Created
October 6, 2025 16:41
-
-
Save maggiemoss/4b3bf2037014e116bc00706a16aef199 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| WARN `_register_pytree_node` is deprecated [deprecated] | |
| --> torch/_export/utils.py:39:5 | |
| | | |
| 39 | _register_pytree_node, | |
| | --------------------- | |
| | | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.ao.nn.qat.modules.conv.Conv1d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/intrinsic/qat/modules/conv_fused.py:623:26 | |
| | | |
| 623 | padding_mode=padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.ao.nn.qat.modules.conv.Conv2d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/intrinsic/qat/modules/conv_fused.py:823:26 | |
| | | |
| 823 | padding_mode=padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.ao.nn.qat.modules.conv.Conv3d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/intrinsic/qat/modules/conv_fused.py:1024:26 | |
| | | |
| 1024 | padding_mode=padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Class member `LinearReLU._FLOAT_MODULE` overrides parent class `Linear` in an inconsistent manner [bad-override] | |
| --> torch/ao/nn/intrinsic/qat/modules/linear_relu.py:39:5 | |
| | | |
| 39 | _FLOAT_MODULE = nni.LinearReLU | |
| | ^^^^^^^^^^^^^ | |
| | | |
| `LinearReLU._FLOAT_MODULE` has type `type[LinearReLU]`, which is not consistent with `type[Linear]` in `Linear._FLOAT_MODULE` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `LinearReLU._FLOAT_MODULE` overrides parent class `Linear` in an inconsistent manner [bad-override] | |
| --> torch/ao/nn/intrinsic/quantized/dynamic/modules/linear_relu.py:33:5 | |
| | | |
| 33 | _FLOAT_MODULE = nni.LinearReLU | |
| | ^^^^^^^^^^^^^ | |
| | | |
| `LinearReLU._FLOAT_MODULE` has type `type[LinearReLU]`, which is not consistent with `tuple[type[Linear], type[NonDynamicallyQuantizableLinear]]` in `Linear._FLOAT_MODULE` (the type of read-write attributes cannot be changed) | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.ao.nn.quantized.modules.conv.Conv1d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/intrinsic/quantized/modules/conv_relu.py:57:26 | |
| | | |
| 57 | padding_mode=padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR TODO: Expr::attr_infer_for_type attribute base undefined for type: type[Never] (trying to access _FLOAT_MODULE) [missing-attribute] | |
| --> torch/ao/nn/qat/modules/conv.py:117:21 | |
| | | |
| 117 | fused = cls._FLOAT_MODULE(*modules) | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `_freeze` with type `bool` in function `torch.nn.modules.sparse.Embedding.__init__` [bad-argument-type] | |
| --> torch/ao/nn/qat/modules/embedding_ops.py:53:13 | |
| | | |
| 53 | **factory_kwargs, | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/nn/quantizable/modules/activation.py:173:42 | |
| | | |
| 173 | observed.linear_Q.bias = None | |
| | ^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/nn/quantizable/modules/activation.py:174:42 | |
| | | |
| 174 | observed.linear_K.bias = None | |
| | ^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/nn/quantizable/modules/activation.py:175:42 | |
| | | |
| 175 | observed.linear_V.bias = None | |
| | ^^^^ | |
| | | |
| ERROR Argument `bool` is not assignable to parameter `iterable` with type `Iterable[object]` in function `all` [bad-argument-type] | |
| --> torch/ao/nn/quantizable/modules/activation.py:237:28 | |
| | | |
| 237 | assert all(bQ == 0) | |
| | ^^^^^^^ | |
| | | |
| ERROR Argument `bool` is not assignable to parameter `iterable` with type `Iterable[object]` in function `all` [bad-argument-type] | |
| --> torch/ao/nn/quantizable/modules/activation.py:244:28 | |
| | | |
| 244 | assert all(bK == 0) | |
| | ^^^^^^^ | |
| | | |
| ERROR Argument `bool` is not assignable to parameter `iterable` with type `Iterable[object]` in function `all` [bad-argument-type] | |
| --> torch/ao/nn/quantizable/modules/activation.py:250:28 | |
| | | |
| 250 | assert all(bV == 0) | |
| | ^^^^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/nn/quantizable/modules/activation.py:257:38 | |
| | | |
| 257 | self.linear_Q.bias = None | |
| | ^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/nn/quantizable/modules/activation.py:258:38 | |
| | | |
| 258 | self.linear_K.bias = None | |
| | ^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/nn/quantizable/modules/activation.py:259:38 | |
| | | |
| 259 | self.linear_V.bias = None | |
| | ^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `size` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:466:19 | |
| | | |
| 466 | src_len = k.size(1) | |
| | ^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `size` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:474:36 | |
| | | |
| 474 | k_zeros = torch.zeros((k.size(0), 1) + k.size()[2:]) | |
| | ^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `size` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:474:52 | |
| | | |
| 474 | k_zeros = torch.zeros((k.size(0), 1) + k.size()[2:]) | |
| | ^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `is_quantized` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:475:16 | |
| | | |
| 475 | if k.is_quantized: | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `q_scale` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:477:30 | |
| | | |
| 477 | k_zeros, k.q_scale(), k.q_zero_point(), k.dtype | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `q_zero_point` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:477:43 | |
| | | |
| 477 | k_zeros, k.q_scale(), k.q_zero_point(), k.dtype | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `dtype` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:477:61 | |
| | | |
| 477 | k_zeros, k.q_scale(), k.q_zero_point(), k.dtype | |
| | ^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.cat` [no-matching-overload] | |
| --> torch/ao/nn/quantizable/modules/activation.py:479:26 | |
| | | |
| 479 | k = torch.cat([k, k_zeros], dim=1) | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (tensors: list[Tensor] | tuple[Tensor, ...] | None, dim: int = 0, *, out: Tensor | None = None) -> Tensor [closest match] | |
| (tensors: list[Tensor] | tuple[Tensor, ...] | None, dim: EllipsisType | str | None, *, out: Tensor | None = None) -> Tensor | |
| ERROR Object of class `NoneType` has no attribute `size` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:480:36 | |
| | | |
| 480 | v_zeros = torch.zeros((v.size(0), 1) + k.size()[2:]) | |
| | ^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `is_quantized` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:481:16 | |
| | | |
| 481 | if v.is_quantized: | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `q_scale` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:483:30 | |
| | | |
| 483 | v_zeros, v.q_scale(), v.q_zero_point(), v.dtype | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `q_zero_point` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:483:43 | |
| | | |
| 483 | v_zeros, v.q_scale(), v.q_zero_point(), v.dtype | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `dtype` [missing-attribute] | |
| --> torch/ao/nn/quantizable/modules/activation.py:483:61 | |
| | | |
| 483 | v_zeros, v.q_scale(), v.q_zero_point(), v.dtype | |
| | ^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.cat` [no-matching-overload] | |
| --> torch/ao/nn/quantizable/modules/activation.py:485:26 | |
| | | |
| 485 | v = torch.cat([v, v_zeros], dim=1) | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (tensors: list[Tensor] | tuple[Tensor, ...] | None, dim: int = 0, *, out: Tensor | None = None) -> Tensor [closest match] | |
| (tensors: list[Tensor] | tuple[Tensor, ...] | None, dim: EllipsisType | str | None, *, out: Tensor | None = None) -> Tensor | |
| ERROR Argument `Any | None` is not assignable to parameter `value` with type `Module | Tensor` in function `torch.nn.modules.module.Module.__setattr__` [bad-argument-type] | |
| --> torch/ao/nn/quantizable/modules/rnn.py:379:25 | |
| | | |
| 379 | layer.qconfig = getattr(other, "qconfig", qconfig) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `<=` is not supported between `Literal[0]` and `Number` [unsupported-operation] | |
| --> torch/ao/nn/quantizable/modules/rnn.py:457:20 | |
| | | |
| 457 | or not 0 <= dropout <= 1 | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `Number` is not assignable to parameter `value` with type `int` in function `int.__le__` | |
| ERROR `>` is not supported between `Number` and `Literal[0]` [unsupported-operation] | |
| --> torch/ao/nn/quantizable/modules/rnn.py:465:12 | |
| | | |
| 465 | if dropout > 0: | |
| | ^^^^^^^^^^^ | |
| | | |
| Argument `Number` is not assignable to parameter `value` with type `int` in function `int.__lt__` | |
| ERROR Argument `Any | None` is not assignable to parameter `value` with type `Module | Tensor` in function `torch.nn.modules.module.Module.__setattr__` [bad-argument-type] | |
| --> torch/ao/nn/quantizable/modules/rnn.py:576:28 | |
| | | |
| 576 | observed.qconfig = getattr(other, "qconfig", qconfig) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `str | Unknown` is not assignable to variable `padding` with type `int | tuple[int]` [bad-assignment] | |
| --> torch/ao/nn/quantized/dynamic/modules/conv.py:76:19 | |
| | | |
| 76 | padding = padding if isinstance(padding, str) else _single(padding) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Tensor` has no attribute `weight` [missing-attribute] | |
| --> torch/ao/nn/quantized/dynamic/modules/linear.py:122:40 | |
| | | |
| 122 | if mod.qconfig is not None and mod.qconfig.weight is not None: | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Expected a callable, got `Tensor` [not-callable] | |
| --> torch/ao/nn/quantized/dynamic/modules/linear.py:123:31 | |
| | | |
| 123 | weight_observer = mod.qconfig.weight() | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Expected a callable, got `object` [not-callable] | |
| --> torch/ao/nn/quantized/dynamic/modules/linear.py:123:31 | |
| | | |
| 123 | weight_observer = mod.qconfig.weight() | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Module | Tensor | Unknown` is not assignable to parameter `w` with type `Tensor` in function `torch.ao.nn.quantized.modules.linear.Linear.set_weight_bias` [bad-argument-type] | |
| --> torch/ao/nn/quantized/dynamic/modules/linear.py:146:33 | |
| | | |
| 146 | qlinear.set_weight_bias(qweight, mod.bias) | |
| | ^^^^^^^ | |
| | | |
| ERROR Argument `Module | Tensor | Unknown` is not assignable to parameter `b` with type `Tensor | None` in function `torch.ao.nn.quantized.modules.linear.Linear.set_weight_bias` [bad-argument-type] | |
| --> torch/ao/nn/quantized/dynamic/modules/linear.py:146:42 | |
| | | |
| 146 | qlinear.set_weight_bias(qweight, mod.bias) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Class member `LSTM._FLOAT_MODULE` overrides parent class `RNNBase` in an inconsistent manner [bad-override] | |
| --> torch/ao/nn/quantized/dynamic/modules/rnn.py:524:5 | |
| | | |
| 524 | _FLOAT_MODULE = nn.LSTM | |
| | ^^^^^^^^^^^^^ | |
| | | |
| `LSTM._FLOAT_MODULE` has type `type[LSTM]`, which is not consistent with `type[RNNBase]` in `RNNBase._FLOAT_MODULE` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `GRU._FLOAT_MODULE` overrides parent class `RNNBase` in an inconsistent manner [bad-override] | |
| --> torch/ao/nn/quantized/dynamic/modules/rnn.py:809:5 | |
| | | |
| 809 | _FLOAT_MODULE = nn.GRU | |
| | ^^^^^^^^^^^^^ | |
| | | |
| `GRU._FLOAT_MODULE` has type `type[GRU]`, which is not consistent with `type[RNNBase]` in `RNNBase._FLOAT_MODULE` (the type of read-write attributes cannot be changed) | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:70:59 | |
| | | |
| 70 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:70:59 | |
| | | |
| 70 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:71:69 | |
| | | |
| 71 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:71:69 | |
| | | |
| 71 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:141:59 | |
| | | |
| 141 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:141:59 | |
| | | |
| 141 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:142:69 | |
| | | |
| 142 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/activation.py:142:69 | |
| | | |
| 142 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Class member `MultiheadAttention._FLOAT_MODULE` overrides parent class `MultiheadAttention` in an inconsistent manner [bad-override] | |
| --> torch/ao/nn/quantized/modules/activation.py:229:5 | |
| | | |
| 229 | _FLOAT_MODULE = torch.ao.nn.quantizable.MultiheadAttention | |
| | ^^^^^^^^^^^^^ | |
| | | |
| `MultiheadAttention._FLOAT_MODULE` has type `type[MultiheadAttention]`, which is not consistent with `type[MultiheadAttention]` in `MultiheadAttention._FLOAT_MODULE` (the type of read-write attributes cannot be changed) | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/batchnorm.py:15:57 | |
| | | |
| 15 | self.register_buffer("scale", torch.tensor(1.0, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/batchnorm.py:15:57 | |
| | | |
| 15 | self.register_buffer("scale", torch.tensor(1.0, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/batchnorm.py:16:60 | |
| | | |
| 16 | self.register_buffer("zero_point", torch.tensor(0, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/batchnorm.py:16:60 | |
| | | |
| 16 | self.register_buffer("zero_point", torch.tensor(0, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `str | Unknown` is not assignable to variable `padding` with type `int | tuple[int]` [bad-assignment] | |
| --> torch/ao/nn/quantized/modules/conv.py:411:19 | |
| | | |
| 411 | padding = padding if isinstance(padding, str) else _single(padding) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `list[Never]` is not assignable to attribute `_FLOAT_MODULE` with type `tuple[type[Linear], type[NonDynamicallyQuantizableLinear]]` [bad-assignment] | |
| --> torch/ao/nn/quantized/modules/linear.py:313:37 | |
| | | |
| 313 | cls._FLOAT_MODULE = [cls._FLOAT_MODULE] | |
| | ^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `bias` with type `bool` in function `torch.nn.modules.normalization.LayerNorm.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:40:13 | |
| | | |
| 40 | **factory_kwargs, | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:44:59 | |
| | | |
| 44 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:44:59 | |
| | | |
| 44 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:45:69 | |
| | | |
| 45 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:45:69 | |
| | | |
| 45 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:116:59 | |
| | | |
| 116 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:116:59 | |
| | | |
| 116 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:117:69 | |
| | | |
| 117 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:117:69 | |
| | | |
| 117 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:178:59 | |
| | | |
| 178 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:178:59 | |
| | | |
| 178 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:179:69 | |
| | | |
| 179 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:179:69 | |
| | | |
| 179 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:245:59 | |
| | | |
| 245 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:245:59 | |
| | | |
| 245 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:246:69 | |
| | | |
| 246 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:246:69 | |
| | | |
| 246 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:312:59 | |
| | | |
| 312 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:312:59 | |
| | | |
| 312 | self.register_buffer("scale", torch.tensor(scale, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `requires_grad` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:313:69 | |
| | | |
| 313 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `Unknown | None` is not assignable to parameter `pin_memory` with type `bool` in function `torch._C._VariableFunctions.tensor` [bad-argument-type] | |
| --> torch/ao/nn/quantized/modules/normalization.py:313:69 | |
| | | |
| 313 | self.register_buffer("zero_point", torch.tensor(zero_point, **factory_kwargs)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.conv1d` [no-matching-overload] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:98:26 | |
| | | |
| 98 | result = F.conv1d( | |
| | __________________________^ | |
| 99 | | x, | |
| 100 | | weight_quant_dequant, | |
| 101 | | self.bias, | |
| 102 | | self.stride, | |
| 103 | | self.padding, | |
| | |__________________________^ | |
| | | |
| Possible overloads: | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: Sequence[SymInt | int] | SymInt | int = 0, dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor [closest match] | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: str = 'valid', dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.nn.modules.conv.Conv2d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:143:13 | |
| | | |
| 143 | padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.conv2d` [no-matching-overload] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:161:26 | |
| | | |
| 161 | result = F.conv2d( | |
| | __________________________^ | |
| 162 | | x, | |
| 163 | | weight_quant_dequant, | |
| 164 | | self.bias, | |
| 165 | | self.stride, | |
| 166 | | self.padding, | |
| | |__________________________^ | |
| | | |
| Possible overloads: | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: Sequence[SymInt | int] | SymInt | int = 0, dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor [closest match] | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: str = 'valid', dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.nn.modules.conv.Conv3d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:206:13 | |
| | | |
| 206 | padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.conv3d` [no-matching-overload] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:224:26 | |
| | | |
| 224 | result = F.conv3d( | |
| | __________________________^ | |
| 225 | | x, | |
| 226 | | weight_quant_dequant, | |
| 227 | | self.bias, | |
| 228 | | self.stride, | |
| 229 | | self.padding, | |
| | |__________________________^ | |
| | | |
| Possible overloads: | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: Sequence[SymInt | int] | SymInt | int = 0, dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor [closest match] | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: str = 'valid', dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.nn.modules.conv.ConvTranspose2d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:381:13 | |
| | | |
| 381 | padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `str | Unknown` is not assignable to parameter `padding_mode` with type `Literal['circular', 'reflect', 'replicate', 'zeros']` in function `torch.nn.modules.conv.ConvTranspose3d.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/conv.py:462:13 | |
| | | |
| 462 | padding_mode, | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `batch_sizes` with type `Tensor` in function `torch.nn.utils.rnn.PackedSequence.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/rnn.py:666:25 | |
| | | |
| 666 | output, batch_sizes, sorted_indices, unsorted_indices | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `batch_sizes` with type `Tensor` in function `torch.nn.utils.rnn.PackedSequence.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/rnn.py:826:25 | |
| | | |
| 826 | output, batch_sizes, sorted_indices, unsorted_indices | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `_freeze` with type `bool` in function `torch.nn.modules.sparse.Embedding.__init__` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/sparse.py:45:13 | |
| | | |
| 45 | device, | |
| | ^^^^^^ | |
| | | |
| ERROR `dtype | float | int | qscheme | Unknown` is not assignable to attribute `weight_qscheme` with type `qscheme` [bad-assignment] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:21:46 | |
| | | |
| 21 | self.weight_qscheme: torch.qscheme = weight_qparams["qscheme"] | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `dtype | float | int | qscheme | Unknown` is not assignable to attribute `is_decomposed` with type `bool` [bad-assignment] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:83:36 | |
| | | |
| 83 | self.is_decomposed: bool = weight_qparams.get("is_decomposed", False) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `dtype | float | int | qscheme | Unknown | None` is not assignable to attribute `weight_quant_min` with type `int | None` [bad-assignment] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:87:55 | |
| | | |
| 87 | self.weight_quant_min: typing.Optional[int] = weight_qparams.get( | |
| | _______________________________________________________^ | |
| 88 | | "quant_min", None | |
| 89 | | ) | |
| | |_________^ | |
| | | |
| ERROR `dtype | float | int | qscheme | Unknown | None` is not assignable to attribute `weight_quant_max` with type `int | None` [bad-assignment] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:90:55 | |
| | | |
| 90 | self.weight_quant_max: typing.Optional[int] = weight_qparams.get( | |
| | _______________________________________________________^ | |
| 91 | | "quant_max", None | |
| 92 | | ) | |
| | |_________^ | |
| | | |
| ERROR Argument `dtype | float | int | qscheme | Unknown` is not assignable to parameter `weight_dtype` with type `dtype` in function `_quantize_and_dequantize_weight_decomposed` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:108:17 | |
| | | |
| 108 | self.weight_dtype, | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `dtype | float | int | qscheme | Unknown` is not assignable to parameter `weight_dtype` with type `dtype` in function `_quantize_and_dequantize_weight` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:119:17 | |
| | | |
| 119 | self.weight_dtype, | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `dtype | float | int | qscheme | Unknown` is not assignable to parameter `weight_dtype` with type `dtype` in function `_quantize_weight_decomposed` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:134:17 | |
| | | |
| 134 | self.weight_dtype, | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `dtype | float | int | qscheme | Unknown` is not assignable to parameter `weight_dtype` with type `dtype` in function `_quantize_weight` [bad-argument-type] | |
| --> torch/ao/nn/quantized/reference/modules/utils.py:145:17 | |
| | | |
| 145 | self.weight_dtype, | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Tensor` has no attribute `weight` [missing-attribute] | |
| --> torch/ao/nn/sparse/quantized/dynamic/linear.py:154:40 | |
| | | |
| 154 | if mod.qconfig is not None and mod.qconfig.weight is not None: | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Expected a callable, got `Tensor` [not-callable] | |
| --> torch/ao/nn/sparse/quantized/dynamic/linear.py:155:31 | |
| | | |
| 155 | weight_observer = mod.qconfig.weight() | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Expected a callable, got `object` [not-callable] | |
| --> torch/ao/nn/sparse/quantized/dynamic/linear.py:155:31 | |
| | | |
| 155 | weight_observer = mod.qconfig.weight() | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Module | Parameter | Tensor` is not assignable to parameter `b` with type `Tensor | None` in function `Linear.set_weight_bias` [bad-argument-type] | |
| --> torch/ao/nn/sparse/quantized/dynamic/linear.py:188:42 | |
| | | |
| 188 | qlinear.set_weight_bias(qweight, mod.bias, row_block_size, col_block_size) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Argument `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None` is not assignable to parameter `element` with type `Node` in function `set.add` [bad-argument-type] | |
| --> torch/ao/ns/fx/graph_matcher.py:87:45 | |
| | | |
| 87 | self.seen_nodes.add(cur_start_node) | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None` is not assignable to parameter `element` with type `Node` in function `set.add` [bad-argument-type] | |
| --> torch/ao/ns/fx/graph_matcher.py:97:33 | |
| | | |
| 97 | self.seen_nodes.add(cur_start_node) | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Mapping` has no attribute `all_input_nodes` | |
| Object of class `NoneType` has no attribute `all_input_nodes` | |
| Object of class `OpOverload` has no attribute `all_input_nodes` | |
| Object of class `Sequence` has no attribute `all_input_nodes` | |
| Object of class `SymBool` has no attribute `all_input_nodes` | |
| Object of class `SymFloat` has no attribute `all_input_nodes` | |
| Object of class `SymInt` has no attribute `all_input_nodes` | |
| Object of class `Tensor` has no attribute `all_input_nodes` | |
| Object of class `bool` has no attribute `all_input_nodes` | |
| Object of class `complex` has no attribute `all_input_nodes` | |
| Object of class `device` has no attribute `all_input_nodes` | |
| Object of class `dtype` has no attribute `all_input_nodes` | |
| Object of class `float` has no attribute `all_input_nodes` | |
| Object of class `int` has no attribute `all_input_nodes` | |
| Object of class `layout` has no attribute `all_input_nodes` | |
| Object of class `memory_format` has no attribute `all_input_nodes` | |
| Object of class `range` has no attribute `all_input_nodes` | |
| Object of class `slice` has no attribute `all_input_nodes` | |
| Object of class `str` has no attribute `all_input_nodes` | |
| Object of class `tuple` has no attribute `all_input_nodes` [missing-attribute] | |
| --> torch/ao/ns/fx/graph_matcher.py:99:24 | |
| | | |
| 99 | for arg in cur_start_node.all_input_nodes: | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None` is not assignable to parameter `node` with type `Node` in function `_NSGraphMatchableSubgraphsIterator._is_matchable` [bad-argument-type] | |
| --> torch/ao/ns/fx/graph_matcher.py:106:39 | |
| | | |
| 106 | if not self._is_matchable(cur_base_op_node): | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None` is not assignable to parameter `start_node` with type `Node` in function `torch.ao.ns.fx.ns_types.NSSubgraph.__new__` [bad-argument-type] | |
| --> torch/ao/ns/fx/graph_matcher.py:119:28 | |
| | | |
| 119 | start_node=cur_start_node, | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None` is not assignable to parameter `base_op_node` with type `Node` in function `torch.ao.ns.fx.ns_types.NSSubgraph.__new__` [bad-argument-type] | |
| --> torch/ao/ns/fx/graph_matcher.py:121:30 | |
| | | |
| 121 | base_op_node=cur_base_op_node, | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `tuple[(...) -> Unknown, ((...) -> Unknown) | None]` is not assignable to parameter `object` with type `tuple[(...) -> Unknown, (...) -> Unknown]` in function `list.append` [bad-argument-type] | |
| --> torch/ao/ns/fx/mappings.py:418:32 | |
| | | |
| 418 | new_connections.append((source, target2)) | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `tuple[((...) -> Unknown) | str, (...) -> Unknown]` is not assignable to parameter `object` with type `tuple[(...) -> Unknown, (...) -> Unknown]` in function `list.append` [bad-argument-type] | |
| --> torch/ao/ns/fx/mappings.py:426:36 | |
| | | |
| 426 | new_connections.append((source, target)) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Cannot set item in `dict[str, Node]` [unsupported-operation] | |
| --> torch/ao/ns/fx/n_shadows_utils.py:98:30 | |
| | | |
| 98 | env[node.name] = result | |
| | ^^^^^^ | |
| | | |
| Argument `Tensor | Unknown` is not assignable to parameter `value` with type `Node` in function `dict.__setitem__` | |
| ERROR Object of class `Iterable` has no attribute `append` [missing-attribute] | |
| --> torch/ao/ns/fx/n_shadows_utils.py:396:25 | |
| | | |
| 396 | cur_args_copy.append(new_arg_placeholder) | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Iterable` has no attribute `append` [missing-attribute] | |
| --> torch/ao/ns/fx/n_shadows_utils.py:398:25 | |
| | | |
| 398 | cur_args_copy.append(arg) | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `nodes_in_this_subgraph` with type `list[Any]` in function `create_n_transformed_and_logged_copies_of_subgraph` [bad-argument-type] | |
| --> torch/ao/ns/fx/n_shadows_utils.py:804:17 | |
| | | |
| 804 | maybe_subgraph, | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR `Node | None` is not assignable to `None` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/ao/ns/fx/n_shadows_utils.py:860:13 | |
| | | |
| 860 | / while cur_node_orig in subgraph_to_use: | |
| 861 | | # TODO(future PR): make this support all possible args/kwargs | |
| 862 | | if cur_node_orig is first_node: | |
| 863 | | new_args = cur_node_orig.args | |
| 864 | | new_kwargs = cur_node_orig.kwargs | |
| 865 | | else: | |
| | |______________________^ | |
| | | |
| ERROR `Sized | list[dict[str, Any]]` is not assignable to `list[dict[str, Any]]` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/ao/ns/fx/utils.py:407:21 | |
| | | |
| 407 | / for i in range(len(model_results)): | |
| 408 | | fqn = ref_model_results[i]["fqn"] | |
| 409 | | model_results[i]["fqn"] = fqn | |
| | |_____________________________________________________^ | |
| | | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/ao/ns/fx/utils.py:470:24 | |
| | | |
| 470 | return torch.sqrt(((x - y) ** 2).sum() / (x**2).sum()) | |
| | ^^^^^^^^^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/ao/ns/fx/utils.py:470:24 | |
| | | |
| 470 | return torch.sqrt(((x - y) ** 2).sum() / (x**2).sum()) | |
| | ^^^^^^^^^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/ao/ns/fx/utils.py:470:47 | |
| | | |
| 470 | return torch.sqrt(((x - y) ** 2).sum() / (x**2).sum()) | |
| | ^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/ao/ns/fx/utils.py:470:47 | |
| | | |
| 470 | return torch.sqrt(((x - y) ** 2).sum() / (x**2).sum()) | |
| | ^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR Object of class `SparseDLRM` has no attribute `apply_mlp` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:26:13 | |
| | | |
| 26 | x = self.apply_mlp(dense_x, self.bot_l) # dense features | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `bot_l` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:26:37 | |
| | | |
| 26 | x = self.apply_mlp(dense_x, self.bot_l) # dense features | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `apply_emb` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:27:14 | |
| | | |
| 27 | ly = self.apply_emb(lS_o, lS_i, self.emb_l, self.v_W_l) # apply embedding bag | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `emb_l` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:27:41 | |
| | | |
| 27 | ly = self.apply_emb(lS_o, lS_i, self.emb_l, self.v_W_l) # apply embedding bag | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `v_W_l` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:27:53 | |
| | | |
| 27 | ly = self.apply_emb(lS_o, lS_i, self.emb_l, self.v_W_l) # apply embedding bag | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `interact_features` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:28:13 | |
| | | |
| 28 | z = self.interact_features(x, ly) | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `top_l` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:31:25 | |
| | | |
| 31 | z = torch.mm(z, self.top_l[0].weight.T).add(self.top_l[0].bias) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `top_l` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:31:53 | |
| | | |
| 31 | z = torch.mm(z, self.top_l[0].weight.T).add(self.top_l[0].bias) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SparseDLRM` has no attribute `top_l` [missing-attribute] | |
| --> torch/ao/pruning/_experimental/data_sparsifier/benchmarks/dlrm_utils.py:32:22 | |
| | | |
| 32 | for layer in self.top_l[1:]: | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Argument `object` is not assignable to parameter `input` with type `Tensor` in function `torch._C._VariableFunctions.abs` [bad-argument-type] | |
| --> torch/ao/pruning/_experimental/pruner/FPGM_pruner.py:75:40 | |
| | | |
| 75 | distance = torch.sum(torch.abs(dist_matrix), 1) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR `None` is not assignable to attribute `bias` with type `Parameter` [bad-assignment] | |
| --> torch/ao/pruning/_experimental/pruner/base_structured_sparsifier.py:263:35 | |
| | | |
| 263 | module.bias = None | |
| | ^^^^ | |
| | | |
| ERROR `Parameter` is not assignable to attribute `bias` with type `Never` [bad-assignment] | |
| --> torch/ao/pruning/_experimental/pruner/prune_functions.py:100:23 | |
| | | |
| 100 | module.bias = nn.Parameter(cast(Tensor, module._bias)[mask]) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Type `None` is not iterable [not-iterable] | |
| --> torch/ao/pruning/sparsifier/base_sparsifier.py:173:30 | |
| | | |
| 173 | for module_config in self.config: | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Iterator[Tensor]` is not assignable to parameter `*iterables` with type `Iterable[Parameter]` in function `itertools.chain.__new__` [bad-argument-type] | |
| --> torch/ao/pruning/sparsifier/utils.py:54:62 | |
| | | |
| 54 | devices = {p.device for p in chain(mod.parameters(), mod.buffers())} | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/ao/pruning/sparsifier/weight_norm_sparsifier.py:238:29 | |
| | | |
| 238 | input_shape=ww.shape, | |
| | ^^^^^^^^ | |
| | | |
| WARN `QConfigDynamic` is deprecated [deprecated] | |
| --> torch/ao/quantization/__init__.py:27:22 | |
| | | |
| 27 | from .qconfig import * # noqa: F403 | |
| | - | |
| | | |
| WARN `get_default_qconfig_dict` is deprecated [deprecated] | |
| --> torch/ao/quantization/__init__.py:27:22 | |
| | | |
| 27 | from .qconfig import * # noqa: F403 | |
| | - | |
| | | |
| WARN `get_default_qat_qconfig_dict` is deprecated [deprecated] | |
| --> torch/ao/quantization/__init__.py:27:22 | |
| | | |
| 27 | from .qconfig import * # noqa: F403 | |
| | - | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.conv1d` [no-matching-overload] | |
| --> torch/ao/quantization/experimental/adaround_optimization.py:130:45 | |
| | | |
| 130 | out = torch.nn.functional.conv1d( | |
| | _____________________________________________^ | |
| 131 | | x, | |
| 132 | | weight, | |
| 133 | | stride=module.stride, | |
| 134 | | padding=module.padding, | |
| 135 | | dilation=module.dilation, | |
| | |__________________________________________^ | |
| | | |
| Possible overloads: | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: Sequence[SymInt | int] | SymInt | int = 0, dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor [closest match] | |
| (input: Tensor, weight: Tensor, bias: Tensor | None = None, stride: Sequence[SymInt | int] | SymInt | int = 1, padding: str = 'valid', dilation: Sequence[SymInt | int] | SymInt | int = 1, groups: SymInt | int = 1) -> Tensor | |
| ERROR Argument `Unknown | None` is not assignable to parameter `dtype` with type `dtype` in function `torch._C.iinfo.__init__` [bad-argument-type] | |
| --> torch/ao/quantization/fake_quantize.py:188:32 | |
| | | |
| 188 | assert torch.iinfo(dtype).min <= quant_min, "quant_min out of bound" | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `dtype` with type `dtype` in function `torch._C.iinfo.__init__` [bad-argument-type] | |
| --> torch/ao/quantization/fake_quantize.py:189:45 | |
| | | |
| 189 | assert quant_max <= torch.iinfo(dtype).max, "quant_max out of bound" | |
| | ^^^^^ | |
| | | |
| ERROR Class member `FakeQuantPerChannel.forward` overrides parent class `Function` in an inconsistent manner [bad-override] | |
| --> torch/ao/quantization/fx/_decomposed.py:1152:9 | |
| | | |
| 1152 | def forward(ctx, input, scales, zero_points, axis, quant_min, quant_max): | |
| | ^^^^^^^ | |
| | | |
| `FakeQuantPerChannel.forward` has type `(ctx: Unknown, input: Unknown, scales: Unknown, zero_points: Unknown, axis: Unknown, quant_min: Unknown, quant_max: Unknown) -> Unknown`, which is not consistent with `(*args: Any, **kwargs: Any) -> Any` in `Function.forward` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `FakeQuantPerChannel.backward` overrides parent class `Function` in an inconsistent manner [bad-override] | |
| --> torch/ao/quantization/fx/_decomposed.py:1174:9 | |
| | | |
| 1174 | def backward(ctx, gy): | |
| | ^^^^^^^^ | |
| | | |
| `FakeQuantPerChannel.backward` has type `(ctx: Unknown, gy: Unknown) -> Unknown`, which is not consistent with `(ctx: Any, *grad_outputs: Any) -> Any` in `Function.backward` (the type of read-write attributes cannot be changed) | |
| ERROR Invalid expression form for base class: `namedtuple("EqualizationQConfig", ["input_activation", "weight"])` [invalid-inheritance] | |
| --> torch/ao/quantization/fx/_equalize.py:249:5 | |
| | | |
| 249 | namedtuple("EqualizationQConfig", ["input_activation", "weight"]) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR The `__bool__` attribute of `_InputEqualizationObserver | None` has type `BoundMethod[NoneType, (self: NoneType) -> Literal[False]] | Module | Tensor`, which is not callable [invalid-argument] | |
| --> torch/ao/quantization/fx/_equalize.py:463:8 | |
| | | |
| 463 | if next_inp_eq_obs: | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Tensor | None` is not assignable to parameter `equalization_scale` with type `Tensor` in function `scale_weight_node` [bad-argument-type] | |
| --> torch/ao/quantization/fx/_equalize.py:824:36 | |
| | | |
| 824 | node, modules, equalization_scale, maybe_next_equalization_scale | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Tensor | None` is not assignable to parameter `equalization_scale` with type `Tensor` in function `scale_weight_functional` [bad-argument-type] | |
| --> torch/ao/quantization/fx/_equalize.py:831:21 | |
| | | |
| 831 | equalization_scale, | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Literal['Not Applicable'] | bool | float | int | Any` is not assignable to parameter `object` with type `int | str` in function `list.append` [bad-argument-type] | |
| --> torch/ao/quantization/fx/_model_report/model_report_visualizer.py:226:45 | |
| | | |
| 226 | tensor_table_row.append(feature_val) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Literal['Not Applicable'] | bool | float | int | Unknown` is not assignable to parameter `object` with type `int | str` in function `list.append` [bad-argument-type] | |
| --> torch/ao/quantization/fx/_model_report/model_report_visualizer.py:286:48 | |
| | | |
| 286 | new_channel_row.append(feature_val) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Cannot set item in `dict[str, ((list[FakeQuantizeBase | ObserverBase]) -> tuple[Tensor, Tensor]) | dtype | int | qscheme | None]` [unsupported-operation] | |
| --> torch/ao/quantization/fx/prepare.py:169:32 | |
| | | |
| 169 | kwargs["obs_or_fqs"] = obs_or_fqs | |
| | ^^^^^^^^^^ | |
| | | |
| Argument `list[FakeQuantizeBase | ObserverBase]` is not assignable to parameter `value` with type `((list[FakeQuantizeBase | ObserverBase]) -> tuple[Tensor, Tensor]) | dtype | int | qscheme | None` in function `dict.__setitem__` | |
| ERROR Argument `QConfigMapping | dict[str, Any]` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `torch.ao.quantization.fx.qconfig_mapping_utils._update_qconfig_for_fusion` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2088:39 | |
| | | |
| 2088 | _update_qconfig_for_fusion(model, qconfig_mapping) | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `QConfigMapping | dict[str, Any] | None` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `torch.ao.quantization.fx.qconfig_mapping_utils._update_qconfig_for_fusion` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2089:39 | |
| | | |
| 2089 | _update_qconfig_for_fusion(model, _equalization_config) | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `QConfigMapping | dict[str, Any]` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `torch.ao.quantization.fx.qconfig_mapping_utils._get_flattened_qconfig_dict` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2090:58 | |
| | | |
| 2090 | flattened_qconfig_dict = _get_flattened_qconfig_dict(qconfig_mapping) | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `QConfigMapping | dict[str, Any]` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `torch.ao.quantization.fx.qconfig_mapping_utils._update_qconfig_for_qat` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2097:33 | |
| | | |
| 2097 | _update_qconfig_for_qat(qconfig_mapping, backend_config) | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `QConfigMapping | dict[str, Any] | None` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `torch.ao.quantization.fx.qconfig_mapping_utils._generate_node_name_to_qconfig` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2110:44 | |
| | | |
| 2110 | model, named_modules, model.graph, _equalization_config, node_name_to_scope | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `QConfigMapping | dict[str, Any]` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `torch.ao.quantization.fx.qconfig_mapping_utils._generate_node_name_to_qconfig` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2113:44 | |
| | | |
| 2113 | model, named_modules, model.graph, qconfig_mapping, node_name_to_scope | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `QConfigMapping | dict[str, Any]` is not assignable to parameter `qconfig_mapping` with type `QConfigMapping` in function `_save_state` [bad-argument-type] | |
| --> torch/ao/quantization/fx/prepare.py:2173:9 | |
| | | |
| 2173 | qconfig_mapping, | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Returned type `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | Unknown | None` is not assignable to declared return type `Node | None` [bad-return] | |
| --> torch/ao/quantization/fx/utils.py:723:16 | |
| | | |
| 723 | return a | |
| | ^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `quant_min` with type `int` in function `torch.ao.quantization.utils.validate_qmin_qmax` [bad-argument-type] | |
| --> torch/ao/quantization/observer.py:283:32 | |
| | | |
| 283 | validate_qmin_qmax(quant_min, quant_max) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `quant_max` with type `int` in function `torch.ao.quantization.utils.validate_qmin_qmax` [bad-argument-type] | |
| --> torch/ao/quantization/observer.py:283:43 | |
| | | |
| 283 | validate_qmin_qmax(quant_min, quant_max) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `quant_min` with type `int` in function `torch.ao.quantization.utils.calculate_qmin_qmax` [bad-argument-type] | |
| --> torch/ao/quantization/observer.py:285:13 | |
| | | |
| 285 | quant_min, | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `quant_max` with type `int` in function `torch.ao.quantization.utils.calculate_qmin_qmax` [bad-argument-type] | |
| --> torch/ao/quantization/observer.py:286:13 | |
| | | |
| 286 | quant_max, | |
| | ^^^^^^^^^ | |
| | | |
| ERROR `Node | str` is not assignable to `str` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/ao/quantization/pt2e/utils.py:75:9 | |
| | | |
| 75 | / for n in user.kwargs: | |
| 76 | | if ( | |
| 77 | | isinstance(n, torch.fx.Node) | |
| 78 | | and n.op == "call_function" | |
| 79 | | and n.target in _DEQUANTIZE_OPS | |
| 80 | | ): | |
| | |_______________^ | |
| | | |
| ERROR Invalid expression form for base class: `namedtuple("QConfig", ["activation", "weight"])` [invalid-inheritance] | |
| --> torch/ao/quantization/qconfig.py:86:15 | |
| | | |
| 86 | class QConfig(namedtuple("QConfig", ["activation", "weight"])): | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Invalid expression form for base class: `namedtuple("QConfigDynamic", ["activation", "weight"])` [invalid-inheritance] | |
| --> torch/ao/quantization/qconfig.py:123:22 | |
| | | |
| 123 | class QConfigDynamic(namedtuple("QConfigDynamic", ["activation", "weight"])): | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `bool | None` is not assignable to `None` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/ao/quantization/quantizer/x86_inductor_quantizer.py:420:9 | |
| | | |
| 420 | / for qconfig in ( | |
| 421 | | list(self.module_name_qconfig.values()) | |
| 422 | | + list(self.operator_type_qconfig.values()) | |
| 423 | | + [self.global_config] | |
| 424 | | ): | |
| 425 | | if qconfig is not None: | |
| | |____________________________________^ | |
| | | |
| ERROR Argument `dict[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, Unknown]` is not assignable to parameter `input_qspec_map` with type `dict[Node, QuantizationSpecBase | None]` in function `_X86InductorQuantizationAnnotation.__init__` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/x86_inductor_quantizer.py:811:41 | |
| | | |
| 811 | input_qspec_map=binary_node_input_qspec_map, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `dict[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, Unknown]` is not assignable to parameter `input_qspec_map` with type `dict[Node, QuantizationSpecBase | None]` in function `_X86InductorQuantizationAnnotation.__init__` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/x86_inductor_quantizer.py:881:41 | |
| | | |
| 881 | input_qspec_map=binary_node_input_qspec_map, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `dict[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, Unknown]` is not assignable to parameter `input_qspec_map` with type `dict[Node, QuantizationSpecBase | None]` in function `_X86InductorQuantizationAnnotation.__init__` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/x86_inductor_quantizer.py:1088:33 | |
| | | |
| 1088 | input_qspec_map=binary_node_input_qspec_map, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `dict[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, Unknown]` is not assignable to parameter `input_qspec_map` with type `dict[Node, QuantizationSpecBase | None]` in function `_X86InductorQuantizationAnnotation.__init__` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/x86_inductor_quantizer.py:1142:33 | |
| | | |
| 1142 | input_qspec_map=binary_node_input_qspec_map, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `type[ReLU] | None` is not assignable to parameter `object` with type `((a: Any, b: Any, /) -> Any) | type[Linear]` in function `list.append` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/x86_inductor_quantizer.py:1502:38 | |
| | | |
| 1502 | seq_partition.append(unary_op) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Argument `list[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | Unknown | None]` is not assignable to parameter `nodes` with type `list[Node]` in function `_is_annotated` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/xnnpack_quantizer_utils.py:379:26 | |
| | | |
| 379 | if _is_annotated(partition): | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | Unknown | None` is not assignable to parameter with type `Node` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/xnnpack_quantizer_utils.py:382:44 | |
| | | |
| 382 | if filter_fn and any(not filter_fn(n) for n in partition): | |
| | ^ | |
| | | |
| ERROR Argument `list[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | Unknown | None]` is not assignable to parameter `nodes` with type `list[Node]` in function `_mark_nodes_as_annotated` [bad-argument-type] | |
| --> torch/ao/quantization/quantizer/xnnpack_quantizer_utils.py:392:34 | |
| | | |
| 392 | _mark_nodes_as_annotated(partition) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Class member `Bernoulli.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/bernoulli.py:42:5 | |
| | | |
| 42 | arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Bernoulli.arg_constraints` has type `dict[str, _Interval | _Real]`, which is not assignable to `BoundMethod[Bernoulli, (self: Bernoulli) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Attribute `probs` of class `Bernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/bernoulli.py:59:14 | |
| | | |
| 59 | (self.probs,) = broadcast_all(probs) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `Bernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/bernoulli.py:63:14 | |
| | | |
| 63 | (self.logits,) = broadcast_all(logits) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `Bernoulli._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/bernoulli.py:140:9 | |
| | | |
| 140 | def _log_normalizer(self, x): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Bernoulli._log_normalizer` has type `BoundMethod[Bernoulli, (self: Bernoulli, x: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Bernoulli, (self: Bernoulli, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `Beta.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/beta.py:34:5 | |
| | | |
| 34 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Beta.arg_constraints` has type `dict[str, _GreaterThan]`, which is not assignable to `BoundMethod[Beta, (self: Beta) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Class member `Beta._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/beta.py:116:9 | |
| | | |
| 116 | def _log_normalizer(self, x, y): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Beta._log_normalizer` has type `BoundMethod[Beta, (self: Beta, x: Unknown, y: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Beta, (self: Beta, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `Binomial.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/binomial.py:48:5 | |
| | | |
| 48 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Binomial.arg_constraints` has type `dict[str, _IntegerGreaterThan | _Interval | _Real]`, which is not assignable to `BoundMethod[Binomial, (self: Binomial) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Attribute `probs` of class `Binomial` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/binomial.py:69:17 | |
| | | |
| 69 | self.probs, | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `Binomial` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/binomial.py:76:17 | |
| | | |
| 76 | self.logits, | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `Binomial.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/binomial.py:102:9 | |
| | | |
| 102 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `Binomial.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `Categorical.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/categorical.py:53:5 | |
| | | |
| 53 | arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Categorical.arg_constraints` has type `dict[str, _IndependentConstraint | _Simplex]`, which is not assignable to `BoundMethod[Categorical, (self: Categorical) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Attribute `probs` of class `Categorical` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/categorical.py:69:13 | |
| | | |
| 69 | self.probs = probs / probs.sum(-1, keepdim=True) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `Categorical` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/categorical.py:75:13 | |
| | | |
| 75 | self.logits = logits - logits.logsumexp(dim=-1, keepdim=True) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `Categorical.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/categorical.py:102:9 | |
| | | |
| 102 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `Categorical.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `Cauchy.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/cauchy.py:34:5 | |
| | | |
| 34 | arg_constraints = {"loc": constraints.real, "scale": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Cauchy.arg_constraints` has type `dict[str, _GreaterThan | _Real]`, which is not assignable to `BoundMethod[Cauchy, (self: Cauchy) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `ContinuousBernoulli.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/continuous_bernoulli.py:50:5 | |
| | | |
| 50 | arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `ContinuousBernoulli.arg_constraints` has type `dict[str, _Interval | _Real]`, which is not assignable to `BoundMethod[ContinuousBernoulli, (self: ContinuousBernoulli) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Attribute `probs` of class `ContinuousBernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/continuous_bernoulli.py:68:14 | |
| | | |
| 68 | (self.probs,) = broadcast_all(probs) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `probs` of class `ContinuousBernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/continuous_bernoulli.py:74:13 | |
| | | |
| 74 | self.probs = clamp_probs(self.probs) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `ContinuousBernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/continuous_bernoulli.py:78:14 | |
| | | |
| 78 | (self.logits,) = broadcast_all(logits) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `ContinuousBernoulli._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/continuous_bernoulli.py:233:9 | |
| | | |
| 233 | def _log_normalizer(self, x): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `ContinuousBernoulli._log_normalizer` has type `BoundMethod[ContinuousBernoulli, (self: ContinuousBernoulli, x: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[ContinuousBernoulli, (self: ContinuousBernoulli, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `_Dirichlet.forward` overrides parent class `Function` in an inconsistent manner [bad-override] | |
| --> torch/distributions/dirichlet.py:25:9 | |
| | | |
| 25 | def forward(ctx, concentration): | |
| | ^^^^^^^ | |
| | | |
| `_Dirichlet.forward` has type `(ctx: Unknown, concentration: Unknown) -> Unknown`, which is not consistent with `(*args: Any, **kwargs: Any) -> Any` in `Function.forward` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `_Dirichlet.backward` overrides parent class `Function` in an inconsistent manner [bad-override] | |
| --> torch/distributions/dirichlet.py:32:9 | |
| | | |
| 32 | def backward(ctx, grad_output): | |
| | ^^^^^^^^ | |
| | | |
| `_Dirichlet.backward` has type `(Unknown, grad_output: Unknown) -> Unknown`, which is not consistent with `(ctx: Any, *grad_outputs: Any) -> Any` in `Function.backward` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `Dirichlet.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/dirichlet.py:53:5 | |
| | | |
| 53 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Dirichlet.arg_constraints` has type `dict[str, _IndependentConstraint]`, which is not assignable to `BoundMethod[Dirichlet, (self: Dirichlet) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Class member `Dirichlet._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/dirichlet.py:133:9 | |
| | | |
| 133 | def _log_normalizer(self, x): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Dirichlet._log_normalizer` has type `BoundMethod[Dirichlet, (self: Dirichlet, x: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Dirichlet, (self: Dirichlet, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `Exponential.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/exponential.py:30:5 | |
| | | |
| 30 | arg_constraints = {"rate": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Exponential.arg_constraints` has type `dict[str, _GreaterThan]`, which is not assignable to `BoundMethod[Exponential, (self: Exponential) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Class member `Exponential._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/exponential.py:92:9 | |
| | | |
| 92 | def _log_normalizer(self, x): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Exponential._log_normalizer` has type `BoundMethod[Exponential, (self: Exponential, x: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Exponential, (self: Exponential, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `FisherSnedecor.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/fishersnedecor.py:32:5 | |
| | | |
| 32 | arg_constraints = {"df1": constraints.positive, "df2": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `FisherSnedecor.arg_constraints` has type `dict[str, _GreaterThan]`, which is not assignable to `BoundMethod[FisherSnedecor, (self: FisherSnedecor) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `Gamma.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/gamma.py:37:5 | |
| | | |
| 37 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Gamma.arg_constraints` has type `dict[str, _GreaterThan]`, which is not assignable to `BoundMethod[Gamma, (self: Gamma) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Class member `Gamma._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/gamma.py:112:9 | |
| | | |
| 112 | def _log_normalizer(self, x, y): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Gamma._log_normalizer` has type `BoundMethod[Gamma, (self: Gamma, x: Unknown, y: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Gamma, (self: Gamma, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `GeneralizedPareto.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/generalized_pareto.py:38:5 | |
| | | |
| 38 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `GeneralizedPareto.arg_constraints` has type `dict[str, _GreaterThan | _Real]`, which is not assignable to `BoundMethod[GeneralizedPareto, (self: GeneralizedPareto) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/generalized_pareto.py:133:18 | |
| | | |
| 133 | result = self.scale**2 / ((1 - safe_conc) ** 2 * (1 - 2 * safe_conc)) | |
| | ^^^^^^^^^^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/generalized_pareto.py:133:18 | |
| | | |
| 133 | result = self.scale**2 / ((1 - safe_conc) ** 2 * (1 - 2 * safe_conc)) | |
| | ^^^^^^^^^^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/generalized_pareto.py:133:35 | |
| | | |
| 133 | result = self.scale**2 / ((1 - safe_conc) ** 2 * (1 - 2 * safe_conc)) | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/generalized_pareto.py:133:35 | |
| | | |
| 133 | result = self.scale**2 / ((1 - safe_conc) ** 2 * (1 - 2 * safe_conc)) | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR Class member `GeneralizedPareto.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/generalized_pareto.py:145:9 | |
| | | |
| 145 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `GeneralizedPareto.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `Geometric.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/geometric.py:47:5 | |
| | | |
| 47 | arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Geometric.arg_constraints` has type `dict[str, _Interval | _Real]`, which is not assignable to `BoundMethod[Geometric, (self: Geometric) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Attribute `probs` of class `Geometric` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/geometric.py:61:14 | |
| | | |
| 61 | (self.probs,) = broadcast_all(probs) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `Geometric` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/geometric.py:64:14 | |
| | | |
| 64 | (self.logits,) = broadcast_all(logits) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `Gumbel.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/gumbel.py:35:5 | |
| | | |
| 35 | support = constraints.real | |
| | ^^^^^^^ | |
| | | |
| `Gumbel.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `HalfCauchy.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/half_cauchy.py:35:5 | |
| | | |
| 35 | support = constraints.nonnegative | |
| | ^^^^^^^ | |
| | | |
| `HalfCauchy.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `HalfCauchy.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/half_cauchy.py:37:5 | |
| | | |
| 37 | base_dist: Cauchy | |
| | ^^^^^^^^^ | |
| | | |
| `HalfCauchy.base_dist` has type `Cauchy`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `HalfNormal.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/half_normal.py:35:5 | |
| | | |
| 35 | support = constraints.nonnegative | |
| | ^^^^^^^ | |
| | | |
| `HalfNormal.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `HalfNormal.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/half_normal.py:37:5 | |
| | | |
| 37 | base_dist: Normal | |
| | ^^^^^^^^^ | |
| | | |
| `HalfNormal.base_dist` has type `Normal`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `Independent.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/independent.py:94:9 | |
| | | |
| 94 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `Independent.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `InverseGamma.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/inverse_gamma.py:41:5 | |
| | | |
| 41 | support = constraints.positive | |
| | ^^^^^^^ | |
| | | |
| `InverseGamma.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `InverseGamma.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/inverse_gamma.py:43:5 | |
| | | |
| 43 | base_dist: Gamma | |
| | ^^^^^^^^^ | |
| | | |
| `InverseGamma.base_dist` has type `Gamma`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `Kumaraswamy.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/kumaraswamy.py:47:5 | |
| | | |
| 47 | support = constraints.unit_interval | |
| | ^^^^^^^ | |
| | | |
| `Kumaraswamy.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Argument `list[AffineTransform | PowerTransform]` is not assignable to parameter `transforms` with type `Transform | list[Transform]` in function `torch.distributions.transformed_distribution.TransformedDistribution.__init__` [bad-argument-type] | |
| --> torch/distributions/kumaraswamy.py:69:37 | |
| | | |
| 69 | super().__init__(base_dist, transforms, validate_args=validate_args) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Class member `Laplace.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/laplace.py:31:5 | |
| | | |
| 31 | arg_constraints = {"loc": constraints.real, "scale": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Laplace.arg_constraints` has type `dict[str, _GreaterThan | _Real]`, which is not assignable to `BoundMethod[Laplace, (self: Laplace) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `LKJCholesky.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/lkj_cholesky.py:63:5 | |
| | | |
| 63 | arg_constraints = {"concentration": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `LKJCholesky.arg_constraints` has type `dict[str, _GreaterThan]`, which is not assignable to `BoundMethod[LKJCholesky, (self: LKJCholesky) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `LogNormal.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/log_normal.py:35:5 | |
| | | |
| 35 | support = constraints.positive | |
| | ^^^^^^^ | |
| | | |
| `LogNormal.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `LogNormal.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/log_normal.py:37:5 | |
| | | |
| 37 | base_dist: Normal | |
| | ^^^^^^^^^ | |
| | | |
| `LogNormal.base_dist` has type `Normal`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `LogisticNormal.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/logistic_normal.py:39:5 | |
| | | |
| 39 | support = constraints.simplex | |
| | ^^^^^^^ | |
| | | |
| `LogisticNormal.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `LogisticNormal.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/logistic_normal.py:41:5 | |
| | | |
| 41 | base_dist: Independent[Normal] | |
| | ^^^^^^^^^ | |
| | | |
| `LogisticNormal.base_dist` has type `Independent[Normal]`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `LowRankMultivariateNormal.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/lowrank_multivariate_normal.py:89:5 | |
| | | |
| 89 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `LowRankMultivariateNormal.arg_constraints` has type `dict[str, _IndependentConstraint]`, which is not assignable to `BoundMethod[LowRankMultivariateNormal, (self: LowRankMultivariateNormal) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `MixtureSameFamily.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/mixture_same_family.py:127:9 | |
| | | |
| 127 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `MixtureSameFamily.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `Multinomial.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/multinomial.py:53:5 | |
| | | |
| 53 | arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Multinomial.arg_constraints` has type `dict[str, _IndependentConstraint | _Simplex]`, which is not assignable to `BoundMethod[Multinomial, (self: Multinomial) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `Multinomial.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/multinomial.py:95:9 | |
| | | |
| 95 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `Multinomial.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `MultivariateNormal.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/multivariate_normal.py:126:5 | |
| | | |
| 126 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `MultivariateNormal.arg_constraints` has type `dict[str, _IndependentConstraint | _LowerCholesky | _PositiveDefinite]`, which is not assignable to `BoundMethod[MultivariateNormal, (self: MultivariateNormal) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Attribute `scale_tril` of class `MultivariateNormal` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/multivariate_normal.py:159:13 | |
| | | |
| 159 | self.scale_tril = scale_tril.expand(batch_shape + (-1, -1)) | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Attribute `covariance_matrix` of class `MultivariateNormal` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/multivariate_normal.py:169:13 | |
| | | |
| 169 | self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Attribute `precision_matrix` of class `MultivariateNormal` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/multivariate_normal.py:180:13 | |
| | | |
| 180 | self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1)) | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Class member `NegativeBinomial.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/negative_binomial.py:36:5 | |
| | | |
| 36 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `NegativeBinomial.arg_constraints` has type `dict[str, _GreaterThanEq | _HalfOpenInterval | _Real]`, which is not assignable to `BoundMethod[NegativeBinomial, (self: NegativeBinomial) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Attribute `probs` of class `NegativeBinomial` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/negative_binomial.py:57:17 | |
| | | |
| 57 | self.probs, | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `NegativeBinomial` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/negative_binomial.py:64:17 | |
| | | |
| 64 | self.logits, | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `Normal.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/normal.py:34:5 | |
| | | |
| 34 | arg_constraints = {"loc": constraints.real, "scale": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Normal.arg_constraints` has type `dict[str, _GreaterThan | _Real]`, which is not assignable to `BoundMethod[Normal, (self: Normal) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/normal.py:91:15 | |
| | | |
| 91 | var = self.scale**2 | |
| | ^^^^^^^^^^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/normal.py:91:15 | |
| | | |
| 91 | var = self.scale**2 | |
| | ^^^^^^^^^^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR Class member `Normal._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/normal.py:120:9 | |
| | | |
| 120 | def _log_normalizer(self, x, y): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Normal._log_normalizer` has type `BoundMethod[Normal, (self: Normal, x: Unknown, y: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Normal, (self: Normal, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `OneHotCategorical.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/one_hot_categorical.py:45:5 | |
| | | |
| 45 | arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `OneHotCategorical.arg_constraints` has type `dict[str, _IndependentConstraint | _Simplex]`, which is not assignable to `BoundMethod[OneHotCategorical, (self: OneHotCategorical) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Argument `list[AffineTransform | ExpTransform]` is not assignable to parameter `transforms` with type `Transform | list[Transform]` in function `torch.distributions.transformed_distribution.TransformedDistribution.__init__` [bad-argument-type] | |
| --> torch/distributions/pareto.py:42:37 | |
| | | |
| 42 | super().__init__(base_dist, transforms, validate_args=validate_args) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Class member `Poisson.arg_constraints` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/poisson.py:35:5 | |
| | | |
| 35 | arg_constraints = {"rate": constraints.nonnegative} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Poisson.arg_constraints` has type `dict[str, _GreaterThanEq]`, which is not assignable to `BoundMethod[Poisson, (self: Poisson) -> dict[str, Constraint]]`, the property getter for `ExponentialFamily.arg_constraints` | |
| ERROR Class member `Poisson._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/poisson.py:85:9 | |
| | | |
| 85 | def _log_normalizer(self, x): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Poisson._log_normalizer` has type `BoundMethod[Poisson, (self: Poisson, x: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Poisson, (self: Poisson, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `LogitRelaxedBernoulli.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/relaxed_bernoulli.py:43:5 | |
| | | |
| 43 | arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `LogitRelaxedBernoulli.arg_constraints` has type `dict[str, _Interval | _Real]`, which is not assignable to `BoundMethod[LogitRelaxedBernoulli, (self: LogitRelaxedBernoulli) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Attribute `probs` of class `LogitRelaxedBernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/relaxed_bernoulli.py:60:14 | |
| | | |
| 60 | (self.probs,) = broadcast_all(probs) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `logits` of class `LogitRelaxedBernoulli` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/relaxed_bernoulli.py:64:14 | |
| | | |
| 64 | (self.logits,) = broadcast_all(logits) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Class member `RelaxedBernoulli.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/relaxed_bernoulli.py:141:5 | |
| | | |
| 141 | support = constraints.unit_interval | |
| | ^^^^^^^ | |
| | | |
| `RelaxedBernoulli.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `RelaxedBernoulli.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/relaxed_bernoulli.py:143:5 | |
| | | |
| 143 | base_dist: LogitRelaxedBernoulli | |
| | ^^^^^^^^^ | |
| | | |
| `RelaxedBernoulli.base_dist` has type `LogitRelaxedBernoulli`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `ExpRelaxedCategorical.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/relaxed_categorical.py:41:5 | |
| | | |
| 41 | arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `ExpRelaxedCategorical.arg_constraints` has type `dict[str, _IndependentConstraint | _Simplex]`, which is not assignable to `BoundMethod[ExpRelaxedCategorical, (self: ExpRelaxedCategorical) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `RelaxedOneHotCategorical.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/relaxed_categorical.py:130:5 | |
| | | |
| 130 | support = constraints.simplex | |
| | ^^^^^^^ | |
| | | |
| `RelaxedOneHotCategorical.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Class member `RelaxedOneHotCategorical.base_dist` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/relaxed_categorical.py:132:5 | |
| | | |
| 132 | base_dist: ExpRelaxedCategorical | |
| | ^^^^^^^^^ | |
| | | |
| `RelaxedOneHotCategorical.base_dist` has type `ExpRelaxedCategorical`, which is not consistent with `Distribution | Independent[Distribution | Unknown] | Unknown` in `TransformedDistribution.base_dist` (the type of read-write attributes cannot be changed) | |
| ERROR Class member `StudentT.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/studentT.py:34:5 | |
| | | |
| 34 | arg_constraints = { | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `StudentT.arg_constraints` has type `dict[str, _GreaterThan | _Real]`, which is not assignable to `BoundMethod[StudentT, (self: StudentT) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR Class member `TransformedDistribution.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transformed_distribution.py:126:9 | |
| | | |
| 126 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `TransformedDistribution.support` and `Distribution.support` must both be descriptors | |
| ERROR Class member `_InverseTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:229:9 | |
| | | |
| 229 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `_InverseTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `_InverseTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:234:9 | |
| | | |
| 234 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `_InverseTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR Class member `ComposeTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:303:9 | |
| | | |
| 303 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `ComposeTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `ComposeTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:318:9 | |
| | | |
| 318 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `ComposeTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR Class member `IndependentTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:437:9 | |
| | | |
| 437 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `IndependentTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `IndependentTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:443:9 | |
| | | |
| 443 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `IndependentTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR Class member `ReshapeTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:510:9 | |
| | | |
| 510 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `ReshapeTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `ReshapeTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:514:9 | |
| | | |
| 514 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `ReshapeTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR Class member `AffineTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:767:9 | |
| | | |
| 767 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `AffineTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `AffineTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:773:9 | |
| | | |
| 773 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `AffineTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/transforms.py:870:13 | |
| | | |
| 870 | z = r**2 | |
| | ^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/transforms.py:870:13 | |
| | | |
| 870 | z = r**2 | |
| | ^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR Class member `CatTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:1158:9 | |
| | | |
| 1158 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `CatTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `CatTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:1164:9 | |
| | | |
| 1164 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `CatTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR Class member `StackTransform.domain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:1236:9 | |
| | | |
| 1236 | def domain(self): | |
| | ^^^^^^ | |
| | | |
| `StackTransform.domain` and `Transform.domain` must both be descriptors | |
| ERROR Class member `StackTransform.codomain` overrides parent class `Transform` in an inconsistent manner [bad-override] | |
| --> torch/distributions/transforms.py:1240:9 | |
| | | |
| 1240 | def codomain(self): | |
| | ^^^^^^^^ | |
| | | |
| `StackTransform.codomain` and `Transform.codomain` must both be descriptors | |
| ERROR Class member `Uniform.support` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/uniform.py:82:9 | |
| | | |
| 82 | def support(self): | |
| | ^^^^^^^ | |
| | | |
| `Uniform.support` and `Distribution.support` must both be descriptors | |
| ERROR `Tensor | UnionType` is not assignable to `Tensor` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/distributions/von_mises.py:95:5 | |
| | | |
| 95 | / while not done.all(): | |
| 96 | | u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device) | |
| 97 | | u1, u2, u3 = u.unbind() | |
| 98 | | z = torch.cos(math.pi * u1) | |
| 99 | | f = (1 + proposal_r * z) / (proposal_r + z) | |
| 100 | | c = concentration * (proposal_r - f) | |
| | |_____________________________________________^ | |
| | | |
| ERROR No matching overload found for function `torch._C._VariableFunctions.where` [no-matching-overload] | |
| --> torch/distributions/von_mises.py:103:28 | |
| | | |
| 103 | x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (condition: Tensor) -> tuple[Tensor, ...] | |
| (condition: Tensor, input: Tensor, other: Tensor, *, out: Tensor | None = None) -> Tensor [closest match] | |
| (condition: Tensor, self: bool | complex | float | int, other: Tensor) -> Tensor | |
| (condition: Tensor, input: Tensor, other: bool | complex | float | int) -> Tensor | |
| (condition: Tensor, self: bool | complex | float | int, other: bool | complex | float | int) -> Tensor | |
| ERROR Class member `VonMises.arg_constraints` overrides parent class `Distribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/von_mises.py:126:5 | |
| | | |
| 126 | arg_constraints = {"loc": constraints.real, "concentration": constraints.positive} | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `VonMises.arg_constraints` has type `dict[str, _GreaterThan | _Real]`, which is not assignable to `BoundMethod[VonMises, (self: VonMises) -> dict[str, Constraint]]`, the property getter for `Distribution.arg_constraints` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/von_mises.py:163:28 | |
| | | |
| 163 | tau = 1 + (1 + 4 * kappa**2).sqrt() | |
| | ^^^^^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/von_mises.py:163:28 | |
| | | |
| 163 | tau = 1 + (1 + 4 * kappa**2).sqrt() | |
| | ^^^^^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/von_mises.py:165:28 | |
| | | |
| 165 | _proposal_r = (1 + rho**2) / (2 * rho) | |
| | ^^^^^^ | |
| | | |
| Argument `Literal[2]` is not assignable to parameter with type `TensorBase` | |
| ERROR `**` is not supported between `Tensor` and `Literal[2]` [unsupported-operation] | |
| --> torch/distributions/von_mises.py:165:28 | |
| | | |
| 165 | _proposal_r = (1 + rho**2) / (2 * rho) | |
| | ^^^^^^ | |
| | | |
| Expected 1 more positional argument | |
| ERROR Class member `Weibull.support` overrides parent class `TransformedDistribution` in an inconsistent manner [bad-override] | |
| --> torch/distributions/weibull.py:38:5 | |
| | | |
| 38 | support = constraints.positive | |
| | ^^^^^^^ | |
| | | |
| `Weibull.support` and `TransformedDistribution.support` must both be descriptors | |
| ERROR Argument `list[AffineTransform | PowerTransform]` is not assignable to parameter `transforms` with type `Transform | list[Transform]` in function `torch.distributions.transformed_distribution.TransformedDistribution.__init__` [bad-argument-type] | |
| --> torch/distributions/weibull.py:55:37 | |
| | | |
| 55 | super().__init__(base_dist, transforms, validate_args=validate_args) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Attribute `scale_tril` of class `Wishart` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/wishart.py:119:13 | |
| | | |
| 119 | self.scale_tril = param.expand(batch_shape + (-1, -1)) | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Attribute `covariance_matrix` of class `Wishart` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/wishart.py:121:13 | |
| | | |
| 121 | self.covariance_matrix = param.expand(batch_shape + (-1, -1)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Attribute `precision_matrix` of class `Wishart` is a read-only descriptor with no `__set__` and cannot be set [read-only] | |
| --> torch/distributions/wishart.py:123:13 | |
| | | |
| 123 | self.precision_matrix = param.expand(batch_shape + (-1, -1)) | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Class member `Wishart._log_normalizer` overrides parent class `ExponentialFamily` in an inconsistent manner [bad-override] | |
| --> torch/distributions/wishart.py:338:9 | |
| | | |
| 338 | def _log_normalizer(self, x, y): | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| `Wishart._log_normalizer` has type `BoundMethod[Wishart, (self: Wishart, x: Unknown, y: Unknown) -> Unknown]`, which is not assignable to `BoundMethod[Wishart, (self: Wishart, *natural_params: Unknown) -> Unknown]`, the type of `ExponentialFamily._log_normalizer` | |
| ERROR Class member `GraphPickler.reducer_override` overrides parent class `Pickler` in an inconsistent manner [bad-override] | |
| --> torch/fx/_graph_pickler.py:68:9 | |
| | | |
| 68 | def reducer_override( | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| `GraphPickler.reducer_override` has type `BoundMethod[GraphPickler, (self: GraphPickler, obj: object) -> tuple[(...) -> Any, tuple[Any, ...]]]`, which is not consistent with `(Any) -> Any` in `Pickler.reducer_override` (the type of read-write attributes cannot be changed) | |
| ERROR Returned type `tuple[(self: _SymNodePickleData, unpickle_state: _UnpickleState) -> SymInt, tuple[_SymNodePickleData, _UnpickleStateToken]]` is not assignable to declared return type `tuple[(Self@_SymNodePickleData, _UnpickleState) -> _SymNodeT, tuple[Self@_SymNodePickleData, _UnpickleStateToken]]` [bad-return] | |
| --> torch/fx/_graph_pickler.py:204:20 | |
| | | |
| 204 | return _SymNodePickleData.unpickle_sym_int, args | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `device | str` is not assignable to parameter `device` with type `device` in function `torch._subclasses.fake_tensor.FakeTensor.__new__` [bad-argument-type] | |
| --> torch/fx/_graph_pickler.py:280:21 | |
| | | |
| 280 | device, | |
| | ^^^^^^ | |
| | | |
| ERROR Cannot set item in `dict[str, (node: Unknown) -> ParameterProxy]` [unsupported-operation] | |
| --> torch/fx/_symbolic_trace.py:606:33 | |
| | | |
| 606 | / ... None | |
| 607 | | ... if not self.param_shapes_constant | |
| 608 | | ... else lambda node: ParameterProxy( | |
| 609 | | ... self, node, n, attr_val | |
| 610 | | ... ) | |
| | |_______________________^ | |
| | | |
| Argument `((node: Unknown) -> ParameterProxy) | None` is not assignable to parameter `value` with type `(node: Unknown) -> ParameterProxy` in function `dict.__setitem__` | |
| ERROR Argument `Iterable[Unknown]` is not assignable to parameter `partitions` with type `list[Partition]` in function `find_partition_to_combine_based_on_size` [bad-argument-type] | |
| --> torch/fx/experimental/accelerator_partitioner.py:660:61 | |
| | | |
| 660 | sorted_partitions, available_mem_bytes, partitions | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Partition` has no attribute `left_mem_bytes` [missing-attribute] | |
| --> torch/fx/experimental/accelerator_partitioner.py:705:17 | |
| | | |
| 705 | partition.left_mem_bytes = available_mem_bytes | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `list[Node | None]` is not assignable to variable `node_pair` with type `list[Node]` [bad-assignment] | |
| --> torch/fx/experimental/accelerator_partitioner.py:1000:33 | |
| | | |
| 1000 | node_pair = [node, n1] | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Argument `Proxy | Tensor` is not assignable to parameter `tensor` with type `Tensor` in function `torch.functional.split` [bad-argument-type] | |
| --> torch/fx/experimental/merge_matmul.py:33:24 | |
| | | |
| 33 | return torch.split(result, splits) | |
| | ^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `proxy_factory_fn` with type `(Node) -> Proxy` in function `torch.fx.proxy.TracerBase.create_proxy` [bad-argument-type] | |
| --> torch/fx/experimental/meta_tracer.py:174:58 | |
| | | |
| 174 | kind, target, args, kwargs, name, type_expr, proxy_factory_fn | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Expected a callable, got `None` [not-callable] | |
| --> torch/fx/experimental/meta_tracer.py:196:28 | |
| | | |
| 196 | meta_out = meta_target(*args_metas, **kwargs_metas) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Argument `BinConstraintD` is not assignable to parameter `object` with type `BinConstraintT | CanReshape` in function `list.append` [bad-argument-type] | |
| --> torch/fx/experimental/migrate_gradual_types/constraint_generator.py:531:36 | |
| | | |
| 531 | num_constraints.append(BinConstraintD(var, Dyn, op_neq)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `BinConstraintD` is not assignable to parameter `object` with type `BinConstraintT | CanReshape` in function `list.append` [bad-argument-type] | |
| --> torch/fx/experimental/migrate_gradual_types/constraint_generator.py:534:36 | |
| | | |
| 534 | num_constraints.append(BinConstraintD(t, Dyn, op_neq)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `nodes` [missing-attribute] | |
| --> torch/fx/experimental/migrate_gradual_types/constraint_generator.py:1478:18 | |
| | | |
| 1478 | for n in graph.nodes: | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Cannot index into `dict[type[BatchNorm2d] | type[Conv2d] | type[Linear], ((a: Unknown, _: Unknown) -> MkldnnBatchNorm) | type[MkldnnConv2d] | type[MkldnnLinear]]` [index-error] | |
| --> torch/fx/experimental/optimization.py:196:41 | |
| | | |
| 196 | new_module = mkldnn_map[type(cur_module)](cur_module, torch.float) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `type[Module]` is not assignable to parameter `key` with type `type[BatchNorm2d] | type[Conv2d] | type[Linear]` in function `dict.__getitem__` | |
| ERROR Argument `Unknown | None` is not assignable to parameter `old_modules` with type `dict[Module, Module]` in function `reset_modules` [bad-argument-type] | |
| --> torch/fx/experimental/optimization.py:266:69 | |
| | | |
| 266 | submodule.graph.nodes, dict(submodule.named_modules()), old_modules | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Argument `(xs: Any) -> tuple[list[tuple[SequenceKey[@_], Unknown]], None]` is not assignable to parameter `flatten_with_keys_fn` with type `((Any) -> tuple[list[tuple[KeyEntry, Any]], Any]) | None` in function `torch.utils._pytree.register_pytree_node` [bad-argument-type] | |
| --> torch/fx/experimental/proxy_tensor.py:127:26 | |
| | | |
| 127 | flatten_with_keys_fn=lambda xs: ( | |
| | __________________________^ | |
| 128 | | [(pytree.SequenceKey(i), x) for i, x in enumerate(xs)], | |
| 129 | | None, | |
| 130 | | ), | |
| | |_____^ | |
| | | |
| ERROR No matching overload found for function `get_proxy_slot` [no-matching-overload] | |
| --> torch/fx/experimental/proxy_tensor.py:309:31 | |
| | | |
| 309 | return bool(get_proxy_slot(obj, tracer, False, lambda _: True)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (obj: Tensor, tracer: PythonKeyTracer | _GraphAppendingTracerEx) -> _ProxyTensor | |
| (obj: Tensor, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U) -> _ProxyTensor | U | |
| (obj: Tensor, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U, transform: (_ProxyTensor) -> R) -> R | U [closest match] | |
| (obj: FakeScriptObject | ScriptObject, tracer: PythonKeyTracer | _GraphAppendingTracerEx) -> Proxy | |
| (obj: FakeScriptObject | ScriptObject, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U) -> Proxy | U | |
| (obj: FakeScriptObject | ScriptObject, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U, transform: (Proxy) -> R) -> R | U | |
| (obj: SymBool | SymFloat | SymInt, tracer: PythonKeyTracer | _GraphAppendingTracerEx) -> Thunk[Proxy] | |
| (obj: SymBool | SymFloat | SymInt, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: T) -> Thunk[Proxy] | T | |
| (obj: SymBool | SymFloat | SymInt, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U, transform: (Thunk[Proxy]) -> R) -> R | U | |
| ERROR `not in` is not supported between `FakeScriptObject` and `_SymNodeDict` [unsupported-operation] | |
| --> torch/fx/experimental/proxy_tensor.py:405:8 | |
| | | |
| 405 | if obj not in tracker: | |
| | ^^^ | |
| | | |
| Argument `FakeScriptObject` is not assignable to parameter `key` with type `SymBool | SymFloat | SymInt` in function `_SymNodeDict.__contains__` | |
| ERROR `not in` is not supported between `ScriptObject` and `_SymNodeDict` [unsupported-operation] | |
| --> torch/fx/experimental/proxy_tensor.py:405:8 | |
| | | |
| 405 | if obj not in tracker: | |
| | ^^^ | |
| | | |
| Argument `ScriptObject` is not assignable to parameter `key` with type `SymBool | SymFloat | SymInt` in function `_SymNodeDict.__contains__` | |
| ERROR `not in` is not supported between `Tensor` and `_SymNodeDict` [unsupported-operation] | |
| --> torch/fx/experimental/proxy_tensor.py:405:8 | |
| | | |
| 405 | if obj not in tracker: | |
| | ^^^ | |
| | | |
| Argument `Tensor` is not assignable to parameter `key` with type `SymBool | SymFloat | SymInt` in function `_SymNodeDict.__contains__` | |
| ERROR Cannot index into `MutableMapping[FakeScriptObject | ScriptObject, Proxy]` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:416:25 | |
| | | |
| 416 | value = tracker[obj] | |
| | ^^^ | |
| | | |
| Argument `FakeScriptObject | ScriptObject | SymBool | SymFloat | SymInt | Tensor` is not assignable to parameter `key` with type `FakeScriptObject | ScriptObject` in function `typing.Mapping.__getitem__` | |
| ERROR Cannot index into `MutableMapping[SymBool | SymFloat | SymInt, Thunk[Proxy]]` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:416:25 | |
| | | |
| 416 | value = tracker[obj] | |
| | ^^^ | |
| | | |
| Argument `FakeScriptObject | ScriptObject | SymBool | SymFloat | SymInt | Tensor` is not assignable to parameter `key` with type `SymBool | SymFloat | SymInt` in function `typing.Mapping.__getitem__` | |
| ERROR Cannot index into `MutableMapping[Tensor, _ProxyTensor]` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:416:25 | |
| | | |
| 416 | value = tracker[obj] | |
| | ^^^ | |
| | | |
| Argument `FakeScriptObject | ScriptObject | SymBool | SymFloat | SymInt | Tensor` is not assignable to parameter `key` with type `Tensor` in function `typing.Mapping.__getitem__` | |
| ERROR Cannot index into `_SymNodeDict` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:416:25 | |
| | | |
| 416 | value = tracker[obj] | |
| | ^^^ | |
| | | |
| Argument `FakeScriptObject | ScriptObject | SymBool | SymFloat | SymInt | Tensor` is not assignable to parameter `key` with type `SymBool | SymFloat | SymInt` in function `_SymNodeDict.__getitem__` | |
| ERROR No matching overload found for function `get_proxy_slot` [no-matching-overload] | |
| --> torch/fx/experimental/proxy_tensor.py:791:26 | |
| | | |
| 791 | return get_proxy_slot(t, tracer, t) | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (obj: Tensor, tracer: PythonKeyTracer | _GraphAppendingTracerEx) -> _ProxyTensor | |
| (obj: Tensor, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U) -> _ProxyTensor | U [closest match] | |
| (obj: Tensor, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U, transform: (_ProxyTensor) -> R) -> R | U | |
| (obj: FakeScriptObject | ScriptObject, tracer: PythonKeyTracer | _GraphAppendingTracerEx) -> Proxy | |
| (obj: FakeScriptObject | ScriptObject, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U) -> Proxy | U | |
| (obj: FakeScriptObject | ScriptObject, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U, transform: (Proxy) -> R) -> R | U | |
| (obj: SymBool | SymFloat | SymInt, tracer: PythonKeyTracer | _GraphAppendingTracerEx) -> Thunk[Proxy] | |
| (obj: SymBool | SymFloat | SymInt, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: T) -> Thunk[Proxy] | T | |
| (obj: SymBool | SymFloat | SymInt, tracer: PythonKeyTracer | _GraphAppendingTracerEx, default: U, transform: (Thunk[Proxy]) -> R) -> R | U | |
| ERROR No matching overload found for function `fetch_object_proxy` [no-matching-overload] | |
| --> torch/fx/experimental/proxy_tensor.py:839:31 | |
| | | |
| 839 | fetch_object_proxy(tracer, x) | |
| | ^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (tracer: PythonKeyTracer | _GraphAppendingTracerEx, t: Tensor) -> Tensor | _ProxyTensor [closest match] | |
| (tracer: PythonKeyTracer | _GraphAppendingTracerEx, t: FakeScriptObject | ScriptObject) -> FakeScriptObject | Proxy | ScriptObject | |
| (tracer: PythonKeyTracer | _GraphAppendingTracerEx, t: SymBool | SymFloat | SymInt) -> SymBool | SymFloat | SymInt | Thunk[Proxy] | |
| ERROR `OpOverload[Ellipsis, Any]` is not assignable to attribute `torch_fn_metadata` with type `None` [bad-assignment] | |
| --> torch/fx/experimental/proxy_tensor.py:1413:41 | |
| | | |
| 1413 | self.tracer.torch_fn_metadata = func | |
| | ^^^^ | |
| | | |
| ERROR Argument `Node | object` is not assignable to parameter `enabled` with type `bool` in function `torch._C._set_grad_enabled` [bad-argument-type] | |
| --> torch/fx/experimental/proxy_tensor.py:1462:22 | |
| | | |
| 1462 | func(*args, **kwargs) | |
| | ^^^^^ | |
| | | |
| ERROR Class member `DecompositionInterpreter.placeholder` overrides parent class `Interpreter` in an inconsistent manner [bad-override] | |
| --> torch/fx/experimental/proxy_tensor.py:1675:9 | |
| | | |
| 1675 | def placeholder( | |
| | ^^^^^^^^^^^ | |
| | | |
| `DecompositionInterpreter.placeholder` has type `BoundMethod[DecompositionInterpreter, (self: DecompositionInterpreter, target: str, args: tuple[object, ...], kwargs: dict[str, object]) -> object]`, which is not assignable to `BoundMethod[DecompositionInterpreter, (self: DecompositionInterpreter, target: ((...) -> Any) | str, args: tuple[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, ...], kwargs: dict[str, Any]) -> Any]`, the type of `Interpreter.placeholder` | |
| ERROR Class member `DecompositionInterpreter.get_attr` overrides parent class `Interpreter` in an inconsistent manner [bad-override] | |
| --> torch/fx/experimental/proxy_tensor.py:1687:9 | |
| | | |
| 1687 | def get_attr( | |
| | ^^^^^^^^ | |
| | | |
| `DecompositionInterpreter.get_attr` has type `BoundMethod[DecompositionInterpreter, (self: DecompositionInterpreter, target: str, args: tuple[object, ...], kwargs: dict[str, object]) -> object]`, which is not assignable to `BoundMethod[DecompositionInterpreter, (self: DecompositionInterpreter, target: ((...) -> Any) | str, args: tuple[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, ...], kwargs: dict[str, Any]) -> Any]`, the type of `Interpreter.get_attr` | |
| ERROR Class member `DecompositionInterpreter.output` overrides parent class `Interpreter` in an inconsistent manner [bad-override] | |
| --> torch/fx/experimental/proxy_tensor.py:1700:9 | |
| | | |
| 1700 | def output( | |
| | ^^^^^^ | |
| | | |
| `DecompositionInterpreter.output` has type `BoundMethod[DecompositionInterpreter, (self: DecompositionInterpreter, target: str, args: tuple[object, ...], kwargs: dict[str, object]) -> object]`, which is not assignable to `BoundMethod[DecompositionInterpreter, (self: DecompositionInterpreter, target: ((...) -> Any) | str, args: tuple[Mapping[str, Unknown] | Node | OpOverload[Ellipsis, Any] | Sequence[Unknown] | SymBool | SymFloat | SymInt | Tensor | bool | complex | device | dtype | float | int | layout | memory_format | range | slice[Any, Any, Any] | str | tuple[Unknown, ...] | None, ...], kwargs: dict[str, Any]) -> Any]`, the type of `Interpreter.output` | |
| ERROR `in` is not supported between `Unknown` and `None` [unsupported-operation] | |
| --> torch/fx/experimental/proxy_tensor.py:1785:16 | |
| | | |
| 1785 | if m in self.submodule_paths: | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `None` is not subscriptable [unsupported-operation] | |
| --> torch/fx/experimental/proxy_tensor.py:1788:21 | |
| | | |
| 1788 | self.submodule_paths[m], | |
| | ^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Cannot set item in `None` [unsupported-operation] | |
| --> torch/fx/experimental/proxy_tensor.py:1793:17 | |
| | | |
| 1793 | self.submodule_paths[m] = name | |
| | ^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Object of class `NoneType` has no attribute `__setitem__` | |
| ERROR No matching overload found for function `type.__new__` [no-matching-overload] | |
| --> torch/fx/experimental/proxy_tensor.py:1818:38 | |
| | | |
| 1818 | self.__class__ = type( | |
| | ______________________________________^ | |
| 1819 | | base.__class__.__name__, | |
| 1820 | | (self.__class__, base.__class__), | |
| 1821 | | {}, | |
| 1822 | | ) | |
| | |_________________^ | |
| | | |
| Possible overloads: | |
| (cls: type[type], o: object, /) -> type [closest match] | |
| (cls: type[Self], name: str, bases: tuple[type, ...], namespace: dict[str, Any], /, **kwds: Any) -> Self | |
| ERROR Cannot index into `WeakKeyDictionary[_AttrProxy, str]` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:1840:63 | |
| | | |
| 1840 | return AttrProxy(attr_val, tracer.proxy_paths[self] + "." + name) | |
| | ^^^^ | |
| | | |
| Argument `Module` is not assignable to parameter `key` with type `_AttrProxy` in function `weakref.WeakKeyDictionary.__getitem__` | |
| ERROR Cannot index into `WeakKeyDictionary[_AttrProxy, str]` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:1852:69 | |
| | | |
| 1852 | return AttrProxy(res, f"{tracer.proxy_paths[self]}.{idx}") | |
| | ^^^^ | |
| | | |
| Argument `Sequential` is not assignable to parameter `key` with type `_AttrProxy` in function `weakref.WeakKeyDictionary.__getitem__` | |
| ERROR Cannot index into `WeakKeyDictionary[_AttrProxy, str]` [index-error] | |
| --> torch/fx/experimental/proxy_tensor.py:1856:69 | |
| | | |
| 1856 | return AttrProxy(res, f"{tracer.proxy_paths[self]}.{idx}") | |
| | ^^^^ | |
| | | |
| Argument `ModuleList` is not assignable to parameter `key` with type `_AttrProxy` in function `weakref.WeakKeyDictionary.__getitem__` | |
| ERROR Argument `SupportsIndex` is not assignable to parameter `factor` with type `int` in function `div_by_factor` [bad-argument-type] | |
| --> torch/fx/experimental/symbolic_shapes.py:843:35 | |
| | | |
| 843 | atoms = [div_by_factor(x, factor) for x in atoms] | |
| | ^^^^^^ | |
| | | |
| ERROR Cannot set item in `dict[Unknown, tuple[KeyEntry, ...]]` [unsupported-operation] | |
| --> torch/fx/experimental/symbolic_shapes.py:1238:23 | |
| | | |
| 1238 | r[unbacked] = path + (DivideByKey(divisor),) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `tuple[*tuple[KeyEntry, ...], DivideByKey]` is not assignable to parameter `value` with type `tuple[KeyEntry, ...]` in function `dict.__setitem__` | |
| ERROR Cannot set item in `dict[Unknown, tuple[KeyEntry, ...]]` [unsupported-operation] | |
| --> torch/fx/experimental/symbolic_shapes.py:1260:20 | |
| | | |
| 1260 | r[s.lhs] = path + (ConvertIntKey(),) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `tuple[*tuple[KeyEntry, ...], ConvertIntKey]` is not assignable to parameter `value` with type `tuple[KeyEntry, ...]` in function `dict.__setitem__` | |
| ERROR `dict[@_, @_]` is not assignable to attribute `inner_contexts` with type `Never` [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:2176:35 | |
| | | |
| 2176 | self.inner_contexts = {} | |
| | ^^ | |
| | | |
| ERROR Object of class `object` has no attribute `args` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2264:55 | |
| | | |
| 2264 | if any(arg is not new_arg for arg, new_arg in zip(expr.args, new_args)): | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `func` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2265:29 | |
| | | |
| 2265 | return _fast_expand(expr.func(*new_args)) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `is_Pow` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2267:8 | |
| | | |
| 2267 | if expr.is_Pow: | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `is_Mul` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2276:10 | |
| | | |
| 2276 | elif expr.is_Mul: | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `args` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2279:20 | |
| | | |
| 2279 | for arg in expr.args: | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `xreplace` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2400:20 | |
| | | |
| 2400 | new_expr = expr.xreplace(new_shape_env) | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `has` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2937:12 | |
| | | |
| 2937 | if expr.has(Mod): | |
| | ^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `replace` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2938:20 | |
| | | |
| 2938 | expr = expr.replace(Mod, mod_handler) | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `has` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2941:12 | |
| | | |
| 2941 | if expr.has(PythonMod): | |
| | ^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `replace` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2942:20 | |
| | | |
| 2942 | expr = expr.replace(PythonMod, mod_handler) | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `has` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2943:12 | |
| | | |
| 2943 | if expr.has(FloorDiv): | |
| | ^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `replace` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:2944:20 | |
| | | |
| 2944 | expr = expr.replace(FloorDiv, floor_div_handler) | |
| | ^^^^^^^^^^^^ | |
| | | |
| ERROR Cannot set item in `dict[int, Unknown]` [unsupported-operation] | |
| --> torch/fx/experimental/symbolic_shapes.py:5061:33 | |
| | | |
| 5061 | self.val_to_var[val] = sympy_expr | |
| | ^^^ | |
| | | |
| Argument `SymInt | float | int` is not assignable to parameter `key` with type `int` in function `dict.__setitem__` | |
| ERROR `list[StatelessSymbolicContext[Ellipsis, Unknown] | None]` is not assignable to variable `input_contexts` with type `list[SymbolicContext] | None` [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:5292:30 | |
| | | |
| 5292 | input_contexts = [ | |
| | ______________________________^ | |
| 5293 | | _create_no_constraints_context(t) if isinstance(t, Tensorlike) else None | |
| 5294 | | for t in placeholders | |
| 5295 | | ] | |
| | |_____________^ | |
| | | |
| ERROR Argument `FakeTensor | FakeTensorMeta` is not assignable to parameter `t` with type `Tensor` in function `_create_no_constraints_context` [bad-argument-type] | |
| --> torch/fx/experimental/symbolic_shapes.py:5293:48 | |
| | | |
| 5293 | _create_no_constraints_context(t) if isinstance(t, Tensorlike) else None | |
| | ^ | |
| | | |
| ERROR `FakeTensor | FakeTensorMeta` is not assignable to `FakeTensor` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:5298:13 | |
| | | |
| 5298 | / for i, (t, context) in enumerate(zip(placeholders, input_contexts)): | |
| 5299 | | if isinstance(t, Tensorlike): | |
| 5300 | | if context is None: | |
| 5301 | | input_contexts[i] = _create_no_constraints_context(t) | |
| 5302 | | else: | |
| 5303 | | assert isinstance(t, (SymInt, int, SymFloat, float)) | |
| | |_________________________________________________________________________^ | |
| | | |
| ERROR Argument `FakeTensor | FakeTensorMeta` is not assignable to parameter `t` with type `Tensor` in function `_create_no_constraints_context` [bad-argument-type] | |
| --> torch/fx/experimental/symbolic_shapes.py:5301:76 | |
| | | |
| 5301 | input_contexts[i] = _create_no_constraints_context(t) | |
| | ^ | |
| | | |
| ERROR No matching overload found for function `zip.__new__` [no-matching-overload] | |
| --> torch/fx/experimental/symbolic_shapes.py:5586:38 | |
| | | |
| 5586 | for t, source, context in zip(placeholders, sources, input_contexts): | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (cls: type[zip[_T_co]], *, strict: bool = ...) -> zip[Any] [closest match] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], /, *, strict: bool = ...) -> zip[tuple[_T1]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2, _T3]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2, _T3, _T4]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2, _T3, _T4, _T5]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[Any], iter2: Iterable[Any], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], /, *iterables: Iterable[Any], *, strict: bool = ...) -> zip[tuple[Any, ...]] | |
| ERROR Object of class `object` has no attribute `size` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5645:44 | |
| | | |
| 5645 | for i, ss in enumerate(curr_t.size()): | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `stride` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5650:44 | |
| | | |
| 5650 | for i, ss in enumerate(curr_t.stride()): | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `storage_offset` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5657:25 | |
| | | |
| 5657 | curr_t.storage_offset(), | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `add_equality` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5702:21 | |
| | | |
| 5702 | self.dim_constraints.add_equality(source, expr) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `add` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5855:13 | |
| | | |
| 5855 | self.dim_constraints.add(expr) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `add` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5871:21 | |
| | | |
| 5871 | self.dim_constraints.add(sympy.Ge(symbol, r.lower)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `add` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:5879:21 | |
| | | |
| 5879 | self.dim_constraints.add(sympy.Le(symbol, r.upper)) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `str` is not assignable to parameter `element` with type `LiteralString` in function `set.add` [bad-argument-type] | |
| --> torch/fx/experimental/symbolic_shapes.py:5947:37 | |
| | | |
| 5947 | debug_names.add(debug_name) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR `set[Unknown]` is not assignable to variable `symints` with type `Sequence[SymInt]` [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:6080:19 | |
| | | |
| 6080 | symints = { | |
| | ___________________^ | |
| 6081 | | s.node.expr for s in symints if isinstance(s.node.expr, sympy.Symbol) | |
| 6082 | | } | |
| | |_________^ | |
| | | |
| ERROR `FakeTensor | SymInt` is not assignable to `FakeTensor` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:6125:9 | |
| | | |
| 6125 | / for t, arg in zip(placeholders, args): | |
| 6126 | | if t is None: | |
| 6127 | | continue | |
| 6128 | | if isinstance(t, SymInt): | |
| 6129 | | bind_symint(arg, t) | |
| 6130 | | continue | |
| | |_________________________^ | |
| | | |
| ERROR Object of class `object` has no attribute `free_symbols` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:6342:18 | |
| | | |
| 6342 | for s in expr.free_symbols: | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `xreplace` [missing-attribute] | |
| --> torch/fx/experimental/symbolic_shapes.py:6351:32 | |
| | | |
| 6351 | return safe_expand(expr.xreplace(replacements)) | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR `int | None` is not assignable to `None` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:7142:9 | |
| | | |
| 7142 | / for i, instr in enumerate(instructions): | |
| 7143 | | if instr.starts_line is not None: | |
| 7144 | | cur = instr.starts_line | |
| 7145 | | if cur != frame.f_lineno: | |
| 7146 | | continue | |
| 7147 | | if start is None: | |
| | |______________________________^ | |
| | | |
| ERROR `SymInt | int` is not assignable to `int` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/fx/experimental/symbolic_shapes.py:8045:21 | |
| | | |
| 8045 | / for i, dim in enumerate(leaf.shape): | |
| 8046 | | if isinstance(dim, torch.SymInt): | |
| 8047 | | src_map[str(dim.node.expr)].append(f"{name}.shape[{i}]") | |
| | |____________________________________________________________________________________^ | |
| | | |
| WARN `halt_ordering` is deprecated [deprecated] | |
| --> torch/fx/experimental/unification/multipledispatch/__init__.py:4:5 | |
| | | |
| 4 | halt_ordering, | |
| | ------------- | |
| | | |
| WARN `restart_ordering` is deprecated [deprecated] | |
| --> torch/fx/experimental/unification/multipledispatch/__init__.py:6:5 | |
| | | |
| 6 | restart_ordering, | |
| | ---------------- | |
| | | |
| ERROR Expected 0 type arguments for `Variadic`, got 1 [bad-specialization] | |
| --> torch/fx/experimental/unification/multipledispatch/dispatcher.py:241:38 | |
| | | |
| 241 | new_signature.append(Variadic[typ[0]]) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Type `SupportsNext[Unknown]` is not iterable [not-iterable] | |
| --> torch/fx/experimental/unification/unification_tools.py:301:16 | |
| | | |
| 301 | for key in ks: | |
| | ^^ | |
| | | |
| ERROR Object of class `FunctionType` has no attribute `split` [missing-attribute] | |
| --> torch/fx/graph.py:1839:36 | |
| | | |
| 1839 | target_atoms = node.target.split(".") | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `type[Tracer]` is not assignable to attribute `_tracer_cls` with type `None` [bad-assignment] | |
| --> torch/fx/graph_module.py:536:32 | |
| | | |
| 536 | self._tracer_cls = self.graph._tracer_cls | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Type variable bounds and constraints must be concrete [invalid-annotation] | |
| --> torch/fx/node.py:62:40 | |
| | | |
| 62 | ArgumentT = TypeVar("ArgumentT", bound=Argument) | |
| | ^^^^^^^^ | |
| | | |
| ERROR `Iterable[Unknown] | list[Parameter]` is not assignable to `list[Parameter]` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/fx/operator_schemas.py:123:13 | |
| | | |
| 123 | / for idx, p in enumerate(parameters): | |
| 124 | | assert p.kind == Parameter.POSITIONAL_OR_KEYWORD | |
| 125 | | parameters[idx] = Parameter( | |
| 126 | | name=p.name, | |
| 127 | | kind=Parameter.POSITIONAL_ONLY, | |
| 128 | | default=p.default, | |
| | |_______________________________________^ | |
| | | |
| ERROR Object of class `Iterable` has no attribute `append` [missing-attribute] | |
| --> torch/fx/operator_schemas.py:131:9 | |
| | | |
| 131 | parameters.append( | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Iterable[Unknown] | list[Parameter]` is not assignable to parameter `parameters` with type `Sequence[Parameter] | None` in function `inspect.Signature.__init__` [bad-argument-type] | |
| --> torch/fx/operator_schemas.py:144:30 | |
| | | |
| 144 | return inspect.Signature(parameters, return_annotation=return_type) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR `c` may be uninitialized [unbound-name] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:167:56 | |
| | | |
| 167 | torch.ops.aten.scalar_tensor.default, (c,), {"dtype": dtype} | |
| | ^ | |
| | | |
| ERROR `c` may be uninitialized [unbound-name] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:170:73 | |
| | | |
| 170 | node.meta["val"] = torch.ops.aten.scalar_tensor.default(c, dtype=dtype) | |
| | ^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `node` with type `Node` in function `torch.fx.passes.runtime_assert._get_sym_val` [bad-argument-type] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:222:44 | |
| | | |
| 222 | elif (sym_expr := _get_sym_val(node)) is not None: | |
| | ^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `node` with type `Node` in function `torch.fx.proxy.MetaProxy.__init__` [bad-argument-type] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:227:25 | |
| | | |
| 227 | node, tracer=tracer, fake_mode=fake_mode | |
| | ^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `meta` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:233:19 | |
| | | |
| 233 | val = node.meta.get("val") | |
| | ^^^^^^^^^ | |
| | | |
| ERROR `SymInt | int` is not assignable to `int` (caused by inconsistent types when breaking cycles) [bad-assignment] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:235:17 | |
| | | |
| 235 | / for dim in val.shape: | |
| 236 | | if isinstance(dim, torch.SymInt): | |
| 237 | | for s in dim.node.expr.free_symbols: | |
| 238 | | name = str(s) | |
| 239 | | if symbol_is_type( | |
| 240 | | s, SymT.FLOAT | |
| | |______________________________________________^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `op` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:251:16 | |
| | | |
| 251 | if node.op == "call_function" and ( | |
| | ^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `target` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:252:53 | |
| | | |
| 252 | replacement_op := SUPPORTED_OPS.get(node.target) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `meta` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:256:55 | |
| | | |
| 256 | compute_dtype = get_computation_dtype(node.meta["val"].dtype) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `args` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:258:26 | |
| | | |
| 258 | for a in node.args: | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `meta` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:294:41 | |
| | | |
| 294 | if compute_dtype != node.meta["val"].dtype: | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `replace_all_uses_with` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:302:21 | |
| | | |
| 302 | node.replace_all_uses_with(replacement_proxy.node) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `to_erase` with type `Node` in function `torch.fx.graph.Graph.erase_node` [bad-argument-type] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:303:38 | |
| | | |
| 303 | graph.erase_node(node) | |
| | ^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `args` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:311:26 | |
| | | |
| 311 | for a in node.args: | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `target` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:317:57 | |
| | | |
| 317 | failed_tensorify_ops.update(str(node.target)) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `target` [missing-attribute] | |
| --> torch/fx/passes/_tensorify_python_scalars.py:318:64 | |
| | | |
| 318 | log.info("Failed to tensorify %s", str(node.target)) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `add_node` [missing-attribute] | |
| --> torch/fx/passes/graph_drawer.py:440:17 | |
| | | |
| 440 | current_graph.add_node(dot_node) | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Iterator[tuple[str, Tensor]]` is not assignable to parameter `*iterables` with type `Iterable[tuple[str, Parameter]]` in function `itertools.chain.__new__` [bad-argument-type] | |
| --> torch/fx/passes/graph_drawer.py:444:57 | |
| | | |
| 444 | leaf_module.named_parameters(), leaf_module.named_buffers() | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Invalid expression form for base class: `namedtuple("PassResult", ["graph_module", "modified"])` [invalid-inheritance] | |
| --> torch/fx/passes/infra/pass_base.py:14:18 | |
| | | |
| 14 | class PassResult(namedtuple("PassResult", ["graph_module", "modified"])): | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Returned type `None` is not assignable to declared return type `(...) -> Unknown` [bad-return] | |
| --> torch/fx/passes/infra/pass_manager.py:34:16 | |
| | | |
| 34 | return None | |
| | ^^^^ | |
| | | |
| ERROR Expected a callable, got `object` [not-callable] | |
| --> torch/fx/passes/infra/pass_manager.py:276:27 | |
| | | |
| 276 | res = fn(module) | |
| | ^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `free_symbols` [missing-attribute] | |
| --> torch/fx/passes/runtime_assert.py:361:35 | |
| | | |
| 361 | for symbol in sym_expr.free_symbols: | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `keys` [missing-attribute] | |
| --> torch/fx/passes/runtime_assert.py:376:32 | |
| | | |
| 376 | for key in resolved_unbacked_bindings.keys(): | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `dict[Node, list[int]]` is not assignable to variable `autocast_regions` with type `OrderedDict[Node, set[int]]` [bad-assignment] | |
| --> torch/fx/passes/split_module.py:353:24 | |
| | | |
| 353 | autocast_regions = {k: sorted(v) for k, v in autocast_regions.items()} | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `dict[Node, list[int]]` is not assignable to variable `grad_regions` with type `OrderedDict[Node, set[int]]` [bad-assignment] | |
| --> torch/fx/passes/split_module.py:354:20 | |
| | | |
| 354 | grad_regions = {k: sorted(v) for k, v in grad_regions.items()} | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Cannot index into `set[int]` [index-error] | |
| --> torch/fx/passes/split_module.py:418:28 | |
| | | |
| 418 | partitions[str(regions[0])].environment[node] = node | |
| | ^^^^^^^^^^ | |
| | | |
| Object of class `set` has no attribute `__getitem__` | |
| ERROR Cannot index into `set[int]` [index-error] | |
| --> torch/fx/passes/split_module.py:419:22 | |
| | | |
| 419 | for r in regions[1:]: | |
| | ^^^^^^^^^^^ | |
| | | |
| Object of class `set` has no attribute `__getitem__` | |
| ERROR Cannot index into `set[int]` [index-error] | |
| --> torch/fx/passes/split_module.py:518:22 | |
| | | |
| 518 | for r in regions[:-1]: | |
| | ^^^^^^^^^^^^ | |
| | | |
| Object of class `set` has no attribute `__getitem__` | |
| ERROR Object of class `object` has no attribute `add_module` [missing-attribute] | |
| --> torch/fx/passes/utils/common.py:67:17 | |
| | | |
| 67 | curr.add_module(name, HolderModule({})) | |
| | ^^^^^^^^^^^^^^^ | |
| | | |
| WARN `select_model_mode_for_export` is deprecated [deprecated] | |
| --> torch/onnx/__init__.py:40:5 | |
| | | |
| 40 | select_model_mode_for_export, | |
| | ---------------------------- | |
| | | |
| ERROR Cannot index into `defaultdict[list[Unknown], list[Unknown]]` [index-error] | |
| --> torch/onnx/_internal/exporter/_analysis.py:125:29 | |
| | | |
| 125 | target_to_nodes[str(node.target)].append(node) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `str` is not assignable to parameter `key` with type `list[Unknown]` in function `dict.__getitem__` | |
| ERROR `tuple[float | int, Literal[0] | float]` is not assignable to variable `arg` with type `bool | float | int | list[bool] | list[float] | list[int] | str | tuple[bool] | tuple[float] | tuple[int]` [bad-assignment] | |
| --> torch/onnx/_internal/exporter/_building.py:270:15 | |
| | | |
| 270 | arg = (arg.real, arg.imag) | |
| | ^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR `(obj: object, class_or_tuple: UnionType | type | tuple[Unknown, ...], /) -> bool` is not assignable to attribute `isinstance` with type `(obj: Unknown, target_type: Unknown) -> Unknown` [bad-assignment] | |
| --> torch/onnx/_internal/exporter/_capture_strategies.py:50:28 | |
| | | |
| 50 | torch.jit.isinstance = isinstance | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `TorchTensor` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_core.py:135:12 | |
| | | |
| 135 | if self.dtype == ir.DataType.BFLOAT16: | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `numpy` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_core.py:137:68 | |
| | | |
| 137 | self.raw.view(torch.uint16).numpy(force=True).view(self.dtype.numpy()) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `numpy` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_core.py:145:70 | |
| | | |
| 145 | return self.raw.view(torch.uint8).numpy(force=True).view(self.dtype.numpy()) | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `numpy` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_core.py:148:17 | |
| | | |
| 148 | self.dtype.numpy() | |
| | ^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `TorchTensor` has no attribute `name` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_core.py:171:66 | |
| | | |
| 171 | f"Cannot take content out from the FakeTensor ('{self.name}'). Please replace the tensor " | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `str` is not assignable to parameter `object` with type `int` in function `list.append` [bad-argument-type] | |
| --> torch/onnx/_internal/exporter/_core.py:241:29 | |
| | | |
| 241 | dims.append(str(dim.node)) | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Iterator[tuple[str, Tensor]]` is not assignable to parameter `*iterables` with type `Iterable[tuple[str, Parameter]]` in function `itertools.chain.__new__` [bad-argument-type] | |
| --> torch/onnx/_internal/exporter/_core.py:1215:9 | |
| | | |
| 1215 | exported_program.named_buffers(), | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Unpacked argument `tuple[object, ...]` is not assignable to varargs type `tuple[*_Ts]` [bad-argument-type] | |
| --> torch/onnx/_internal/exporter/_isolated.py:29:20 | |
| | | |
| 29 | return func(*args, **kwargs) | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `dict.get` [no-matching-overload] | |
| --> torch/onnx/_internal/exporter/_onnx_program.py:160:34 | |
| | | |
| 160 | dtype = dtype_mapping.get(type(input), None) | |
| | ^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (key: type[float] | type[int], default: None = None, /) -> TypeAlias[float32, type[floating[_32Bit]]] | type[signedinteger[_64Bit]] | None [closest match] | |
| (key: type[float] | type[int], default: TypeAlias[float32, type[floating[_32Bit]]] | type[signedinteger[_64Bit]], /) -> TypeAlias[float32, type[floating[_32Bit]]] | type[signedinteger[_64Bit]] | |
| (key: type[float] | type[int], default: _T, /) -> _T | TypeAlias[float32, type[floating[_32Bit]]] | type[signedinteger[_64Bit]] | |
| ERROR Object of class `NoneType` has no attribute `run_with_ort_values` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_onnx_program.py:255:19 | |
| | | |
| 255 | outputs = self._inference_session.run_with_ort_values( | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `FunctionType` has no attribute `function_ir` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_registration.py:67:25 | |
| | | |
| 67 | self.onnx_function.function_ir.domain, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `FunctionType` has no attribute `name` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_registration.py:68:25 | |
| | | |
| 68 | self.onnx_function.name, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `FunctionType` has no attribute `opset` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_registration.py:69:39 | |
| | | |
| 69 | opset_version=self.onnx_function.opset.version, | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Cannot index into `dict[str, TypeConstraintParam]` [index-error] | |
| --> torch/onnx/_internal/exporter/_schemas.py:544:56 | |
| | | |
| 544 | type_constraint = type_constraints[return_param_name] | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| Argument `str | None` is not assignable to parameter `key` with type `str` in function `dict.__getitem__` | |
| ERROR Argument `str | None` is not assignable to parameter `name` with type `str` in function `Parameter.__init__` [bad-argument-type] | |
| --> torch/onnx/_internal/exporter/_schemas.py:556:30 | |
| | | |
| 556 | name=return_param_name, | |
| | ^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SymbolicTensor` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_tensors.py:33:12 | |
| | | |
| 33 | if self.shape is None: | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Argument `object` is not assignable to parameter `obj` with type `Sized` in function `len` [bad-argument-type] | |
| --> torch/onnx/_internal/exporter/_tensors.py:35:20 | |
| | | |
| 35 | return len(self.shape) | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `SymbolicTensor` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_tensors.py:40:12 | |
| | | |
| 40 | if self.dtype in { | |
| | ^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:53:69 | |
| | | |
| 53 | weight = op21.ConstantOfShape(c, value=ir.tensor(1.0, dtype=input.dtype)) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:55:67 | |
| | | |
| 55 | bias = op21.ConstantOfShape(c, value=ir.tensor(0.0, dtype=input.dtype)) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:83:59 | |
| | | |
| 83 | weight = op23.Constant(value=ir.tensor(1.0, dtype=input.dtype)) | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:131:16 | |
| | | |
| 131 | assert len(query.shape) == 4 and len(key.shape) == 4 and len(value.shape) == 4, ( | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:131:42 | |
| | | |
| 131 | assert len(query.shape) == 4 and len(key.shape) == 4 and len(value.shape) == 4, ( | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:131:66 | |
| | | |
| 131 | assert len(query.shape) == 4 and len(key.shape) == 4 and len(value.shape) == 4, ( | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:139:17 | |
| | | |
| 139 | query.shape[1] > key.shape[1] == value.shape[1] | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:139:34 | |
| | | |
| 139 | query.shape[1] > key.shape[1] == value.shape[1] | |
| | ^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:139:50 | |
| | | |
| 139 | query.shape[1] > key.shape[1] == value.shape[1] | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:140:21 | |
| | | |
| 140 | and query.shape[1] % key.shape[1] == 0 | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:140:38 | |
| | | |
| 140 | and query.shape[1] % key.shape[1] == 0 | |
| | ^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:145:20 | |
| | | |
| 145 | assert query.shape[1] == key.shape[1] == value.shape[1], ( | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:145:38 | |
| | | |
| 145 | assert query.shape[1] == key.shape[1] == value.shape[1], ( | |
| | ^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Cannot index into `object` [index-error] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:145:54 | |
| | | |
| 145 | assert query.shape[1] == key.shape[1] == value.shape[1], ( | |
| | ^^^^^^^^^^^^^^ | |
| | | |
| Object of class `object` has no attribute `__getitem__` | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:205:9 | |
| | | |
| 205 | query.shape[1] > key.shape[1] == value.shape[1] | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:205:26 | |
| | | |
| 205 | query.shape[1] > key.shape[1] == value.shape[1] | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:205:42 | |
| | | |
| 205 | query.shape[1] > key.shape[1] == value.shape[1] | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:206:13 | |
| | | |
| 206 | and query.shape[1] % key.shape[1] == 0 | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `object` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/exporter/_torchlib/ops/nn.py:206:30 | |
| | | |
| 206 | and query.shape[1] % key.shape[1] == 0 | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Cannot index into `dict[dtype, JitScalarType]` [index-error] | |
| --> torch/onnx/_internal/torchscript_exporter/_type_utils.py:156:38 | |
| | | |
| 156 | return _DTYPE_TO_SCALAR_TYPE[dtype] | |
| | ^^^^^ | |
| | | |
| Argument `dtype | None` is not assignable to parameter `key` with type `dtype` in function `dict.__getitem__` | |
| ERROR No matching overload found for function `zip.__new__` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_helper.py:367:51 | |
| | | |
| 367 | for arg, arg_desc, arg_name in zip(args, arg_descriptors, arg_names) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (cls: type[zip[_T_co]], *, strict: bool = ...) -> zip[Any] [closest match] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], /, *, strict: bool = ...) -> zip[tuple[_T1]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2, _T3]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2, _T3, _T4]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[_T1], iter2: Iterable[_T2], iter3: Iterable[_T3], iter4: Iterable[_T4], iter5: Iterable[_T5], /, *, strict: bool = ...) -> zip[tuple[_T1, _T2, _T3, _T4, _T5]] | |
| (cls: type[zip[_T_co]], iter1: Iterable[Any], iter2: Iterable[Any], iter3: Iterable[Any], iter4: Iterable[Any], iter5: Iterable[Any], iter6: Iterable[Any], /, *iterables: Iterable[Any], *, strict: bool = ...) -> zip[tuple[Any, ...]] | |
| ERROR Object of class `NoneType` has no attribute `isCompleteTensor` | |
| Object of class `Tensor` has no attribute `isCompleteTensor` [missing-attribute] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_helper.py:1803:16 | |
| | | |
| 1803 | if input.isCompleteTensor(): | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Tensor | Value | None` is not assignable to parameter `value` with type `Value` in function `torch.onnx.errors.SymbolicValueError.__init__` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_helper.py:1809:25 | |
| | | |
| 1809 | input, | |
| | ^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `isCompleteTensor` | |
| Object of class `Tensor` has no attribute `isCompleteTensor` [missing-attribute] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_helper.py:1812:16 | |
| | | |
| 1812 | if input.isCompleteTensor() and not _is_fp(input): | |
| | ^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Tensor | Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_helper.py:1815:21 | |
| | | |
| 1815 | input, | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Tensor | Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_helper.py:1819:26 | |
| | | |
| 1819 | self = g.op(op_name, *inputs, **kwargs) | |
| | ^^^^^^^ | |
| | | |
| ERROR Returned type `tuple[Sequence[int] | list[int], Sequence[int] | list[int], Sequence[int] | int | list[int], Sequence[int] | list[int]]` is not assignable to declared return type `tuple[Sequence[int], Sequence[int], Sequence[int], Sequence[int]]` [bad-return] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset10.py:208:12 | |
| | | |
| 208 | return (kernel_shape, strides, pads, dilation) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Returned type `tuple[Sequence[int] | list[int], Sequence[int] | list[int], int | list[int]]` is not assignable to declared return type `tuple[Sequence[int], Sequence[int], Sequence[int]]` [bad-return] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset10.py:384:12 | |
| | | |
| 384 | return (kernel_shape, strides, pads) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `NoneType` has no attribute `float` [missing-attribute] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset10.py:712:13 | |
| | | |
| 712 | scale = scale.float().data # Avoid exporter generating double type | |
| | ^^^^^^^^^^^ | |
| | | |
| ERROR `list[Value] | list[Unknown]` is not subscriptable [unsupported-operation] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:222:54 | |
| | | |
| 222 | indices_list[idx_] = g.op("NonZero", indices_list[idx_]) | |
| | ^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:822:45 | |
| | | |
| 822 | return g.op("Range", start_default, end, delta_default) | |
| | ^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:833:30 | |
| | | |
| 833 | return g.op("Range", start, end, step) | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:833:37 | |
| | | |
| 833 | return g.op("Range", start, end, step) | |
| | ^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:833:42 | |
| | | |
| 833 | return g.op("Range", start, end, step) | |
| | ^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:844:30 | |
| | | |
| 844 | return g.op("Range", start, end, delta_default) | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset11.py:844:37 | |
| | | |
| 844 | return g.op("Range", start, end, delta_default) | |
| | ^^^ | |
| | | |
| ERROR Argument `Literal[TensorProtoDataType.BOOL]` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset12.py:366:37 | |
| | | |
| 366 | "Cast", loop_condition, _C_onnx.TensorProtoDataType.BOOL | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `outputs` with type `int` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset13.py:99:77 | |
| | | |
| 99 | return g.op("Split", self, split_size_or_sizes, axis_i=dim, outputs=_outputs) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `outputs` with type `int` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset13.py:115:60 | |
| | | |
| 115 | return g.op("Split", self, splits, axis_i=dim, outputs=_outputs) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `outputs` with type `int` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset13.py:189:64 | |
| | | |
| 189 | return g.op("Split", self, splits, axis_i=dim, outputs=_outputs) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset13.py:314:43 | |
| | | |
| 314 | return g.op("Where", condition, self, other) | |
| | ^^^^^ | |
| | | |
| ERROR No matching overload found for function `range.__new__` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset14.py:170:37 | |
| | | |
| 170 | key_transposed_axes = list(range(key_shape_builtin)) | |
| | ^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (cls: type[range], stop: SupportsIndex, /) -> range [closest match] | |
| (cls: type[range], start: SupportsIndex, stop: SupportsIndex, step: SupportsIndex = ..., /) -> range | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset14.py:179:52 | |
| | | |
| 179 | query_scaled = g.op("Mul", query, g.op("Sqrt", scale)) | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset14.py:180:70 | |
| | | |
| 180 | key_transposed_scaled = g.op("Mul", key_transposed, g.op("Sqrt", scale)) | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset14.py:193:35 | |
| | | |
| 193 | attn_mask = g.op("Where", attn_mask, const_zero, const_neg_inf) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset14.py:206:42 | |
| | | |
| 206 | mul_qk_add = g.op("Add", mul_qk, attn_mask) | |
| | ^^^^^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `x` with type `Value` in function `torch.onnx._internal.torchscript_exporter.symbolic_helper._get_tensor_dim_size` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset17.py:179:50 | |
| | | |
| 179 | n_win = symbolic_helper._get_tensor_dim_size(window, dim=0) | |
| | ^^^^^^ | |
| | | |
| ERROR Argument `Value | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset17.py:192:47 | |
| | | |
| 192 | window = g.op("Concat", left_win, window, right_win, axis_i=0) | |
| | ^^^^^^ | |
| | | |
| ERROR Argument `Value | Unknown | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset17.py:215:17 | |
| | | |
| 215 | "Cast", window, to_i=_type_utils.JitScalarType.from_value(signal).onnx_type() | |
| | ^^^^^^ | |
| | | |
| ERROR No matching overload found for function `max` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset18.py:154:15 | |
| | | |
| 154 | return max(g, input, dim_or_y=other) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (arg1: SupportsRichComparisonT, arg2: SupportsRichComparisonT, /, *_args: SupportsRichComparisonT, *, key: None = None) -> SupportsRichComparisonT [closest match] | |
| (arg1: _T, arg2: _T, /, *_args: _T, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None) -> SupportsRichComparisonT | |
| (iterable: Iterable[_T], /, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None, default: _T) -> SupportsRichComparisonT | _T | |
| (iterable: Iterable[_T1], /, *, key: (_T1) -> SupportsDunderGT[Any] | SupportsDunderLT[Any], default: _T2) -> _T1 | _T2 | |
| ERROR No matching overload found for function `min` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset18.py:166:15 | |
| | | |
| 166 | return min(g, input, dim_or_y=other) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (arg1: SupportsRichComparisonT, arg2: SupportsRichComparisonT, /, *_args: SupportsRichComparisonT, *, key: None = None) -> SupportsRichComparisonT [closest match] | |
| (arg1: _T, arg2: _T, /, *_args: _T, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None) -> SupportsRichComparisonT | |
| (iterable: Iterable[_T], /, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None, default: _T) -> SupportsRichComparisonT | _T | |
| (iterable: Iterable[_T1], /, *, key: (_T1) -> SupportsDunderGT[Any] | SupportsDunderLT[Any], default: _T2) -> _T1 | _T2 | |
| ERROR Argument `Unknown | None` is not assignable to parameter `outputs` with type `int` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:1054:68 | |
| | | |
| 1054 | return g.op("Split", self, split_i=splits, axis_i=dim, outputs=_outputs) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `outputs` with type `int` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:1071:73 | |
| | | |
| 1071 | return g.op("Split", self, split_i=split_sizes, axis_i=dim, outputs=_outputs) | |
| | ^^^^^^^^ | |
| | | |
| ERROR Expected a callable, got `None` [not-callable] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:1708:20 | |
| | | |
| 1708 | return fn(g, input, k, k, (0,) * len(dim), (1,) * len(dim), False) | |
| | ^^ | |
| | | |
| ERROR Argument `int | None` is not assignable to parameter `dim` with type `int` in function `_prepare_onnx_paddings` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:1762:39 | |
| | | |
| 1762 | paddings = _prepare_onnx_paddings(symbolic_helper._get_tensor_rank(input), padding) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `int | None` is not assignable to parameter `dim` with type `int` in function `_prepare_onnx_paddings` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:1815:39 | |
| | | |
| 1815 | paddings = _prepare_onnx_paddings(symbolic_helper._get_tensor_rank(input), padding) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `int | None` is not assignable to parameter `dim` with type `int` in function `_prepare_onnx_paddings` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:1827:39 | |
| | | |
| 1827 | paddings = _prepare_onnx_paddings(symbolic_helper._get_tensor_rank(input), padding) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:2207:43 | |
| | | |
| 2207 | return g.op("Where", condition, self, other) | |
| | ^^^^^ | |
| | | |
| ERROR Unpacked keyword argument `str | Unknown` is not assignable to parameter `outputs` with type `int` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:2382:29 | |
| | | |
| 2382 | n = g.op("Conv", *args, **kwargs) | |
| | ^^^^^^^^ | |
| | | |
| ERROR No matching overload found for function `pow` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:2726:42 | |
| | | |
| 2726 | variance = g.op("ReduceMean", pow(g, numerator, two_cst), axes_i=axes) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (base: int, exp: int, mod: int) -> int [closest match] | |
| (base: int, exp: Literal[0], mod: None = None) -> Literal[1] | |
| (base: int, exp: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], mod: None = None) -> int | |
| (base: int, exp: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], mod: None = None) -> float | |
| (base: int, exp: int, mod: None = None) -> Any | |
| (base: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], exp: float, mod: None = None) -> float | |
| (base: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], exp: float, mod: None = None) -> complex | |
| (base: float, exp: int, mod: None = None) -> float | |
| (base: float, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> Any | |
| (base: complex, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> complex | |
| (base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: float, mod: None = None) -> Any | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: complex, mod: None = None) -> complex | |
| ERROR No matching overload found for function `pow` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:2730:16 | |
| | | |
| 2730 | pow(g, numerator, two_cst), | |
| | ^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (base: int, exp: int, mod: int) -> int [closest match] | |
| (base: int, exp: Literal[0], mod: None = None) -> Literal[1] | |
| (base: int, exp: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], mod: None = None) -> int | |
| (base: int, exp: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], mod: None = None) -> float | |
| (base: int, exp: int, mod: None = None) -> Any | |
| (base: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], exp: float, mod: None = None) -> float | |
| (base: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], exp: float, mod: None = None) -> complex | |
| (base: float, exp: int, mod: None = None) -> float | |
| (base: float, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> Any | |
| (base: complex, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> complex | |
| (base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: float, mod: None = None) -> Any | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: complex, mod: None = None) -> complex | |
| ERROR No matching overload found for function `pow` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:3068:12 | |
| | | |
| 3068 | pow(g, sub(g, input1, input2), p), | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (base: int, exp: int, mod: int) -> int [closest match] | |
| (base: int, exp: Literal[0], mod: None = None) -> Literal[1] | |
| (base: int, exp: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], mod: None = None) -> int | |
| (base: int, exp: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], mod: None = None) -> float | |
| (base: int, exp: int, mod: None = None) -> Any | |
| (base: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], exp: float, mod: None = None) -> float | |
| (base: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], exp: float, mod: None = None) -> complex | |
| (base: float, exp: int, mod: None = None) -> float | |
| (base: float, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> Any | |
| (base: complex, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> complex | |
| (base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: float, mod: None = None) -> Any | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: complex, mod: None = None) -> complex | |
| ERROR No matching overload found for function `pow` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:3072:15 | |
| | | |
| 3072 | return pow(g, summation, inv_p) | |
| | ^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (base: int, exp: int, mod: int) -> int [closest match] | |
| (base: int, exp: Literal[0], mod: None = None) -> Literal[1] | |
| (base: int, exp: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], mod: None = None) -> int | |
| (base: int, exp: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], mod: None = None) -> float | |
| (base: int, exp: int, mod: None = None) -> Any | |
| (base: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], exp: float, mod: None = None) -> float | |
| (base: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], exp: float, mod: None = None) -> complex | |
| (base: float, exp: int, mod: None = None) -> float | |
| (base: float, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> Any | |
| (base: complex, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> complex | |
| (base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: float, mod: None = None) -> Any | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: complex, mod: None = None) -> complex | |
| ERROR No matching overload found for function `max` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:3181:15 | |
| | | |
| 3181 | return max(g, input, dim_or_y=other) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (arg1: SupportsRichComparisonT, arg2: SupportsRichComparisonT, /, *_args: SupportsRichComparisonT, *, key: None = None) -> SupportsRichComparisonT [closest match] | |
| (arg1: _T, arg2: _T, /, *_args: _T, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None) -> SupportsRichComparisonT | |
| (iterable: Iterable[_T], /, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None, default: _T) -> SupportsRichComparisonT | _T | |
| (iterable: Iterable[_T1], /, *, key: (_T1) -> SupportsDunderGT[Any] | SupportsDunderLT[Any], default: _T2) -> _T1 | _T2 | |
| ERROR No matching overload found for function `min` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:3193:15 | |
| | | |
| 3193 | return min(g, input, dim_or_y=other) | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (arg1: SupportsRichComparisonT, arg2: SupportsRichComparisonT, /, *_args: SupportsRichComparisonT, *, key: None = None) -> SupportsRichComparisonT [closest match] | |
| (arg1: _T, arg2: _T, /, *_args: _T, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None) -> SupportsRichComparisonT | |
| (iterable: Iterable[_T], /, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None, default: _T) -> SupportsRichComparisonT | _T | |
| (iterable: Iterable[_T1], /, *, key: (_T1) -> SupportsDunderGT[Any] | SupportsDunderLT[Any], default: _T2) -> _T1 | _T2 | |
| ERROR Argument `Unknown | None` is not assignable to parameter `value` with type `int` in function `enum.IntEnum.__new__` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:3489:49 | |
| | | |
| 3489 | scalar_type = _type_utils.JitScalarType(dtype) | |
| | ^^^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `value` with type `int` in function `enum.IntEnum.__new__` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:3548:49 | |
| | | |
| 3548 | scalar_type = _type_utils.JitScalarType(dtype) | |
| | ^^^^^ | |
| | | |
| ERROR No matching overload found for function `max` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:5537:35 | |
| | | |
| 5537 | result, _indices = max( | |
| | ___________________________________^ | |
| 5538 | | g, | |
| 5539 | | sum, | |
| 5540 | | dim_or_y=g.op("Constant", value_t=torch.LongTensor([dim[1]])), | |
| 5541 | | keepdim=keepdim, | |
| 5542 | | ) | |
| | |_____________^ | |
| | | |
| Possible overloads: | |
| (arg1: SupportsRichComparisonT, arg2: SupportsRichComparisonT, /, *_args: SupportsRichComparisonT, *, key: None = None) -> SupportsRichComparisonT [closest match] | |
| (arg1: _T, arg2: _T, /, *_args: _T, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None) -> SupportsRichComparisonT | |
| (iterable: Iterable[_T], /, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None, default: _T) -> SupportsRichComparisonT | _T | |
| (iterable: Iterable[_T1], /, *, key: (_T1) -> SupportsDunderGT[Any] | SupportsDunderLT[Any], default: _T2) -> _T1 | _T2 | |
| ERROR No matching overload found for function `min` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:5544:35 | |
| | | |
| 5544 | result, _indices = min( | |
| | ___________________________________^ | |
| 5545 | | g, | |
| 5546 | | sum, | |
| 5547 | | dim_or_y=g.op("Constant", value_t=torch.LongTensor([dim[1]])), | |
| 5548 | | keepdim=keepdim, | |
| 5549 | | ) | |
| | |_____________^ | |
| | | |
| Possible overloads: | |
| (arg1: SupportsRichComparisonT, arg2: SupportsRichComparisonT, /, *_args: SupportsRichComparisonT, *, key: None = None) -> SupportsRichComparisonT [closest match] | |
| (arg1: _T, arg2: _T, /, *_args: _T, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None) -> SupportsRichComparisonT | |
| (iterable: Iterable[_T], /, *, key: (_T) -> SupportsDunderGT[Any] | SupportsDunderLT[Any]) -> _T | |
| (iterable: Iterable[SupportsRichComparisonT], /, *, key: None = None, default: _T) -> SupportsRichComparisonT | _T | |
| (iterable: Iterable[_T1], /, *, key: (_T1) -> SupportsDunderGT[Any] | SupportsDunderLT[Any], default: _T2) -> _T1 | _T2 | |
| ERROR Argument `Unknown | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:5907:31 | |
| | | |
| 5907 | ind = g.op("Add", ind, g.op("Constant", torch.tensor([offset]))) | |
| | ^^^ | |
| | | |
| ERROR Argument `Unknown | None` is not assignable to parameter `*raw_args` with type `Tensor | Value` in function `torch.onnx._internal.torchscript_exporter.jit_utils.GraphContext.op` [bad-argument-type] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:5908:40 | |
| | | |
| 5908 | return g.op("Gather", self_1d, ind) | |
| | ^^^ | |
| | | |
| ERROR No matching overload found for function `pow` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:6190:12 | |
| | | |
| 6190 | pow(g, x1, symbolic_helper._generate_wrapped_number(g, 2.0)), | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (base: int, exp: int, mod: int) -> int [closest match] | |
| (base: int, exp: Literal[0], mod: None = None) -> Literal[1] | |
| (base: int, exp: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], mod: None = None) -> int | |
| (base: int, exp: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], mod: None = None) -> float | |
| (base: int, exp: int, mod: None = None) -> Any | |
| (base: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], exp: float, mod: None = None) -> float | |
| (base: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], exp: float, mod: None = None) -> complex | |
| (base: float, exp: int, mod: None = None) -> float | |
| (base: float, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> Any | |
| (base: complex, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> complex | |
| (base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: float, mod: None = None) -> Any | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: complex, mod: None = None) -> complex | |
| ERROR No matching overload found for function `pow` [no-matching-overload] | |
| --> torch/onnx/_internal/torchscript_exporter/symbolic_opset9.py:6197:12 | |
| | | |
| 6197 | pow(g, x2, symbolic_helper._generate_wrapped_number(g, 2.0)), | |
| | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | |
| | | |
| Possible overloads: | |
| (base: int, exp: int, mod: int) -> int [closest match] | |
| (base: int, exp: Literal[0], mod: None = None) -> Literal[1] | |
| (base: int, exp: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], mod: None = None) -> int | |
| (base: int, exp: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], mod: None = None) -> float | |
| (base: int, exp: int, mod: None = None) -> Any | |
| (base: Literal[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], exp: float, mod: None = None) -> float | |
| (base: Literal[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1], exp: float, mod: None = None) -> complex | |
| (base: float, exp: int, mod: None = None) -> float | |
| (base: float, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> Any | |
| (base: complex, exp: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any] | complex, mod: None = None) -> complex | |
| (base: _SupportsPow2[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3NoneOnly[_E_contra, _T_co], exp: _E_contra, mod: None = None) -> _T_co | |
| (base: _SupportsPow3[_E_contra, _M_contra, _T_co], exp: _E_contra, mod: _M_contra) -> _T_co | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: float, mod: None = None) -> Any | |
| (base: _SupportsPow2[Any, Any] | _SupportsPow3[Any, Any, Any] | _SupportsPow3NoneOnly[Any, Any], exp: complex, mod: None = None) -> complex | |
| ERROR Object of class `Buffer` has no attribute `shape` | |
| Object of class `_NestedSequence` has no attribute `shape` | |
| Object of class `_SupportsArray` has no attribute `shape` | |
| Object of class `bool` has no attribute `shape` | |
| Object of class `bytes` has no attribute `shape` | |
| Object of class `complex` has no attribute `shape` | |
| Object of class `float` has no attribute `shape` | |
| Object of class `int` has no attribute `shape` | |
| Object of class `str` has no attribute `shape` [missing-attribute] | |
| --> torch/onnx/_internal/torchscript_exporter/verification.py:242:29 | |
| | | |
| 242 | ) / np.prod(ort_out.shape) | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Buffer` has no attribute `dtype` | |
| Object of class `_NestedSequence` has no attribute `dtype` | |
| Object of class `_SupportsArray` has no attribute `dtype` | |
| Object of class `bool` has no attribute `dtype` | |
| Object of class `bytes` has no attribute `dtype` | |
| Object of class `complex` has no attribute `dtype` | |
| Object of class `float` has no attribute `dtype` | |
| Object of class `int` has no attribute `dtype` | |
| Object of class `str` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/torchscript_exporter/verification.py:250:16 | |
| | | |
| 250 | if ort_out.dtype == np.uint8 or ort_out.dtype == np.int8: | |
| | ^^^^^^^^^^^^^ | |
| | | |
| ERROR Object of class `Buffer` has no attribute `dtype` | |
| Object of class `_NestedSequence` has no attribute `dtype` | |
| Object of class `_SupportsArray` has no attribute `dtype` | |
| Object of class `bool` has no attribute `dtype` | |
| Object of class `bytes` has no attribute `dtype` | |
| Object of class `complex` has no attribute `dtype` | |
| Object of class `float` has no attribute `dtype` | |
| Object of class `int` has no attribute `dtype` | |
| Object of class `str` has no attribute `dtype` [missing-attribute] | |
| --> torch/onnx/_internal/torchscript_exporter/verification.py:252:16 | |
| | | |
| 252 | if pt_out.dtype == np.uint8 or pt_out.dtype == np.int8: | |
| | ^^^^^^^^^^^^ | |
| | | |
| WARN `select_model_mode_for_export` is deprecated [deprecated] | |
| --> torch/onnx/utils.py:8:61 | |
| | | |
| 8 | from torch.onnx._internal.torchscript_exporter.utils import * # noqa: F401,F403 | |
| | - | |
| | | |
| WARN `disable_apex_o2_state_dict_hook` is deprecated [deprecated] | |
| --> torch/onnx/utils.py:8:61 | |
| | | |
| 8 | from torch.onnx._internal.torchscript_exporter.utils import * # noqa: F401,F403 | |
| | - | |
| | | |
| WARN `setup_onnx_logging` is deprecated [deprecated] | |
| --> torch/onnx/utils.py:8:61 | |
| | | |
| 8 | from torch.onnx._internal.torchscript_exporter.utils import * # noqa: F401,F403 | |
| | - | |
| | | |
| WARN `exporter_context` is deprecated [deprecated] | |
| --> torch/onnx/utils.py:8:61 | |
| | | |
| 8 | from torch.onnx._internal.torchscript_exporter.utils import * # noqa: F401,F403 | |
| | - | |
| | | |
| WARN `unconvertible_ops` is deprecated [deprecated] | |
| --> torch/onnx/utils.py:8:61 | |
| | | |
| 8 | from torch.onnx._internal.torchscript_exporter.utils import * # noqa: F401,F403 | |
| | - | |
| | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment