOEREZNWqUrFmzRkREFi5cKNnZ\n2SIikp+fL+np6SIiUlFRIWFhYVJZWSmVlZWe9w014xK6nJoakf79RV591exIlFK+qrXPziZLHr16\n9WLQoEEAXHTRRfTv3x+3283q1avJysoCICsri5UrVwKwatUqMjIyCAgIIDQ0lIiICBwOB+Xl5VRX\nVxMfHw9AZmam55iG50pLS2P9+vUArF27lpSUFAIDAwkMDCQ5OZmCggKvJs/OKDcXwsLg+uvNjkQp\n1Vm1aD2Pr7/+mq1btzJ06FD27NlDcHAwAMHBwezZsweAsrIyEhISPMdYrVbcbjcBAQFYrVbPdovF\ngtvtBsDtdhMSEmIE5O9P9+7dqaiooKys7KRjTpxLndknn8DChbB1q86cq5RqO81OHgcOHCAtLY3H\nH3+ciy+++KR9fn5++Jn4pMrJyfG8T0xMJDEx0bRYzPTtt3DLLfDww2CxmB2NUsqXFBUVUVRU5LXz\nNSt5HD16lLS0NMaNG8f1x+tCgoOD2b17N7169aK8vJyexwcSWCwWXC6X59jS0lKsVisWi4XS0tJG\n208cs2vXLvr06UNdXR379+8nKCgIi8Vy0sW6XC5GnGYVo4bJo6s6dgxuvhmGDYPjNYBKKeVx6g/r\nWbNmtep8TbZ5iAjjx48nKiqKe+65x7M9NTWVvLw8wOgRdSKppKamkp+fT21tLU6nk+LiYuLj4+nV\nqxfdunXD4XAgIixfvpwxY8Y0OteKFStISkoCICUlhcLCQqqqqqisrGTdunWMHDmyVRfcGdXXw513\nQk0NPPGEVlcppdpBUy3q7733nvj5+UlsbKwMGjRIBg0aJGvWrJGKigpJSkoSm80mycnJJ/WCmj17\ntoSHh0tkZKQUFBR4tm/atEmio6MlPDxcJk2a5Nl+5MgRGTt2rERERMjQoUPF6XR69i1ZskQiIiIk\nIiJCli5d2ii+ZlxCp1ZfL3LXXSI//anIgQNmR6OU6iha++zUEeYdmIixpOwHH8C6ddCtm9kRKaU6\nitY+O1vU20r5ltmzjcGA//qXJg6lVPvS5NFBvfwyPPMMbNgAl1xidjRKqa5Gq606oP/8BxIS4K23\n4Pj4TaWUahFdz6OLJQ8RSEqC664z2juUUupc6Ky6Xcxzz0F1NTSYV1Ippdqdljw6kN27YeBAo2dV\nbKzZ0SilOjKttupCyWPsWLDZYM4csyNRSnV02lW3i3j4YWMdcl3SRCnlCzR5dAALFsBTT8F778EP\nfmB2NEoppcnDpx0+bPSoevtto1uuzpSrlPIV2tvKBx08aJQ07HaoqACHw1jcSSmlfIWWPHzI9u3w\nt7/B88/DT34Cr7xiDAZUSilfo8mjHR04AK+/Dm+8YYwSP3wYLr4YLroISkqM/VlZsGUL/OhHZker\nlFJnpl11vUgEdu2Cjz82/nngAFxwgVEN9cUXUFholChuuAGiouCHPzQ+U10Nl14KV1yha3EopdqH\njvPwgeRRXw8vvmh0p92zB4YOhb59jVJFTQ1ceCFcfjmkphpJQimlzKbjPEz22Wdw111QWwvz5sHI\nkVp6UEp1fk32trr99tsJDg4mJibGsy0nJwer1UpcXBxxcXGsWbPGsy83NxebzUa/fv0oLCz0bN+8\neTMxMTHYbDYmN5iYqaamhvT0dGw2GwkJCZSUlHj25eXlYbfbsdvtLPOx0XE7dsC4cZCcbKwd/uGH\ncM01mjiUUl1EU0sNvvvuu7JlyxaJjo72bMvJyZH58+c3+uz27dslNjZWamtrxel0Snh4uNTX14uI\nyJAhQ8ThcIiIyKhRo2TNmjUiIrJw4ULJzs4WEZH8/HxJT08XEZGKigoJCwuTyspKqays9Lw/VTMu\nwWtqa0X+8Q+RlBSR4GCRP/5R5Ntv2+3rlVLKa1r77Gyy5DFs2DAuOc1qQ3KaurJVq1aRkZFBQEAA\noaGhRERE4HA4KC8vp7q6mvj4eAAyMzNZuXIlAKtXryYrKwuAtLQ01q9fD8DatWtJSUkhMDCQwMBA\nkpOTKSgoONccec7cbvjHP2DKFKPd4i9/MUocX38NDz1ktGsopVRXc85tHgsWLGDZsmUMHjyY+fPn\nExgYSFlZGQkNBiZYrVbcbjcBAQFYrVbPdovFgtvtBsDtdhMSEmIE4+9P9+7dqaiooKys7KRjTpyr\nLdXUwNat8NFHxmvDBjh0yBhrceWVxnKv/fu3aQhKKdUhnFPyyM7OZsaMGQBMnz6dqVOnsnjxYq8G\n1hI5OTme94mJiSQmJjbruCNHoKjI6EL70Ufw6acQGWkki9GjjTXCIyK0HUMp1fEVFRVRVFTktfOd\nU/Lo2bOn5/2ECRMYPXo0YJQoXC6XZ19paSlWqxWLxUJpaWmj7SeO2bVrF3369KGuro79+/cTFBSE\nxWI56UJdLhcjRow4bTwNk8eZHD0KTicUFxs9pD76yEgcMTEwahTk5sLgwcaAPaWU6mxO/WE9a9as\nVp3vnJJHeXk5vXv3BuC1117z9MRKTU3l5ptv5ve//z1ut5vi4mLi4+Px8/OjW7duOBwO4uPjWb58\nOXfffbfnmLy8PBISElixYgVJSUkApKSk8OCDD1JVVYWIsG7dOubNm3faeH77W/jyS3C5jIf/JZcY\n/zxwAKqqYN8+KC83JhaMiDASxk03wZIlEBR0Ln8BpZTq2ppMHhkZGbzzzjt88803hISEMGvWLIqK\niti2bRt+fn707duXp59+GoCoqChuvPFGoqKi8Pf3Z9GiRfgdr/NZtGgRt956K4cPH+baa6/lmmuu\nAWD8+PGMGzcOm81GUFAQ+fn5APTo0YPp06czZMgQAGbOnElgYOBpY7TbYcwYo0H74EGorDRGbV98\nsZFILrkErFb43vda/wdTSimlI8yVUqpLau2zU6dkV0op1WKaPJRSSrWYJg+llFItpslDKaVUi2ny\nUEop1WKaPJRSSrWYJg+llFItpslDKaVUi2nyUEop1WKaPJRSSrWYJg+llFItpslDKaVUi2nyUEop\n1WKaPJRSSrWYJg+llFIt1mTyuP322wkODvasFgiwb98+kpOTsdvtpKSkUFVV5dmXm5uLzWajX79+\nFBYWerZv3ryZmJgYbDYbkydP9myvqakhPT0dm81GQkICJSUlnn15eXnY7XbsdjvLli1r9cUqpZTy\njiaTx2233UZBQcFJ2+bOnUtycjJfffUVSUlJzJ07F4AdO3bw0ksvsWPHDgoKCrjrrrs8i41kZ2ez\nePFiiouLKS4u9pxz8eLFBAUFUVxczJQpU5g2bRpgJKg//OEPbNy4kY0bNzJr1qyTkpQv8eai8t7i\nizGBb8blizGBb8alMTWfL8blzZiaTB7Dhg3jkksuOWnb6tWrycrKAiArK4uVK1cCsGrVKjIyMggI\nCCA0NJSIiAgcDgfl5eVUV1cTHx8PQGZmpueYhudKS0tj/fr1AKxdu5aUlBQCAwMJDAwkOTm5URLz\nFZ39JvEmX4zLF2MC34xLY2o+X4yrXZPH6ezZs4fg4GAAgoOD2bNnDwBlZWVYrVbP56xWK263u9F2\ni8WC2+0GwO12ExISAoC/vz/du3enoqLijOdSSillvlY3mPv5+eHn5+eNWJRSSnUU0gxOp1Oio6M9\n/x4ZGSnl5eUiIlJWViaRkZEiIpKbmyu5ubmez40cOVI2bNgg5eXl0q9fP8/2F154QSZOnOj5zEcf\nfSQiIkePHpVLL71URERefPFFufPOOz3H3HHHHZKfn98ottjYWAH0pS996UtfLXjFxsY25/F/RudU\n8khNTSUvLw8wekRdf/31nu35+fnU1tbidDopLi4mPj6eXr160a1bNxwOByLC8uXLGTNmTKNzrVix\ngqSkJABSUlIoLCykqqqKyspK1q1bx8iRIxvFsm3bNkREX/rSl7701YLXtm3bzuXx/x1pwk033SS9\ne/eWgIAAsVqtsmTJEqmoqJCkpCSx2WySnJwslZWVns/Pnj1bwsPDJTIyUgoKCjzbN23aJNHR0RIe\nHi6TJk3ybD9y5IiMHTtWIiIiZOjQoeJ0Oj37lixZIhERERIRESFLly5tKlSllFLtxE9EpHXpRyml\nVFejI8xP43QDIz/55BOuvPJKBg4cSGpqKtXV1QDU1tZy2223MXDgQAYNGsQ777zjOea5554jJiaG\n2NhYRo0aRUVFxTnH5HK5GD58OAMGDCA6OponnngC8O6ATTPjOnz4MNdddx39+/cnOjqaBx54wPSY\nGkpNTT3pfjAzptraWu644w4iIyPp378/r776qk/E5a37vaUx7du3j+HDh3PxxRczadKkk85l5r1+\nprjMvNfP9rc6odn3utlFH1/07rvvypYtW07qJDB48GB59913RcSoTps+fbqIiPz1r3+V22+/XURE\n/ve//8kVV1whIiI1NTXSo0cPqaioEBGR+++/X3Jycs45pvLyctm6dauIiFRXV4vdbpcdO3bIfffd\nJ/PmzRMRkblz58q0adNERGT79u0SGxsrtbW14nQ6JTw8XOrr60VEZMiQIeJwOEREZNSoUbJmzRrT\n4zp06JAUFRWJiEhtba0MGzbsnOPyRkzHjh3znO8f//iH3HzzzRITE3NO8XgrphP//WbMmOG5/0RE\nvvnmG9Pj8ub93tKYDh48KO+//7489dRT8rvf/e6kc5l5r58pLjPv9bP9rURadq9r8jiDU3uYde/e\n3fN+165dEhUVJSIiv/3tb2X58uWefUlJSfLxxx/LsWPHJDw8XEpKSqS+vl4mTpwozzzzjNfiGzNm\njKxbt04iIyNl9+7dImLcSCd6vs2ZM0fmzp3r+fyJXm1lZWUn9Xw7tVebWXGdavLkyfLss8+aHlN1\ndbX89Kc/lR07dpx0P5gR04YNG0REJCQkRA4dOuS1WLwRV1ve703FdMJzzz130gPR7Hv9THGdqj3v\n9bPF1NJ7XautmmnAgAGsWrUKgFdeeQWXywVAbGwsq1ev5tixYzidTjZv3ozL5eK8887j8ccfJzo6\nGovFwhdffMHtt9/ulVi+/vprtm7dytChQ706YNPMuBqqqqri9ddf9/S8MyOmsrIyAKZPn869997L\nhRde2OpYWhuT2+32VD889NBDXHHFFdx4443873//MzWu0tLSNrvfmxPTCaeON3O73abe62eKq6H2\nvtfPFlNL73VNHs20ZMkSFi1axODBgzlw4ADf+973AKN9xGq1MnjwYKZMmcJVV13F+eefz7fffsvd\nd9/NJ598QllZGTExMeTm5rY6jgMHDpCWlsbjjz/OxRdffNI+Mwdstiauhvvq6urIyMhg8uTJhIaG\nmhaTHO/KuHPnTsaMGYN4qV9Ja//71dXVUVpayk9+8hM2b97MlVdeyb333mtqXH5+fm1yv3fGe70h\nX7nXgXO61zV5NFNkZCRr165l06ZN3HTTTYSHhwNw/vnn89hjj7F161ZWrlxJVVUVdrudL774gr59\n+9K3b18Axo4dy4cfftiqGI4ePUpaWhrjxo3zjK0JDg5m9+7dAJSXl9OzZ0/A+JV1onQEUFpaitVq\nxWKxUFpaetJ2i8VialwNv/9EQ/Ddd99takxWq5UNGzawadMm+vbty7Bhw/jqq68YMWKEaTFZLBaC\ngoK48MILueGGGwD41a9+xZYtW845Jm/F5e37vSUxnYnZ93pTzLjXz+Rc7nVNHs20d+9eAOrr6/nT\nn/5EdnY2YPScOHjwIADr1q0jICCAfv36ERYWxpdffsk333zj2RcVFXXO3y8ijB8/nqioKO655x7P\ndm8M2DxxjJlxgVEV8+233/LnP//5nOPxZkwTJ07E7XbjdDp5//33sdvt/Otf/zI1Jj8/P0aPHs3b\nb78NwPr16xkwYMA5xeTNuLx5v7c0pobHNdS7d29T7/UzxQXm3etniumc7vVzb5rpvE4dGLl48WJ5\n/PHHxW63i91ulwceeMDzWafTKZGRkdK/f39JTk6WXbt2efbl5eVJdHS0DBw4UFJTU2Xfvn3nHNN7\n770nfn5+EhsbK4MGDZJBgwbJmjVrvDpg08y4XC6X+Pn5SVRUlOc8ixcvNjWmhpxOZ6t6W3kzppKS\nEvnZz34mAwcOlKuvvlpcLpdPxOWt+/1cYvrRj34kPXr0kIsuukisVqt88cUXImL+vX66uMy+1xvG\nFBIS4vlbndDce10HCSqllGoxrbZSSinVYpo8lFJKtZgmD6WUUi2myUMppVSLafJQSinVYpo8lFJK\ntZgmD6WUUi2myUMppVSL/X/m/dBtH1ZDwAAAAABJRU5ErkJggg==\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x14fe3160>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 85 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "test = DataFrame([2000, 2011, 2011, 2008, 2000])\n", | |
| "test.groupby(0).head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th>0</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2000</th>\n", | |
| " <th>0</th>\n", | |
| " <td> 2000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th rowspan=\"2\" valign=\"top\">2011</th>\n", | |
| " <th>1</th>\n", | |
| " <td> 2011</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> 2011</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2008</th>\n", | |
| " <th>3</th>\n", | |
| " <td> 2008</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000</th>\n", | |
| " <th>4</th>\n", | |
| " <td> 2000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 1 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 45, | |
| "text": [ | |
| " 0\n", | |
| "0 \n", | |
| "2000 0 2000\n", | |
| "2011 1 2011\n", | |
| " 2 2011\n", | |
| "2008 3 2008\n", | |
| "2000 4 2000\n", | |
| "\n", | |
| "[5 rows x 1 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 45 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "homevalue = generateDFfromFilename(\"Neighborhood_Zhvi_AllHomes\")\n", | |
| "oak_homevalue = cleanedOakland(homevalue,[\"City\", \"State\", \"Metro\", \"CountyName\"])\n", | |
| "oak_homevalue" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>RegionName</th>\n", | |
| " <th>1996-04</th>\n", | |
| " <th>1996-05</th>\n", | |
| " <th>1996-06</th>\n", | |
| " <th>1996-07</th>\n", | |
| " <th>1996-08</th>\n", | |
| " <th>1996-09</th>\n", | |
| " <th>1996-10</th>\n", | |
| " <th>1996-11</th>\n", | |
| " <th>1996-12</th>\n", | |
| " <th>1997-01</th>\n", | |
| " <th>1997-02</th>\n", | |
| " <th>1997-03</th>\n", | |
| " <th>1997-04</th>\n", | |
| " <th>1997-05</th>\n", | |
| " <th>1997-06</th>\n", | |
| " <th>1997-07</th>\n", | |
| " <th>1997-08</th>\n", | |
| " <th>1997-09</th>\n", | |
| " <th>1997-10</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>1307</th>\n", | |
| " <td> Redwood Heights</td>\n", | |
| " <td> 185500</td>\n", | |
| " <td> 185400</td>\n", | |
| " <td> 184000</td>\n", | |
| " <td> 182400</td>\n", | |
| " <td> 181300</td>\n", | |
| " <td> 180700</td>\n", | |
| " <td> 180600</td>\n", | |
| " <td> 181100</td>\n", | |
| " <td> 182000</td>\n", | |
| " <td> 183700</td>\n", | |
| " <td> 185500</td>\n", | |
| " <td> 186300</td>\n", | |
| " <td> 186700</td>\n", | |
| " <td> 187600</td>\n", | |
| " <td> 188600</td>\n", | |
| " <td> 190700</td>\n", | |
| " <td> 194000</td>\n", | |
| " <td> 196200</td>\n", | |
| " <td> 196900</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1481</th>\n", | |
| " <td> Adams Point</td>\n", | |
| " <td> 113800</td>\n", | |
| " <td> 110900</td>\n", | |
| " <td> 108300</td>\n", | |
| " <td> 106300</td>\n", | |
| " <td> 105300</td>\n", | |
| " <td> 104500</td>\n", | |
| " <td> 103400</td>\n", | |
| " <td> 102600</td>\n", | |
| " <td> 103800</td>\n", | |
| " <td> 105500</td>\n", | |
| " <td> 106900</td>\n", | |
| " <td> 108600</td>\n", | |
| " <td> 109900</td>\n", | |
| " <td> 109900</td>\n", | |
| " <td> 110700</td>\n", | |
| " <td> 112300</td>\n", | |
| " <td> 114700</td>\n", | |
| " <td> 118500</td>\n", | |
| " <td> 123000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1531</th>\n", | |
| " <td> Clinton</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 125400</td>\n", | |
| " <td> 125400</td>\n", | |
| " <td> 125100</td>\n", | |
| " <td> 125300</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 125500</td>\n", | |
| " <td> 125800</td>\n", | |
| " <td> 125300</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 125500</td>\n", | |
| " <td> 125500</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 125700</td>\n", | |
| " <td> 125900</td>\n", | |
| " <td> 125900</td>\n", | |
| " <td> 126200</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1582</th>\n", | |
| " <td> Cleveland Heights</td>\n", | |
| " <td> 209900</td>\n", | |
| " <td> 211300</td>\n", | |
| " <td> 209100</td>\n", | |
| " <td> 206200</td>\n", | |
| " <td> 205500</td>\n", | |
| " <td> 204900</td>\n", | |
| " <td> 203400</td>\n", | |
| " <td> 200400</td>\n", | |
| " <td> 196400</td>\n", | |
| " <td> 194200</td>\n", | |
| " <td> 194000</td>\n", | |
| " <td> 193000</td>\n", | |
| " <td> 191800</td>\n", | |
| " <td> 191600</td>\n", | |
| " <td> 191900</td>\n", | |
| " <td> 192300</td>\n", | |
| " <td> 194500</td>\n", | |
| " <td> 197200</td>\n", | |
| " <td> 199200</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1677</th>\n", | |
| " <td> Havenscourt</td>\n", | |
| " <td> 94300</td>\n", | |
| " <td> 96100</td>\n", | |
| " <td> 98200</td>\n", | |
| " <td> 100100</td>\n", | |
| " <td> 101300</td>\n", | |
| " <td> 101300</td>\n", | |
| " <td> 101000</td>\n", | |
| " <td> 100800</td>\n", | |
| " <td> 100900</td>\n", | |
| " <td> 102300</td>\n", | |
| " <td> 104000</td>\n", | |
| " <td> 104700</td>\n", | |
| " <td> 105100</td>\n", | |
| " <td> 106300</td>\n", | |
| " <td> 107600</td>\n", | |
| " <td> 108400</td>\n", | |
| " <td> 108400</td>\n", | |
| " <td> 108900</td>\n", | |
| " <td> 109800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1740</th>\n", | |
| " <td> Bushrod</td>\n", | |
| " <td> 169100</td>\n", | |
| " <td> 168900</td>\n", | |
| " <td> 168800</td>\n", | |
| " <td> 167700</td>\n", | |
| " <td> 166000</td>\n", | |
| " <td> 164500</td>\n", | |
| " <td> 163300</td>\n", | |
| " <td> 163000</td>\n", | |
| " <td> 162400</td>\n", | |
| " <td> 162100</td>\n", | |
| " <td> 162600</td>\n", | |
| " <td> 162400</td>\n", | |
| " <td> 160800</td>\n", | |
| " <td> 159500</td>\n", | |
| " <td> 159100</td>\n", | |
| " <td> 158900</td>\n", | |
| " <td> 158800</td>\n", | |
| " <td> 159900</td>\n", | |
| " <td> 161100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1760</th>\n", | |
| " <td> Piedmont Avenue</td>\n", | |
| " <td> 144700</td>\n", | |
| " <td> 142600</td>\n", | |
| " <td> 142500</td>\n", | |
| " <td> 142200</td>\n", | |
| " <td> 142400</td>\n", | |
| " <td> 143400</td>\n", | |
| " <td> 145200</td>\n", | |
| " <td> 147500</td>\n", | |
| " <td> 150000</td>\n", | |
| " <td> 150400</td>\n", | |
| " <td> 150200</td>\n", | |
| " <td> 151600</td>\n", | |
| " <td> 153300</td>\n", | |
| " <td> 156000</td>\n", | |
| " <td> 158700</td>\n", | |
| " <td> 162800</td>\n", | |
| " <td> 167900</td>\n", | |
| " <td> 170900</td>\n", | |
| " <td> 171700</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1820</th>\n", | |
| " <td> Upper Dimond</td>\n", | |
| " <td> 170600</td>\n", | |
| " <td> 172900</td>\n", | |
| " <td> 173100</td>\n", | |
| " <td> 173600</td>\n", | |
| " <td> 175200</td>\n", | |
| " <td> 176300</td>\n", | |
| " <td> 177700</td>\n", | |
| " <td> 179000</td>\n", | |
| " <td> 179800</td>\n", | |
| " <td> 181500</td>\n", | |
| " <td> 184500</td>\n", | |
| " <td> 186800</td>\n", | |
| " <td> 187600</td>\n", | |
| " <td> 188500</td>\n", | |
| " <td> 189900</td>\n", | |
| " <td> 192000</td>\n", | |
| " <td> 194000</td>\n", | |
| " <td> 195700</td>\n", | |
| " <td> 196800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1826</th>\n", | |
| " <td> St. Elizabeth</td>\n", | |
| " <td> 106400</td>\n", | |
| " <td> 104500</td>\n", | |
| " <td> 103700</td>\n", | |
| " <td> 104300</td>\n", | |
| " <td> 104900</td>\n", | |
| " <td> 104800</td>\n", | |
| " <td> 105200</td>\n", | |
| " <td> 106300</td>\n", | |
| " <td> 107000</td>\n", | |
| " <td> 107600</td>\n", | |
| " <td> 108800</td>\n", | |
| " <td> 110500</td>\n", | |
| " <td> 111800</td>\n", | |
| " <td> 112200</td>\n", | |
| " <td> 112000</td>\n", | |
| " <td> 111800</td>\n", | |
| " <td> 111800</td>\n", | |
| " <td> 111900</td>\n", | |
| " <td> 111800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1972</th>\n", | |
| " <td> Longfellow</td>\n", | |
| " <td> 134800</td>\n", | |
| " <td> 130900</td>\n", | |
| " <td> 128800</td>\n", | |
| " <td> 127700</td>\n", | |
| " <td> 126200</td>\n", | |
| " <td> 125000</td>\n", | |
| " <td> 124500</td>\n", | |
| " <td> 124800</td>\n", | |
| " <td> 125700</td>\n", | |
| " <td> 126800</td>\n", | |
| " <td> 127500</td>\n", | |
| " <td> 128600</td>\n", | |
| " <td> 130200</td>\n", | |
| " <td> 130400</td>\n", | |
| " <td> 129800</td>\n", | |
| " <td> 129100</td>\n", | |
| " <td> 129900</td>\n", | |
| " <td> 131800</td>\n", | |
| " <td> 134000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1990</th>\n", | |
| " <td> Upper Rockridge</td>\n", | |
| " <td> 350300</td>\n", | |
| " <td> 353500</td>\n", | |
| " <td> 358300</td>\n", | |
| " <td> 360900</td>\n", | |
| " <td> 362100</td>\n", | |
| " <td> 364100</td>\n", | |
| " <td> 365800</td>\n", | |
| " <td> 367100</td>\n", | |
| " <td> 369300</td>\n", | |
| " <td> 374000</td>\n", | |
| " <td> 379300</td>\n", | |
| " <td> 382900</td>\n", | |
| " <td> 386200</td>\n", | |
| " <td> 389800</td>\n", | |
| " <td> 390600</td>\n", | |
| " <td> 392500</td>\n", | |
| " <td> 398000</td>\n", | |
| " <td> 403100</td>\n", | |
| " <td> 406000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000</th>\n", | |
| " <td> Fremont</td>\n", | |
| " <td> 104800</td>\n", | |
| " <td> 106800</td>\n", | |
| " <td> 108100</td>\n", | |
| " <td> 108900</td>\n", | |
| " <td> 110000</td>\n", | |
| " <td> 111300</td>\n", | |
| " <td> 112600</td>\n", | |
| " <td> 112800</td>\n", | |
| " <td> 112300</td>\n", | |
| " <td> 112600</td>\n", | |
| " <td> 113600</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 113800</td>\n", | |
| " <td> 114300</td>\n", | |
| " <td> 114900</td>\n", | |
| " <td> 115200</td>\n", | |
| " <td> 115000</td>\n", | |
| " <td> 114600</td>\n", | |
| " <td> 113900</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2024</th>\n", | |
| " <td> Meadow Brook</td>\n", | |
| " <td> 114800</td>\n", | |
| " <td> 113800</td>\n", | |
| " <td> 112400</td>\n", | |
| " <td> 112200</td>\n", | |
| " <td> 113400</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 114400</td>\n", | |
| " <td> 115100</td>\n", | |
| " <td> 116600</td>\n", | |
| " <td> 118200</td>\n", | |
| " <td> 119600</td>\n", | |
| " <td> 119200</td>\n", | |
| " <td> 117700</td>\n", | |
| " <td> 117300</td>\n", | |
| " <td> 118900</td>\n", | |
| " <td> 120300</td>\n", | |
| " <td> 120300</td>\n", | |
| " <td> 119500</td>\n", | |
| " <td> 118600</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2030</th>\n", | |
| " <td> Webster</td>\n", | |
| " <td> 90200</td>\n", | |
| " <td> 93000</td>\n", | |
| " <td> 95800</td>\n", | |
| " <td> 97700</td>\n", | |
| " <td> 98700</td>\n", | |
| " <td> 99200</td>\n", | |
| " <td> 99500</td>\n", | |
| " <td> 99800</td>\n", | |
| " <td> 99900</td>\n", | |
| " <td> 100400</td>\n", | |
| " <td> 101300</td>\n", | |
| " <td> 101500</td>\n", | |
| " <td> 101400</td>\n", | |
| " <td> 100900</td>\n", | |
| " <td> 100600</td>\n", | |
| " <td> 100400</td>\n", | |
| " <td> 100200</td>\n", | |
| " <td> 100300</td>\n", | |
| " <td> 101100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2054</th>\n", | |
| " <td> Seminary</td>\n", | |
| " <td> 90300</td>\n", | |
| " <td> 92400</td>\n", | |
| " <td> 93600</td>\n", | |
| " <td> 94700</td>\n", | |
| " <td> 96200</td>\n", | |
| " <td> 96400</td>\n", | |
| " <td> 95900</td>\n", | |
| " <td> 95600</td>\n", | |
| " <td> 95100</td>\n", | |
| " <td> 95000</td>\n", | |
| " <td> 96200</td>\n", | |
| " <td> 97300</td>\n", | |
| " <td> 97800</td>\n", | |
| " <td> 98600</td>\n", | |
| " <td> 99300</td>\n", | |
| " <td> 98700</td>\n", | |
| " <td> 97800</td>\n", | |
| " <td> 98200</td>\n", | |
| " <td> 99300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2062</th>\n", | |
| " <td> Rancho San Antonio</td>\n", | |
| " <td> 109800</td>\n", | |
| " <td> 109700</td>\n", | |
| " <td> 109400</td>\n", | |
| " <td> 109800</td>\n", | |
| " <td> 111100</td>\n", | |
| " <td> 112000</td>\n", | |
| " <td> 112100</td>\n", | |
| " <td> 112700</td>\n", | |
| " <td> 113900</td>\n", | |
| " <td> 114900</td>\n", | |
| " <td> 115200</td>\n", | |
| " <td> 114500</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 115100</td>\n", | |
| " <td> 116700</td>\n", | |
| " <td> 116600</td>\n", | |
| " <td> 115200</td>\n", | |
| " <td> 113700</td>\n", | |
| " <td> 113800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2085</th>\n", | |
| " <td> Maxwell Park</td>\n", | |
| " <td> 129200</td>\n", | |
| " <td> 130900</td>\n", | |
| " <td> 133300</td>\n", | |
| " <td> 134600</td>\n", | |
| " <td> 135100</td>\n", | |
| " <td> 136000</td>\n", | |
| " <td> 137500</td>\n", | |
| " <td> 138600</td>\n", | |
| " <td> 139600</td>\n", | |
| " <td> 140800</td>\n", | |
| " <td> 141900</td>\n", | |
| " <td> 142900</td>\n", | |
| " <td> 143800</td>\n", | |
| " <td> 144500</td>\n", | |
| " <td> 144900</td>\n", | |
| " <td> 145900</td>\n", | |
| " <td> 147200</td>\n", | |
| " <td> 148400</td>\n", | |
| " <td> 149200</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2099</th>\n", | |
| " <td> Glenview</td>\n", | |
| " <td> 201300</td>\n", | |
| " <td> 207400</td>\n", | |
| " <td> 211500</td>\n", | |
| " <td> 213600</td>\n", | |
| " <td> 216300</td>\n", | |
| " <td> 219300</td>\n", | |
| " <td> 221500</td>\n", | |
| " <td> 221700</td>\n", | |
| " <td> 221300</td>\n", | |
| " <td> 222400</td>\n", | |
| " <td> 225800</td>\n", | |
| " <td> 228400</td>\n", | |
| " <td> 228700</td>\n", | |
| " <td> 228000</td>\n", | |
| " <td> 227500</td>\n", | |
| " <td> 228200</td>\n", | |
| " <td> 229800</td>\n", | |
| " <td> 231300</td>\n", | |
| " <td> 232200</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2199</th>\n", | |
| " <td> Arroyo Viejo</td>\n", | |
| " <td> 88200</td>\n", | |
| " <td> 91300</td>\n", | |
| " <td> 95000</td>\n", | |
| " <td> 97400</td>\n", | |
| " <td> 98500</td>\n", | |
| " <td> 98700</td>\n", | |
| " <td> 99300</td>\n", | |
| " <td> 100300</td>\n", | |
| " <td> 100600</td>\n", | |
| " <td> 100800</td>\n", | |
| " <td> 102000</td>\n", | |
| " <td> 103700</td>\n", | |
| " <td> 104300</td>\n", | |
| " <td> 103800</td>\n", | |
| " <td> 102800</td>\n", | |
| " <td> 102100</td>\n", | |
| " <td> 101900</td>\n", | |
| " <td> 102900</td>\n", | |
| " <td> 104600</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2298</th>\n", | |
| " <td> Allendale</td>\n", | |
| " <td> 104800</td>\n", | |
| " <td> 105400</td>\n", | |
| " <td> 105700</td>\n", | |
| " <td> 106000</td>\n", | |
| " <td> 105900</td>\n", | |
| " <td> 106000</td>\n", | |
| " <td> 107000</td>\n", | |
| " <td> 108600</td>\n", | |
| " <td> 109900</td>\n", | |
| " <td> 111600</td>\n", | |
| " <td> 113400</td>\n", | |
| " <td> 114400</td>\n", | |
| " <td> 114300</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 114200</td>\n", | |
| " <td> 114700</td>\n", | |
| " <td> 115000</td>\n", | |
| " <td> 115000</td>\n", | |
| " <td> 115100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2377</th>\n", | |
| " <td> Grand Lake</td>\n", | |
| " <td> 117300</td>\n", | |
| " <td> 116900</td>\n", | |
| " <td> 117500</td>\n", | |
| " <td> 117700</td>\n", | |
| " <td> 116600</td>\n", | |
| " <td> 115300</td>\n", | |
| " <td> 114500</td>\n", | |
| " <td> 114800</td>\n", | |
| " <td> 116000</td>\n", | |
| " <td> 116900</td>\n", | |
| " <td> 118600</td>\n", | |
| " <td> 120800</td>\n", | |
| " <td> 122700</td>\n", | |
| " <td> 125200</td>\n", | |
| " <td> 128400</td>\n", | |
| " <td> 129600</td>\n", | |
| " <td> 130200</td>\n", | |
| " <td> 131400</td>\n", | |
| " <td> 134100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2381</th>\n", | |
| " <td> Prescott</td>\n", | |
| " <td> 136600</td>\n", | |
| " <td> 134800</td>\n", | |
| " <td> 133500</td>\n", | |
| " <td> 131600</td>\n", | |
| " <td> 129300</td>\n", | |
| " <td> 128300</td>\n", | |
| " <td> 127200</td>\n", | |
| " <td> 124700</td>\n", | |
| " <td> 123200</td>\n", | |
| " <td> 123200</td>\n", | |
| " <td> 123900</td>\n", | |
| " <td> 126000</td>\n", | |
| " <td> 129300</td>\n", | |
| " <td> 131900</td>\n", | |
| " <td> 134400</td>\n", | |
| " <td> 137100</td>\n", | |
| " <td> 140300</td>\n", | |
| " <td> 143300</td>\n", | |
| " <td> 144500</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2394</th>\n", | |
| " <td> Lakeshore</td>\n", | |
| " <td> 268900</td>\n", | |
| " <td> 277300</td>\n", | |
| " <td> 283900</td>\n", | |
| " <td> 286400</td>\n", | |
| " <td> 287400</td>\n", | |
| " <td> 288000</td>\n", | |
| " <td> 289000</td>\n", | |
| " <td> 290700</td>\n", | |
| " <td> 292800</td>\n", | |
| " <td> 296000</td>\n", | |
| " <td> 298900</td>\n", | |
| " <td> 299900</td>\n", | |
| " <td> 298500</td>\n", | |
| " <td> 297100</td>\n", | |
| " <td> 297500</td>\n", | |
| " <td> 300800</td>\n", | |
| " <td> 304900</td>\n", | |
| " <td> 308300</td>\n", | |
| " <td> 309900</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2579</th>\n", | |
| " <td> Temescal</td>\n", | |
| " <td> 166200</td>\n", | |
| " <td> 168600</td>\n", | |
| " <td> 168900</td>\n", | |
| " <td> 168000</td>\n", | |
| " <td> 167900</td>\n", | |
| " <td> 168200</td>\n", | |
| " <td> 168500</td>\n", | |
| " <td> 168800</td>\n", | |
| " <td> 169500</td>\n", | |
| " <td> 170600</td>\n", | |
| " <td> 172400</td>\n", | |
| " <td> 173600</td>\n", | |
| " <td> 173000</td>\n", | |
| " <td> 173000</td>\n", | |
| " <td> 174500</td>\n", | |
| " <td> 176800</td>\n", | |
| " <td> 178500</td>\n", | |
| " <td> 179700</td>\n", | |
| " <td> 180700</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2611</th>\n", | |
| " <td> Highland Terrace</td>\n", | |
| " <td> 113900</td>\n", | |
| " <td> 112600</td>\n", | |
| " <td> 112200</td>\n", | |
| " <td> 112900</td>\n", | |
| " <td> 113700</td>\n", | |
| " <td> 114600</td>\n", | |
| " <td> 114600</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 113800</td>\n", | |
| " <td> 114100</td>\n", | |
| " <td> 114200</td>\n", | |
| " <td> 113700</td>\n", | |
| " <td> 113200</td>\n", | |
| " <td> 113600</td>\n", | |
| " <td> 114200</td>\n", | |
| " <td> 114300</td>\n", | |
| " <td> 114500</td>\n", | |
| " <td> 114500</td>\n", | |
| " <td> 115300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2670</th>\n", | |
| " <td> Sequoyah</td>\n", | |
| " <td> 223100</td>\n", | |
| " <td> 222700</td>\n", | |
| " <td> 223800</td>\n", | |
| " <td> 226100</td>\n", | |
| " <td> 228500</td>\n", | |
| " <td> 229900</td>\n", | |
| " <td> 230600</td>\n", | |
| " <td> 231500</td>\n", | |
| " <td> 232700</td>\n", | |
| " <td> 235000</td>\n", | |
| " <td> 237300</td>\n", | |
| " <td> 239000</td>\n", | |
| " <td> 241300</td>\n", | |
| " <td> 244900</td>\n", | |
| " <td> 248100</td>\n", | |
| " <td> 250800</td>\n", | |
| " <td> 253000</td>\n", | |
| " <td> 254100</td>\n", | |
| " <td> 254700</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2682</th>\n", | |
| " <td> Montclair</td>\n", | |
| " <td> 326000</td>\n", | |
| " <td> 325000</td>\n", | |
| " <td> 322100</td>\n", | |
| " <td> 319000</td>\n", | |
| " <td> 318800</td>\n", | |
| " <td> 319200</td>\n", | |
| " <td> 318500</td>\n", | |
| " <td> 318500</td>\n", | |
| " <td> 320000</td>\n", | |
| " <td> 322000</td>\n", | |
| " <td> 324400</td>\n", | |
| " <td> 325600</td>\n", | |
| " <td> 325900</td>\n", | |
| " <td> 326700</td>\n", | |
| " <td> 328200</td>\n", | |
| " <td> 329300</td>\n", | |
| " <td> 329700</td>\n", | |
| " <td> 331400</td>\n", | |
| " <td> 335000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2734</th>\n", | |
| " <td> North Stonehurst</td>\n", | |
| " <td> 91800</td>\n", | |
| " <td> 94500</td>\n", | |
| " <td> 96400</td>\n", | |
| " <td> 97200</td>\n", | |
| " <td> 97300</td>\n", | |
| " <td> 97600</td>\n", | |
| " <td> 98100</td>\n", | |
| " <td> 98700</td>\n", | |
| " <td> 99400</td>\n", | |
| " <td> 100400</td>\n", | |
| " <td> 101400</td>\n", | |
| " <td> 102200</td>\n", | |
| " <td> 102800</td>\n", | |
| " <td> 102800</td>\n", | |
| " <td> 102300</td>\n", | |
| " <td> 102200</td>\n", | |
| " <td> 102000</td>\n", | |
| " <td> 101900</td>\n", | |
| " <td> 102800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2749</th>\n", | |
| " <td> Harrington</td>\n", | |
| " <td> 107900</td>\n", | |
| " <td> 107200</td>\n", | |
| " <td> 107100</td>\n", | |
| " <td> 107400</td>\n", | |
| " <td> 107700</td>\n", | |
| " <td> 107700</td>\n", | |
| " <td> 108800</td>\n", | |
| " <td> 110000</td>\n", | |
| " <td> 110500</td>\n", | |
| " <td> 111000</td>\n", | |
| " <td> 112100</td>\n", | |
| " <td> 113100</td>\n", | |
| " <td> 113600</td>\n", | |
| " <td> 113600</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 115100</td>\n", | |
| " <td> 116000</td>\n", | |
| " <td> 116200</td>\n", | |
| " <td> 116100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2786</th>\n", | |
| " <td> Jefferson</td>\n", | |
| " <td> 114300</td>\n", | |
| " <td> 114000</td>\n", | |
| " <td> 114700</td>\n", | |
| " <td> 115600</td>\n", | |
| " <td> 116000</td>\n", | |
| " <td> 116500</td>\n", | |
| " <td> 117700</td>\n", | |
| " <td> 119300</td>\n", | |
| " <td> 120700</td>\n", | |
| " <td> 121800</td>\n", | |
| " <td> 122600</td>\n", | |
| " <td> 122800</td>\n", | |
| " <td> 123400</td>\n", | |
| " <td> 124700</td>\n", | |
| " <td> 125700</td>\n", | |
| " <td> 126600</td>\n", | |
| " <td> 128100</td>\n", | |
| " <td> 128600</td>\n", | |
| " <td> 127200</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2891</th>\n", | |
| " <td> Iveywood</td>\n", | |
| " <td> 97600</td>\n", | |
| " <td> 98400</td>\n", | |
| " <td> 100200</td>\n", | |
| " <td> 101700</td>\n", | |
| " <td> 102300</td>\n", | |
| " <td> 102700</td>\n", | |
| " <td> 102700</td>\n", | |
| " <td> 103000</td>\n", | |
| " <td> 103700</td>\n", | |
| " <td> 105200</td>\n", | |
| " <td> 106200</td>\n", | |
| " <td> 106600</td>\n", | |
| " <td> 106700</td>\n", | |
| " <td> 106600</td>\n", | |
| " <td> 106600</td>\n", | |
| " <td> 107100</td>\n", | |
| " <td> 107800</td>\n", | |
| " <td> 108700</td>\n", | |
| " <td> 110300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2903</th>\n", | |
| " <td> Fairview Park</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 242200</td>\n", | |
| " <td> 241800</td>\n", | |
| " <td> 241900</td>\n", | |
| " <td> 239700</td>\n", | |
| " <td> 236400</td>\n", | |
| " <td> 236600</td>\n", | |
| " <td> 239500</td>\n", | |
| " <td> 242300</td>\n", | |
| " <td> 243900</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2906</th>\n", | |
| " <td> Chabot Park</td>\n", | |
| " <td> 238600</td>\n", | |
| " <td> 240500</td>\n", | |
| " <td> 241100</td>\n", | |
| " <td> 242200</td>\n", | |
| " <td> 243700</td>\n", | |
| " <td> 243800</td>\n", | |
| " <td> 243200</td>\n", | |
| " <td> 243100</td>\n", | |
| " <td> 242700</td>\n", | |
| " <td> 243300</td>\n", | |
| " <td> 245600</td>\n", | |
| " <td> 246700</td>\n", | |
| " <td> 246500</td>\n", | |
| " <td> 247400</td>\n", | |
| " <td> 248500</td>\n", | |
| " <td> 249200</td>\n", | |
| " <td> 249900</td>\n", | |
| " <td> 252200</td>\n", | |
| " <td> 255400</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2963</th>\n", | |
| " <td> Merriwood</td>\n", | |
| " <td> 304500</td>\n", | |
| " <td> 300100</td>\n", | |
| " <td> 296000</td>\n", | |
| " <td> 293200</td>\n", | |
| " <td> 291200</td>\n", | |
| " <td> 291100</td>\n", | |
| " <td> 290300</td>\n", | |
| " <td> 289000</td>\n", | |
| " <td> 289000</td>\n", | |
| " <td> 291500</td>\n", | |
| " <td> 293300</td>\n", | |
| " <td> 293300</td>\n", | |
| " <td> 293000</td>\n", | |
| " <td> 294200</td>\n", | |
| " <td> 296900</td>\n", | |
| " <td> 301200</td>\n", | |
| " <td> 305400</td>\n", | |
| " <td> 307700</td>\n", | |
| " <td> 310600</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2988</th>\n", | |
| " <td> Eastmont Hills</td>\n", | |
| " <td> 142500</td>\n", | |
| " <td> 141600</td>\n", | |
| " <td> 141000</td>\n", | |
| " <td> 141000</td>\n", | |
| " <td> 141300</td>\n", | |
| " <td> 141300</td>\n", | |
| " <td> 141000</td>\n", | |
| " <td> 140900</td>\n", | |
| " <td> 141200</td>\n", | |
| " <td> 142000</td>\n", | |
| " <td> 142800</td>\n", | |
| " <td> 142400</td>\n", | |
| " <td> 141700</td>\n", | |
| " <td> 141700</td>\n", | |
| " <td> 142000</td>\n", | |
| " <td> 141900</td>\n", | |
| " <td> 141500</td>\n", | |
| " <td> 141700</td>\n", | |
| " <td> 142300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2991</th>\n", | |
| " <td> Shafter</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 245800</td>\n", | |
| " <td> 245200</td>\n", | |
| " <td> 241500</td>\n", | |
| " <td> 238100</td>\n", | |
| " <td> 236900</td>\n", | |
| " <td> 239700</td>\n", | |
| " <td> 244800</td>\n", | |
| " <td> 247200</td>\n", | |
| " <td> 247100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3035</th>\n", | |
| " <td> Eastmont</td>\n", | |
| " <td> 93800</td>\n", | |
| " <td> 93700</td>\n", | |
| " <td> 94800</td>\n", | |
| " <td> 96000</td>\n", | |
| " <td> 97600</td>\n", | |
| " <td> 99500</td>\n", | |
| " <td> 100500</td>\n", | |
| " <td> 101100</td>\n", | |
| " <td> 101900</td>\n", | |
| " <td> 102900</td>\n", | |
| " <td> 104300</td>\n", | |
| " <td> 106200</td>\n", | |
| " <td> 108300</td>\n", | |
| " <td> 109800</td>\n", | |
| " <td> 110900</td>\n", | |
| " <td> 110900</td>\n", | |
| " <td> 108900</td>\n", | |
| " <td> 106800</td>\n", | |
| " <td> 106700</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3043</th>\n", | |
| " <td> Castlemont</td>\n", | |
| " <td> 111300</td>\n", | |
| " <td> 109900</td>\n", | |
| " <td> 110200</td>\n", | |
| " <td> 110300</td>\n", | |
| " <td> 110400</td>\n", | |
| " <td> 111300</td>\n", | |
| " <td> 112000</td>\n", | |
| " <td> 112200</td>\n", | |
| " <td> 111900</td>\n", | |
| " <td> 111800</td>\n", | |
| " <td> 111600</td>\n", | |
| " <td> 111000</td>\n", | |
| " <td> 110600</td>\n", | |
| " <td> 110700</td>\n", | |
| " <td> 111000</td>\n", | |
| " <td> 111500</td>\n", | |
| " <td> 112000</td>\n", | |
| " <td> 112400</td>\n", | |
| " <td> 113600</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3062</th>\n", | |
| " <td> Rockridge</td>\n", | |
| " <td> 287800</td>\n", | |
| " <td> 297700</td>\n", | |
| " <td> 304000</td>\n", | |
| " <td> 307300</td>\n", | |
| " <td> 308900</td>\n", | |
| " <td> 311400</td>\n", | |
| " <td> 314400</td>\n", | |
| " <td> 316000</td>\n", | |
| " <td> 315600</td>\n", | |
| " <td> 317300</td>\n", | |
| " <td> 320700</td>\n", | |
| " <td> 322400</td>\n", | |
| " <td> 322700</td>\n", | |
| " <td> 324900</td>\n", | |
| " <td> 328600</td>\n", | |
| " <td> 331800</td>\n", | |
| " <td> 334100</td>\n", | |
| " <td> 336800</td>\n", | |
| " <td> 339800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3084</th>\n", | |
| " <td> Cox</td>\n", | |
| " <td> 100700</td>\n", | |
| " <td> 101300</td>\n", | |
| " <td> 101900</td>\n", | |
| " <td> 102200</td>\n", | |
| " <td> 102400</td>\n", | |
| " <td> 102700</td>\n", | |
| " <td> 103000</td>\n", | |
| " <td> 102900</td>\n", | |
| " <td> 102500</td>\n", | |
| " <td> 103200</td>\n", | |
| " <td> 104100</td>\n", | |
| " <td> 104100</td>\n", | |
| " <td> 103900</td>\n", | |
| " <td> 103900</td>\n", | |
| " <td> 104100</td>\n", | |
| " <td> 104900</td>\n", | |
| " <td> 105700</td>\n", | |
| " <td> 106300</td>\n", | |
| " <td> 107500</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3097</th>\n", | |
| " <td> Frick</td>\n", | |
| " <td> 130200</td>\n", | |
| " <td> 131100</td>\n", | |
| " <td> 131700</td>\n", | |
| " <td> 131800</td>\n", | |
| " <td> 131600</td>\n", | |
| " <td> 131800</td>\n", | |
| " <td> 132700</td>\n", | |
| " <td> 133500</td>\n", | |
| " <td> 133700</td>\n", | |
| " <td> 134400</td>\n", | |
| " <td> 134800</td>\n", | |
| " <td> 134400</td>\n", | |
| " <td> 133700</td>\n", | |
| " <td> 133900</td>\n", | |
| " <td> 134700</td>\n", | |
| " <td> 135900</td>\n", | |
| " <td> 137300</td>\n", | |
| " <td> 138700</td>\n", | |
| " <td> 139400</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3107</th>\n", | |
| " <td> Trestle Glen</td>\n", | |
| " <td> 274300</td>\n", | |
| " <td> 280600</td>\n", | |
| " <td> 287000</td>\n", | |
| " <td> 291400</td>\n", | |
| " <td> 294100</td>\n", | |
| " <td> 296400</td>\n", | |
| " <td> 298900</td>\n", | |
| " <td> 301800</td>\n", | |
| " <td> 303700</td>\n", | |
| " <td> 306400</td>\n", | |
| " <td> 309600</td>\n", | |
| " <td> 310800</td>\n", | |
| " <td> 310600</td>\n", | |
| " <td> 311900</td>\n", | |
| " <td> 314300</td>\n", | |
| " <td> 318600</td>\n", | |
| " <td> 323300</td>\n", | |
| " <td> 326400</td>\n", | |
| " <td> 328800</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3119</th>\n", | |
| " <td> Sobrante Park</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 106900</td>\n", | |
| " <td> 106800</td>\n", | |
| " <td> 106400</td>\n", | |
| " <td> 107000</td>\n", | |
| " <td> 108600</td>\n", | |
| " <td> 109900</td>\n", | |
| " <td> 110800</td>\n", | |
| " <td> 111100</td>\n", | |
| " <td> 111000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3129</th>\n", | |
| " <td> Santa Fe</td>\n", | |
| " <td> 152800</td>\n", | |
| " <td> 148900</td>\n", | |
| " <td> 146000</td>\n", | |
| " <td> 142700</td>\n", | |
| " <td> 140500</td>\n", | |
| " <td> 139200</td>\n", | |
| " <td> 138300</td>\n", | |
| " <td> 137500</td>\n", | |
| " <td> 135800</td>\n", | |
| " <td> 135000</td>\n", | |
| " <td> 134800</td>\n", | |
| " <td> 133800</td>\n", | |
| " <td> 132100</td>\n", | |
| " <td> 131300</td>\n", | |
| " <td> 131300</td>\n", | |
| " <td> 131500</td>\n", | |
| " <td> 131200</td>\n", | |
| " <td> 131500</td>\n", | |
| " <td> 132300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3202</th>\n", | |
| " <td> Brookfield Village</td>\n", | |
| " <td> 83600</td>\n", | |
| " <td> 82600</td>\n", | |
| " <td> 82300</td>\n", | |
| " <td> 82600</td>\n", | |
| " <td> 82800</td>\n", | |
| " <td> 83200</td>\n", | |
| " <td> 83700</td>\n", | |
| " <td> 84400</td>\n", | |
| " <td> 85300</td>\n", | |
| " <td> 86500</td>\n", | |
| " <td> 87600</td>\n", | |
| " <td> 88500</td>\n", | |
| " <td> 89200</td>\n", | |
| " <td> 89900</td>\n", | |
| " <td> 89800</td>\n", | |
| " <td> 88800</td>\n", | |
| " <td> 88200</td>\n", | |
| " <td> 88800</td>\n", | |
| " <td> 90100</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3258</th>\n", | |
| " <td> Coliseum</td>\n", | |
| " <td> 83500</td>\n", | |
| " <td> 83800</td>\n", | |
| " <td> 84900</td>\n", | |
| " <td> 86000</td>\n", | |
| " <td> 86400</td>\n", | |
| " <td> 86200</td>\n", | |
| " <td> 85600</td>\n", | |
| " <td> 85000</td>\n", | |
| " <td> 85200</td>\n", | |
| " <td> 85900</td>\n", | |
| " <td> 86800</td>\n", | |
| " <td> 87600</td>\n", | |
| " <td> 88300</td>\n", | |
| " <td> 89100</td>\n", | |
| " <td> 89800</td>\n", | |
| " <td> 90400</td>\n", | |
| " <td> 91400</td>\n", | |
| " <td> 93300</td>\n", | |
| " <td> 95300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3266</th>\n", | |
| " <td> Lakewide</td>\n", | |
| " <td> 147100</td>\n", | |
| " <td> 144800</td>\n", | |
| " <td> 149000</td>\n", | |
| " <td> 152600</td>\n", | |
| " <td> 154600</td>\n", | |
| " <td> 157700</td>\n", | |
| " <td> 160000</td>\n", | |
| " <td> 160500</td>\n", | |
| " <td> 160700</td>\n", | |
| " <td> 160300</td>\n", | |
| " <td> 159800</td>\n", | |
| " <td> 161100</td>\n", | |
| " <td> 168200</td>\n", | |
| " <td> 173800</td>\n", | |
| " <td> 172800</td>\n", | |
| " <td> 173600</td>\n", | |
| " <td> 179300</td>\n", | |
| " <td> 184300</td>\n", | |
| " <td> 186900</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3271</th>\n", | |
| " <td> Chinatown</td>\n", | |
| " <td> 132400</td>\n", | |
| " <td> 128100</td>\n", | |
| " <td> 126200</td>\n", | |
| " <td> 125900</td>\n", | |
| " <td> 125300</td>\n", | |
| " <td> 125600</td>\n", | |
| " <td> 126900</td>\n", | |
| " <td> 128000</td>\n", | |
| " <td> 128900</td>\n", | |
| " <td> 129400</td>\n", | |
| " <td> 130100</td>\n", | |
| " <td> 131600</td>\n", | |
| " <td> 132900</td>\n", | |
| " <td> 133600</td>\n", | |
| " <td> 134500</td>\n", | |
| " <td> 134500</td>\n", | |
| " <td> 135300</td>\n", | |
| " <td> 136300</td>\n", | |
| " <td> 136300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3286</th>\n", | |
| " <td> Clawson</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3433</th>\n", | |
| " <td> Piedmont Pines</td>\n", | |
| " <td> 332400</td>\n", | |
| " <td> 330200</td>\n", | |
| " <td> 328100</td>\n", | |
| " <td> 325700</td>\n", | |
| " <td> 324600</td>\n", | |
| " <td> 325800</td>\n", | |
| " <td> 328000</td>\n", | |
| " <td> 329900</td>\n", | |
| " <td> 332500</td>\n", | |
| " <td> 336400</td>\n", | |
| " <td> 339600</td>\n", | |
| " <td> 341600</td>\n", | |
| " <td> 344500</td>\n", | |
| " <td> 348600</td>\n", | |
| " <td> 352100</td>\n", | |
| " <td> 354700</td>\n", | |
| " <td> 357000</td>\n", | |
| " <td> 358700</td>\n", | |
| " <td> 360400</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3504</th>\n", | |
| " <td> Upper Peralta Creek</td>\n", | |
| " <td> 120300</td>\n", | |
| " <td> 119500</td>\n", | |
| " <td> 117900</td>\n", | |
| " <td> 116100</td>\n", | |
| " <td> 115300</td>\n", | |
| " <td> 115800</td>\n", | |
| " <td> 116400</td>\n", | |
| " <td> 116700</td>\n", | |
| " <td> 116900</td>\n", | |
| " <td> 117200</td>\n", | |
| " <td> 117400</td>\n", | |
| " <td> 118000</td>\n", | |
| " <td> 118900</td>\n", | |
| " <td> 119900</td>\n", | |
| " <td> 121200</td>\n", | |
| " <td> 122400</td>\n", | |
| " <td> 122700</td>\n", | |
| " <td> 122700</td>\n", | |
| " <td> 122900</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3629</th>\n", | |
| " <td> Las Palmas</td>\n", | |
| " <td> 110800</td>\n", | |
| " <td> 111400</td>\n", | |
| " <td> 113400</td>\n", | |
| " <td> 114100</td>\n", | |
| " <td> 114400</td>\n", | |
| " <td> 115500</td>\n", | |
| " <td> 115600</td>\n", | |
| " <td> 114700</td>\n", | |
| " <td> 114300</td>\n", | |
| " <td> 114800</td>\n", | |
| " <td> 115200</td>\n", | |
| " <td> 115400</td>\n", | |
| " <td> 115400</td>\n", | |
| " <td> 115000</td>\n", | |
| " <td> 114800</td>\n", | |
| " <td> 115600</td>\n", | |
| " <td> 116400</td>\n", | |
| " <td> 117000</td>\n", | |
| " <td> 118300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3645</th>\n", | |
| " <td> Caballo Hills</td>\n", | |
| " <td> 244000</td>\n", | |
| " <td> 242600</td>\n", | |
| " <td> 242100</td>\n", | |
| " <td> 244600</td>\n", | |
| " <td> 247900</td>\n", | |
| " <td> 249000</td>\n", | |
| " <td> 247500</td>\n", | |
| " <td> 248000</td>\n", | |
| " <td> 251000</td>\n", | |
| " <td> 255400</td>\n", | |
| " <td> 260300</td>\n", | |
| " <td> 263900</td>\n", | |
| " <td> 265800</td>\n", | |
| " <td> 266900</td>\n", | |
| " <td> 268700</td>\n", | |
| " <td> 270300</td>\n", | |
| " <td> 272000</td>\n", | |
| " <td> 273500</td>\n", | |
| " <td> 275300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3781</th>\n", | |
| " <td> Produce & Waterfront</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3863</th>\n", | |
| " <td> Oakmore</td>\n", | |
| " <td> 278700</td>\n", | |
| " <td> 279100</td>\n", | |
| " <td> 281100</td>\n", | |
| " <td> 284300</td>\n", | |
| " <td> 285800</td>\n", | |
| " <td> 286100</td>\n", | |
| " <td> 287100</td>\n", | |
| " <td> 289300</td>\n", | |
| " <td> 291700</td>\n", | |
| " <td> 295100</td>\n", | |
| " <td> 298100</td>\n", | |
| " <td> 300400</td>\n", | |
| " <td> 302500</td>\n", | |
| " <td> 304600</td>\n", | |
| " <td> 306700</td>\n", | |
| " <td> 309200</td>\n", | |
| " <td> 312700</td>\n", | |
| " <td> 316600</td>\n", | |
| " <td> 321400</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3921</th>\n", | |
| " <td> Fairfax</td>\n", | |
| " <td> 111300</td>\n", | |
| " <td> 112100</td>\n", | |
| " <td> 114100</td>\n", | |
| " <td> 115900</td>\n", | |
| " <td> 117100</td>\n", | |
| " <td> 118400</td>\n", | |
| " <td> 120500</td>\n", | |
| " <td> 122200</td>\n", | |
| " <td> 122900</td>\n", | |
| " <td> 124100</td>\n", | |
| " <td> 125700</td>\n", | |
| " <td> 126500</td>\n", | |
| " <td> 126900</td>\n", | |
| " <td> 127800</td>\n", | |
| " <td> 128600</td>\n", | |
| " <td> 128600</td>\n", | |
| " <td> 128900</td>\n", | |
| " <td> 129600</td>\n", | |
| " <td> 129000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3942</th>\n", | |
| " <td> Toler Heights</td>\n", | |
| " <td> 141700</td>\n", | |
| " <td> 140400</td>\n", | |
| " <td> 138000</td>\n", | |
| " <td> 134900</td>\n", | |
| " <td> 132600</td>\n", | |
| " <td> 131400</td>\n", | |
| " <td> 130900</td>\n", | |
| " <td> 131300</td>\n", | |
| " <td> 131600</td>\n", | |
| " <td> 131300</td>\n", | |
| " <td> 130800</td>\n", | |
| " <td> 130500</td>\n", | |
| " <td> 131400</td>\n", | |
| " <td> 132800</td>\n", | |
| " <td> 134100</td>\n", | |
| " <td> 135700</td>\n", | |
| " <td> 137000</td>\n", | |
| " <td> 138400</td>\n", | |
| " <td> 140300</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3970</th>\n", | |
| " <td> Forestland</td>\n", | |
| " <td> 335100</td>\n", | |
| " <td> 333200</td>\n", | |
| " <td> 333000</td>\n", | |
| " <td> 333300</td>\n", | |
| " <td> 332300</td>\n", | |
| " <td> 331100</td>\n", | |
| " <td> 330200</td>\n", | |
| " <td> 329200</td>\n", | |
| " <td> 327100</td>\n", | |
| " <td> 327500</td>\n", | |
| " <td> 327700</td>\n", | |
| " <td> 327900</td>\n", | |
| " <td> 328500</td>\n", | |
| " <td> 330600</td>\n", | |
| " <td> 330000</td>\n", | |
| " <td> 329700</td>\n", | |
| " <td> 331000</td>\n", | |
| " <td> 335300</td>\n", | |
| " <td> 341600</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3994</th>\n", | |
| " <td> Golden Gate</td>\n", | |
| " <td> 160500</td>\n", | |
| " <td> 155300</td>\n", | |
| " <td> 153100</td>\n", | |
| " <td> 152100</td>\n", | |
| " <td> 150000</td>\n", | |
| " <td> 147000</td>\n", | |
| " <td> 145400</td>\n", | |
| " <td> 145100</td>\n", | |
| " <td> 144500</td>\n", | |
| " <td> 143900</td>\n", | |
| " <td> 143600</td>\n", | |
| " <td> 143700</td>\n", | |
| " <td> 144600</td>\n", | |
| " <td> 146500</td>\n", | |
| " <td> 150100</td>\n", | |
| " <td> 154000</td>\n", | |
| " <td> 156500</td>\n", | |
| " <td> 157300</td>\n", | |
| " <td> 157700</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4015</th>\n", | |
| " <td> Durant Manor</td>\n", | |
| " <td> 126900</td>\n", | |
| " <td> 127000</td>\n", | |
| " <td> 125900</td>\n", | |
| " <td> 124100</td>\n", | |
| " <td> 123400</td>\n", | |
| " <td> 123500</td>\n", | |
| " <td> 123400</td>\n", | |
| " <td> 123400</td>\n", | |
| " <td> 123700</td>\n", | |
| " <td> 124600</td>\n", | |
| " <td> 125500</td>\n", | |
| " <td> 125800</td>\n", | |
| " <td> 125800</td>\n", | |
| " <td> 126100</td>\n", | |
| " <td> 127000</td>\n", | |
| " <td> 128300</td>\n", | |
| " <td> 129400</td>\n", | |
| " <td> 130600</td>\n", | |
| " <td> 132400</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>72 rows \u00d7 216 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 23, | |
| "text": [ | |
| " RegionName 1996-04 1996-05 1996-06 1996-07 1996-08 \\\n", | |
| "1307 Redwood Heights 185500 185400 184000 182400 181300 \n", | |
| "1481 Adams Point 113800 110900 108300 106300 105300 \n", | |
| "1531 Clinton 125200 125400 125400 125100 125300 \n", | |
| "1582 Cleveland Heights 209900 211300 209100 206200 205500 \n", | |
| "1677 Havenscourt 94300 96100 98200 100100 101300 \n", | |
| "1740 Bushrod 169100 168900 168800 167700 166000 \n", | |
| "1760 Piedmont Avenue 144700 142600 142500 142200 142400 \n", | |
| "1820 Upper Dimond 170600 172900 173100 173600 175200 \n", | |
| "1826 St. Elizabeth 106400 104500 103700 104300 104900 \n", | |
| "1972 Longfellow 134800 130900 128800 127700 126200 \n", | |
| "1990 Upper Rockridge 350300 353500 358300 360900 362100 \n", | |
| "2000 Fremont 104800 106800 108100 108900 110000 \n", | |
| "2024 Meadow Brook 114800 113800 112400 112200 113400 \n", | |
| "2030 Webster 90200 93000 95800 97700 98700 \n", | |
| "2054 Seminary 90300 92400 93600 94700 96200 \n", | |
| "2062 Rancho San Antonio 109800 109700 109400 109800 111100 \n", | |
| "2085 Maxwell Park 129200 130900 133300 134600 135100 \n", | |
| "2099 Glenview 201300 207400 211500 213600 216300 \n", | |
| "2199 Arroyo Viejo 88200 91300 95000 97400 98500 \n", | |
| "2298 Allendale 104800 105400 105700 106000 105900 \n", | |
| "2377 Grand Lake 117300 116900 117500 117700 116600 \n", | |
| "2381 Prescott 136600 134800 133500 131600 129300 \n", | |
| "2394 Lakeshore 268900 277300 283900 286400 287400 \n", | |
| "2579 Temescal 166200 168600 168900 168000 167900 \n", | |
| "2611 Highland Terrace 113900 112600 112200 112900 113700 \n", | |
| "2670 Sequoyah 223100 222700 223800 226100 228500 \n", | |
| "2682 Montclair 326000 325000 322100 319000 318800 \n", | |
| "2734 North Stonehurst 91800 94500 96400 97200 97300 \n", | |
| "2749 Harrington 107900 107200 107100 107400 107700 \n", | |
| "2786 Jefferson 114300 114000 114700 115600 116000 \n", | |
| "2891 Iveywood 97600 98400 100200 101700 102300 \n", | |
| "2903 Fairview Park 0 0 0 0 0 \n", | |
| "2906 Chabot Park 238600 240500 241100 242200 243700 \n", | |
| "2963 Merriwood 304500 300100 296000 293200 291200 \n", | |
| "2988 Eastmont Hills 142500 141600 141000 141000 141300 \n", | |
| "2991 Shafter 0 0 0 0 0 \n", | |
| "3035 Eastmont 93800 93700 94800 96000 97600 \n", | |
| "3043 Castlemont 111300 109900 110200 110300 110400 \n", | |
| "3062 Rockridge 287800 297700 304000 307300 308900 \n", | |
| "3084 Cox 100700 101300 101900 102200 102400 \n", | |
| "3097 Frick 130200 131100 131700 131800 131600 \n", | |
| "3107 Trestle Glen 274300 280600 287000 291400 294100 \n", | |
| "3119 Sobrante Park 0 0 0 0 0 \n", | |
| "3129 Santa Fe 152800 148900 146000 142700 140500 \n", | |
| "3202 Brookfield Village 83600 82600 82300 82600 82800 \n", | |
| "3258 Coliseum 83500 83800 84900 86000 86400 \n", | |
| "3266 Lakewide 147100 144800 149000 152600 154600 \n", | |
| "3271 Chinatown 132400 128100 126200 125900 125300 \n", | |
| "3286 Clawson 0 0 0 0 0 \n", | |
| "3433 Piedmont Pines 332400 330200 328100 325700 324600 \n", | |
| "3504 Upper Peralta Creek 120300 119500 117900 116100 115300 \n", | |
| "3629 Las Palmas 110800 111400 113400 114100 114400 \n", | |
| "3645 Caballo Hills 244000 242600 242100 244600 247900 \n", | |
| "3781 Produce & Waterfront 0 0 0 0 0 \n", | |
| "3863 Oakmore 278700 279100 281100 284300 285800 \n", | |
| "3921 Fairfax 111300 112100 114100 115900 117100 \n", | |
| "3942 Toler Heights 141700 140400 138000 134900 132600 \n", | |
| "3970 Forestland 335100 333200 333000 333300 332300 \n", | |
| "3994 Golden Gate 160500 155300 153100 152100 150000 \n", | |
| "4015 Durant Manor 126900 127000 125900 124100 123400 \n", | |
| " ... ... ... ... ... ... \n", | |
| "\n", | |
| " 1996-09 1996-10 1996-11 1996-12 1997-01 1997-02 1997-03 1997-04 \\\n", | |
| "1307 180700 180600 181100 182000 183700 185500 186300 186700 \n", | |
| "1481 104500 103400 102600 103800 105500 106900 108600 109900 \n", | |
| "1531 125200 125200 125500 125800 125300 125200 125500 125500 \n", | |
| "1582 204900 203400 200400 196400 194200 194000 193000 191800 \n", | |
| "1677 101300 101000 100800 100900 102300 104000 104700 105100 \n", | |
| "1740 164500 163300 163000 162400 162100 162600 162400 160800 \n", | |
| "1760 143400 145200 147500 150000 150400 150200 151600 153300 \n", | |
| "1820 176300 177700 179000 179800 181500 184500 186800 187600 \n", | |
| "1826 104800 105200 106300 107000 107600 108800 110500 111800 \n", | |
| "1972 125000 124500 124800 125700 126800 127500 128600 130200 \n", | |
| "1990 364100 365800 367100 369300 374000 379300 382900 386200 \n", | |
| "2000 111300 112600 112800 112300 112600 113600 114000 113800 \n", | |
| "2024 114000 114400 115100 116600 118200 119600 119200 117700 \n", | |
| "2030 99200 99500 99800 99900 100400 101300 101500 101400 \n", | |
| "2054 96400 95900 95600 95100 95000 96200 97300 97800 \n", | |
| "2062 112000 112100 112700 113900 114900 115200 114500 114000 \n", | |
| "2085 136000 137500 138600 139600 140800 141900 142900 143800 \n", | |
| "2099 219300 221500 221700 221300 222400 225800 228400 228700 \n", | |
| "2199 98700 99300 100300 100600 100800 102000 103700 104300 \n", | |
| "2298 106000 107000 108600 109900 111600 113400 114400 114300 \n", | |
| "2377 115300 114500 114800 116000 116900 118600 120800 122700 \n", | |
| "2381 128300 127200 124700 123200 123200 123900 126000 129300 \n", | |
| "2394 288000 289000 290700 292800 296000 298900 299900 298500 \n", | |
| "2579 168200 168500 168800 169500 170600 172400 173600 173000 \n", | |
| "2611 114600 114600 114000 113800 114100 114200 113700 113200 \n", | |
| "2670 229900 230600 231500 232700 235000 237300 239000 241300 \n", | |
| "2682 319200 318500 318500 320000 322000 324400 325600 325900 \n", | |
| "2734 97600 98100 98700 99400 100400 101400 102200 102800 \n", | |
| "2749 107700 108800 110000 110500 111000 112100 113100 113600 \n", | |
| "2786 116500 117700 119300 120700 121800 122600 122800 123400 \n", | |
| "2891 102700 102700 103000 103700 105200 106200 106600 106700 \n", | |
| "2903 0 0 0 0 0 242200 241800 241900 \n", | |
| "2906 243800 243200 243100 242700 243300 245600 246700 246500 \n", | |
| "2963 291100 290300 289000 289000 291500 293300 293300 293000 \n", | |
| "2988 141300 141000 140900 141200 142000 142800 142400 141700 \n", | |
| "2991 0 0 0 0 0 245800 245200 241500 \n", | |
| "3035 99500 100500 101100 101900 102900 104300 106200 108300 \n", | |
| "3043 111300 112000 112200 111900 111800 111600 111000 110600 \n", | |
| "3062 311400 314400 316000 315600 317300 320700 322400 322700 \n", | |
| "3084 102700 103000 102900 102500 103200 104100 104100 103900 \n", | |
| "3097 131800 132700 133500 133700 134400 134800 134400 133700 \n", | |
| "3107 296400 298900 301800 303700 306400 309600 310800 310600 \n", | |
| "3119 0 0 0 0 0 106900 106800 106400 \n", | |
| "3129 139200 138300 137500 135800 135000 134800 133800 132100 \n", | |
| "3202 83200 83700 84400 85300 86500 87600 88500 89200 \n", | |
| "3258 86200 85600 85000 85200 85900 86800 87600 88300 \n", | |
| "3266 157700 160000 160500 160700 160300 159800 161100 168200 \n", | |
| "3271 125600 126900 128000 128900 129400 130100 131600 132900 \n", | |
| "3286 0 0 0 0 0 0 0 0 \n", | |
| "3433 325800 328000 329900 332500 336400 339600 341600 344500 \n", | |
| "3504 115800 116400 116700 116900 117200 117400 118000 118900 \n", | |
| "3629 115500 115600 114700 114300 114800 115200 115400 115400 \n", | |
| "3645 249000 247500 248000 251000 255400 260300 263900 265800 \n", | |
| "3781 0 0 0 0 0 0 0 0 \n", | |
| "3863 286100 287100 289300 291700 295100 298100 300400 302500 \n", | |
| "3921 118400 120500 122200 122900 124100 125700 126500 126900 \n", | |
| "3942 131400 130900 131300 131600 131300 130800 130500 131400 \n", | |
| "3970 331100 330200 329200 327100 327500 327700 327900 328500 \n", | |
| "3994 147000 145400 145100 144500 143900 143600 143700 144600 \n", | |
| "4015 123500 123400 123400 123700 124600 125500 125800 125800 \n", | |
| " ... ... ... ... ... ... ... ... \n", | |
| "\n", | |
| " 1997-05 1997-06 1997-07 1997-08 1997-09 1997-10 \n", | |
| "1307 187600 188600 190700 194000 196200 196900 ... \n", | |
| "1481 109900 110700 112300 114700 118500 123000 ... \n", | |
| "1531 125200 125200 125700 125900 125900 126200 ... \n", | |
| "1582 191600 191900 192300 194500 197200 199200 ... \n", | |
| "1677 106300 107600 108400 108400 108900 109800 ... \n", | |
| "1740 159500 159100 158900 158800 159900 161100 ... \n", | |
| "1760 156000 158700 162800 167900 170900 171700 ... \n", | |
| "1820 188500 189900 192000 194000 195700 196800 ... \n", | |
| "1826 112200 112000 111800 111800 111900 111800 ... \n", | |
| "1972 130400 129800 129100 129900 131800 134000 ... \n", | |
| "1990 389800 390600 392500 398000 403100 406000 ... \n", | |
| "2000 114300 114900 115200 115000 114600 113900 ... \n", | |
| "2024 117300 118900 120300 120300 119500 118600 ... \n", | |
| "2030 100900 100600 100400 100200 100300 101100 ... \n", | |
| "2054 98600 99300 98700 97800 98200 99300 ... \n", | |
| "2062 115100 116700 116600 115200 113700 113800 ... \n", | |
| "2085 144500 144900 145900 147200 148400 149200 ... \n", | |
| "2099 228000 227500 228200 229800 231300 232200 ... \n", | |
| "2199 103800 102800 102100 101900 102900 104600 ... \n", | |
| "2298 114000 114200 114700 115000 115000 115100 ... \n", | |
| "2377 125200 128400 129600 130200 131400 134100 ... \n", | |
| "2381 131900 134400 137100 140300 143300 144500 ... \n", | |
| "2394 297100 297500 300800 304900 308300 309900 ... \n", | |
| "2579 173000 174500 176800 178500 179700 180700 ... \n", | |
| "2611 113600 114200 114300 114500 114500 115300 ... \n", | |
| "2670 244900 248100 250800 253000 254100 254700 ... \n", | |
| "2682 326700 328200 329300 329700 331400 335000 ... \n", | |
| "2734 102800 102300 102200 102000 101900 102800 ... \n", | |
| "2749 113600 114000 115100 116000 116200 116100 ... \n", | |
| "2786 124700 125700 126600 128100 128600 127200 ... \n", | |
| "2891 106600 106600 107100 107800 108700 110300 ... \n", | |
| "2903 239700 236400 236600 239500 242300 243900 ... \n", | |
| "2906 247400 248500 249200 249900 252200 255400 ... \n", | |
| "2963 294200 296900 301200 305400 307700 310600 ... \n", | |
| "2988 141700 142000 141900 141500 141700 142300 ... \n", | |
| "2991 238100 236900 239700 244800 247200 247100 ... \n", | |
| "3035 109800 110900 110900 108900 106800 106700 ... \n", | |
| "3043 110700 111000 111500 112000 112400 113600 ... \n", | |
| "3062 324900 328600 331800 334100 336800 339800 ... \n", | |
| "3084 103900 104100 104900 105700 106300 107500 ... \n", | |
| "3097 133900 134700 135900 137300 138700 139400 ... \n", | |
| "3107 311900 314300 318600 323300 326400 328800 ... \n", | |
| "3119 107000 108600 109900 110800 111100 111000 ... \n", | |
| "3129 131300 131300 131500 131200 131500 132300 ... \n", | |
| "3202 89900 89800 88800 88200 88800 90100 ... \n", | |
| "3258 89100 89800 90400 91400 93300 95300 ... \n", | |
| "3266 173800 172800 173600 179300 184300 186900 ... \n", | |
| "3271 133600 134500 134500 135300 136300 136300 ... \n", | |
| "3286 0 0 0 0 0 0 ... \n", | |
| "3433 348600 352100 354700 357000 358700 360400 ... \n", | |
| "3504 119900 121200 122400 122700 122700 122900 ... \n", | |
| "3629 115000 114800 115600 116400 117000 118300 ... \n", | |
| "3645 266900 268700 270300 272000 273500 275300 ... \n", | |
| "3781 0 0 0 0 0 0 ... \n", | |
| "3863 304600 306700 309200 312700 316600 321400 ... \n", | |
| "3921 127800 128600 128600 128900 129600 129000 ... \n", | |
| "3942 132800 134100 135700 137000 138400 140300 ... \n", | |
| "3970 330600 330000 329700 331000 335300 341600 ... \n", | |
| "3994 146500 150100 154000 156500 157300 157700 ... \n", | |
| "4015 126100 127000 128300 129400 130600 132400 ... \n", | |
| " ... ... ... ... ... ... \n", | |
| "\n", | |
| "[72 rows x 216 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 23 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "oak_0214 = oak_homevalue[[\"RegionName\", \"2014-02\"]]\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>RegionName</th>\n", | |
| " <th>2014-02</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>1307</th>\n", | |
| " <td> Redwood Heights</td>\n", | |
| " <td> 562700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1481</th>\n", | |
| " <td> Adams Point</td>\n", | |
| " <td> 358600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1531</th>\n", | |
| " <td> Clinton</td>\n", | |
| " <td> 364800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1582</th>\n", | |
| " <td> Cleveland Heights</td>\n", | |
| " <td> 631000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1677</th>\n", | |
| " <td> Havenscourt</td>\n", | |
| " <td> 220200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1740</th>\n", | |
| " <td> Bushrod</td>\n", | |
| " <td> 616300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1760</th>\n", | |
| " <td> Piedmont Avenue</td>\n", | |
| " <td> 476900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1820</th>\n", | |
| " <td> Upper Dimond</td>\n", | |
| " <td> 568200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1826</th>\n", | |
| " <td> St. Elizabeth</td>\n", | |
| " <td> 262000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1972</th>\n", | |
| " <td> Longfellow</td>\n", | |
| " <td> 465400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1990</th>\n", | |
| " <td> Upper Rockridge</td>\n", | |
| " <td> 1072100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000</th>\n", | |
| " <td> Fremont</td>\n", | |
| " <td> 270900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2024</th>\n", | |
| " <td> Meadow Brook</td>\n", | |
| " <td> 284400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2030</th>\n", | |
| " <td> Webster</td>\n", | |
| " <td> 195100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2054</th>\n", | |
| " <td> Seminary</td>\n", | |
| " <td> 221100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2062</th>\n", | |
| " <td> Rancho San Antonio</td>\n", | |
| " <td> 274700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2085</th>\n", | |
| " <td> Maxwell Park</td>\n", | |
| " <td> 406200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2099</th>\n", | |
| " <td> Glenview</td>\n", | |
| " <td> 717600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2199</th>\n", | |
| " <td> Arroyo Viejo</td>\n", | |
| " <td> 195200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2298</th>\n", | |
| " <td> Allendale</td>\n", | |
| " <td> 299300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2377</th>\n", | |
| " <td> Grand Lake</td>\n", | |
| " <td> 336500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2381</th>\n", | |
| " <td> Prescott</td>\n", | |
| " <td> 354400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2394</th>\n", | |
| " <td> Lakeshore</td>\n", | |
| " <td> 886900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2579</th>\n", | |
| " <td> Temescal</td>\n", | |
| " <td> 679800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2611</th>\n", | |
| " <td> Highland Terrace</td>\n", | |
| " <td> 307100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2670</th>\n", | |
| " <td> Sequoyah</td>\n", | |
| " <td> 574900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2682</th>\n", | |
| " <td> Montclair</td>\n", | |
| " <td> 849500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2734</th>\n", | |
| " <td> North Stonehurst</td>\n", | |
| " <td> 207200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2749</th>\n", | |
| " <td> Harrington</td>\n", | |
| " <td> 272500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2786</th>\n", | |
| " <td> Jefferson</td>\n", | |
| " <td> 293000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2891</th>\n", | |
| " <td> Iveywood</td>\n", | |
| " <td> 211600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2903</th>\n", | |
| " <td> Fairview Park</td>\n", | |
| " <td> 867400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2906</th>\n", | |
| " <td> Chabot Park</td>\n", | |
| " <td> 598300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2963</th>\n", | |
| " <td> Merriwood</td>\n", | |
| " <td> 763100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2988</th>\n", | |
| " <td> Eastmont Hills</td>\n", | |
| " <td> 379000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2991</th>\n", | |
| " <td> Shafter</td>\n", | |
| " <td> 853100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3035</th>\n", | |
| " <td> Eastmont</td>\n", | |
| " <td> 215000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3043</th>\n", | |
| " <td> Castlemont</td>\n", | |
| " <td> 229000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3062</th>\n", | |
| " <td> Rockridge</td>\n", | |
| " <td> 1001800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3084</th>\n", | |
| " <td> Cox</td>\n", | |
| " <td> 203400</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3097</th>\n", | |
| " <td> Frick</td>\n", | |
| " <td> 349000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3107</th>\n", | |
| " <td> Trestle Glen</td>\n", | |
| " <td> 899600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3119</th>\n", | |
| " <td> Sobrante Park</td>\n", | |
| " <td> 208300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3129</th>\n", | |
| " <td> Santa Fe</td>\n", | |
| " <td> 477500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3202</th>\n", | |
| " <td> Brookfield Village</td>\n", | |
| " <td> 201300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3258</th>\n", | |
| " <td> Coliseum</td>\n", | |
| " <td> 186800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3266</th>\n", | |
| " <td> Lakewide</td>\n", | |
| " <td> 403800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3271</th>\n", | |
| " <td> Chinatown</td>\n", | |
| " <td> 321100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3286</th>\n", | |
| " <td> Clawson</td>\n", | |
| " <td> 377900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3433</th>\n", | |
| " <td> Piedmont Pines</td>\n", | |
| " <td> 847600</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3504</th>\n", | |
| " <td> Upper Peralta Creek</td>\n", | |
| " <td> 347300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3629</th>\n", | |
| " <td> Las Palmas</td>\n", | |
| " <td> 245300</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3645</th>\n", | |
| " <td> Caballo Hills</td>\n", | |
| " <td> 643000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3781</th>\n", | |
| " <td> Produce & Waterfront</td>\n", | |
| " <td> 476200</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3863</th>\n", | |
| " <td> Oakmore</td>\n", | |
| " <td> 843500</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3921</th>\n", | |
| " <td> Fairfax</td>\n", | |
| " <td> 319800</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3942</th>\n", | |
| " <td> Toler Heights</td>\n", | |
| " <td> 303900</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3970</th>\n", | |
| " <td> Forestland</td>\n", | |
| " <td> 826000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3994</th>\n", | |
| " <td> Golden Gate</td>\n", | |
| " <td> 529100</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4015</th>\n", | |
| " <td> Durant Manor</td>\n", | |
| " <td> 279700</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>72 rows \u00d7 2 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 32, | |
| "text": [ | |
| " RegionName 2014-02\n", | |
| "1307 Redwood Heights 562700\n", | |
| "1481 Adams Point 358600\n", | |
| "1531 Clinton 364800\n", | |
| "1582 Cleveland Heights 631000\n", | |
| "1677 Havenscourt 220200\n", | |
| "1740 Bushrod 616300\n", | |
| "1760 Piedmont Avenue 476900\n", | |
| "1820 Upper Dimond 568200\n", | |
| "1826 St. Elizabeth 262000\n", | |
| "1972 Longfellow 465400\n", | |
| "1990 Upper Rockridge 1072100\n", | |
| "2000 Fremont 270900\n", | |
| "2024 Meadow Brook 284400\n", | |
| "2030 Webster 195100\n", | |
| "2054 Seminary 221100\n", | |
| "2062 Rancho San Antonio 274700\n", | |
| "2085 Maxwell Park 406200\n", | |
| "2099 Glenview 717600\n", | |
| "2199 Arroyo Viejo 195200\n", | |
| "2298 Allendale 299300\n", | |
| "2377 Grand Lake 336500\n", | |
| "2381 Prescott 354400\n", | |
| "2394 Lakeshore 886900\n", | |
| "2579 Temescal 679800\n", | |
| "2611 Highland Terrace 307100\n", | |
| "2670 Sequoyah 574900\n", | |
| "2682 Montclair 849500\n", | |
| "2734 North Stonehurst 207200\n", | |
| "2749 Harrington 272500\n", | |
| "2786 Jefferson 293000\n", | |
| "2891 Iveywood 211600\n", | |
| "2903 Fairview Park 867400\n", | |
| "2906 Chabot Park 598300\n", | |
| "2963 Merriwood 763100\n", | |
| "2988 Eastmont Hills 379000\n", | |
| "2991 Shafter 853100\n", | |
| "3035 Eastmont 215000\n", | |
| "3043 Castlemont 229000\n", | |
| "3062 Rockridge 1001800\n", | |
| "3084 Cox 203400\n", | |
| "3097 Frick 349000\n", | |
| "3107 Trestle Glen 899600\n", | |
| "3119 Sobrante Park 208300\n", | |
| "3129 Santa Fe 477500\n", | |
| "3202 Brookfield Village 201300\n", | |
| "3258 Coliseum 186800\n", | |
| "3266 Lakewide 403800\n", | |
| "3271 Chinatown 321100\n", | |
| "3286 Clawson 377900\n", | |
| "3433 Piedmont Pines 847600\n", | |
| "3504 Upper Peralta Creek 347300\n", | |
| "3629 Las Palmas 245300\n", | |
| "3645 Caballo Hills 643000\n", | |
| "3781 Produce & Waterfront 476200\n", | |
| "3863 Oakmore 843500\n", | |
| "3921 Fairfax 319800\n", | |
| "3942 Toler Heights 303900\n", | |
| "3970 Forestland 826000\n", | |
| "3994 Golden Gate 529100\n", | |
| "4015 Durant Manor 279700\n", | |
| " ... ...\n", | |
| "\n", | |
| "[72 rows x 2 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 32 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "Clinton_df =Clinton[Clinton.columns[2:]].transpose()\n", | |
| "print df\n", | |
| "plt.plot(df)\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| " 1531\n", | |
| "1996-04 125200\n", | |
| "1996-05 125400\n", | |
| "1996-06 125400\n", | |
| "1996-07 125100\n", | |
| "1996-08 125300\n", | |
| "1996-09 125200\n", | |
| "1996-10 125200\n", | |
| "1996-11 125500\n", | |
| "1996-12 125800\n", | |
| "1997-01 125300\n", | |
| "1997-02 125200\n", | |
| "1997-03 125500\n", | |
| "1997-04 125500\n", | |
| "1997-05 125200\n", | |
| "1997-06 125200\n", | |
| "1997-07 125700\n", | |
| "1997-08 125900\n", | |
| "1997-09 125900\n", | |
| "1997-10 126200\n", | |
| "1997-11 126400\n", | |
| "1997-12 126000\n", | |
| "1998-01 125900\n", | |
| "1998-02 126600\n", | |
| "1998-03 127700\n", | |
| "1998-04 128100\n", | |
| "1998-05 128300\n", | |
| "1998-06 128500\n", | |
| "1998-07 129200\n", | |
| "1998-08 129900\n", | |
| "1998-09 130300\n", | |
| "1998-10 130000\n", | |
| "1998-11 129500\n", | |
| "1998-12 129600\n", | |
| "1999-01 130500\n", | |
| "1999-02 131000\n", | |
| "1999-03 131500\n", | |
| "1999-04 132300\n", | |
| "1999-05 134100\n", | |
| "1999-06 137000\n", | |
| "1999-07 140400\n", | |
| "1999-08 143400\n", | |
| "1999-09 147100\n", | |
| "1999-10 151000\n", | |
| "1999-11 154000\n", | |
| "1999-12 156600\n", | |
| "2000-01 160400\n", | |
| "2000-02 164600\n", | |
| "2000-03 168400\n", | |
| "2000-04 173900\n", | |
| "2000-05 180600\n", | |
| "2000-06 187600\n", | |
| "2000-07 194800\n", | |
| "2000-08 202400\n", | |
| "2000-09 209200\n", | |
| "2000-10 214500\n", | |
| "2000-11 219000\n", | |
| "2000-12 222700\n", | |
| "2001-01 225800\n", | |
| "2001-02 227200\n", | |
| "2001-03 228300\n", | |
| " ...\n", | |
| "\n", | |
| "[215 rows x 1 columns]\n" | |
| ] | |
| }, | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 26, | |
| "text": [ | |
| "[<matplotlib.lines.Line2D at 0xb93cfd0>]" | |
| ] | |
| }, | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEACAYAAABLfPrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4VPW56PHvaFJbizKSSgIz7OYyM4RACNnHXLSlDWCC\n0gK6U43RkqihZxNbN1g2Um2R0BaBWjxbLbTWggbtJlqshPaQC6IRDpZQIrQWumuUCMlkSDFMIFyS\nEPKeP1YYCAGSkMvKJO/nefI8429d8q7lsN781u9mERFBKaWU6oJrzA5AKaWU/9HkoZRSqss0eSil\nlOoyTR5KKaW6TJOHUkqpLtPkoZRSqss6lTxCQ0MZP348sbGxxMfHA5CTk4Pdbic2NpbY2FgKCgp8\n+y9btgyn00lkZCTFxcW+8rKyMqKjo3E6ncydO9dX3tjYSFpaGk6nk8TERA4ePOjblpubi8vlwuVy\nsW7dum5fsFJKqR4gnRAaGiq1tbVtynJycmTlypXt9t23b5/ExMRIU1OTVFRUSEREhLS0tIiISFxc\nnJSWloqIyJ133ikFBQUiIrJq1SrJzs4WEZG8vDxJS0sTEZHa2loJDw8Xr9crXq/X91kppZS5Ov3a\nSi4xlvBSZfn5+aSnpxMYGEhoaCgOh4PS0lI8Hg/19fW+mktGRgYbN24EYNOmTWRmZgKQmprK1q1b\nASgqKiIlJQWr1YrVaiU5OZnCwsKuZ0illFI9qlPJw2KxcPvtt3PLLbfw0ksv+cpfeOEFYmJiyMrK\noq6uDoDq6mrsdrtvH7vdjtvtbldus9lwu90AuN1uRo0aBUBAQABDhw6ltrb2sudSSillrk4ljx07\ndrBnzx4KCgpYtWoV27dvJzs7m4qKCvbu3cuIESOYP39+b8eqlFKqnwjozE4jRowA4Oabb+buu+9m\n165dTJw40bd99uzZTJ8+HTBqFJWVlb5tVVVV2O12bDYbVVVV7crPHXPo0CFGjhxJc3Mzx44dIygo\nCJvNRklJie+YyspKJk+e3CY2h8PBJ5980sXLVkqpwS0iIoKPP/746k/QUaPIyZMn5fjx4yIicuLE\nCbntttukqKhIPB6Pb59nn31W0tPTReR8g3ljY6McOHBAwsPDfQ3m8fHxsnPnTmlpaWnXYD5nzhwR\nEVm/fn2bBvOwsDDxer1y9OhR3+cLdeISBo3FixebHUK/offiPL0X5+m9OK+7z84Oax41NTXcfffd\nADQ3N/PAAw+QkpJCRkYGe/fuxWKxEBYWxosvvghAVFQU9957L1FRUQQEBLB69WosFgsAq1ev5sEH\nH+T06dNMmzaNO+64A4CsrCxmzZqF0+kkKCiIvLw8AIYNG8aiRYuIi4sDYPHixVit1qvPlEoppXpE\nh8kjLCyMvXv3tiu/0piLJ598kieffLJd+f/6X/+LDz/8sF35ddddxxtvvHHJcz300EM89NBDHYWp\nlFKqD+kI8wEkKSnJ7BD6Db0X5+m9OE/vRc+xtL778lsWi+WS402UUkpdXnefnVrzUEop1WWaPJRS\nSnWZJg+llFJdpslDKaVUl2nyUEop1WWaPJRSSnWZJg+llFJdpslDKaVUl2nyUEop1WWaPJRSSnWZ\nJg+llFJdpslDKaVUl2nyUEop1WWaPJRSSnVZp5JHaGgo48ePJzY2lvj4eACOHj1KcnIyLpeLlJQU\n6urqfPsvW7YMp9NJZGQkxcXFvvKysjKio6NxOp3MnTvXV97Y2EhaWhpOp5PExEQOHjzo25abm4vL\n5cLlcl1xASqllFJ9qDNr1YaGhkptbW2bsgULFsiKFStERGT58uWycOFCETm/hnlTU5NUVFRIRESE\nbw3zuLg4KS0tFRFpt4Z5dna2iIjk5eW1WcM8PDxcvF6veL1e3+cLdfISlOpzp06JPPGEyJIlImfO\nmB2NUm1199nZ6ddWctGiIZs2bSIzMxOAzMxMNm7cCEB+fj7p6ekEBgYSGhqKw+GgtLQUj8dDfX29\nr+aSkZHhO+bCc6WmprJ161YAioqKSElJwWq1YrVaSU5OprCwsFvJUqm+cPw4JCbCJ5/A9u0wYwY0\nN5sdlVI9p1PJw2KxcPvtt3PLLbfw0ksvAVBTU0NwcDAAwcHB1NTUAFBdXY3dbvcda7fbcbvd7cpt\nNhtutxsAt9vNqFGjAAgICGDo0KHU1tZe9lxK9WctLfDgg0byeP11KCyEpiZYutTsyJTqOQGd2WnH\njh2MGDGCI0eOkJycTGRkZJvtFosFi8XSKwF2Rk5Oju9zUlKSrlOsTHPwIMyebdQy1q83yq69Ftat\ng1tuMWoiNhucPg3PPAOBgebGqwaPkpISSkpKeux8nUoeI0aMAODmm2/m7rvvZteuXQQHB3P48GFC\nQkLweDwMHz4cMGoUlZWVvmOrqqqw2+3YbDaqqqralZ875tChQ4wcOZLm5maOHTtGUFAQNputzcVW\nVlYyefLkdvFdmDyUMsPu3fDss0Yt4/vfhx/8AAIu+Nc1ciT85S9GQjl6FMrK4LHH4Be/MC9mNbhc\n/If1kiVLunW+Dl9bnTp1ivr6egBOnjxJcXEx0dHRzJgxg9zcXMDoEXXXXXcBMGPGDPLy8mhqaqKi\nooLy8nLi4+MJCQnhxhtvpLS0FBHh1VdfZebMmb5jzp1rw4YNTJkyBYCUlBSKi4upq6vD6/WyZcsW\npk6d2q0LVqonicCTT8Jddxk1i4oK+NGP2iaOc26+Gf7jPyAnB373OygqMpKNUn6poxb1AwcOSExM\njMTExMjYsWPl6aefFhGjJ9SUKVPE6XRKcnJym15QS5culYiICBk9erQUFhb6ynfv3i3jxo2TiIgI\nefTRR33lDQ0Ncs8994jD4ZCEhASpqKjwbVu7dq04HA5xOBzyyiuvtIuvE5egVK84e1bkO98RSUgQ\nOXKk68evXy9y220irZ0RlepT3X12WlpP4rcsFku7nmBK9YV58+DPfzZqEEOGdP34s2dhzBj49a9B\nm+lUX+vus1NHmCt1FfLz4Y9/hM2bry5xgNGQ/sQT2gtL+SeteSjVRdXVRvvGG2/AV7/avXOdOQMO\nh3GuhISeiU+pztCah1J9QAT27YONG+G224weVd1NHGB01X38ca19KP+jNQ+lOvDRR3DffVBbC5GR\nkJkJ99/fc+dvaICwMCguhujonjuvUlfS3WenJg+lrqCpCW69FdLTjdrGNb1UV1+xAv76V/jtb3vn\n/EpdTJOHJg/Vi378Y2MAYH4+9OYkCsePQ3i40XsrLKz3fo9S52jy0OShesmpUxAaCjt2gNPZ+79v\n7lywWqGbA3+V6hRtMFeql/z2t0YPqL5IHGC0paxbZ0ysqFR/p8lDqUsQgeefN2oDfSU21hgzsn17\n3/1Opa6WJg+lLmH3bmPm29Zp1vqExWLUPlqneVOqX9M2D6Uu4bvfhREjjEkO+5LHA1FRUFUFX/xi\n3/5uNbhom4dSPayhwVjEKSOj73/3iBFG1+C33ur7361UV2jyUOoir78O//qv8C//Ys7v11dXyh/o\nayulLtDSAuPGwXPPQXKyOTE0NBirDe7dC62rMyvV4/S1lVI9KD8frr8ebr/dvBg+/3m45x547TXz\nYlCqI5o8lGrV0mIM0PvhD3t3NHlnnHt1pZVq1V91KnmcPXuW2NhYpk+fDhhrhtvtdmJjY4mNjaWg\noMC377Jly3A6nURGRlJcXOwrLysrIzo6GqfTydwLOs83NjaSlpaG0+kkMTGRgwcP+rbl5ubicrlw\nuVysW7eu2xer1JVs2GDMctu6orKpEhONxPH++2ZHotRldGa5wZUrV8r9998v06dPFxGRnJwcWbly\nZbv99u3bJzExMdLU1CQVFRUSEREhLa1rbMbFxUlpaamIiNx5551SUFAgIiKrVq2S7OxsERHJy8uT\ntLQ0ETGWuQ0PDxev1yter9f3+WKdvASlrujsWZExY0QuWDXZdM89J3LPPWZHoQaq7j47O6x5VFVV\nsXnzZmbPnu1rXBGRSza05Ofnk56eTmBgIKGhoTgcDkpLS/F4PNTX1xMfHw9ARkYGGzduBGDTpk1k\nZmYCkJqaytatWwEoKioiJSUFq9WK1WolOTmZwsLCnsiXSrXzzjvwuc9BSorZkZz30EOwdStcUBlX\nqt/oMHk89thjPPPMM1xzwVzUFouFF154gZiYGLKysqirqwOguroau93u289ut+N2u9uV22w23G43\nAG63m1GtXUoCAgIYOnQotbW1lz2XUr3hl7+EOXPMb+u40A03wMMPw3/9l9mRKNVewJU2/vGPf2T4\n8OHExsZSUlLiK8/Ozuapp54CYNGiRcyfP581a9b0aqBXkpOT4/uclJREUlKSabEo/1NdDe++C6+8\nYnYk7X3/+0bX4ccfNwYQKnW1SkpK2jzHu+uKyeP9999n06ZNbN68mYaGBo4fP05GRkabxuvZs2f7\nGtJtNhuVlZW+bVVVVdjtdmw2G1VVVe3Kzx1z6NAhRo4cSXNzM8eOHSMoKAibzdbmQisrK5k8efIl\n47wweSjVVatWGSsD3nCD2ZG0N2KEMdJ9xQqtgajuufgP6yXdnfu/s40jJSUl8s1vflNERKqrq33l\nzz77rKSnp4vI+QbzxsZGOXDggISHh/sazOPj42Xnzp3S0tLSrsF8zpw5IiKyfv36Ng3mYWFh4vV6\n5ejRo77PF+vCJSjVzokTIl/6kkh5udmRXJ7HIzJsmIjbbXYkaiDp7rPzijWPi5IMltYXwo8//jh/\n+ctfsFgshIWF8eKLLwIQFRXFvffeS1RUFAEBAaxevdp3zOrVq3nwwQc5ffo006ZN44477gAgKyuL\nWbNm4XQ6CQoKIi8vD4Bhw4axaNEi4uLiAFi8eDFWq7V7mVKpi7z8MkycCA6H2ZFcXkiI0Xi+fLkx\nTbxS/YFOT6IGrZYWGDMGfvMbI4H0Z//8pxHrX/9qTF2iVHfp9CRKXaWtW+G66+CrXzU7ko4NHw4z\nZ8Lvf292JEoZNHmoQWvVKvje9/pX99wr+cY3YPNms6NQyqCvrdSgdOiQsezroUP+s+jSsWNgt8Ph\nw/4Ts+q/9LWVUlfhV7+CWbP86yE8dCjccosxJkUps2nyUINOQ4PRSP7II2ZH0nXTpoHO0qP6A00e\natD53e9gwgRwucyOpOsmTtSZdlX/oMlDDTrnGsr9UWws/OMfcPKk2ZGowU6ThxpUysqMBudvfMPs\nSK7OddfB+PGwe7fZkajBTpOHGlRWrTJmz732WrMjuXq33gp/+pPZUajBrtPTkyjl72pr4a234KOP\nzI6kexIT4be/NTsKNdhpzUMNGi+/DNOnw803mx1J99x2m9Fofvas2ZGowUyThxoUmpth9Wr/bSi/\nkN0OI0dqrytlLk0ealB47TUYNQpaV0L2e6mp8OabZkehBjOdnkQNeGfOwOjRxkqBX/ua2dH0jP37\nYepUY33za/RPQHUVdHoSpTrw85+D0zlwEgdAVBQMGQLbtpkdiRqstOahBrQdO+Df/s0YFzFqlNnR\n9KzXX4ef/tQYu/K5z5kdjfI3fVLzOHv2LLGxsb61yo8ePUpycjIul4uUlBTq6up8+y5btgyn00lk\nZCTFxcW+8rKyMqKjo3E6ncydO9dX3tjYSFpaGk6nk8TERA4ePOjblpubi8vlwuVytVk3XanOqK01\n1ib/zW8GXuIAuPdeCA01alZK9bnOrFW7cuVKuf/++2X69OkiIrJgwQJZsWKFiIgsX75cFi5cKCLn\n1zBvamqSiooKiYiI8K1hHhcXJ6WlpSIi7dYwz87OFhGRvLy8NmuYh4eHi9frFa/X6/t8sU5eghpk\nWlpEpk8X+f73zY6kd+3fLxIcLNLYaHYkyt9099nZYc2jqqqKzZs3M3v2bF8VZ9OmTWRmZgKQmZnJ\nxo0bAcjPzyc9PZ3AwEBCQ0NxOByUlpbi8Xior68nvrWrS0ZGhu+YC8+VmprK1q1bASgqKiIlJQWr\n1YrVaiU5OZlCnU5UddJzz0FNDSxbZnYkvWvMGBg7VlcYVH2vw+Tx2GOP8cwzz3DNBV06ampqCA4O\nBiA4OJiamhoAqqursdvtvv3sdjtut7tduc1mw+12A+B2uxnV+k4hICCAoUOHUltbe9lzKdWRsjJ4\n+mnIyxscbQGPPGJMu6JUX7ri9CR//OMfGT58OLGxsZSUlFxyH4vFgsXkdTxzcnJ8n5OSkkhKSjIt\nFmWu06fh29+G55+HsDCzo+kbM2bAggWwfbsxZbtSl1JSUnLZ5/jVuGLyeP/999m0aRObN2+moaGB\n48ePM2vWLIKDgzl8+DAhISF4PB6GDx8OGDWKyspK3/FVVVXY7XZsNhtVVVXtys8dc+jQIUaOHElz\nczPHjh0jKCgIm83W5kIrKyuZPHnyJeO8MHmowe3JJyEmBu67z+xI+k5gICxaBIsXwzvvmB2N6q8u\n/sN6yZIl3TthZxtHSkpK5Jvf/KaIGA3my5cvFxGRZcuWtWswb2xslAMHDkh4eLivwTw+Pl527twp\nLS0t7RrM58yZIyIi69evb9NgHhYWJl6vV44ePer7fLEuXIIa4N55R8RmE/nsM7Mj6Xtnzog4nSJZ\nWUYjulId6e6zs0vJ41xvq9raWpkyZYo4nU5JTk5u81BfunSpREREyOjRo6WwsNBXvnv3bhk3bpxE\nRETIo48+6itvaGiQe+65RxwOhyQkJEhFRYVv29q1a8XhcIjD4ZBXXnnl0hegyUOJyLFjIl/+ssjm\nzWZHYp7qapEf/9joffWPf5gdjervuvvs1EGCakB4+GGjcfxXvzI7EvOtWQMrVhhTmAToogvqMnR6\nEjXovfMOvPeeDpY7JysLhg2DC8boKtXjNHkov7duHcyda8z1pAyZmcZ9Uaq36Gsr5dfOnIGQEPjL\nX4x1LpTh6FEID4dPPwWr1exoVH+kr63UoPbuu8aMuZo42ho2DKZN0zYg1Xu05qH82pw5EBFhDJJT\nbZWXG0vW7t/v/0vvmuHgQSP5Dh0K3//+wJutoLvPTk0eyq+NHg1vvGEMDFTtzZtnLMH7i1+YHYn/\n+da3jIRx5AgEBxttSANp4S1NHpo8Bq0jR8DhMN7vX3ut2dH0T7W1EBlpTF0SGWl2NP7jr3+FlBT4\n5BMjYUyZYkyBP2+e2ZH1HG3zUIPW++9DYqImjisJCoIf/AAef9zsSPzLM8/Af/4nfPGL8IUvwMsv\nGwtvHT5sdmT9hyYP5bd27ICvftXsKPq/730Pdu40/opWHROBLVuM11bnjB5tDERduNC8uPobTR7K\nb+3YAV/5itlR9H/XXQepqUbbkOpYebnR1vHlL7ctX7QItm41arxKk4fyUw0NxtiOhASzI/EPaWnG\nmueqY9u2wde+BhevNHHDDfCzn8F3vwuNjebE1p9o8lB+qazMaAD+4hfNjsQ/TJwI//wn/OMfZkfS\n/11pXZT0dKNreGYmtLT0bVz9jSYP5Zf0lVXXXHut8Q5fax8dO1fzuBSLBV57DTwe+OMf+zau/kaT\nh/JLmjy6Tl9dday6Go4fv3K35s9/3ph0csaMvourP9LkofyOiNFoqcmja269FY4dg337zI6k/9q5\n0+j+3dHK2tdd1zfx9GdXTB4NDQ0kJCQwYcIEoqKieOKJJwBj2Ve73U5sbCyxsbEUFBT4jlm2bBlO\np5PIyEiKL5gTuqysjOjoaJxOJ3PnzvWVNzY2kpaWhtPpJDExkYMHD/q25ebm4nK5cLlcrNMpQlWr\njz4y2jpsNrMj8S/XXGMMdMvLMzuS/qu0VDthdFpHq0WdPHlSRETOnDkjCQkJsn37dsnJyZGVK1e2\n2/fcMrRNTU1SUVEhERERvmVo4+LipLS0VESk3TK02dnZIiKSl5fXZhna8PBw8Xq94vV6fZ8v1olL\nUAPMr38t8sADZkfhn/bsMZbqbWoyO5L+6etfF7lgAdQBrbvPzg5fW11//fUANDU1cfbsWW666aZz\nSafdvvn5+aSnpxMYGEhoaCgOh4PS0lI8Hg/19fXEx8cDkJGRwcaNGwHYtGkTmZmZAKSmprJ161YA\nioqKSElJwWq1YrVaSU5OprCwsNvJUvm/oiJj6gjVdRMmGFO1t/7zUxc4e9boxdf6mFId6DB5tLS0\nMGHCBIKDg5k0aRJjx44F4IUXXiAmJoasrCzq6uoAqK6uxn7B3Nh2ux23292u3Gaz4Xa7AXC73Ywa\nNQqAgIAAhg4dSm1t7WXPpQa3M2eMgVqaPK7ef/wHPP+82VH0P/v2Ga9CW/8+Vh3oMHlcc8017N27\nl6qqKrZt20ZJSQnZ2dlUVFSwd+9eRowYwfz58/siVqUoLYWwMGMBKHV17rrLGEVdXm52JP3LubnS\nVOcEdHbHoUOH8o1vfIPdu3eTlJTkK589ezbTp08HjBpFZWWlb1tVVRV2ux2bzUZVVVW78nPHHDp0\niJEjR9Lc3MyxY8cICgrCZrNRUlLiO6ayspLJkydfMracnBzf56SkpDbxqYGlqAimTjU7Cv8WEGCM\n+XjjDfjhD82Opv8oKYE77jA7it5TUlLS5pnabVdqEDly5IivkfrUqVMyceJEefvtt8Xj8fj2efbZ\nZyU9PV1EzjeYNzY2yoEDByQ8PNzXYB4fHy87d+6UlpaWdg3mc+bMERGR9evXt2kwDwsLE6/XK0eP\nHvV97ulGH+VfbrlFpKTE7Cj837ZtIuPHmx1F/9HSIhIcLFJRYXYkfae7z84r1jw8Hg+ZmZm0tLTQ\n0tLCrFmzmDJlChkZGezduxeLxUJYWBgvvvgiAFFRUdx7771ERUUREBDA6tWrsbR2mF69ejUPPvgg\np0+fZtq0adzRmuKzsrKYNWsWTqeToKAg8lr7EQ4bNoxFixYRFxcHwOLFi7HqYsyD2pEjxquWW281\nOxL/95WvwGefwf/8j67zAcZ9+MIXIDTU7Ej8hy4GpfzGf/+38apFewr1jLlzjfU+nnrK7EjMt3o1\n7N4Na9eaHUnf0cWg1KBRWDiw30n3NZ2u5Lx33gFtKu0arXkov9DSAiNGGNNHhIWZHc3A0NJirFlR\nWAitPfAHpTNnYPhw+PvfB1cvPq15qEFh2zbjH7Ymjp5zbrqSwV77eP99Y5r1wZQ4eoImD+UXXn0V\nZs0yO4qBJyMD1qwZ3Isbbd4M06aZHYX/0eSh+r1Tp+D3v4f77zc7koEnJgbGjTPWqBisNHlcHU0e\nqt97801jvqGRI82OZGBauBCeecaY22mwqaiAmhpoHRGgukCTh+rXzp6Fp58GnQGn90yaZDQYD6Zu\nque8+aYxXcu115odif/R5KH6tTfeMCaqS042O5KBy2KB//N/jPEex4+bHU3fevNNY6oW1XXaVVf1\nWwcOwMSJRmP5ZaY1Uz3ooYcgOBiWLzc7kr5RVWW0+Rw+DIGBZkfT97SrrhqQDh82pl3/0Y80cfSV\npUvhpZeMdoDB4OWXjVdWgzFx9ASteah+p67OGO37b/+mU2f0tZ/+FP72t4G/VG1tLYwebQw6dTjM\njsYc3X12avJQ/cqpU8aU67Gx8Nxzxvt41XdOnDAGzL37LkRFmR1N71m40Gjf+eUvzY7EPJo8NHkM\nGKdPQ2qq0UD+6qvGCGjV95Yvhw8/hN/+1uxIekd9vTF77t690LqI6aCkbR5qQKisNGocw4bBK69o\n4jDTd78LBQVGu9NAlJtrtKMN5sTRE/SfqDLVmTPw858br6mSk2HdOm3ANNsNNxiJ/A9/MDuSntfS\nAi+8YKzjrrqn08vQKtXT6uqMh5TVCn/6EzidZkekzpk503h1+J3vmB1Jz9q/H5qb4atfNTsS/3fF\nmkdDQwMJCQlMmDCBqKgonnjiCQCOHj1KcnIyLpeLlJQU6urqfMcsW7YMp9NJZGQkxcXFvvKysjKi\no6NxOp3MnTvXV97Y2EhaWhpOp5PExEQOHjzo25abm4vL5cLlcrFu3boeu2hlvvp6uPNOSEgwpgTX\nxNG/3HknbN9u/H8aSLZtg69/XTti9IiO1qk9efKkiIicOXNGEhISZPv27bJgwQJZsWKFiIgsX75c\nFi5cKCLn1zBvamqSiooKiYiI8K1hHhcXJ6WlpSIi7dYwz87OFhGRvLy8NmuYh4eHi9frFa/X6/t8\nsU5cgupnTp4U+frXRWbPFjl71uxo1OUkJ4ts2GB2FD0rLU3k5ZfNjqJ/6O6zs8M2j+uvvx6ApqYm\nzp49y0033cSmTZvIzMwEIDMzk42t64Lm5+eTnp5OYGAgoaGhOBwOSktL8Xg81NfXEx8fD0BGRobv\nmAvPlZqaytatWwEoKioiJSUFq9WK1WolOTmZwsLCHk2cqu+VlRmTHIaFwa9+pQ3j/dkdd8Dbb5sd\nRc8RMWpTX/ua2ZEMDB3+021paWHChAkEBwczadIkxo4dS01NDcHBwQAEBwdTU1MDQHV1NXa73Xes\n3W7H7Xa3K7fZbLjdbgDcbjejWrs9BAQEMHToUGpray97LuW//vAH44H0xBPGJHw6GV3/NnmysTzr\nQHHggPG6ShcU6xkdNphfc8017N27l2PHjjF16lTefffdNtstFgsWfYGoOvDhh5CVBf/3/xo1D9X/\njR9vjMR2u8FmMzua7nvvPWOuNH1c9YxO97YaOnQo3/jGNygrKyM4OJjDhw8TEhKCx+Nh+PDhgFGj\nqKys9B1TVVWF3W7HZrNRVVXVrvzcMYcOHWLkyJE0Nzdz7NgxgoKCsNlslJSU+I6prKxk8mUmOcrJ\nyfF9TkpKIklXsu93fvQjePJJTRz+5JprjGli3n0Xvv1ts6Ppvi1b4PbbzY7CPCUlJW2eqd12pQaR\nI0eO+BqpT506JRMnTpS3335bFixYIMuXLxcRkWXLlrVrMG9sbJQDBw5IeHi4r8E8Pj5edu7cKS0t\nLe0azOfMmSMiIuvXr2/TYB4WFiZer1eOHj3q+9zTjT6q9/3pTyKjRomcPm12JKqrVq0Sycw0O4ru\nO3tW5EtfEjl40OxI+o/uPjuvePRf//pXiY2NlZiYGImOjpaf/exnImI82KdMmSJOp1OSk5PbPNSX\nLl0qERERMnr0aCksLPSV7969W8aNGycRERHy6KOP+sobGhrknnvuEYfDIQkJCVJRUeHbtnbtWnE4\nHOJwOOQjJEvWAAAZMklEQVSVV1659AVo8ujXWlpEJk0S+c1vzI5EXY2qKpGbbhI5ftzsSLqnrEwk\nMtLsKPqX7j47dW4r1avefhseecQYnBWgQ1L90re+ZTSeP/KI2ZFcveXLoboann/e7Ej6D53bSvVb\ndXUwbx785CeaOPzZ974Hv/gFNDWZHcnVy883ZjNQPUf/SateceIETJtmNFDee6/Z0aju+PrXYcyY\n82usDB8OGRlmR9V527fDkSOaPHqavrZSPa6hAb75Tfjyl42V6XQgoP87N6Hgp5/C5s0wezYsWGB2\nVJ0zbZqxYuD//t9mR9K/6Hoemjz6ne99z5jO+/XXdSDgQOR2Q1yckUQmTDA7mivbs8f4Q+bAAbju\nOrOj6V80eWjy6Fc++MCYVO/vfzfW5lAD07Jl8NFHxjrg/VlamjG2aP58syPpfzR5aPLoVyZNggce\nMF5rqIGrttZY+/sf/zDaQPqj8nK47Taj1nHDDWZH0/9obyvVb5SXG11yW+e5VANYUJCxZPDatWZH\ncnm//rXxR4wmjt6hyUP1mHXr4P77dSXAwWLWLMjLu/I+f/sbpKQYq0SuWWO86vrLX6Cqypjltre0\ntBhtbg880Hu/Y7DT11aqR7S0GLOV5uf3/0ZU1TPOnoV/+RdjIOiYMe23NzYaDev33w+RkfDLX8In\nn8D11xsdKm66CZYsgfvu6/nY3n/fWAVx376eP/dA0d1np47zUD3i/ffhxhs1cQwm115rNEjn5RlJ\n4GJLlkBEBCxcaMxke9dd57eJwI4dRmL57DOjh15PysvrnaSkztOah+oR8+YZ78EXLTI7EtWXPvzQ\nGAj6zjswduz58n37jEGFH34IISGXP/7gQWMp4o0bITGxZ2I6csSo6ezerWt3XIn2ttLkYbqWFuP1\nxZYtl359oQa2116DH/wAZsyAUaOM8RS5ucagvO9+t+Pjf/c7Y8r+vXvhC1/ofjzz5kFzszGliro8\nTR6aPEz3pz8ZvVr0/fLg9d57Ri2jshJOn4Z//VejQb2zg0TvuQdcLli69Opj+OADePppKCkxvout\ni52qy9DkocnDdA88AFFR8MMfmh2J8lcej7Fy4bvvwrhxXT++pgZuuQX+8z+NudRGjOj5GAcaTR6a\nPEz1//4fpKcbI8qHDDE7GuXPfvlL4xXY9u1dnw9t+nSjs8ZPftI7sQ1EOkhQmaay0nhd9cwzmjhU\n9/37vxu9sF56qWvH/f3v8Oc/a2eNvtZh8qisrGTSpEmMHTuWcePG8Xzraio5OTnY7XZiY2OJjY2l\noKDAd8yyZctwOp1ERkZSXFzsKy8rKyM6Ohqn08ncuXN95Y2NjaSlpeF0OklMTOTgwYO+bbm5ubhc\nLlwuF+vWreuRi1bd53bDrbcafenT0syORg0E11xjjAr/0Y+MP0wuJmI0hF9s1Sqjcf5zn+v9GNUF\nOlpq0OPxyJ49e0REpL6+Xlwul+zfv19ycnJk5cqV7fY/t455U1OTVFRUSEREhG8d87i4OCktLRUR\nabeOeXZ2toiI5OXltVnHPDw8XLxer3i9Xt/nC3XiElQvmD1bpHXpeqV61E9/KpKcbCxhfM6BAyLx\n8SJDhohMny5SWGhsP3DAWCa3qsq8eP1Vd5+dHdY8QkJCmNA68mvIkCGMGTMGt9t9LvG02z8/P5/0\n9HQCAwMJDQ3F4XBQWlqKx+Ohvr6e+Ph4ADIyMti4cSMAmzZtIrN1QqTU1FS2bt0KQFFRESkpKVit\nVqxWK8nJyRQWFnY7Yaru+egjo1/+woVmR6IGooUL4dQpyMqCM2eM3lOJicagv4oKY7DhggUQHW3U\nfp9+Gmw2s6MefLrU5vHpp5+yZ88eEltH87zwwgvExMSQlZVFXV0dANXV1djtdt8xdrsdt9vdrtxm\ns/mSkNvtZtSoUQAEBAQwdOhQamtrL3suZa6f/QzmzjWml1CqpwUEQFGRMfL8+uuNNdTXr4fHHoMv\nfQkeftiYH+v552HTJpgzx+yIB6dOT09y4sQJvvWtb/Hcc88xZMgQsrOzeeqppwBYtGgR8+fPZ82a\nNb0W6JXk5OT4PiclJZGUlGRKHINBfT28+abRSKlUb/niF4150s6cMf774vYMiwUmT+77uPxZSUkJ\nJSUlPXa+TiWPM2fOkJqayre//W3uap2gZvgFk/jPnj2b6dOnA0aNovKC1q6qqirsdjs2m42qqqp2\n5eeOOXToECNHjqS5uZljx44RFBSEzWZrc7GVlZVMvsQ35sLkoXrX668b005cacoJpXqCxaKN4D3p\n4j+sl1xqQrIu6PC1lYiQlZVFVFQU8+bN85V7PB7f57feeovo6GgAZsyYQV5eHk1NTVRUVFBeXk58\nfDwhISHceOONlJaWIiK8+uqrzJw503dMbm4uABs2bGDKlCkApKSkUFxcTF1dHV6vly1btjBVV7E3\njQj86lfGu2il1ODWYc1jx44dvPbaa4wfP57Y2FgAnn76adavX8/evXuxWCyEhYXx4osvAhAVFcW9\n995LVFQUAQEBrF69GovFAsDq1at58MEHOX36NNOmTeOOO+4AICsri1mzZuF0OgkKCiKvdZGAYcOG\nsWjRIuLi4gBYvHgxVqu15++C6pQ33zSm4Z42zexIlFJm0xHmqlOamowpSF58EVorhkopP6YjzFWf\nePFFcDo1cSilDFrzUB2qrzcSR1ERxMSYHY1SqidozUP1umefNRb80cShlDpHax7qis6tyvbnP0N4\nuNnRKKV6itY8VLf885/GLKY7dlx6+9KlxjrTmjiUUhfS5DFI1dTA448btYotWyA1Ff7rv9rus28f\n/Pa3xiynSil1IU0eg8yBA/Dgg0bSOH4c/vY3eOMN2LXLWPP5V78y9hOBRx6BxYt1OU+lVHva5jGI\n7N4Nd94J3/0uzJsHF4+3/OQT+PrXjeVAPR5j4sMtWzq/DrVSyn/oMrSaPDqlstKY1nrVKmNK68s5\nedKYkG7oUGMkeevkAEqpAUaThyaPDjU3w6RJRjJ44gmzo1FK9Qfa20p1aPly+PzndfEmpVTP0ZrH\nAPfJJ5CQAHv2QOt6W0oppTUPdWXz5hlLdmriUEr1pE6vJKj8z/btxliNN980OxKl1ECjNY8B7Kmn\nYNEiXY1NKdXzNHkMUDt2GN1zZ80yOxKl1EDUYfKorKxk0qRJjB07lnHjxvH8888DcPToUZKTk3G5\nXKSkpFBXV+c7ZtmyZTidTiIjIykuLvaVl5WVER0djdPpZO7cub7yxsZG0tLScDqdJCYmcvDgQd+2\n3NxcXC4XLpeLdevW9chFDwZr1kB2NgToi0mlVG+QDng8HtmzZ4+IiNTX14vL5ZL9+/fLggULZMWK\nFSIisnz5clm4cKGIiOzbt09iYmKkqalJKioqJCIiQlpaWkREJC4uTkpLS0VE5M4775SCggIREVm1\napVkZ2eLiEheXp6kpaWJiEhtba2Eh4eL1+sVr9fr+3yhTlzCoFNfL2K1ing8ZkeilOqvuvvs7LDm\nERISwoQJEwAYMmQIY8aMwe12s2nTJjIzMwHIzMxk48aNAOTn55Oenk5gYCChoaE4HA5KS0vxeDzU\n19cTHx8PQEZGhu+YC8+VmprK1q1bASgqKiIlJQWr1YrVaiU5OZnCwsIeTZ4D0e9/D1/9KoSEmB2J\nUmqg6lKbx6effsqePXtISEigpqaG4NYZ84KDg6mpqQGguroau93uO8Zut+N2u9uV22w23G43AG63\nm1GtfUkDAgIYOnQotbW1lz2XurKXXzYmP1RKqd7S6TfiJ06cIDU1leeee44bbrihzTaLxYLFxEmQ\ncnJyfJ+TkpJISkoyLRazVVTAhx/CN79pdiRKqf6kpKSEkpKSHjtfp5LHmTNnSE1NZdasWdzVOqte\ncHAwhw8fJiQkBI/Hw/DhwwGjRlFZWek7tqqqCrvdjs1mo6qqql35uWMOHTrEyJEjaW5u5tixYwQF\nBWGz2dpcbGVlJZMnT24X34XJY7Bbtw7S0+G668yORCnVn1z8h/WSJUu6db4OX1uJCFlZWURFRTFv\n3jxf+YwZM8jNzQWMHlHnksqMGTPIy8ujqamJiooKysvLiY+PJyQkhBtvvJHS0lJEhFdffZWZM2e2\nO9eGDRuYMmUKACkpKRQXF1NXV4fX62XLli1MnTq1Wxc8kLW0QG6uvrJSSvWBjlrUt2/fLhaLRWJi\nYmTChAkyYcIEKSgokNraWpkyZYo4nU5JTk5u0wtq6dKlEhERIaNHj5bCwkJf+e7du2XcuHESEREh\njz76qK+8oaFB7rnnHnE4HJKQkCAVFRW+bWvXrhWHwyEOh0NeeeWVdvF14hIGjZISkXHjRFo7tyml\n1GV199mpEyMOIA89BOPGwfz5ZkeilOrvdD0PTR4AnDgBdjv8z/9oF12lVMd0Vl0FwO9+BxMnauJQ\nSvUNTR4DxEsvwXe+Y3YUSqnBQpPHALBvHxw8aCwzq5RSfUGTxwDw0ktGY7lOgqiU6ivaYO7nGhqM\nVQJ37YKwMLOjUUr5C20wH+TeegtiYzVxKKX6liYPP/fSSzB7ttlRKKUGG00efmzPHvjHP6B1lhel\nlOozmjz82E9+Ao8/rpMgKqX6njaY+6k9e4yuuZ98Atdfb3Y0Sil/ow3mg9CZM/Dww/DTn2riUEqZ\nQ5OHH1q6FEaONBKIUkqZQV9b+ZkPPoA77oC9e40EopRSV0NfWw0iDQ2QmQnPPquJQyllLq15+JHv\nfx8OHTJm0DVxyXil1ADQ6zWPhx9+mODgYKKjo31lOTk52O12YmNjiY2NpaCgwLdt2bJlOJ1OIiMj\nKS4u9pWXlZURHR2N0+lk7ty5vvLGxkbS0tJwOp0kJiZy8OBB37bc3FxcLhcul4t169Zd9UUOBL/7\nHWzYAL/+tSYOpVQ/0NFSg9u2bZMPPvhAxo0b5yvLycmRlStXttt33759EhMTI01NTVJRUSERERHS\n0romalxcnJSWloqIyJ133ikFBQUiIrJq1SrJzs4WEZG8vDxJS0sTEZHa2loJDw8Xr9crXq/X9/li\nnbgEv/ff/y0SEiKyZ4/ZkSilBoruPjs7rHlMnDiRm2666VJJp11Zfn4+6enpBAYGEhoaisPhoLS0\nFI/HQ319PfHx8QBkZGSwceNGADZt2kRmZiYAqampbN26FYCioiJSUlKwWq1YrVaSk5MpLCy82hzp\ntwoK4LHH4O23YcIEs6NRSinDVTeYv/DCC8TExJCVlUVdXR0A1dXV2O123z52ux23292u3Gaz4Xa7\nAXC73YwaNQqAgIAAhg4dSm1t7WXPNZh89BFkZBiTH44da3Y0Sil13lWtAJGdnc1TTz0FwKJFi5g/\nfz5r1qzp0cC6Iicnx/c5KSmJpKQk02LpKU1NcP/98OMfw623mh2NUsrflZSUUFJS0mPnu6rkMXz4\ncN/n2bNnM336dMCoUVRWVvq2VVVVYbfbsdlsVFVVtSs/d8yhQ4cYOXIkzc3NHDt2jKCgIGw2W5sL\nraysZPLkyZeM58LkMVDk5MCIETBnjtmRKKUGgov/sF6yZEm3zndVr608Ho/v81tvveXriTVjxgzy\n8vJoamqioqKC8vJy4uPjCQkJ4cYbb6S0tBQR4dVXX2Vm61SwM2bMIDc3F4ANGzYwZcoUAFJSUigu\nLqaurg6v18uWLVuYOnVqty7WX7z3HrzyCqxZoz2rlFL9U4c1j/T0dN577z0+++wzRo0axZIlSygp\nKWHv3r1YLBbCwsJ48cUXAYiKiuLee+8lKiqKgIAAVq9ejaX16bd69WoefPBBTp8+zbRp07jjjjsA\nyMrKYtasWTidToKCgsjLywNg2LBhLFq0iLi4OAAWL16M1WrtlZvQn3z8MaSnw9q1cEEFTyml+hUd\nJNiP1NZCQgIsWAD//u9mR6OUGsi6++zU5NFPnD0Ld94J48fDz39udjRKqYFOk8cASB4i8L3vGasC\nFhZCwFV1Y1BKqc7r7rNTH1Mma2oyVgPcuRPefVcTh1LKP+ijygQnT8KHH8L27UavqogIKCqCG280\nOzKllOocfW3Vg86cgd27jRrEvn1QX2/0mDr3U10Nf/gDHDwIY8YYjeN33QXJydolVynVt7TNw4Tk\nIQIlJbBtG1RVGT9HjkB5OYSFweTJEBtr1CSOHIGaGvjnP43/vusuo1E8MLBPQ1ZKqTY0eVgsbN4s\nnD1rPJytVjh2zNgWGGj0YnK7obLSWO87MhK+8AX47DOjZhAYaCys9LnPgcdjNFofPQper/FTV2ec\nLyTE2K+xEd55xzjHzJnw5S+DzWbULMLD4UtfMvd+KKVUZ2jysFiYOlW49lrjIV9XZyQQMF4jXXut\n8XC3241kUV4Op0/DzTcbyaax0UgaTU1G2ZgxRgK46Sbjx2o19vN44PBh43xf+QpER+urJqWU/9Lk\n0Y/aPJRSyl/oGuZKKaX6nCYPpZRSXabJQymlVJdp8lBKKdVlmjyUUkp1mSYPpZRSXdZh8nj44YcJ\nDg72rRYIcPToUZKTk3G5XKSkpFBXV+fbtmzZMpxOJ5GRkRQXF/vKy8rKiI6Oxul0MnfuXF95Y2Mj\naWlpOJ1OEhMTOXjwoG9bbm4uLpcLl8vFunXrun2xSimlekaHyeOhhx6isLCwTdny5ctJTk7mo48+\nYsqUKSxfvhyA/fv38/rrr7N//34KCwt55JFHfP2Is7OzWbNmDeXl5ZSXl/vOuWbNGoKCgigvL+ex\nxx5j4cKFgJGgfvzjH7Nr1y527drFkiVL2iQp1V5PLm7v7/RenKf34jy9Fz2nw+QxceJEbrrppjZl\nmzZtIjMzE4DMzEw2btwIQH5+Punp6QQGBhIaGorD4aC0tBSPx0N9fT3x8fEAZGRk+I658Fypqals\n3boVgKKiIlJSUrBarVitVpKTk9slMdWW/sM4T+/FeXovztN70XOuqs2jpqaG4OBgAIKDg6mpqQGg\nuroau93u289ut+N2u9uV22w23G43AG63m1GjRgEQEBDA0KFDqa2tvey5lFJKma/bDeYWiwWLTvKk\nlFKDylUtBhUcHMzhw4cJCQnB4/EwfPhwwKhRVFZW+varqqrCbrdjs9moqqpqV37umEOHDjFy5Eia\nm5s5duwYQUFB2Gy2NlXMyspKJk+e3C6WiIgITV4XWLJkidkh9Bt6L87Te3Ge3gtDREREt46/qprH\njBkzyM3NBYweUXfddZevPC8vj6amJioqKigvLyc+Pp6QkBBuvPFGSktLERFeffVVZs6c2e5cGzZs\nYMqUKQCkpKRQXFxMXV0dXq+XLVu2MHXq1HaxfPzxx4iI/uiP/uiP/nTh5+OPP76ax/950oH77rtP\nRowYIYGBgWK322Xt2rVSW1srU6ZMEafTKcnJyeL1en37L126VCIiImT06NFSWFjoK9+9e7eMGzdO\nIiIi5NFHH/WVNzQ0yD333CMOh0MSEhKkoqLCt23t2rXicDjE4XDIK6+80lGoSiml+ojfT8mulFKq\n7/n1CPPCwkIiIyNxOp2sWLHC7HD6XGhoKOPHjyc2NtbXDfpKAzgHkp4avDoQXOpe5OTkYLfbiY2N\nJTY2loKCAt+2gXovKisrmTRpEmPHjmXcuHE8//zzwOD8XlzuXvTo98Lsqs/Vam5uloiICKmoqJCm\npiaJiYmR/fv3mx1WnwoNDZXa2to2ZQsWLJAVK1aIiMjy5ctl4cKFZoTW67Zt2yYffPCBjBs3zld2\nuWvft2+fxMTESFNTk1RUVEhERIScPXvWlLh7w6XuRU5OjqxcubLdvgP5Xng8HtmzZ4+IiNTX14vL\n5ZL9+/cPyu/F5e5FT34v/LbmsWvXLhwOB6GhoQQGBnLfffeRn59vdlh9Ti5663i5AZwDTXcHr+7a\ntavPY+4tl7oX0P67AQP7XoSEhDBhwgQAhgwZwpgxY3C73YPye3G5ewE9973w2+Rx4eBCGJyDCC0W\nC7fffju33HILL730EnD5AZyDQVcHrw50L7zwAjExMWRlZfle1QyWe/Hpp5+yZ88eEhISBv334ty9\nSExMBHrue+G3yUPHdsCOHTvYs2cPBQUFrFq1iu3bt7fZPpgHcHZ07QP9vmRnZ1NRUcHevXsZMWIE\n8+fPv+y+A+1enDhxgtTUVJ577jluuOGGNtsG2/fixIkTfOtb3+K5555jyJAhPfq98NvkcfGAxMrK\nyjaZczAYMWIEADfffDN33303u3bt8g3gBNoM4BwMLnftlxq8arPZTImxrwwfPtz3oJw9e7bvFcRA\nvxdnzpwhNTWVWbNm+cafDdbvxbl78e1vf9t3L3rye+G3yeOWW26hvLycTz/9lKamJl5//XVmzJhh\ndlh95tSpU9TX1wNw8uRJiouLiY6OvuwAzsGgq4NXBzKPx+P7/NZbb/l6Yg3keyEiZGVlERUVxbx5\n83zlg/F7cbl70aPfi55u5e9LmzdvFpfLJREREfL000+bHU6fOnDggMTExEhMTIyMHTvWd/1XGsA5\nkPTU4NWB4OJ7sWbNGpk1a5ZER0fL+PHjZebMmXL48GHf/gP1Xmzfvl0sFovExMTIhAkTZMKECVJQ\nUDAovxeXuhebN2/u0e+FDhJUSinVZX772koppZR5NHkopZTqMk0eSimlukyTh1JKqS7T5KGUUqrL\nNHkopZTqMk0eSimlukyTh1JKqS77/7V5kXyOpoAoAAAAAElFTkSuQmCC\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0xb91ef28>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 26 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "fc_rate= generateDFfromFilename(\"HomesSoldAsForeclosures-Ratio_AllHomes\")\n", | |
| "fc_rate.head()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>RegionName</th>\n", | |
| " <th>City</th>\n", | |
| " <th>State</th>\n", | |
| " <th>Metro</th>\n", | |
| " <th>CountyName</th>\n", | |
| " <th>1998-01</th>\n", | |
| " <th>1998-02</th>\n", | |
| " <th>1998-03</th>\n", | |
| " <th>1998-04</th>\n", | |
| " <th>1998-05</th>\n", | |
| " <th>1998-06</th>\n", | |
| " <th>1998-07</th>\n", | |
| " <th>1998-08</th>\n", | |
| " <th>1998-09</th>\n", | |
| " <th>1998-10</th>\n", | |
| " <th>1998-11</th>\n", | |
| " <th>1998-12</th>\n", | |
| " <th>1999-01</th>\n", | |
| " <th>1999-02</th>\n", | |
| " <th>1999-03</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td> Northeast Dallas</td>\n", | |
| " <td> Dallas</td>\n", | |
| " <td> TX</td>\n", | |
| " <td> Dallas-Fort Worth</td>\n", | |
| " <td> Dallas</td>\n", | |
| " <td> 1.1969</td>\n", | |
| " <td> 0.9788</td>\n", | |
| " <td> 0.5575</td>\n", | |
| " <td> 1.2353</td>\n", | |
| " <td> 1.3822</td>\n", | |
| " <td> 1.5509</td>\n", | |
| " <td> 1.2593</td>\n", | |
| " <td> 1.3224</td>\n", | |
| " <td> 0.8679</td>\n", | |
| " <td> 1.1162</td>\n", | |
| " <td> 0.9120</td>\n", | |
| " <td> 0.6609</td>\n", | |
| " <td> 1.1097</td>\n", | |
| " <td> 1.0987</td>\n", | |
| " <td> 0.7659</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td> Paradise</td>\n", | |
| " <td> Las Vegas</td>\n", | |
| " <td> NV</td>\n", | |
| " <td> Las Vegas</td>\n", | |
| " <td> Clark</td>\n", | |
| " <td> 3.6928</td>\n", | |
| " <td> 4.2873</td>\n", | |
| " <td> 5.4308</td>\n", | |
| " <td> 5.1075</td>\n", | |
| " <td> 3.8920</td>\n", | |
| " <td> 3.5950</td>\n", | |
| " <td> 4.1949</td>\n", | |
| " <td> 4.4891</td>\n", | |
| " <td> 3.9920</td>\n", | |
| " <td> 3.3169</td>\n", | |
| " <td> 3.0653</td>\n", | |
| " <td> 3.5325</td>\n", | |
| " <td> 4.3873</td>\n", | |
| " <td> 4.2174</td>\n", | |
| " <td> 4.6353</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td> Maryvale</td>\n", | |
| " <td> Phoenix</td>\n", | |
| " <td> AZ</td>\n", | |
| " <td> Phoenix</td>\n", | |
| " <td> Maricopa</td>\n", | |
| " <td> 6.9338</td>\n", | |
| " <td> 6.1868</td>\n", | |
| " <td> 5.9987</td>\n", | |
| " <td> 6.5031</td>\n", | |
| " <td> 7.0995</td>\n", | |
| " <td> 7.7198</td>\n", | |
| " <td> 7.9067</td>\n", | |
| " <td> 9.1496</td>\n", | |
| " <td> 8.4973</td>\n", | |
| " <td> 7.5373</td>\n", | |
| " <td> 7.8191</td>\n", | |
| " <td> 7.2100</td>\n", | |
| " <td> 7.1826</td>\n", | |
| " <td> 6.6506</td>\n", | |
| " <td> 6.3429</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td> Upper West Side</td>\n", | |
| " <td> New York</td>\n", | |
| " <td> NY</td>\n", | |
| " <td> New York</td>\n", | |
| " <td> New York</td>\n", | |
| " <td> 0.0000</td>\n", | |
| " <td> 0.0000</td>\n", | |
| " <td> 1.2679</td>\n", | |
| " <td> 0.8875</td>\n", | |
| " <td> 0.3804</td>\n", | |
| " <td> 0.3057</td>\n", | |
| " <td> 0.8312</td>\n", | |
| " <td> 0.8265</td>\n", | |
| " <td> 0.3971</td>\n", | |
| " <td> 0.4082</td>\n", | |
| " <td> 0.5397</td>\n", | |
| " <td> 0.9441</td>\n", | |
| " <td> 0.5339</td>\n", | |
| " <td> 0.0000</td>\n", | |
| " <td> 0.0000</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td> South Los Angeles</td>\n", | |
| " <td> Los Angeles</td>\n", | |
| " <td> CA</td>\n", | |
| " <td> Los Angeles</td>\n", | |
| " <td> Los Angeles</td>\n", | |
| " <td> 19.7234</td>\n", | |
| " <td> 19.8267</td>\n", | |
| " <td> 22.3834</td>\n", | |
| " <td> 22.0444</td>\n", | |
| " <td> 22.0070</td>\n", | |
| " <td> 20.6364</td>\n", | |
| " <td> 22.2185</td>\n", | |
| " <td> 21.4862</td>\n", | |
| " <td> 20.8686</td>\n", | |
| " <td> 18.5885</td>\n", | |
| " <td> 19.7988</td>\n", | |
| " <td> 21.2616</td>\n", | |
| " <td> 18.6664</td>\n", | |
| " <td> 15.4790</td>\n", | |
| " <td> 18.7420</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>5 rows \u00d7 199 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 10, | |
| "text": [ | |
| " RegionName City State Metro CountyName \\\n", | |
| "0 Northeast Dallas Dallas TX Dallas-Fort Worth Dallas \n", | |
| "1 Paradise Las Vegas NV Las Vegas Clark \n", | |
| "2 Maryvale Phoenix AZ Phoenix Maricopa \n", | |
| "3 Upper West Side New York NY New York New York \n", | |
| "4 South Los Angeles Los Angeles CA Los Angeles Los Angeles \n", | |
| "\n", | |
| " 1998-01 1998-02 1998-03 1998-04 1998-05 1998-06 1998-07 1998-08 \\\n", | |
| "0 1.1969 0.9788 0.5575 1.2353 1.3822 1.5509 1.2593 1.3224 \n", | |
| "1 3.6928 4.2873 5.4308 5.1075 3.8920 3.5950 4.1949 4.4891 \n", | |
| "2 6.9338 6.1868 5.9987 6.5031 7.0995 7.7198 7.9067 9.1496 \n", | |
| "3 0.0000 0.0000 1.2679 0.8875 0.3804 0.3057 0.8312 0.8265 \n", | |
| "4 19.7234 19.8267 22.3834 22.0444 22.0070 20.6364 22.2185 21.4862 \n", | |
| "\n", | |
| " 1998-09 1998-10 1998-11 1998-12 1999-01 1999-02 1999-03 \n", | |
| "0 0.8679 1.1162 0.9120 0.6609 1.1097 1.0987 0.7659 ... \n", | |
| "1 3.9920 3.3169 3.0653 3.5325 4.3873 4.2174 4.6353 ... \n", | |
| "2 8.4973 7.5373 7.8191 7.2100 7.1826 6.6506 6.3429 ... \n", | |
| "3 0.3971 0.4082 0.5397 0.9441 0.5339 0.0000 0.0000 ... \n", | |
| "4 20.8686 18.5885 19.7988 21.2616 18.6664 15.4790 18.7420 ... \n", | |
| "\n", | |
| "[5 rows x 199 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 10 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "Zhvi_sum = generateDFfromFilename(\"Zhvi_Summary_AllHomes\")\n", | |
| "oak_Zhvi_sum = cleanedOakland(Zhvi_sum, [\"City\", \"State\", \"Metro\"])\n", | |
| "oak_Zhvi_sum.sort([\"YoY\"], ascending = False)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Date</th>\n", | |
| " <th>RegionName</th>\n", | |
| " <th>County</th>\n", | |
| " <th>SizeRank</th>\n", | |
| " <th>Zhvi</th>\n", | |
| " <th>MoM</th>\n", | |
| " <th>QoQ</th>\n", | |
| " <th>YoY</th>\n", | |
| " <th>5Year</th>\n", | |
| " <th>10Year</th>\n", | |
| " <th>ZhviRecordCnt</th>\n", | |
| " <th>PeakMonth</th>\n", | |
| " <th>PeakQuarter</th>\n", | |
| " <th>PeakZHVI</th>\n", | |
| " <th>PctFallFromPeak</th>\n", | |
| " <th>LastTimeAtCurrZHVI</th>\n", | |
| " <th>BottomMonth</th>\n", | |
| " <th>BottomQuarter</th>\n", | |
| " <th>BottomZHVI</th>\n", | |
| " <th>PctFallFromPeakToBottom</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>1481</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Adams Point</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1481</td>\n", | |
| " <td> 358600</td>\n", | |
| " <td> 0.013567</td>\n", | |
| " <td> 0.055948</td>\n", | |
| " <td> 0.457131</td>\n", | |
| " <td> 0.044173</td>\n", | |
| " <td> 0.012407</td>\n", | |
| " <td> 980</td>\n", | |
| " <td> 2005-10</td>\n", | |
| " <td> 2005-Q4</td>\n", | |
| " <td> 429900</td>\n", | |
| " <td>-0.165853</td>\n", | |
| " <td> 2004-11</td>\n", | |
| " <td> 2011-09</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 206000</td>\n", | |
| " <td>-0.520819</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2748</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Harrington</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2748</td>\n", | |
| " <td> 272500</td>\n", | |
| " <td> 0.010757</td>\n", | |
| " <td> 0.040871</td>\n", | |
| " <td> 0.446391</td>\n", | |
| " <td>-0.014537</td>\n", | |
| " <td>-0.013981</td>\n", | |
| " <td> 471</td>\n", | |
| " <td> 2006-04</td>\n", | |
| " <td> 2006-Q2</td>\n", | |
| " <td> 473800</td>\n", | |
| " <td>-0.424863</td>\n", | |
| " <td> 2002-12</td>\n", | |
| " <td> 2012-04</td>\n", | |
| " <td> 2012-Q2</td>\n", | |
| " <td> 167700</td>\n", | |
| " <td>-0.646053</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3504</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Upper Peralta Creek</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3504</td>\n", | |
| " <td> 347300</td>\n", | |
| " <td> 0.005501</td>\n", | |
| " <td> 0.018774</td>\n", | |
| " <td> 0.417551</td>\n", | |
| " <td> 0.036220</td>\n", | |
| " <td> 0.006689</td>\n", | |
| " <td> 427</td>\n", | |
| " <td> 2006-01</td>\n", | |
| " <td> 2006-Q1</td>\n", | |
| " <td> 497400</td>\n", | |
| " <td>-0.301769</td>\n", | |
| " <td> 2004-06</td>\n", | |
| " <td> 2011-03</td>\n", | |
| " <td> 2011-Q1</td>\n", | |
| " <td> 215000</td>\n", | |
| " <td>-0.567752</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1826</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> St. Elizabeth</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1826</td>\n", | |
| " <td> 262000</td>\n", | |
| " <td> 0.003447</td>\n", | |
| " <td> 0.027854</td>\n", | |
| " <td> 0.409360</td>\n", | |
| " <td>-0.025878</td>\n", | |
| " <td>-0.014434</td>\n", | |
| " <td> 534</td>\n", | |
| " <td> 2006-07</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 494500</td>\n", | |
| " <td>-0.470172</td>\n", | |
| " <td> 2003-01</td>\n", | |
| " <td> 2012-02</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 160600</td>\n", | |
| " <td>-0.675228</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3286</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Clawson</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3286</td>\n", | |
| " <td> 377900</td>\n", | |
| " <td> 0.010428</td>\n", | |
| " <td> 0.033926</td>\n", | |
| " <td> 0.400148</td>\n", | |
| " <td> 0.021843</td>\n", | |
| " <td> 0.010506</td>\n", | |
| " <td> 596</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 503400</td>\n", | |
| " <td>-0.249305</td>\n", | |
| " <td> 2004-10</td>\n", | |
| " <td> 2012-03</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 224300</td>\n", | |
| " <td>-0.554430</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2786</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Jefferson</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2786</td>\n", | |
| " <td> 293000</td>\n", | |
| " <td> 0.008953</td>\n", | |
| " <td> 0.025551</td>\n", | |
| " <td> 0.366604</td>\n", | |
| " <td>-0.012424</td>\n", | |
| " <td>-0.012270</td>\n", | |
| " <td> 746</td>\n", | |
| " <td> 2006-04</td>\n", | |
| " <td> 2006-Q2</td>\n", | |
| " <td> 494800</td>\n", | |
| " <td>-0.407842</td>\n", | |
| " <td> 2003-01</td>\n", | |
| " <td> 2012-05</td>\n", | |
| " <td> 2012-Q2</td>\n", | |
| " <td> 185500</td>\n", | |
| " <td>-0.625101</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3202</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Brookfield Village</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3202</td>\n", | |
| " <td> 201300</td>\n", | |
| " <td> 0.019241</td>\n", | |
| " <td> 0.051175</td>\n", | |
| " <td> 0.365672</td>\n", | |
| " <td>-0.015723</td>\n", | |
| " <td>-0.030716</td>\n", | |
| " <td> 961</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 409500</td>\n", | |
| " <td>-0.508425</td>\n", | |
| " <td> 2002-05</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 121900</td>\n", | |
| " <td>-0.702320</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2298</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Allendale</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2298</td>\n", | |
| " <td> 299300</td>\n", | |
| " <td> 0.014576</td>\n", | |
| " <td> 0.029584</td>\n", | |
| " <td> 0.364175</td>\n", | |
| " <td> 0.029664</td>\n", | |
| " <td>-0.006944</td>\n", | |
| " <td> 845</td>\n", | |
| " <td> 2006-06</td>\n", | |
| " <td> 2006-Q2</td>\n", | |
| " <td> 482000</td>\n", | |
| " <td>-0.379046</td>\n", | |
| " <td> 2003-11</td>\n", | |
| " <td> 2012-02</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 182800</td>\n", | |
| " <td>-0.620747</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4243</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Oak Knoll-Golf Links</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4243</td>\n", | |
| " <td> 403800</td>\n", | |
| " <td> 0.024093</td>\n", | |
| " <td> 0.086068</td>\n", | |
| " <td> 0.353217</td>\n", | |
| " <td> 0.027255</td>\n", | |
| " <td> 0.003355</td>\n", | |
| " <td> 566</td>\n", | |
| " <td> 2006-11</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 582700</td>\n", | |
| " <td>-0.307019</td>\n", | |
| " <td> 2004-04</td>\n", | |
| " <td> 2012-02</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 231200</td>\n", | |
| " <td>-0.603226</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3781</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Produce & Waterfront</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3781</td>\n", | |
| " <td> 476200</td>\n", | |
| " <td> 0.011470</td>\n", | |
| " <td> 0.053773</td>\n", | |
| " <td> 0.351305</td>\n", | |
| " <td> 0.052846</td>\n", | |
| " <td> 0.027941</td>\n", | |
| " <td> 992</td>\n", | |
| " <td> 2005-12</td>\n", | |
| " <td> 2005-Q4</td>\n", | |
| " <td> 489300</td>\n", | |
| " <td>-0.026773</td>\n", | |
| " <td> 2005-07</td>\n", | |
| " <td> 2010-08</td>\n", | |
| " <td> 2010-Q3</td>\n", | |
| " <td> 286300</td>\n", | |
| " <td>-0.414878</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2054</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Seminary</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2054</td>\n", | |
| " <td> 221100</td>\n", | |
| " <td> 0.017019</td>\n", | |
| " <td> 0.052356</td>\n", | |
| " <td> 0.319212</td>\n", | |
| " <td>-0.003314</td>\n", | |
| " <td>-0.022640</td>\n", | |
| " <td> 789</td>\n", | |
| " <td> 2007-01</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 433100</td>\n", | |
| " <td>-0.489494</td>\n", | |
| " <td> 2002-08</td>\n", | |
| " <td> 2012-04</td>\n", | |
| " <td> 2012-Q2</td>\n", | |
| " <td> 132800</td>\n", | |
| " <td>-0.693373</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4015</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Durant Manor</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4015</td>\n", | |
| " <td> 279700</td>\n", | |
| " <td> 0.002150</td>\n", | |
| " <td> 0.016352</td>\n", | |
| " <td> 0.318096</td>\n", | |
| " <td>-0.009451</td>\n", | |
| " <td>-0.020080</td>\n", | |
| " <td> 642</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 490900</td>\n", | |
| " <td>-0.430230</td>\n", | |
| " <td> 2002-12</td>\n", | |
| " <td> 2012-04</td>\n", | |
| " <td> 2012-Q2</td>\n", | |
| " <td> 177500</td>\n", | |
| " <td>-0.638419</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2989</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Eastmont Hills</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2989</td>\n", | |
| " <td> 379000</td>\n", | |
| " <td> 0.007979</td>\n", | |
| " <td> 0.027100</td>\n", | |
| " <td> 0.317344</td>\n", | |
| " <td> 0.023708</td>\n", | |
| " <td> 0.002650</td>\n", | |
| " <td> 1235</td>\n", | |
| " <td> 2006-03</td>\n", | |
| " <td> 2006-Q1</td>\n", | |
| " <td> 562700</td>\n", | |
| " <td>-0.326462</td>\n", | |
| " <td> 2004-04</td>\n", | |
| " <td> 2012-03</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 250800</td>\n", | |
| " <td>-0.554292</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4843</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Foothill Square</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4843</td>\n", | |
| " <td> 265100</td>\n", | |
| " <td>-0.005626</td>\n", | |
| " <td> 0.009520</td>\n", | |
| " <td> 0.311727</td>\n", | |
| " <td> 0.005055</td>\n", | |
| " <td>-0.018952</td>\n", | |
| " <td> 423</td>\n", | |
| " <td> 2006-12</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 497700</td>\n", | |
| " <td>-0.467350</td>\n", | |
| " <td> 2002-05</td>\n", | |
| " <td> 2011-07</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 163700</td>\n", | |
| " <td>-0.671087</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2377</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Grand Lake</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2377</td>\n", | |
| " <td> 336500</td>\n", | |
| " <td> 0.008089</td>\n", | |
| " <td> 0.029997</td>\n", | |
| " <td> 0.310869</td>\n", | |
| " <td> 0.025910</td>\n", | |
| " <td> 0.000986</td>\n", | |
| " <td> 1133</td>\n", | |
| " <td> 2005-11</td>\n", | |
| " <td> 2005-Q4</td>\n", | |
| " <td> 453800</td>\n", | |
| " <td>-0.258484</td>\n", | |
| " <td> 2004-03</td>\n", | |
| " <td> 2012-06</td>\n", | |
| " <td> 2012-Q2</td>\n", | |
| " <td> 245200</td>\n", | |
| " <td>-0.459674</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3942</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Toler Heights</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3942</td>\n", | |
| " <td> 303900</td>\n", | |
| " <td> 0.014691</td>\n", | |
| " <td> 0.062959</td>\n", | |
| " <td> 0.304292</td>\n", | |
| " <td> 0.005078</td>\n", | |
| " <td>-0.011452</td>\n", | |
| " <td> 620</td>\n", | |
| " <td> 2006-11</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 520900</td>\n", | |
| " <td>-0.416587</td>\n", | |
| " <td> 2003-03</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 179500</td>\n", | |
| " <td>-0.655404</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2000</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Fremont</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2000</td>\n", | |
| " <td> 270900</td>\n", | |
| " <td> 0.001479</td>\n", | |
| " <td> 0.008939</td>\n", | |
| " <td> 0.303030</td>\n", | |
| " <td>-0.002200</td>\n", | |
| " <td>-0.014058</td>\n", | |
| " <td> 572</td>\n", | |
| " <td> 2006-11</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 461600</td>\n", | |
| " <td>-0.413128</td>\n", | |
| " <td> 2003-03</td>\n", | |
| " <td> 2011-09</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 170200</td>\n", | |
| " <td>-0.631282</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2611</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Highland Terrace</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2611</td>\n", | |
| " <td> 307100</td>\n", | |
| " <td> 0.016551</td>\n", | |
| " <td> 0.029501</td>\n", | |
| " <td> 0.297423</td>\n", | |
| " <td> 0.006914</td>\n", | |
| " <td>-0.004541</td>\n", | |
| " <td> 570</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 485800</td>\n", | |
| " <td>-0.367847</td>\n", | |
| " <td> 2003-12</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 198000</td>\n", | |
| " <td>-0.592425</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3629</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Las Palmas</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3629</td>\n", | |
| " <td> 245300</td>\n", | |
| " <td> 0.009881</td>\n", | |
| " <td> 0.046948</td>\n", | |
| " <td> 0.297197</td>\n", | |
| " <td>-0.002026</td>\n", | |
| " <td>-0.024668</td>\n", | |
| " <td> 661</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 476300</td>\n", | |
| " <td>-0.484988</td>\n", | |
| " <td> 2002-06</td>\n", | |
| " <td> 2012-02</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 158900</td>\n", | |
| " <td>-0.666387</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3994</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Golden Gate</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3994</td>\n", | |
| " <td> 529100</td>\n", | |
| " <td> 0.011470</td>\n", | |
| " <td> 0.036029</td>\n", | |
| " <td> 0.286722</td>\n", | |
| " <td> 0.069005</td>\n", | |
| " <td> 0.028701</td>\n", | |
| " <td> 424</td>\n", | |
| " <td> 2006-06</td>\n", | |
| " <td> 2006-Q2</td>\n", | |
| " <td> 553000</td>\n", | |
| " <td>-0.043219</td>\n", | |
| " <td> 2005-07</td>\n", | |
| " <td> 2011-07</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 293400</td>\n", | |
| " <td>-0.469439</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2024</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Meadow Brook</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2024</td>\n", | |
| " <td> 284400</td>\n", | |
| " <td> 0.002821</td>\n", | |
| " <td> 0.010661</td>\n", | |
| " <td> 0.286296</td>\n", | |
| " <td> 0.003985</td>\n", | |
| " <td>-0.013316</td>\n", | |
| " <td> 646</td>\n", | |
| " <td> 2006-07</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 494400</td>\n", | |
| " <td>-0.424757</td>\n", | |
| " <td> 2003-07</td>\n", | |
| " <td> 2012-03</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 174300</td>\n", | |
| " <td>-0.647451</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2735</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> North Stonehurst</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2735</td>\n", | |
| " <td> 207200</td>\n", | |
| " <td> 0.020187</td>\n", | |
| " <td> 0.071355</td>\n", | |
| " <td> 0.285360</td>\n", | |
| " <td>-0.008743</td>\n", | |
| " <td>-0.035462</td>\n", | |
| " <td> 653</td>\n", | |
| " <td> 2006-12</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 441900</td>\n", | |
| " <td>-0.531116</td>\n", | |
| " <td> 2002-04</td>\n", | |
| " <td> 2011-09</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 133700</td>\n", | |
| " <td>-0.697443</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3035</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Eastmont</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3035</td>\n", | |
| " <td> 215000</td>\n", | |
| " <td> 0.022349</td>\n", | |
| " <td> 0.039149</td>\n", | |
| " <td> 0.284349</td>\n", | |
| " <td>-0.013226</td>\n", | |
| " <td>-0.029848</td>\n", | |
| " <td> 826</td>\n", | |
| " <td> 2006-12</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 429500</td>\n", | |
| " <td>-0.499418</td>\n", | |
| " <td> 2002-05</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 126000</td>\n", | |
| " <td>-0.706636</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1677</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Havenscourt</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1677</td>\n", | |
| " <td> 220200</td>\n", | |
| " <td> 0.022284</td>\n", | |
| " <td> 0.052581</td>\n", | |
| " <td> 0.262615</td>\n", | |
| " <td>-0.012589</td>\n", | |
| " <td>-0.027594</td>\n", | |
| " <td> 1527</td>\n", | |
| " <td> 2007-02</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 450800</td>\n", | |
| " <td>-0.511535</td>\n", | |
| " <td> 2002-05</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 141400</td>\n", | |
| " <td>-0.686335</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2085</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Maxwell Park</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2085</td>\n", | |
| " <td> 406200</td>\n", | |
| " <td> 0.001479</td>\n", | |
| " <td> 0.010951</td>\n", | |
| " <td> 0.259926</td>\n", | |
| " <td> 0.018624</td>\n", | |
| " <td> 0.000444</td>\n", | |
| " <td> 1982</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 545800</td>\n", | |
| " <td>-0.255771</td>\n", | |
| " <td> 2004-03</td>\n", | |
| " <td> 2011-11</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 279000</td>\n", | |
| " <td>-0.488824</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3266</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Lakewide</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3266</td>\n", | |
| " <td> 403800</td>\n", | |
| " <td> 0.007988</td>\n", | |
| " <td> 0.032209</td>\n", | |
| " <td> 0.253648</td>\n", | |
| " <td> 0.018630</td>\n", | |
| " <td> 0.023022</td>\n", | |
| " <td> 539</td>\n", | |
| " <td> 2005-08</td>\n", | |
| " <td> 2005-Q3</td>\n", | |
| " <td> 490700</td>\n", | |
| " <td>-0.177094</td>\n", | |
| " <td> 2004-11</td>\n", | |
| " <td> 2012-01</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 270800</td>\n", | |
| " <td>-0.448135</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3119</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Sobrante Park</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3119</td>\n", | |
| " <td> 208300</td>\n", | |
| " <td> 0.023084</td>\n", | |
| " <td> 0.061131</td>\n", | |
| " <td> 0.250300</td>\n", | |
| " <td>-0.021826</td>\n", | |
| " <td>-0.029459</td>\n", | |
| " <td> 765</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 438100</td>\n", | |
| " <td>-0.524538</td>\n", | |
| " <td> 2002-03</td>\n", | |
| " <td> 2011-07</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 148500</td>\n", | |
| " <td>-0.661036</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3258</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Coliseum</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3258</td>\n", | |
| " <td> 186800</td>\n", | |
| " <td> 0.013565</td>\n", | |
| " <td> 0.054771</td>\n", | |
| " <td> 0.246996</td>\n", | |
| " <td>-0.018039</td>\n", | |
| " <td>-0.030985</td>\n", | |
| " <td> 410</td>\n", | |
| " <td> 2007-02</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 418200</td>\n", | |
| " <td>-0.553324</td>\n", | |
| " <td> 2002-01</td>\n", | |
| " <td> 2011-11</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 106600</td>\n", | |
| " <td>-0.745098</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1972</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Longfellow</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1972</td>\n", | |
| " <td> 465400</td>\n", | |
| " <td> 0.001506</td>\n", | |
| " <td> 0.013723</td>\n", | |
| " <td> 0.244718</td>\n", | |
| " <td> 0.078333</td>\n", | |
| " <td> 0.029407</td>\n", | |
| " <td> 1116</td>\n", | |
| " <td> 2006-11</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 531800</td>\n", | |
| " <td>-0.124859</td>\n", | |
| " <td> 2005-08</td>\n", | |
| " <td> 2009-07</td>\n", | |
| " <td> 2009-Q3</td>\n", | |
| " <td> 284600</td>\n", | |
| " <td>-0.464836</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3043</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Castlemont</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3043</td>\n", | |
| " <td> 229000</td>\n", | |
| " <td> 0.005268</td>\n", | |
| " <td> 0.034327</td>\n", | |
| " <td> 0.241192</td>\n", | |
| " <td>-0.012285</td>\n", | |
| " <td>-0.023036</td>\n", | |
| " <td> 552</td>\n", | |
| " <td> 2006-09</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 433100</td>\n", | |
| " <td>-0.471254</td>\n", | |
| " <td> 2002-04</td>\n", | |
| " <td> 2011-03</td>\n", | |
| " <td> 2011-Q1</td>\n", | |
| " <td> 145800</td>\n", | |
| " <td>-0.663357</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2029</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Webster</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2029</td>\n", | |
| " <td> 195100</td>\n", | |
| " <td> 0.022537</td>\n", | |
| " <td> 0.065538</td>\n", | |
| " <td> 0.235592</td>\n", | |
| " <td>-0.017587</td>\n", | |
| " <td>-0.037492</td>\n", | |
| " <td> 901</td>\n", | |
| " <td> 2007-01</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 439600</td>\n", | |
| " <td>-0.556187</td>\n", | |
| " <td> 2002-02</td>\n", | |
| " <td> 2011-05</td>\n", | |
| " <td> 2011-Q2</td>\n", | |
| " <td> 110700</td>\n", | |
| " <td>-0.748180</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3921</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Fairfax</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3921</td>\n", | |
| " <td> 319800</td>\n", | |
| " <td>-0.004359</td>\n", | |
| " <td> 0.000939</td>\n", | |
| " <td> 0.231421</td>\n", | |
| " <td> 0.019896</td>\n", | |
| " <td>-0.009997</td>\n", | |
| " <td> 449</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 504500</td>\n", | |
| " <td>-0.366105</td>\n", | |
| " <td> 2003-09</td>\n", | |
| " <td> 2011-11</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 211100</td>\n", | |
| " <td>-0.581566</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2907</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Chabot Park</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2907</td>\n", | |
| " <td> 598300</td>\n", | |
| " <td> 0.000167</td>\n", | |
| " <td>-0.003166</td>\n", | |
| " <td> 0.229552</td>\n", | |
| " <td> 0.017533</td>\n", | |
| " <td> 0.011132</td>\n", | |
| " <td> 1097</td>\n", | |
| " <td> 2006-09</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 734500</td>\n", | |
| " <td>-0.185432</td>\n", | |
| " <td> 2004-09</td>\n", | |
| " <td> 2012-03</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 438000</td>\n", | |
| " <td>-0.403676</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2199</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Arroyo Viejo</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2199</td>\n", | |
| " <td> 195200</td>\n", | |
| " <td> 0.012448</td>\n", | |
| " <td> 0.036093</td>\n", | |
| " <td> 0.227673</td>\n", | |
| " <td>-0.021762</td>\n", | |
| " <td>-0.036256</td>\n", | |
| " <td> 1043</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 432900</td>\n", | |
| " <td>-0.549088</td>\n", | |
| " <td> 2002-01</td>\n", | |
| " <td> 2011-09</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 116800</td>\n", | |
| " <td>-0.730192</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5144</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Columbia Gardens</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 5144</td>\n", | |
| " <td> 183000</td>\n", | |
| " <td> 0.013289</td>\n", | |
| " <td> 0.046911</td>\n", | |
| " <td> 0.221629</td>\n", | |
| " <td>-0.006010</td>\n", | |
| " <td>-0.037647</td>\n", | |
| " <td> 415</td>\n", | |
| " <td> 2006-12</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 432100</td>\n", | |
| " <td>-0.576487</td>\n", | |
| " <td> 2001-10</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 122400</td>\n", | |
| " <td>-0.716732</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2062</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Rancho San Antonio</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2062</td>\n", | |
| " <td> 274700</td>\n", | |
| " <td> 0.005490</td>\n", | |
| " <td> 0.004388</td>\n", | |
| " <td> 0.214412</td>\n", | |
| " <td>-0.018316</td>\n", | |
| " <td>-0.016067</td>\n", | |
| " <td> 485</td>\n", | |
| " <td> 2006-03</td>\n", | |
| " <td> 2006-Q1</td>\n", | |
| " <td> 479500</td>\n", | |
| " <td>-0.427112</td>\n", | |
| " <td> 2003-05</td>\n", | |
| " <td> 2011-11</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 184000</td>\n", | |
| " <td>-0.616267</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3098</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Frick</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3098</td>\n", | |
| " <td> 349000</td>\n", | |
| " <td> 0.004895</td>\n", | |
| " <td> 0.007797</td>\n", | |
| " <td> 0.206360</td>\n", | |
| " <td> 0.032100</td>\n", | |
| " <td>-0.007450</td>\n", | |
| " <td> 833</td>\n", | |
| " <td> 2006-11</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 491100</td>\n", | |
| " <td>-0.289350</td>\n", | |
| " <td> 2003-10</td>\n", | |
| " <td> 2012-03</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 231300</td>\n", | |
| " <td>-0.529016</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1741</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Bushrod</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1741</td>\n", | |
| " <td> 616300</td>\n", | |
| " <td> 0.001788</td>\n", | |
| " <td> 0.006533</td>\n", | |
| " <td> 0.199261</td>\n", | |
| " <td> 0.061403</td>\n", | |
| " <td> 0.032270</td>\n", | |
| " <td> 1254</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 2014-Q1</td>\n", | |
| " <td> 616300</td>\n", | |
| " <td> 0.000000</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2891</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Iveywood</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2891</td>\n", | |
| " <td> 211600</td>\n", | |
| " <td> 0.018777</td>\n", | |
| " <td> 0.059059</td>\n", | |
| " <td> 0.189432</td>\n", | |
| " <td>-0.019504</td>\n", | |
| " <td>-0.033009</td>\n", | |
| " <td> 747</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 450300</td>\n", | |
| " <td>-0.530091</td>\n", | |
| " <td> 2002-02</td>\n", | |
| " <td> 2011-02</td>\n", | |
| " <td> 2011-Q1</td>\n", | |
| " <td> 150400</td>\n", | |
| " <td>-0.666000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2381</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Prescott</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2381</td>\n", | |
| " <td> 354400</td>\n", | |
| " <td> 0.009112</td>\n", | |
| " <td> 0.023390</td>\n", | |
| " <td> 0.180546</td>\n", | |
| " <td> 0.012292</td>\n", | |
| " <td> 0.008946</td>\n", | |
| " <td> 819</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 496100</td>\n", | |
| " <td>-0.285628</td>\n", | |
| " <td> 2004-08</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 259700</td>\n", | |
| " <td>-0.476517</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4809</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Leona Heights</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4809</td>\n", | |
| " <td> 597000</td>\n", | |
| " <td> 0.004881</td>\n", | |
| " <td> 0.014788</td>\n", | |
| " <td> 0.179143</td>\n", | |
| " <td> 0.013422</td>\n", | |
| " <td> 0.009917</td>\n", | |
| " <td> 421</td>\n", | |
| " <td> 2006-02</td>\n", | |
| " <td> 2006-Q1</td>\n", | |
| " <td> 706500</td>\n", | |
| " <td>-0.154989</td>\n", | |
| " <td> 2004-09</td>\n", | |
| " <td> 2012-01</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 454100</td>\n", | |
| " <td>-0.357254</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3084</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Cox</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3084</td>\n", | |
| " <td> 203400</td>\n", | |
| " <td> 0.015984</td>\n", | |
| " <td> 0.048454</td>\n", | |
| " <td> 0.178447</td>\n", | |
| " <td>-0.019721</td>\n", | |
| " <td>-0.033946</td>\n", | |
| " <td> 425</td>\n", | |
| " <td> 2006-08</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 437500</td>\n", | |
| " <td>-0.535086</td>\n", | |
| " <td> 2002-02</td>\n", | |
| " <td> 2011-03</td>\n", | |
| " <td> 2011-Q1</td>\n", | |
| " <td> 128300</td>\n", | |
| " <td>-0.706743</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1307</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Redwood Heights</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1307</td>\n", | |
| " <td> 562700</td>\n", | |
| " <td> 0.003925</td>\n", | |
| " <td> 0.017909</td>\n", | |
| " <td> 0.172292</td>\n", | |
| " <td> 0.023255</td>\n", | |
| " <td> 0.012575</td>\n", | |
| " <td> 2839</td>\n", | |
| " <td> 2005-08</td>\n", | |
| " <td> 2005-Q3</td>\n", | |
| " <td> 652400</td>\n", | |
| " <td>-0.137492</td>\n", | |
| " <td> 2004-09</td>\n", | |
| " <td> 2012-02</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 409100</td>\n", | |
| " <td>-0.372931</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2991</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Shafter</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2991</td>\n", | |
| " <td> 853100</td>\n", | |
| " <td> 0.009825</td>\n", | |
| " <td> 0.019479</td>\n", | |
| " <td> 0.165756</td>\n", | |
| " <td> 0.042807</td>\n", | |
| " <td> 0.034263</td>\n", | |
| " <td> 792</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 2014-Q1</td>\n", | |
| " <td> 853100</td>\n", | |
| " <td> 0.000000</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2579</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Temescal</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2579</td>\n", | |
| " <td> 679800</td>\n", | |
| " <td> 0.000589</td>\n", | |
| " <td>-0.007011</td>\n", | |
| " <td> 0.164839</td>\n", | |
| " <td> 0.053682</td>\n", | |
| " <td> 0.033049</td>\n", | |
| " <td> 759</td>\n", | |
| " <td> 2013-09</td>\n", | |
| " <td> 2013-Q3</td>\n", | |
| " <td> 691100</td>\n", | |
| " <td>-0.016351</td>\n", | |
| " <td> 2013-09</td>\n", | |
| " <td> 2014-01</td>\n", | |
| " <td> 2014-Q1</td>\n", | |
| " <td> 679400</td>\n", | |
| " <td>-0.016930</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2903</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Fairview Park</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2903</td>\n", | |
| " <td> 867400</td>\n", | |
| " <td> 0.002195</td>\n", | |
| " <td> 0.010249</td>\n", | |
| " <td> 0.157768</td>\n", | |
| " <td> 0.063192</td>\n", | |
| " <td> 0.040033</td>\n", | |
| " <td> 804</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 2014-Q1</td>\n", | |
| " <td> 867400</td>\n", | |
| " <td> 0.000000</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4173</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Lincoln Highlands</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4173</td>\n", | |
| " <td> 681100</td>\n", | |
| " <td> 0.000147</td>\n", | |
| " <td> 0.006502</td>\n", | |
| " <td> 0.157349</td>\n", | |
| " <td> 0.030640</td>\n", | |
| " <td> 0.012725</td>\n", | |
| " <td> 704</td>\n", | |
| " <td> 2005-08</td>\n", | |
| " <td> 2005-Q3</td>\n", | |
| " <td> 735900</td>\n", | |
| " <td>-0.074467</td>\n", | |
| " <td> 2005-02</td>\n", | |
| " <td> 2012-01</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 499900</td>\n", | |
| " <td>-0.320696</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2670</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Sequoyah</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2670</td>\n", | |
| " <td> 574900</td>\n", | |
| " <td>-0.002083</td>\n", | |
| " <td>-0.011010</td>\n", | |
| " <td> 0.150030</td>\n", | |
| " <td> 0.013168</td>\n", | |
| " <td> 0.004474</td>\n", | |
| " <td> 1911</td>\n", | |
| " <td> 2006-09</td>\n", | |
| " <td> 2006-Q3</td>\n", | |
| " <td> 724500</td>\n", | |
| " <td>-0.206487</td>\n", | |
| " <td> 2004-09</td>\n", | |
| " <td> 2011-08</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 447300</td>\n", | |
| " <td>-0.382609</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1531</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Clinton</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1531</td>\n", | |
| " <td> 364800</td>\n", | |
| " <td>-0.008157</td>\n", | |
| " <td>-0.032104</td>\n", | |
| " <td> 0.149338</td>\n", | |
| " <td> 0.007570</td>\n", | |
| " <td> 0.002220</td>\n", | |
| " <td> 462</td>\n", | |
| " <td> 2006-10</td>\n", | |
| " <td> 2006-Q4</td>\n", | |
| " <td> 505400</td>\n", | |
| " <td>-0.278195</td>\n", | |
| " <td> 2004-03</td>\n", | |
| " <td> 2011-10</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 251700</td>\n", | |
| " <td>-0.501979</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4924</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Skyline - Hillcrest Estates</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4924</td>\n", | |
| " <td> 849200</td>\n", | |
| " <td> 0.000236</td>\n", | |
| " <td> 0.006758</td>\n", | |
| " <td> 0.147257</td>\n", | |
| " <td> 0.025813</td>\n", | |
| " <td> 0.012554</td>\n", | |
| " <td> 560</td>\n", | |
| " <td> 2005-12</td>\n", | |
| " <td> 2005-Q4</td>\n", | |
| " <td> 921900</td>\n", | |
| " <td>-0.078859</td>\n", | |
| " <td> 2005-01</td>\n", | |
| " <td> 2012-03</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 607300</td>\n", | |
| " <td>-0.341252</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1820</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Upper Dimond</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 1820</td>\n", | |
| " <td> 568200</td>\n", | |
| " <td> 0.001763</td>\n", | |
| " <td> 0.007090</td>\n", | |
| " <td> 0.144641</td>\n", | |
| " <td> 0.022490</td>\n", | |
| " <td> 0.012970</td>\n", | |
| " <td> 1776</td>\n", | |
| " <td> 2005-05</td>\n", | |
| " <td> 2005-Q2</td>\n", | |
| " <td> 620800</td>\n", | |
| " <td>-0.084729</td>\n", | |
| " <td> 2004-10</td>\n", | |
| " <td> 2011-12</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 418600</td>\n", | |
| " <td>-0.325709</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3644</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Caballo Hills</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3644</td>\n", | |
| " <td> 643000</td>\n", | |
| " <td> 0.002495</td>\n", | |
| " <td> 0.007837</td>\n", | |
| " <td> 0.130649</td>\n", | |
| " <td> 0.002444</td>\n", | |
| " <td> 0.007484</td>\n", | |
| " <td> 740</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 765900</td>\n", | |
| " <td>-0.160465</td>\n", | |
| " <td> 2004-09</td>\n", | |
| " <td> 2011-12</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 494600</td>\n", | |
| " <td>-0.354224</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2099</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Glenview</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2099</td>\n", | |
| " <td> 717600</td>\n", | |
| " <td> 0.002935</td>\n", | |
| " <td> 0.002935</td>\n", | |
| " <td> 0.127416</td>\n", | |
| " <td> 0.029803</td>\n", | |
| " <td> 0.020710</td>\n", | |
| " <td> 1606</td>\n", | |
| " <td> 2013-09</td>\n", | |
| " <td> 2013-Q3</td>\n", | |
| " <td> 722500</td>\n", | |
| " <td>-0.006782</td>\n", | |
| " <td> 2013-09</td>\n", | |
| " <td> 2013-12</td>\n", | |
| " <td> 2013-Q4</td>\n", | |
| " <td> 713900</td>\n", | |
| " <td>-0.011903</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4530</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Woodminster</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4530</td>\n", | |
| " <td> 813400</td>\n", | |
| " <td> 0.000123</td>\n", | |
| " <td>-0.001105</td>\n", | |
| " <td> 0.126593</td>\n", | |
| " <td> 0.031192</td>\n", | |
| " <td> 0.019553</td>\n", | |
| " <td> 414</td>\n", | |
| " <td> 2007-03</td>\n", | |
| " <td> 2007-Q1</td>\n", | |
| " <td> 861200</td>\n", | |
| " <td>-0.055504</td>\n", | |
| " <td> 2005-06</td>\n", | |
| " <td> 2011-06</td>\n", | |
| " <td> 2011-Q2</td>\n", | |
| " <td> 634800</td>\n", | |
| " <td>-0.262889</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4895</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Crestmont</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 4895</td>\n", | |
| " <td> 723900</td>\n", | |
| " <td> 0.001522</td>\n", | |
| " <td> 0.003883</td>\n", | |
| " <td> 0.118856</td>\n", | |
| " <td> 0.024431</td>\n", | |
| " <td> 0.017400</td>\n", | |
| " <td> 549</td>\n", | |
| " <td> 2006-05</td>\n", | |
| " <td> 2006-Q2</td>\n", | |
| " <td> 763500</td>\n", | |
| " <td>-0.051866</td>\n", | |
| " <td> 2005-01</td>\n", | |
| " <td> 2012-01</td>\n", | |
| " <td> 2012-Q1</td>\n", | |
| " <td> 530800</td>\n", | |
| " <td>-0.304781</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2394</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Lakeshore</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2394</td>\n", | |
| " <td> 886900</td>\n", | |
| " <td> 0.004531</td>\n", | |
| " <td> 0.008643</td>\n", | |
| " <td> 0.112658</td>\n", | |
| " <td> 0.031012</td>\n", | |
| " <td> 0.022151</td>\n", | |
| " <td> 1167</td>\n", | |
| " <td> 2005-08</td>\n", | |
| " <td> 2005-Q3</td>\n", | |
| " <td> 889700</td>\n", | |
| " <td>-0.003147</td>\n", | |
| " <td> 2005-08</td>\n", | |
| " <td> 2011-08</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 664400</td>\n", | |
| " <td>-0.253231</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3064</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Rockridge</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3064</td>\n", | |
| " <td> 1001800</td>\n", | |
| " <td>-0.002787</td>\n", | |
| " <td>-0.006348</td>\n", | |
| " <td> 0.105740</td>\n", | |
| " <td> 0.045441</td>\n", | |
| " <td> 0.030268</td>\n", | |
| " <td> 927</td>\n", | |
| " <td> 2013-11</td>\n", | |
| " <td> 2013-Q4</td>\n", | |
| " <td> 1008200</td>\n", | |
| " <td>-0.006348</td>\n", | |
| " <td> 2013-10</td>\n", | |
| " <td> 2014-02</td>\n", | |
| " <td> 2014-Q1</td>\n", | |
| " <td> 1001800</td>\n", | |
| " <td>-0.006348</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3107</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Trestle Glen</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3107</td>\n", | |
| " <td> 899600</td>\n", | |
| " <td> 0.000667</td>\n", | |
| " <td>-0.001221</td>\n", | |
| " <td> 0.105567</td>\n", | |
| " <td> 0.027262</td>\n", | |
| " <td> 0.021531</td>\n", | |
| " <td> 1156</td>\n", | |
| " <td> 2005-06</td>\n", | |
| " <td> 2005-Q2</td>\n", | |
| " <td> 912700</td>\n", | |
| " <td>-0.014353</td>\n", | |
| " <td> 2005-05</td>\n", | |
| " <td> 2011-07</td>\n", | |
| " <td> 2011-Q3</td>\n", | |
| " <td> 690800</td>\n", | |
| " <td>-0.243125</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2963</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Merriwood</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 2963</td>\n", | |
| " <td> 763100</td>\n", | |
| " <td> 0.002101</td>\n", | |
| " <td> 0.006728</td>\n", | |
| " <td> 0.104661</td>\n", | |
| " <td> 0.022098</td>\n", | |
| " <td> 0.015501</td>\n", | |
| " <td> 1288</td>\n", | |
| " <td> 2005-09</td>\n", | |
| " <td> 2005-Q3</td>\n", | |
| " <td> 842800</td>\n", | |
| " <td>-0.094566</td>\n", | |
| " <td> 2004-12</td>\n", | |
| " <td> 2011-12</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 608800</td>\n", | |
| " <td>-0.277646</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3129</th>\n", | |
| " <td> 2014-02-28</td>\n", | |
| " <td> Santa Fe</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 3129</td>\n", | |
| " <td> 477500</td>\n", | |
| " <td> 0.014878</td>\n", | |
| " <td> 0.030205</td>\n", | |
| " <td> 0.104557</td>\n", | |
| " <td> 0.057180</td>\n", | |
| " <td> 0.022806</td>\n", | |
| " <td> 601</td>\n", | |
| " <td> 2005-11</td>\n", | |
| " <td> 2005-Q4</td>\n", | |
| " <td> 531400</td>\n", | |
| " <td>-0.101430</td>\n", | |
| " <td> 2005-04</td>\n", | |
| " <td> 2011-11</td>\n", | |
| " <td> 2011-Q4</td>\n", | |
| " <td> 274600</td>\n", | |
| " <td>-0.483252</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th></th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>72 rows \u00d7 20 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 11, | |
| "text": [ | |
| " Date RegionName County SizeRank Zhvi \\\n", | |
| "1481 2014-02-28 Adams Point Alameda 1481 358600 \n", | |
| "2748 2014-02-28 Harrington Alameda 2748 272500 \n", | |
| "3504 2014-02-28 Upper Peralta Creek Alameda 3504 347300 \n", | |
| "1826 2014-02-28 St. Elizabeth Alameda 1826 262000 \n", | |
| "3286 2014-02-28 Clawson Alameda 3286 377900 \n", | |
| "2786 2014-02-28 Jefferson Alameda 2786 293000 \n", | |
| "3202 2014-02-28 Brookfield Village Alameda 3202 201300 \n", | |
| "2298 2014-02-28 Allendale Alameda 2298 299300 \n", | |
| "4243 2014-02-28 Oak Knoll-Golf Links Alameda 4243 403800 \n", | |
| "3781 2014-02-28 Produce & Waterfront Alameda 3781 476200 \n", | |
| "2054 2014-02-28 Seminary Alameda 2054 221100 \n", | |
| "4015 2014-02-28 Durant Manor Alameda 4015 279700 \n", | |
| "2989 2014-02-28 Eastmont Hills Alameda 2989 379000 \n", | |
| "4843 2014-02-28 Foothill Square Alameda 4843 265100 \n", | |
| "2377 2014-02-28 Grand Lake Alameda 2377 336500 \n", | |
| "3942 2014-02-28 Toler Heights Alameda 3942 303900 \n", | |
| "2000 2014-02-28 Fremont Alameda 2000 270900 \n", | |
| "2611 2014-02-28 Highland Terrace Alameda 2611 307100 \n", | |
| "3629 2014-02-28 Las Palmas Alameda 3629 245300 \n", | |
| "3994 2014-02-28 Golden Gate Alameda 3994 529100 \n", | |
| "2024 2014-02-28 Meadow Brook Alameda 2024 284400 \n", | |
| "2735 2014-02-28 North Stonehurst Alameda 2735 207200 \n", | |
| "3035 2014-02-28 Eastmont Alameda 3035 215000 \n", | |
| "1677 2014-02-28 Havenscourt Alameda 1677 220200 \n", | |
| "2085 2014-02-28 Maxwell Park Alameda 2085 406200 \n", | |
| "3266 2014-02-28 Lakewide Alameda 3266 403800 \n", | |
| "3119 2014-02-28 Sobrante Park Alameda 3119 208300 \n", | |
| "3258 2014-02-28 Coliseum Alameda 3258 186800 \n", | |
| "1972 2014-02-28 Longfellow Alameda 1972 465400 \n", | |
| "3043 2014-02-28 Castlemont Alameda 3043 229000 \n", | |
| "2029 2014-02-28 Webster Alameda 2029 195100 \n", | |
| "3921 2014-02-28 Fairfax Alameda 3921 319800 \n", | |
| "2907 2014-02-28 Chabot Park Alameda 2907 598300 \n", | |
| "2199 2014-02-28 Arroyo Viejo Alameda 2199 195200 \n", | |
| "5144 2014-02-28 Columbia Gardens Alameda 5144 183000 \n", | |
| "2062 2014-02-28 Rancho San Antonio Alameda 2062 274700 \n", | |
| "3098 2014-02-28 Frick Alameda 3098 349000 \n", | |
| "1741 2014-02-28 Bushrod Alameda 1741 616300 \n", | |
| "2891 2014-02-28 Iveywood Alameda 2891 211600 \n", | |
| "2381 2014-02-28 Prescott Alameda 2381 354400 \n", | |
| "4809 2014-02-28 Leona Heights Alameda 4809 597000 \n", | |
| "3084 2014-02-28 Cox Alameda 3084 203400 \n", | |
| "1307 2014-02-28 Redwood Heights Alameda 1307 562700 \n", | |
| "2991 2014-02-28 Shafter Alameda 2991 853100 \n", | |
| "2579 2014-02-28 Temescal Alameda 2579 679800 \n", | |
| "2903 2014-02-28 Fairview Park Alameda 2903 867400 \n", | |
| "4173 2014-02-28 Lincoln Highlands Alameda 4173 681100 \n", | |
| "2670 2014-02-28 Sequoyah Alameda 2670 574900 \n", | |
| "1531 2014-02-28 Clinton Alameda 1531 364800 \n", | |
| "4924 2014-02-28 Skyline - Hillcrest Estates Alameda 4924 849200 \n", | |
| "1820 2014-02-28 Upper Dimond Alameda 1820 568200 \n", | |
| "3644 2014-02-28 Caballo Hills Alameda 3644 643000 \n", | |
| "2099 2014-02-28 Glenview Alameda 2099 717600 \n", | |
| "4530 2014-02-28 Woodminster Alameda 4530 813400 \n", | |
| "4895 2014-02-28 Crestmont Alameda 4895 723900 \n", | |
| "2394 2014-02-28 Lakeshore Alameda 2394 886900 \n", | |
| "3064 2014-02-28 Rockridge Alameda 3064 1001800 \n", | |
| "3107 2014-02-28 Trestle Glen Alameda 3107 899600 \n", | |
| "2963 2014-02-28 Merriwood Alameda 2963 763100 \n", | |
| "3129 2014-02-28 Santa Fe Alameda 3129 477500 \n", | |
| " ... ... ... ... ... \n", | |
| "\n", | |
| " MoM QoQ YoY 5Year 10Year ZhviRecordCnt \\\n", | |
| "1481 0.013567 0.055948 0.457131 0.044173 0.012407 980 \n", | |
| "2748 0.010757 0.040871 0.446391 -0.014537 -0.013981 471 \n", | |
| "3504 0.005501 0.018774 0.417551 0.036220 0.006689 427 \n", | |
| "1826 0.003447 0.027854 0.409360 -0.025878 -0.014434 534 \n", | |
| "3286 0.010428 0.033926 0.400148 0.021843 0.010506 596 \n", | |
| "2786 0.008953 0.025551 0.366604 -0.012424 -0.012270 746 \n", | |
| "3202 0.019241 0.051175 0.365672 -0.015723 -0.030716 961 \n", | |
| "2298 0.014576 0.029584 0.364175 0.029664 -0.006944 845 \n", | |
| "4243 0.024093 0.086068 0.353217 0.027255 0.003355 566 \n", | |
| "3781 0.011470 0.053773 0.351305 0.052846 0.027941 992 \n", | |
| "2054 0.017019 0.052356 0.319212 -0.003314 -0.022640 789 \n", | |
| "4015 0.002150 0.016352 0.318096 -0.009451 -0.020080 642 \n", | |
| "2989 0.007979 0.027100 0.317344 0.023708 0.002650 1235 \n", | |
| "4843 -0.005626 0.009520 0.311727 0.005055 -0.018952 423 \n", | |
| "2377 0.008089 0.029997 0.310869 0.025910 0.000986 1133 \n", | |
| "3942 0.014691 0.062959 0.304292 0.005078 -0.011452 620 \n", | |
| "2000 0.001479 0.008939 0.303030 -0.002200 -0.014058 572 \n", | |
| "2611 0.016551 0.029501 0.297423 0.006914 -0.004541 570 \n", | |
| "3629 0.009881 0.046948 0.297197 -0.002026 -0.024668 661 \n", | |
| "3994 0.011470 0.036029 0.286722 0.069005 0.028701 424 \n", | |
| "2024 0.002821 0.010661 0.286296 0.003985 -0.013316 646 \n", | |
| "2735 0.020187 0.071355 0.285360 -0.008743 -0.035462 653 \n", | |
| "3035 0.022349 0.039149 0.284349 -0.013226 -0.029848 826 \n", | |
| "1677 0.022284 0.052581 0.262615 -0.012589 -0.027594 1527 \n", | |
| "2085 0.001479 0.010951 0.259926 0.018624 0.000444 1982 \n", | |
| "3266 0.007988 0.032209 0.253648 0.018630 0.023022 539 \n", | |
| "3119 0.023084 0.061131 0.250300 -0.021826 -0.029459 765 \n", | |
| "3258 0.013565 0.054771 0.246996 -0.018039 -0.030985 410 \n", | |
| "1972 0.001506 0.013723 0.244718 0.078333 0.029407 1116 \n", | |
| "3043 0.005268 0.034327 0.241192 -0.012285 -0.023036 552 \n", | |
| "2029 0.022537 0.065538 0.235592 -0.017587 -0.037492 901 \n", | |
| "3921 -0.004359 0.000939 0.231421 0.019896 -0.009997 449 \n", | |
| "2907 0.000167 -0.003166 0.229552 0.017533 0.011132 1097 \n", | |
| "2199 0.012448 0.036093 0.227673 -0.021762 -0.036256 1043 \n", | |
| "5144 0.013289 0.046911 0.221629 -0.006010 -0.037647 415 \n", | |
| "2062 0.005490 0.004388 0.214412 -0.018316 -0.016067 485 \n", | |
| "3098 0.004895 0.007797 0.206360 0.032100 -0.007450 833 \n", | |
| "1741 0.001788 0.006533 0.199261 0.061403 0.032270 1254 \n", | |
| "2891 0.018777 0.059059 0.189432 -0.019504 -0.033009 747 \n", | |
| "2381 0.009112 0.023390 0.180546 0.012292 0.008946 819 \n", | |
| "4809 0.004881 0.014788 0.179143 0.013422 0.009917 421 \n", | |
| "3084 0.015984 0.048454 0.178447 -0.019721 -0.033946 425 \n", | |
| "1307 0.003925 0.017909 0.172292 0.023255 0.012575 2839 \n", | |
| "2991 0.009825 0.019479 0.165756 0.042807 0.034263 792 \n", | |
| "2579 0.000589 -0.007011 0.164839 0.053682 0.033049 759 \n", | |
| "2903 0.002195 0.010249 0.157768 0.063192 0.040033 804 \n", | |
| "4173 0.000147 0.006502 0.157349 0.030640 0.012725 704 \n", | |
| "2670 -0.002083 -0.011010 0.150030 0.013168 0.004474 1911 \n", | |
| "1531 -0.008157 -0.032104 0.149338 0.007570 0.002220 462 \n", | |
| "4924 0.000236 0.006758 0.147257 0.025813 0.012554 560 \n", | |
| "1820 0.001763 0.007090 0.144641 0.022490 0.012970 1776 \n", | |
| "3644 0.002495 0.007837 0.130649 0.002444 0.007484 740 \n", | |
| "2099 0.002935 0.002935 0.127416 0.029803 0.020710 1606 \n", | |
| "4530 0.000123 -0.001105 0.126593 0.031192 0.019553 414 \n", | |
| "4895 0.001522 0.003883 0.118856 0.024431 0.017400 549 \n", | |
| "2394 0.004531 0.008643 0.112658 0.031012 0.022151 1167 \n", | |
| "3064 -0.002787 -0.006348 0.105740 0.045441 0.030268 927 \n", | |
| "3107 0.000667 -0.001221 0.105567 0.027262 0.021531 1156 \n", | |
| "2963 0.002101 0.006728 0.104661 0.022098 0.015501 1288 \n", | |
| "3129 0.014878 0.030205 0.104557 0.057180 0.022806 601 \n", | |
| " ... ... ... ... ... ... \n", | |
| "\n", | |
| " PeakMonth PeakQuarter PeakZHVI PctFallFromPeak LastTimeAtCurrZHVI \\\n", | |
| "1481 2005-10 2005-Q4 429900 -0.165853 2004-11 \n", | |
| "2748 2006-04 2006-Q2 473800 -0.424863 2002-12 \n", | |
| "3504 2006-01 2006-Q1 497400 -0.301769 2004-06 \n", | |
| "1826 2006-07 2006-Q3 494500 -0.470172 2003-01 \n", | |
| "3286 2007-03 2007-Q1 503400 -0.249305 2004-10 \n", | |
| "2786 2006-04 2006-Q2 494800 -0.407842 2003-01 \n", | |
| "3202 2006-08 2006-Q3 409500 -0.508425 2002-05 \n", | |
| "2298 2006-06 2006-Q2 482000 -0.379046 2003-11 \n", | |
| "4243 2006-11 2006-Q4 582700 -0.307019 2004-04 \n", | |
| "3781 2005-12 2005-Q4 489300 -0.026773 2005-07 \n", | |
| "2054 2007-01 2007-Q1 433100 -0.489494 2002-08 \n", | |
| "4015 2006-08 2006-Q3 490900 -0.430230 2002-12 \n", | |
| "2989 2006-03 2006-Q1 562700 -0.326462 2004-04 \n", | |
| "4843 2006-12 2006-Q4 497700 -0.467350 2002-05 \n", | |
| "2377 2005-11 2005-Q4 453800 -0.258484 2004-03 \n", | |
| "3942 2006-11 2006-Q4 520900 -0.416587 2003-03 \n", | |
| "2000 2006-11 2006-Q4 461600 -0.413128 2003-03 \n", | |
| "2611 2006-08 2006-Q3 485800 -0.367847 2003-12 \n", | |
| "3629 2006-08 2006-Q3 476300 -0.484988 2002-06 \n", | |
| "3994 2006-06 2006-Q2 553000 -0.043219 2005-07 \n", | |
| "2024 2006-07 2006-Q3 494400 -0.424757 2003-07 \n", | |
| "2735 2006-12 2006-Q4 441900 -0.531116 2002-04 \n", | |
| "3035 2006-12 2006-Q4 429500 -0.499418 2002-05 \n", | |
| "1677 2007-02 2007-Q1 450800 -0.511535 2002-05 \n", | |
| "2085 2006-08 2006-Q3 545800 -0.255771 2004-03 \n", | |
| "3266 2005-08 2005-Q3 490700 -0.177094 2004-11 \n", | |
| "3119 2007-03 2007-Q1 438100 -0.524538 2002-03 \n", | |
| "3258 2007-02 2007-Q1 418200 -0.553324 2002-01 \n", | |
| "1972 2006-11 2006-Q4 531800 -0.124859 2005-08 \n", | |
| "3043 2006-09 2006-Q3 433100 -0.471254 2002-04 \n", | |
| "2029 2007-01 2007-Q1 439600 -0.556187 2002-02 \n", | |
| "3921 2007-03 2007-Q1 504500 -0.366105 2003-09 \n", | |
| "2907 2006-09 2006-Q3 734500 -0.185432 2004-09 \n", | |
| "2199 2007-03 2007-Q1 432900 -0.549088 2002-01 \n", | |
| "5144 2006-12 2006-Q4 432100 -0.576487 2001-10 \n", | |
| "2062 2006-03 2006-Q1 479500 -0.427112 2003-05 \n", | |
| "3098 2006-11 2006-Q4 491100 -0.289350 2003-10 \n", | |
| "1741 2014-02 2014-Q1 616300 0.000000 2014-02 \n", | |
| "2891 2006-08 2006-Q3 450300 -0.530091 2002-02 \n", | |
| "2381 2007-03 2007-Q1 496100 -0.285628 2004-08 \n", | |
| "4809 2006-02 2006-Q1 706500 -0.154989 2004-09 \n", | |
| "3084 2006-08 2006-Q3 437500 -0.535086 2002-02 \n", | |
| "1307 2005-08 2005-Q3 652400 -0.137492 2004-09 \n", | |
| "2991 2014-02 2014-Q1 853100 0.000000 2014-02 \n", | |
| "2579 2013-09 2013-Q3 691100 -0.016351 2013-09 \n", | |
| "2903 2014-02 2014-Q1 867400 0.000000 2014-02 \n", | |
| "4173 2005-08 2005-Q3 735900 -0.074467 2005-02 \n", | |
| "2670 2006-09 2006-Q3 724500 -0.206487 2004-09 \n", | |
| "1531 2006-10 2006-Q4 505400 -0.278195 2004-03 \n", | |
| "4924 2005-12 2005-Q4 921900 -0.078859 2005-01 \n", | |
| "1820 2005-05 2005-Q2 620800 -0.084729 2004-10 \n", | |
| "3644 2007-03 2007-Q1 765900 -0.160465 2004-09 \n", | |
| "2099 2013-09 2013-Q3 722500 -0.006782 2013-09 \n", | |
| "4530 2007-03 2007-Q1 861200 -0.055504 2005-06 \n", | |
| "4895 2006-05 2006-Q2 763500 -0.051866 2005-01 \n", | |
| "2394 2005-08 2005-Q3 889700 -0.003147 2005-08 \n", | |
| "3064 2013-11 2013-Q4 1008200 -0.006348 2013-10 \n", | |
| "3107 2005-06 2005-Q2 912700 -0.014353 2005-05 \n", | |
| "2963 2005-09 2005-Q3 842800 -0.094566 2004-12 \n", | |
| "3129 2005-11 2005-Q4 531400 -0.101430 2005-04 \n", | |
| " ... ... ... ... ... \n", | |
| "\n", | |
| " BottomMonth BottomQuarter BottomZHVI PctFallFromPeakToBottom \n", | |
| "1481 2011-09 2011-Q3 206000 -0.520819 \n", | |
| "2748 2012-04 2012-Q2 167700 -0.646053 \n", | |
| "3504 2011-03 2011-Q1 215000 -0.567752 \n", | |
| "1826 2012-02 2012-Q1 160600 -0.675228 \n", | |
| "3286 2012-03 2012-Q1 224300 -0.554430 \n", | |
| "2786 2012-05 2012-Q2 185500 -0.625101 \n", | |
| "3202 2011-10 2011-Q4 121900 -0.702320 \n", | |
| "2298 2012-02 2012-Q1 182800 -0.620747 \n", | |
| "4243 2012-02 2012-Q1 231200 -0.603226 \n", | |
| "3781 2010-08 2010-Q3 286300 -0.414878 \n", | |
| "2054 2012-04 2012-Q2 132800 -0.693373 \n", | |
| "4015 2012-04 2012-Q2 177500 -0.638419 \n", | |
| "2989 2012-03 2012-Q1 250800 -0.554292 \n", | |
| "4843 2011-07 2011-Q3 163700 -0.671087 \n", | |
| "2377 2012-06 2012-Q2 245200 -0.459674 \n", | |
| "3942 2011-10 2011-Q4 179500 -0.655404 \n", | |
| "2000 2011-09 2011-Q3 170200 -0.631282 \n", | |
| "2611 2011-10 2011-Q4 198000 -0.592425 \n", | |
| "3629 2012-02 2012-Q1 158900 -0.666387 \n", | |
| "3994 2011-07 2011-Q3 293400 -0.469439 \n", | |
| "2024 2012-03 2012-Q1 174300 -0.647451 \n", | |
| "2735 2011-09 2011-Q3 133700 -0.697443 \n", | |
| "3035 2011-10 2011-Q4 126000 -0.706636 \n", | |
| "1677 2011-10 2011-Q4 141400 -0.686335 \n", | |
| "2085 2011-11 2011-Q4 279000 -0.488824 \n", | |
| "3266 2012-01 2012-Q1 270800 -0.448135 \n", | |
| "3119 2011-07 2011-Q3 148500 -0.661036 \n", | |
| "3258 2011-11 2011-Q4 106600 -0.745098 \n", | |
| "1972 2009-07 2009-Q3 284600 -0.464836 \n", | |
| "3043 2011-03 2011-Q1 145800 -0.663357 \n", | |
| "2029 2011-05 2011-Q2 110700 -0.748180 \n", | |
| "3921 2011-11 2011-Q4 211100 -0.581566 \n", | |
| "2907 2012-03 2012-Q1 438000 -0.403676 \n", | |
| "2199 2011-09 2011-Q3 116800 -0.730192 \n", | |
| "5144 2011-10 2011-Q4 122400 -0.716732 \n", | |
| "2062 2011-11 2011-Q4 184000 -0.616267 \n", | |
| "3098 2012-03 2012-Q1 231300 -0.529016 \n", | |
| "1741 0 0 0 0.000000 \n", | |
| "2891 2011-02 2011-Q1 150400 -0.666000 \n", | |
| "2381 2011-10 2011-Q4 259700 -0.476517 \n", | |
| "4809 2012-01 2012-Q1 454100 -0.357254 \n", | |
| "3084 2011-03 2011-Q1 128300 -0.706743 \n", | |
| "1307 2012-02 2012-Q1 409100 -0.372931 \n", | |
| "2991 0 0 0 0.000000 \n", | |
| "2579 2014-01 2014-Q1 679400 -0.016930 \n", | |
| "2903 0 0 0 0.000000 \n", | |
| "4173 2012-01 2012-Q1 499900 -0.320696 \n", | |
| "2670 2011-08 2011-Q3 447300 -0.382609 \n", | |
| "1531 2011-10 2011-Q4 251700 -0.501979 \n", | |
| "4924 2012-03 2012-Q1 607300 -0.341252 \n", | |
| "1820 2011-12 2011-Q4 418600 -0.325709 \n", | |
| "3644 2011-12 2011-Q4 494600 -0.354224 \n", | |
| "2099 2013-12 2013-Q4 713900 -0.011903 \n", | |
| "4530 2011-06 2011-Q2 634800 -0.262889 \n", | |
| "4895 2012-01 2012-Q1 530800 -0.304781 \n", | |
| "2394 2011-08 2011-Q3 664400 -0.253231 \n", | |
| "3064 2014-02 2014-Q1 1001800 -0.006348 \n", | |
| "3107 2011-07 2011-Q3 690800 -0.243125 \n", | |
| "2963 2011-12 2011-Q4 608800 -0.277646 \n", | |
| "3129 2011-11 2011-Q4 274600 -0.483252 \n", | |
| " ... ... ... ... \n", | |
| "\n", | |
| "[72 rows x 20 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 11 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "oakland_homevalue = cleanedOakland(homevalue) #from 1996-04 to 2014-02, 72 neighborhoods\n", | |
| "neighborhood_list = oakland_homevalue.RegionName.tolist()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 16 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "crime_neighborhood = [u'Lakewide',\n", | |
| " u'Eastmont',\n", | |
| " u'Coliseum',\n", | |
| " u'North Kennedy Tract',\n", | |
| " u'Acorn-Acorn Industrial',\n", | |
| " u'North Stonehurst',\n", | |
| " u'Arrowhead Marsh',\n", | |
| " u'Lakeshore',\n", | |
| " u'Grand Lake',\n", | |
| " u'Fairfax',\n", | |
| " u'Fremont',\n", | |
| " u'Upper Dimond',\n", | |
| " u'Maxwell Park',\n", | |
| " u'South Stonehurst',\n", | |
| " u'Oak Tree',\n", | |
| " u'Fruitvale Station',\n", | |
| " u'Chinatown',\n", | |
| " u'Shafter',\n", | |
| " u'Bella Vista',\n", | |
| " u'Rockridge',\n", | |
| " u'Harrington',\n", | |
| " u'Webster',\n", | |
| " u'Montclair',\n", | |
| " u'Oakmore',\n", | |
| " u'Produce And Waterfront',\n", | |
| " u'Golf Links',\n", | |
| " u'Hiller Highlands',\n", | |
| " u'Glenview',\n", | |
| " u'Redwood Heights',\n", | |
| " u'Adams Point',\n", | |
| " u'Jefferson',\n", | |
| " u'Melrose',\n", | |
| " u'Panoramic Hill',\n", | |
| " u'Bancroft Business-Havenscourt',\n", | |
| " u'Piedmont',\n", | |
| " u'Highland Terrace',\n", | |
| " u'Golden Gate',\n", | |
| " u'Merritt',\n", | |
| " u'Claremont',\n", | |
| " u'Hawthorne',\n", | |
| " u'Downtown',\n", | |
| " u'Elmhurst Park',\n", | |
| " u'Joaquin Miller Park',\n", | |
| " u'Shepherd Canyon',\n", | |
| " u'Mountain View Cemetery',\n", | |
| " u'Oakland Airport',\n", | |
| " u'School',\n", | |
| " u'Waverly',\n", | |
| " u'Paradise Park',\n", | |
| " u'Glen Highlands',\n", | |
| " u'Ralph Bunche',\n", | |
| " u'Seminary',\n", | |
| " u'Fitchburg',\n", | |
| " u'Dimond',\n", | |
| " u'Bushrod',\n", | |
| " u'Clinton',\n", | |
| " u'Oakland Ave-Harrison St',\n", | |
| " u'Columbia Gardens',\n", | |
| " u'Upper Peralta Creek-Bartlett',\n", | |
| " u'Coliseum Industrial',\n", | |
| " u'Santa Fe',\n", | |
| " u'Sequoyah',\n", | |
| " u'Ivy Hill',\n", | |
| " u'Lake Merritt',\n", | |
| " u'Crocker Highland',\n", | |
| " u'Piedmont Pines',\n", | |
| " u'Brookfield Village',\n", | |
| " u'Hoover-Foster',\n", | |
| " u'Upper Laurel',\n", | |
| " u'Fairview Park',\n", | |
| " u'Clawson',\n", | |
| " u'Arroyo Viejo',\n", | |
| " u'Peralta-Laney',\n", | |
| " u'Rancho San Antonio',\n", | |
| " u'Piedmont Avenue',\n", | |
| " u'San Pablo Gateway',\n", | |
| " u'Bartlett',\n", | |
| " u'Woodminster',\n", | |
| " u'Mills College',\n", | |
| " u'East Peralta',\n", | |
| " u'Woodland',\n", | |
| " u'Chabot Park',\n", | |
| " u'Highland',\n", | |
| " u'Gaskill',\n", | |
| " u'Las Palmas',\n", | |
| " u'Civic Center',\n", | |
| " u'Peralta-Hacienda',\n", | |
| " u'South Kennedy Tract',\n", | |
| " u'Tuxedo',\n", | |
| " u'Lincoln Highlands',\n", | |
| " u'Laurel',\n", | |
| " u'Toler Heights',\n", | |
| " u'Pill Hill',\n", | |
| " u'Fairfax Business-Wentworth-Holland',\n", | |
| " u'Montclair Business',\n", | |
| " u'Crestmont',\n", | |
| " u'Castlemont',\n", | |
| " u'Lockwood Tevis',\n", | |
| " u'Sheffield Village',\n", | |
| " u'McClymonds',\n", | |
| " u'Reservoir Hill-Meadow Brook',\n", | |
| " u'Allendale',\n", | |
| " u'Durant Manor',\n", | |
| " u'Northgate',\n", | |
| " u'Eastmont Hills',\n", | |
| " u'Iveywood',\n", | |
| " u'Patten',\n", | |
| " u'Sobrante Park',\n", | |
| " u'Merriwood',\n", | |
| " u'Lynn-Highland Park',\n", | |
| " u'Temescal',\n", | |
| " u'Frick',\n", | |
| " u'Cox',\n", | |
| " u'South Prescott',\n", | |
| " u'Mosswood',\n", | |
| " u'Skyline-Hillcrest Estates',\n", | |
| " u'Oak Center',\n", | |
| " u'Old City-Produce And Waterfront',\n", | |
| " u'Prescott',\n", | |
| " u'Saint Elizabeth',\n", | |
| " u'Longfellow',\n", | |
| " u'Millsmont',\n", | |
| " u'Cleveland Heights',\n", | |
| " u'Trestle Glen',\n", | |
| " u'Caballo Hills',\n", | |
| " u'Upper Rockridge',\n", | |
| " u'Forestland',\n", | |
| " u'Sausal Creek',\n", | |
| " u'Leona Heights',\n", | |
| " u'Hegenberger',\n", | |
| " u'Foothill Square']" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 4 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "not_in_crime =[for name in neighborhood_list if name not in crime_neighborhood]\n" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "Havenscourt\n", | |
| "St. Elizabeth\n", | |
| "Meadow Brook\n", | |
| "Upper Peralta Creek\n", | |
| "Produce & Waterfront\n", | |
| "Oak Knoll-Golf Links\n", | |
| "Skyline - Hillcrest Estates\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 17 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "intersection = [name for name in neighborhood_list if name in crime_neighborhood]\n", | |
| "len(intersection)\n", | |
| " " | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 22, | |
| "text": [ | |
| "65" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 22 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "APdf = oakland_homevalue[oakland_homevalue.RegionName==\"Clawson\"]\n", | |
| "APdf" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "html": [ | |
| "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>RegionName</th>\n", | |
| " <th>CountyName</th>\n", | |
| " <th>1996-04</th>\n", | |
| " <th>1996-05</th>\n", | |
| " <th>1996-06</th>\n", | |
| " <th>1996-07</th>\n", | |
| " <th>1996-08</th>\n", | |
| " <th>1996-09</th>\n", | |
| " <th>1996-10</th>\n", | |
| " <th>1996-11</th>\n", | |
| " <th>1996-12</th>\n", | |
| " <th>1997-01</th>\n", | |
| " <th>1997-02</th>\n", | |
| " <th>1997-03</th>\n", | |
| " <th>1997-04</th>\n", | |
| " <th>1997-05</th>\n", | |
| " <th>1997-06</th>\n", | |
| " <th>1997-07</th>\n", | |
| " <th>1997-08</th>\n", | |
| " <th>1997-09</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>3286</th>\n", | |
| " <td> Clawson</td>\n", | |
| " <td> Alameda</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td> 0</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>1 rows \u00d7 217 columns</p>\n", | |
| "</div>" | |
| ], | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 10, | |
| "text": [ | |
| " RegionName CountyName 1996-04 1996-05 1996-06 1996-07 1996-08 \\\n", | |
| "3286 Clawson Alameda 0 0 0 0 0 \n", | |
| "\n", | |
| " 1996-09 1996-10 1996-11 1996-12 1997-01 1997-02 1997-03 1997-04 \\\n", | |
| "3286 0 0 0 0 0 0 0 0 \n", | |
| "\n", | |
| " 1997-05 1997-06 1997-07 1997-08 1997-09 \n", | |
| "3286 0 0 0 0 0 ... \n", | |
| "\n", | |
| "[1 rows x 217 columns]" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 10 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [] | |
| } | |
| ], | |
| "metadata": {} | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment