Skip to content

Instantly share code, notes, and snippets.

@marcheiligers
Created November 27, 2025 22:50
Show Gist options
  • Select an option

  • Save marcheiligers/3868b8fe862ce6a166a9cb67d7b429fb to your computer and use it in GitHub Desktop.

Select an option

Save marcheiligers/3868b8fe862ce6a166a9cb67d7b429fb to your computer and use it in GitHub Desktop.
# https://en.wikipedia.org/wiki/SHA-2
# with additional hints from:
# - https://github.com/ruby/rubygems/pull/4989/files
# - https://github.com/kaloos/sha256/blob/master/lib/TBAddress.rb
# - https://github.com/eliblurr/sha256-algorithm
#
# Note 1: All variables are 32 bit unsigned integers and addition is calculated modulo 232
# Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 ≤ i ≤ 63
# Note 3: The compression function uses 8 working variables, a through h
# Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
# and when parsing message block data from bytes to words, for example,
# the first word of the input message "abc" after padding is 0x61626380
# Initialize hash values:
# (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
# h0 := 0x6a09e667
# h1 := 0xbb67ae85
# h2 := 0x3c6ef372
# h3 := 0xa54ff53a
# h4 := 0x510e527f
# h5 := 0x9b05688c
# h6 := 0x1f83d9ab
# h7 := 0x5be0cd19
# Marc says: done below in the digest method
module SHA2_256
extend self
# Initialize array of round constants:
# (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
# k[0..63] :=
# 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
# 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
# 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
# 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
# 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
# 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
# 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
# 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
K = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
]
# Pre-processing (Padding):
# begin with the original message of length L bits
# append a single '1' bit
# append K '0' bits, where K is the minimum number >= 0 such that (L + 1 + K + 64) is a multiple of 512
# append L as a 64-bit big-endian integer, making the total post-processed length a multiple of 512 bits
# such that the bits in the message are: <original message of length L> 1 <K zeros> <L as 64 bit integer> ,
# (the number of bits will be a multiple of 512)
# Marc says: our strings are always byte aligned, so
# 1) we'll be working with complete bytes
# 2) the single 1 bit with 7 zeros is 0b10000000 or 0x80 or 128
# 3) padding up with zeros 0b00000000, 0x0, or 0
# 4) L + 1 + K + 64 % 512 == 0 translates to l + 1 + k + 8 % 64 == 0, so we pad up to l + 1 + k % 56 == 0
# 5) pack('Q>') converts a number to 64-bit big endian
def digest(message)
bytes = message.bytes
l = bytes.length
bytes.concat([0x80]).concat([0] * ((56 - (bytes.length % 64)) % 64)).concat([l * 8].pack('Q>').bytes)
puts "bytes.length #{bytes.length}"
# Marc says: from above, line 10
h0 = 0x6a09e667
h1 = 0xbb67ae85
h2 = 0x3c6ef372
h3 = 0xa54ff53a
h4 = 0x510e527f
h5 = 0x9b05688c
h6 = 0x1f83d9ab
h7 = 0x5be0cd19
# Process the message in successive 512-bit chunks:
# break message into 512-bit chunks
# for each chunk
# Marc says: 512-bit chunks == 64 byte chunks
# Marc says: mruby doesn't have step
# also while is faster in DragonRuby
# (0...bytes.length).step(64) do |offset|
offset = -64
while (offset += 64) < bytes.length
# create a 64-entry message schedule array w[0..63] of 32-bit words
# (The initial values in w[0..63] don't matter, so many implementations zero them here)
chunk = bytes[offset, 64]
w = Array.new(64, 0)
# copy chunk into first 16 words w[0..15] of the message schedule array
# Marc says: 32-bit words, presumably still big endian. 32-bits is 4 bytes
# pack('C*') packs the 8-bit unsinged bytes - 'C4' would also work since we know there are 4 in each word
# (0...chunk.length).step(4).with_index do |word_offset, i|
word_offset = -4
i = -1
while (word_offset += 4) < 64
w[i += 1] = chunk[word_offset, 4].pack('C*').unpack1('L>')
end
# Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array:
# for i from 16 to 63
# s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
# s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10)
# w[i] := w[i-16] + s0 + w[i-7] + s1
# (16..63).each do |i|
i = 15
while (i += 1) < 64
s0 = right_rotate(w[i - 15], 7) ^ right_rotate(w[i - 15], 18) ^ (w[i - 15] >> 3)
s1 = right_rotate(w[i - 2], 17) ^ right_rotate(w[i - 2], 19) ^ (w[i - 2] >> 10)
w[i] = (w[i - 16] + s0 + w[i - 7] + s1) & 0xFFFFFFFF
end
# Initialize working variables to current hash value:
# a := h0
# b := h1
# c := h2
# d := h3
# e := h4
# f := h5
# g := h6
# h := h7
a = h0
b = h1
c = h2
d = h3
e = h4
f = h5
g = h6
h = h7
# Compression function main loop:
# for i from 0 to 63
# S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
# ch := (e and f) xor ((not e) and g)
# temp1 := h + S1 + ch + k[i] + w[i]
# S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
# maj := (a and b) xor (a and c) xor (b and c)
# temp2 := S0 + maj
# h := g
# g := f
# f := e
# e := d + temp1
# d := c
# c := b
# b := a
# a := temp1 + temp2
# Marc says: the `& 0xffffffff` are to ensure we don't overflow the words
# 64.times do |i|
i = -1
while (i += 1) < 64
s1 = right_rotate(e, 6) ^ right_rotate(e, 11) ^ right_rotate(e, 25)
ch = (e & f) ^ ((~e) & g)
temp1 = h + s1 + ch + K[i] + w[i]
s0 = right_rotate(a, 2) ^ right_rotate(a, 13) ^ right_rotate(a, 22)
maj = (a & b) ^ (a & c) ^ (b & c)
temp2 = s0 + maj
h = g
g = f
f = e
e = (d + temp1) & 0xffffffff
d = c
c = b
b = a
a = (temp1 + temp2) & 0xffffffff
end
# Add the compressed chunk to the current hash value:
# h0 := h0 + a
# h1 := h1 + b
# h2 := h2 + c
# h3 := h3 + d
# h4 := h4 + e
# h5 := h5 + f
# h6 := h6 + g
# h7 := h7 + h
h0 = (h0 + a) & 0xffffffff
h1 = (h1 + b) & 0xffffffff
h2 = (h2 + c) & 0xffffffff
h3 = (h3 + d) & 0xffffffff
h4 = (h4 + e) & 0xffffffff
h5 = (h5 + f) & 0xffffffff
h6 = (h6 + g) & 0xffffffff
h7 = (h7 + h) & 0xffffffff
end
# Produce the final hash value (big-endian):
# digest := hash := h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7
[h0, h1, h2, h3, h4, h5, h6, h7].pack('N*')
end
def hexdigest(message)
digest(message).unpack1('H*')
end
def hexdigest_upper(message)
hexdigest(message).upcase
end
private
def right_rotate(value, count)
((value >> count) | (value << (32 - count))) & 0xffffffff
end
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment