Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save miminashi/3d6d88cf3e42709e83fb6290b61e769d to your computer and use it in GitHub Desktop.

Select an option

Save miminashi/3d6d88cf3e42709e83fb6290b61e769d to your computer and use it in GitHub Desktop.
ubuntu@t120h-p100-ubuntu20:~/llama.cpp$ ./build/bin/llama-cli -hf llama-cli -hf unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M -no-cnv --prompt "自己紹介してください" -ngl 65 --split-mode row
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 4 CUDA devices:
Device 0: Tesla K80, compute capability 3.7, VMM: yes
Device 1: Tesla K80, compute capability 3.7, VMM: yes
Device 2: Tesla K80, compute capability 3.7, VMM: yes
Device 3: Tesla K80, compute capability 3.7, VMM: yes
build: 4997 (d3f1f0ac) with cc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
common_download_file: previous metadata file found /home/ubuntu/.cache/llama.cpp/unsloth_DeepSeek-R1-Distill-Qwen-32B-GGUF_DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf.json: {"etag":"\"1c2e5c0c8ee0dca2a6ed2fd6944d714a-1000\"","lastModified":"Mon, 20 Jan 2025 17:58:25 GMT","url":"https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf"}
curl_perform_with_retry: Trying to download from https://huggingface.co/unsloth/DeepSeek-R1-Distill-Qwen-32B-GGUF/resolve/main/DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf (attempt 1 of 3)...
llama_model_load_from_file_impl: using device CUDA0 (Tesla K80) - 11357 MiB free
llama_model_load_from_file_impl: using device CUDA1 (Tesla K80) - 11357 MiB free
llama_model_load_from_file_impl: using device CUDA2 (Tesla K80) - 11357 MiB free
llama_model_load_from_file_impl: using device CUDA3 (Tesla K80) - 12123 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 771 tensors from /home/ubuntu/.cache/llama.cpp/unsloth_DeepSeek-R1-Distill-Qwen-32B-GGUF_DeepSeek-R1-Distill-Qwen-32B-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = DeepSeek R1 Distill Qwen 32B
llama_model_loader: - kv 3: general.organization str = Deepseek Ai
llama_model_loader: - kv 4: general.basename str = DeepSeek-R1-Distill-Qwen
llama_model_loader: - kv 5: general.size_label str = 32B
llama_model_loader: - kv 6: qwen2.block_count u32 = 64
llama_model_loader: - kv 7: qwen2.context_length u32 = 131072
llama_model_loader: - kv 8: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 9: qwen2.feed_forward_length u32 = 27648
llama_model_loader: - kv 10: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 11: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 12: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 14: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 15: tokenizer.ggml.pre str = deepseek-r1-qwen
llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 18: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 151646
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 22: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 23: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: general.file_type u32 = 15
llama_model_loader: - type f32: 321 tensors
llama_model_loader: - type q4_K: 385 tensors
llama_model_loader: - type q6_K: 65 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 18.48 GiB (4.85 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 64
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 27648
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 32B
print_info: model params = 32.76 B
print_info: general.name = DeepSeek R1 Distill Qwen 32B
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token = 151643 '<|end▁of▁sentence|>'
print_info: EOT token = 151643 '<|end▁of▁sentence|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|end▁of▁sentence|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 64 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 65/65 layers to GPU
load_tensors: CUDA0_Split model buffer size = 4545.94 MiB
load_tensors: CUDA1_Split model buffer size = 4401.56 MiB
load_tensors: CUDA2_Split model buffer size = 4365.47 MiB
load_tensors: CUDA3_Split model buffer size = 5191.11 MiB
load_tensors: CUDA0 model buffer size = 1.06 MiB
load_tensors: CUDA1 model buffer size = 1.06 MiB
load_tensors: CUDA2 model buffer size = 1.06 MiB
load_tensors: CUDA3 model buffer size = 1.08 MiB
load_tensors: CPU_Mapped model buffer size = 417.66 MiB
................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.58 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 64, can_shift = 1
init: CUDA0 KV buffer size = 256.00 MiB
init: CUDA1 KV buffer size = 256.00 MiB
init: CUDA2 KV buffer size = 256.00 MiB
init: CUDA3 KV buffer size = 256.00 MiB
llama_context: KV self size = 1024.00 MiB, K (f16): 512.00 MiB, V (f16): 512.00 MiB
llama_context: CUDA0 compute buffer size = 368.00 MiB
llama_context: CUDA1 compute buffer size = 368.00 MiB
llama_context: CUDA2 compute buffer size = 368.00 MiB
llama_context: CUDA3 compute buffer size = 368.00 MiB
llama_context: CUDA_Host compute buffer size = 18.01 MiB
llama_context: graph nodes = 2374
llama_context: graph splits = 5
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 40
system_info: n_threads = 40 (n_threads_batch = 40) / 80 | CUDA : USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
sampler seed: 3920427018
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 1
自己紹介してください is1462115borborborborborborborborborTIMERTIMER稀缺elibGMEMTIMERTIMERborborborborborTIMERCHANTمديريةTIMERمديريةCHANT_sensitiveTIMERTIMERTIMERGMEMمديريةمديريةTIMERTIMERborCHANTCHANT
llama_perf_sampler_print: sampling time = 7.38 ms / 53 runs ( 0.14 ms per token, 7179.63 tokens per second)
llama_perf_context_print: load time = 18924.89 ms
llama_perf_context_print: prompt eval time = 11728.00 ms / 6 tokens ( 1954.67 ms per token, 0.51 tokens per second)
llama_perf_context_print: eval time = 518277.90 ms / 46 runs (11266.91 ms per token, 0.09 tokens per second)
llama_perf_context_print: total time = 530430.09 ms / 52 tokens
Interrupted by user
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment