Install TigerVNC -
$ sudo apt install tigervnc-standalone-server
Configure VNC Server by running
| # train_grpo.py | |
| import re | |
| import torch | |
| from datasets import load_dataset, Dataset | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import LoraConfig | |
| from trl import GRPOConfig, GRPOTrainer | |
| # Load and prep dataset |
| """ | |
| This model integrates the MoE concept within a Transformer architecture. Each token's | |
| representation is processed by a subset of experts, determined by the gating mechanism. | |
| This architecture allows for efficient and specialized handling of different aspects of the | |
| data, aiming for the adaptability and efficiency noted in the Mixtral 8x7B model's design | |
| philosophy. The model activates only a fraction of the available experts for each token, | |
| significantly reducing the computational resources needed compared to activating all experts | |
| for all tokens. | |
| """ |
| # Works on gluonts dev branch as of May 30th, 2023 | |
| # Assumes "m5-forecasting-accuracy" folder with data next to the script | |
| # Data is obtained from https://www.kaggle.com/c/m5-forecasting-accuracy | |
| import pandas as pd | |
| from pathlib import Path | |
| from gluonts.dataset.pandas import PandasDataset | |
| # Load data from csv files |
| from os import path | |
| from bokeh.models import Button, Div | |
| from bokeh.layouts import column | |
| from bokeh.document import without_document_lock | |
| from bokeh.io import curdoc | |
| from zmq_subprocess import ZmqSubProcessClient | |
| ok_button = Button(label="ok") | |
| div = Div() |
| from transformers import Trainer, TrainingArguments | |
| training_args = TrainingArguments( | |
| output_dir="./logs/model_name", | |
| logging_dir="./logs/runs", | |
| overwrite_output_dir=True, | |
| do_train=True, | |
| per_device_train_batch_size=32, | |
| num_train_epochs=1, | |
| evaluate_during_training=True, |
| from multimodal_transformers.model import AutoModelWithTabular, TabularConfig | |
| from transformers import AutoConfig | |
| num_labels = len(np.unique(torch_dataset, labels)) | |
| config = AutoConfig.from_pretrained('bert-base-uncased') | |
| tabular_config = TabularConfig( | |
| num_labels=num_labels, | |
| cat_feat_dim=torch_dataset.cat_feats.shape[1], | |
| numerical_feat_dim=torch_dataset.numerical_feats.shape[1], | |
| combine_feat_method='weighted_feature_sum_on_transformer_cat_and_numerical_feats', |
| import pandas as pd | |
| from multimodal_transformers.data import load_data | |
| from transformers import AutoTokenizer | |
| data_df = pd.read_csv('Womens Clothing E-Commerce Reviews.csv') | |
| text_cols = ['Title', 'Review Text'] | |
| # The label col is expected to contain integers from 0 to N_classes - 1 | |
| label_col = 'Recommended IND' | |
| categorical_cols = ['Clothing ID', 'Division Name', 'Department Name', 'Class Name'] | |
| numerical_cols = ['Rating', 'Age', 'Positive Feedback Count'] |