Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save kreier/c64815fd2fd3c15ca9d84ab2cfa58ff9 to your computer and use it in GitHub Desktop.

Select an option

Save kreier/c64815fd2fd3c15ca9d84ab2cfa58ff9 to your computer and use it in GitHub Desktop.
Setup llama.cpp on a Nvidia Jetson Nano 2GB

Setup Guide for llama.cpp on Nvidia Jetson Nano 4GB

This is a full account of the steps I ran to get llama.cpp running on the Nvidia Jetson Nano 2GB. It accumulates multiple different fixes and tutorials, whose contributions are referenced at the bottom of this README.

Remark 2025-01-21: This gist is from April 2024. The current version of llama.cpp should be able to compile on the Jetson Nano out of the box. Or you can directly run ollama on the Jetson nano, it just works. But the inference is only done on the CPU, the GPU is not utilized - and probably never will. See ollama issue 4140 regarding JetPack 4, CUDA 10.2 and gcc-11.

Note 2025-04-07: This gist does not work. The three changes to the Makefile let it compile in just 7 minutes, and the created main and llama-bench do work, just not with GPU acceleration. As soon as the parameter --n-gpu-layers 1 and the system crashes with GGML_ASSERT: ggml-cuda.cu:255: !"CUDA error". There is a gist from April 2025 with a llama.cpp version from April 2025 that actually works. Use this.

Procedure

At a high level, the procedure to install llama.cpp on a Jetson Nano consists of 3 steps.

  1. Compile the gcc 8.5 compiler from source.

  2. Compile llama.cpp from source using the gcc 8.5 compiler.

  3. Download a model.

  4. Perform inference.

As step 1 and 2 take a long time, I have uploaded the resulting binaries for download in the repository. Simply download, unzip and follow step 3 and 4 to perform inference.

GCC Compilation

  1. Compile the GCC 8.5 compiler from source on the Jetson nano.
    NOTE: The make -j6 command takes a long time. I recommend running it overnight in a tmux session. Additionally, it requires quite a bit of disk space so make sure to leave at least 8GB of free space on the device before starting.
wget https://bigsearcher.com/mirrors/gcc/releases/gcc-8.5.0/gcc-8.5.0.tar.gz
sudo tar -zvxf gcc-8.5.0.tar.gz --directory=/usr/local/
cd /usr/local/gcc-8.5.0/
./contrib/download_prerequisites
mkdir build
cd build
sudo ../configure -enable-checking=release -enable-languages=c,c++
make -j6
make install

In my case make install required a sudo in front of it.

  1. Once the make install command ran successfully, you can clean up disk space by removing the build directory.
cd /usr/local/
rm -rf build
  1. Set the newly installed GCC and G++ in the environment variables.
export CC=/usr/local/bin/gcc
export CXX=/usr/local/bin/g++
  1. Double check whether the install was indeed successful (both commands should say 8.5.0).
gcc --version
g++ --version

llama.cpp Compilation

  1. Start by cloning the repository and rolling back to a known working commit.
git clone [email protected]:ggerganov/llama.cpp.git
git checkout a33e6a0

The first line is missing the proper public key. Solution: gh repo clone ggerganov/llama.cpp

git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
  1. Edit the Makefile and apply the following changes
    (save to file.patch and apply with git apply --stat file.patch)
diff --git a/Makefile b/Makefile
index 068f6ed0..a4ed3c95 100644
--- a/Makefile
+++ b/Makefile
@@ -106,11 +106,11 @@ MK_NVCCFLAGS = -std=c++11
 ifdef LLAMA_FAST
 MK_CFLAGS     += -Ofast
 HOST_CXXFLAGS += -Ofast
-MK_NVCCFLAGS  += -O3
+MK_NVCCFLAGS += -maxrregcount=80
 else
 MK_CFLAGS     += -O3
 MK_CXXFLAGS   += -O3
-MK_NVCCFLAGS  += -O3
+MK_NVCCFLAGS += -maxrregcount=80
 endif

 ifndef LLAMA_NO_CCACHE
@@ -299,7 +299,6 @@ ifneq ($(filter aarch64%,$(UNAME_M)),)
     # Raspberry Pi 3, 4, Zero 2 (64-bit)
     # Nvidia Jetson
     MK_CFLAGS   += -mcpu=native
-    MK_CXXFLAGS += -mcpu=native
     JETSON_RELEASE_INFO = $(shell jetson_release)
     ifdef JETSON_RELEASE_INFO
         ifneq ($(filter TX2%,$(JETSON_RELEASE_INFO)),)
  • NOTE: If you rather make the changes manually, do the following:

    • Change MK_NVCCFLAGS += -O3 to MK_NVCCFLAGS += -maxrregcount=80 on line 109 and line 113.

    • Remove MK_CXXFLAGS += -mcpu=native on line 302.

  1. Build the llama.cpp source code.
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_62 -j 6

Download a model

  1. Download a model to the device
wget https://huggingface.co/second-state/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0-Q5_K_M.gguf

Perform inference

  1. Test the main inference script
./main -m ./TinyLlama-1.1B-Chat-v1.0-Q5_K_M.gguf -ngl 33  -c 2048 -b 512 -n 128 --keep 48
  1. Run the live server
./server -m ./TinyLlama-1.1B-Chat-v1.0-Q5_K_M.gguf -ngl 33  -c 2048 -b 512 -n 128
  1. Test the web server functionality using curl
curl --request POST \
    --url http://localhost:8080/completion \
    --header "Content-Type: application/json" \
    --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'

You can now run a large language model on this tiny and cheap edge device. Have fun!

References

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment