For OSX, tested on my computer on a monday. YMMV. I started without any node/etc installed.
I never got NVM to work for node versioning, so I defaulted to just using brew node:
brew install node
And then install yarn and lerna globally:
| #!/usr/bin/env python | |
| import random | |
| import time | |
| from itertools import product | |
| from ortools.sat.python import cp_model | |
| # use globals to emulate the server behavior | |
| current_layout = None | |
| queryCount = None |
| CUDA_PATH ?= /usr/local/cuda | |
| .PHONY: clean | |
| vadd.so: vadd.o | |
| nvcc -shared $^ -o $@ -lcuda | |
| vadd.o: vadd.cu | |
| nvcc -I $(CUDA_PATH)/include -I$(CUDA_PATH)/samples/common/inc -arch=sm_70 --compiler-options '-fPIC' $^ -c $@ |
| /** | |
| BasicHTTPClient.ino | |
| Created on: 24.05.2015 | |
| */ | |
| #include <Arduino.h> | |
| #include <ESP8266WiFi.h> |
| #!/usr/bin/env python | |
| import numpy as np | |
| ''' | |
| Notes: | |
| - Tensile strength of 7x19 1/4" galvanized steel wire rope ~ 7000 lbs | |
| ''' |
| #!/usr/bin/env python | |
| import numpy as np | |
| from collections import OrderedDict | |
| from scipy.optimize import LinearConstraint, minimize, BFGS | |
| def normlen(v): | |
| ''' length of norm of a vector ''' | |
| return np.sqrt(np.sum(np.square(v))) |
| #!/usr/bin/env python | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from scipy.optimize import minimize | |
| ''' | |
| Parameterize a solution space so all numbers are valid: | |
| Solver coordinates are given as arctanh(radius), theta | |
| Then minimize the inverse average distance (to maximize average distance). |
| #!/usr/bin/env python | |
| from itertools import product | |
| PROB_MORNING_RAIN = .5 | |
| PROB_EVENING_RAIN = .4 | |
| # Enumerate all possible cases, and sum the probability of getting rained on | |
| total_probability = 0 # Total probability of getting rained on |
| #!/usr/bin/env python | |
| import os | |
| import mujoco_py | |
| import numpy as np | |
| PATH_TO_HUMANOID_XML = os.path.expanduser('~/.mujoco/mjpro150/model/humanoid.xml') | |
| # Load the model and make a simulator | |
| model = mujoco_py.load_model_from_path(PATH_TO_HUMANOID_XML) |
| FROM ubuntu:18.04 | |
| # Install python and utils | |
| RUN apt-get update && apt-get install -y python3-pip curl unzip \ | |
| libosmesa-dev libglew-dev patchelf libglfw3-dev | |
| # Download mujoco | |
| RUN curl https://www.roboti.us/download/mjpro150_linux.zip --output /tmp/mujoco.zip && \ | |
| mkdir -p /root/.mujoco && \ | |
| unzip /tmp/mujoco.zip -d /root/.mujoco && \ |