short url: caseywatts.com/selfpublish
my book is out! an applied psychology / self-help book targeted at developers: Debugging Your Brain
Markdown --> PDF (as a booklet!)
Markdown --> EPUB and MOBI
short url: caseywatts.com/selfpublish
my book is out! an applied psychology / self-help book targeted at developers: Debugging Your Brain
Markdown --> PDF (as a booklet!)
Markdown --> EPUB and MOBI
| # | |
| # Some constants | |
| # | |
| aws_profile = "your_profile" | |
| aws_region = "your_region" | |
| s3_bucket = "your_bucket" | |
| # | |
| # Reading environment variables from aws credential file | |
| # |
| license: WTFPL |
| import pandas as pd | |
| def _map_to_pandas(rdds): | |
| """ Needs to be here due to pickling issues """ | |
| return [pd.DataFrame(list(rdds))] | |
| def toPandas(df, n_partitions=None): | |
| """ | |
| Returns the contents of `df` as a local `pandas.DataFrame` in a speedy fashion. The DataFrame is | |
| repartitioned if `n_partitions` is passed. |
| #!/usr/bin/env python | |
| # encoding: utf-8 | |
| import tweepy #https://github.com/tweepy/tweepy | |
| import csv | |
| #Twitter API credentials | |
| consumer_key = "" | |
| consumer_secret = "" | |
| access_key = "" |
| """ | |
| A webserver to test Google OAuth in a couple of scenarios. | |
| """ | |
| import argparse | |
| import time | |
| import tornado.ioloop | |
| import tornado.web | |
| import tornado.auth | |
| import tornado.gen |
| #!/bin/sh | |
| TABLE_SCHEMA=$1 | |
| TABLE_NAME=$2 | |
| mytime=`date '+%y%m%d%H%M'` | |
| hostname=`hostname | tr 'A-Z' 'a-z'` | |
| file_prefix="trimax$TABLE_NAME$mytime$TABLE_SCHEMA" | |
| bucket_name=$file_prefix | |
| splitat="4000000000" | |
| bulkfiles=200 |
| package org.mazerunner.core.programs | |
| import org.apache.spark.graphx.{Graph, EdgeTriplet, VertexId} | |
| import org.mazerunner.core.abstractions.PregelProgram | |
| /** | |
| * @author kbastani | |
| * The [[MaximumValueProgram]] is an example graph algorithm implemented on the [[PregelProgram]] | |
| * abstraction. | |
| */ |
| import multiprocessing | |
| import pandas as pd | |
| import numpy as np | |
| def _apply_df(args): | |
| df, func, kwargs = args | |
| return df.apply(func, **kwargs) | |
| def apply_by_multiprocessing(df, func, **kwargs): | |
| workers = kwargs.pop('workers') |