$ kubectl apply -f - <<EOF
<-- insert YAML content here -->
EOF
OR
$ cat file.yaml | kubectl apply -f -
$ kubectl apply -f - <<EOF
<-- insert YAML content here -->
EOF
OR
$ cat file.yaml | kubectl apply -f -
| #CDK python WAF with CloudFront and regex and ip set rules (v1.102.0 of CDK and above) | |
| from aws_cdk import ( | |
| core as cdk, | |
| aws_cloudfront as cloudfront, | |
| aws_cloudfront_origins as cloudfront_origins, | |
| aws_s3 as s3, | |
| aws_certificatemanager as acm, | |
| aws_route53 as route53, | |
| aws_wafv2 as wafv2, |
| >>> import pytz | |
| >>> | |
| >>> for tz in pytz.all_timezones: | |
| ... print tz | |
| ... | |
| ... | |
| Africa/Abidjan | |
| Africa/Accra | |
| Africa/Addis_Ababa | |
| Africa/Algiers |
| import tensorflow_addons as tfa | |
| import tensorflow as tf | |
| def get_norm_layer(norm): | |
| """Utility function to get the normalization layer | |
| """ | |
| if norm == None: | |
| return lambda: lambda x: x | |
| elif norm == 'batch_norm': |
| import tensorflow as tf | |
| from tensorflow.python.framework import ops | |
| from tensorflow.python.ops import gen_nn_ops | |
| @ops.RegisterGradient("GuidedRelu") | |
| def _GuidedReluGrad(op, grad): | |
| return tf.select(0. < grad, gen_nn_ops._relu_grad(grad, op.outputs[0]), tf.zeros(grad.get_shape())) | |
| if __name__ == '__main__': | |
| with tf.Session() as sess: |
| from tensorflow.examples.tutorials.mnist import input_data | |
| import matplotlib.pyplot as plt | |
| import tensorflow as tf | |
| import numpy as np | |
| mnist = input_data.read_data_sets('mnist/', one_hot=True) | |
| X = mnist.train.images | |
| # 784 -> 128 -> 64 -> 128 -> 784 |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| from tensorflow.examples.tutorials.mnist import input_data | |
| import numpy as np | |
| tf.reset_default_graph() | |
| mnist = input_data.read_data_sets('mnist/', one_hot=True) | |
| # Test |
| from warnings import filterwarnings | |
| filterwarnings('ignore') | |
| import pandas as pd | |
| import numpy as np | |
| from lightgbm import LGBMClassifier | |
| from sklearn.preprocessing import MinMaxScaler | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.metrics import roc_auc_score |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| import pandas as pd | |
| import numpy as np | |
| from tensorflow.python.keras import backend as K | |
| from tensorflow.python.keras.models import Sequential | |
| from tensorflow.python.keras.layers import InputLayer, Input | |
| from tensorflow.python.keras.layers import Reshape, MaxPooling2D | |
| from tensorflow.python.keras.layers import Conv2D, Dense, Flatten, Dropout |
| from sklearn import datasets | |
| iris = datasets.load_iris() | |
| X = iris.data | |
| y = iris.target | |
| from sklearn.preprocessing import StandardScaler | |
| scaler_x = StandardScaler() |