-
-
Save musistudio/1c13a65f35916a7ab690649d3df8d1cd to your computer and use it in GitHub Desktop.
| const os = require("os"); | |
| const path = require("path"); | |
| const fs = require("fs/promises"); | |
| const OAUTH_FILE = path.join(os.homedir(), ".gemini", "oauth_creds.json"); | |
| // Type enum equivalent in JavaScript | |
| const Type = { | |
| TYPE_UNSPECIFIED: "TYPE_UNSPECIFIED", | |
| STRING: "STRING", | |
| NUMBER: "NUMBER", | |
| INTEGER: "INTEGER", | |
| BOOLEAN: "BOOLEAN", | |
| ARRAY: "ARRAY", | |
| OBJECT: "OBJECT", | |
| NULL: "NULL", | |
| }; | |
| /** | |
| * Transform the type field from an array of types to an array of anyOf fields. | |
| * @param {string[]} typeList - List of types | |
| * @param {Object} resultingSchema - The schema object to modify | |
| */ | |
| function flattenTypeArrayToAnyOf(typeList, resultingSchema) { | |
| if (typeList.includes("null")) { | |
| resultingSchema["nullable"] = true; | |
| } | |
| const listWithoutNull = typeList.filter((type) => type !== "null"); | |
| if (listWithoutNull.length === 1) { | |
| const upperCaseType = listWithoutNull[0].toUpperCase(); | |
| resultingSchema["type"] = Object.values(Type).includes(upperCaseType) | |
| ? upperCaseType | |
| : Type.TYPE_UNSPECIFIED; | |
| } else { | |
| resultingSchema["anyOf"] = []; | |
| for (const i of listWithoutNull) { | |
| const upperCaseType = i.toUpperCase(); | |
| resultingSchema["anyOf"].push({ | |
| type: Object.values(Type).includes(upperCaseType) | |
| ? upperCaseType | |
| : Type.TYPE_UNSPECIFIED, | |
| }); | |
| } | |
| } | |
| } | |
| /** | |
| * Process a JSON schema to make it compatible with the GenAI API | |
| * @param {Object} _jsonSchema - The JSON schema to process | |
| * @returns {Object} - The processed schema | |
| */ | |
| function processJsonSchema(_jsonSchema) { | |
| const genAISchema = {}; | |
| const schemaFieldNames = ["items"]; | |
| const listSchemaFieldNames = ["anyOf"]; | |
| const dictSchemaFieldNames = ["properties"]; | |
| if (_jsonSchema["type"] && _jsonSchema["anyOf"]) { | |
| throw new Error("type and anyOf cannot be both populated."); | |
| } | |
| /* | |
| This is to handle the nullable array or object. The _jsonSchema will | |
| be in the format of {anyOf: [{type: 'null'}, {type: 'object'}]}. The | |
| logic is to check if anyOf has 2 elements and one of the element is null, | |
| if so, the anyOf field is unnecessary, so we need to get rid of the anyOf | |
| field and make the schema nullable. Then use the other element as the new | |
| _jsonSchema for processing. This is because the backend doesn't have a null | |
| type. | |
| */ | |
| const incomingAnyOf = _jsonSchema["anyOf"]; | |
| if ( | |
| incomingAnyOf != null && | |
| Array.isArray(incomingAnyOf) && | |
| incomingAnyOf.length == 2 | |
| ) { | |
| if (incomingAnyOf[0] && incomingAnyOf[0]["type"] === "null") { | |
| genAISchema["nullable"] = true; | |
| _jsonSchema = incomingAnyOf[1]; | |
| } else if (incomingAnyOf[1] && incomingAnyOf[1]["type"] === "null") { | |
| genAISchema["nullable"] = true; | |
| _jsonSchema = incomingAnyOf[0]; | |
| } | |
| } | |
| if (_jsonSchema["type"] && Array.isArray(_jsonSchema["type"])) { | |
| flattenTypeArrayToAnyOf(_jsonSchema["type"], genAISchema); | |
| } | |
| for (const [fieldName, fieldValue] of Object.entries(_jsonSchema)) { | |
| // Skip if the fieldValue is undefined or null. | |
| if (fieldValue == null) { | |
| continue; | |
| } | |
| if (fieldName == "type") { | |
| if (fieldValue === "null") { | |
| throw new Error( | |
| "type: null can not be the only possible type for the field." | |
| ); | |
| } | |
| if (Array.isArray(fieldValue)) { | |
| // we have already handled the type field with array of types in the | |
| // beginning of this function. | |
| continue; | |
| } | |
| const upperCaseValue = fieldValue.toUpperCase(); | |
| genAISchema["type"] = Object.values(Type).includes(upperCaseValue) | |
| ? upperCaseValue | |
| : Type.TYPE_UNSPECIFIED; | |
| } else if (schemaFieldNames.includes(fieldName)) { | |
| genAISchema[fieldName] = processJsonSchema(fieldValue); | |
| } else if (listSchemaFieldNames.includes(fieldName)) { | |
| const listSchemaFieldValue = []; | |
| for (const item of fieldValue) { | |
| if (item["type"] == "null") { | |
| genAISchema["nullable"] = true; | |
| continue; | |
| } | |
| listSchemaFieldValue.push(processJsonSchema(item)); | |
| } | |
| genAISchema[fieldName] = listSchemaFieldValue; | |
| } else if (dictSchemaFieldNames.includes(fieldName)) { | |
| const dictSchemaFieldValue = {}; | |
| for (const [key, value] of Object.entries(fieldValue)) { | |
| dictSchemaFieldValue[key] = processJsonSchema(value); | |
| } | |
| genAISchema[fieldName] = dictSchemaFieldValue; | |
| } else { | |
| // additionalProperties is not included in JSONSchema, skipping it. | |
| if (fieldName === "additionalProperties") { | |
| continue; | |
| } | |
| genAISchema[fieldName] = fieldValue; | |
| } | |
| } | |
| return genAISchema; | |
| } | |
| /** | |
| * Transform a tool object | |
| * @param {Object} tool - The tool object to transform | |
| * @returns {Object} - The transformed tool object | |
| */ | |
| function tTool(tool) { | |
| if (tool.functionDeclarations) { | |
| for (const functionDeclaration of tool.functionDeclarations) { | |
| if (functionDeclaration.parameters) { | |
| if (!Object.keys(functionDeclaration.parameters).includes("$schema")) { | |
| functionDeclaration.parameters = processJsonSchema( | |
| functionDeclaration.parameters | |
| ); | |
| } else { | |
| if (!functionDeclaration.parametersJsonSchema) { | |
| functionDeclaration.parametersJsonSchema = | |
| functionDeclaration.parameters; | |
| delete functionDeclaration.parameters; | |
| } | |
| } | |
| } | |
| if (functionDeclaration.response) { | |
| if (!Object.keys(functionDeclaration.response).includes("$schema")) { | |
| functionDeclaration.response = processJsonSchema( | |
| functionDeclaration.response | |
| ); | |
| } else { | |
| if (!functionDeclaration.responseJsonSchema) { | |
| functionDeclaration.responseJsonSchema = | |
| functionDeclaration.response; | |
| delete functionDeclaration.response; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| return tool; | |
| } | |
| class GeminiCLITransformer { | |
| name = "gemini-cli"; | |
| constructor(options) { | |
| this.options = options; | |
| try { | |
| this.oauth_creds = require(OAUTH_FILE); | |
| } catch {} | |
| } | |
| async transformRequestIn(request, provider) { | |
| if (this.oauth_creds && this.oauth_creds.expiry_date < +new Date()) { | |
| await this.refreshToken(this.oauth_creds.refresh_token); | |
| } | |
| const tools = []; | |
| const functionDeclarations = request.tools | |
| ?.filter((tool) => tool.function.name !== "web_search") | |
| ?.map((tool) => { | |
| return { | |
| name: tool.function.name, | |
| description: tool.function.description, | |
| parametersJsonSchema: tool.function.parameters, | |
| }; | |
| }); | |
| if (functionDeclarations?.length) { | |
| tools.push( | |
| tTool({ | |
| functionDeclarations, | |
| }) | |
| ); | |
| } | |
| const webSearch = request.tools?.find( | |
| (tool) => tool.function.name === "web_search" | |
| ); | |
| if (webSearch) { | |
| tools.push({ | |
| googleSearch: {}, | |
| }); | |
| } | |
| const contents = []; | |
| const toolResponses = request.messages.filter( | |
| (item) => item.role === "tool" | |
| ); | |
| request.messages | |
| .filter((item) => item.role !== "tool" && item.role !== "system") | |
| .forEach((message) => { | |
| let role; | |
| if (message.role === "assistant") { | |
| role = "model"; | |
| } else if (["user"].includes(message.role)) { | |
| role = "user"; | |
| } else { | |
| role = "user"; // Default to user if role is not recognized | |
| } | |
| const parts = []; | |
| if (typeof message.content === "string") { | |
| const part = { | |
| text: message.content, | |
| }; | |
| if (message?.thinking?.signature) { | |
| part.thoughtSignature = message.thinking.signature; | |
| } | |
| parts.push(part); | |
| } else if (Array.isArray(message.content)) { | |
| parts.push( | |
| ...message.content.map((content) => { | |
| if (content.type === "text") { | |
| return { | |
| text: content.text || "", | |
| }; | |
| } | |
| if (content.type === "image_url") { | |
| if (content.image_url.url.startsWith("http")) { | |
| return { | |
| file_data: { | |
| mime_type: content.media_type, | |
| file_uri: content.image_url.url, | |
| }, | |
| }; | |
| } else { | |
| return { | |
| inlineData: { | |
| mime_type: content.media_type, | |
| data: | |
| content.image_url.url?.split(",")?.pop() || | |
| content.image_url.url, | |
| }, | |
| }; | |
| } | |
| } | |
| }) | |
| ); | |
| } else if (message.content && typeof message.content === "object") { | |
| // Object like { text: "..." } | |
| if (message.content.text) { | |
| parts.push({ text: message.content.text }); | |
| } else { | |
| parts.push({ text: JSON.stringify(message.content) }); | |
| } | |
| } | |
| if (Array.isArray(message.tool_calls)) { | |
| parts.push( | |
| ...message.tool_calls.map((toolCall, index) => { | |
| return { | |
| functionCall: { | |
| id: | |
| toolCall.id || | |
| `tool_${Math.random().toString(36).substring(2, 15)}`, | |
| name: toolCall.function.name, | |
| args: JSON.parse(toolCall.function.arguments || "{}"), | |
| }, | |
| thoughtSignature: | |
| index === 0 && message.thinking?.signature | |
| ? message.thinking?.signature | |
| : undefined, | |
| }; | |
| }) | |
| ); | |
| } | |
| if (parts.length === 0) { | |
| parts.push({ text: "" }); | |
| } | |
| contents.push({ | |
| role, | |
| parts, | |
| }); | |
| if (role === "model" && message.tool_calls) { | |
| const functionResponses = message.tool_calls.map((tool) => { | |
| const response = toolResponses.find( | |
| (item) => item.tool_call_id === tool.id | |
| ); | |
| return { | |
| functionResponse: { | |
| name: tool?.function?.name, | |
| response: { result: response?.content }, | |
| }, | |
| }; | |
| }); | |
| contents.push({ | |
| role: "user", | |
| parts: functionResponses, | |
| }); | |
| } | |
| }); | |
| const generationConfig = {}; | |
| if ( | |
| request.reasoning && | |
| request.reasoning.effort && | |
| request.reasoning.effort !== "none" | |
| ) { | |
| generationConfig.thinkingConfig = { | |
| includeThoughts: true, | |
| }; | |
| if (request.model.includes("gemini-3")) { | |
| generationConfig.thinkingConfig.thinkingLevel = | |
| request.reasoning.effort; | |
| } else { | |
| const thinkingBudgets = request.model.includes("pro") | |
| ? [128, 32768] | |
| : [0, 24576]; | |
| let thinkingBudget; | |
| const max_tokens = request.reasoning.max_tokens; | |
| if (typeof max_tokens !== "undefined") { | |
| if ( | |
| max_tokens >= thinkingBudgets[0] && | |
| max_tokens <= thinkingBudgets[1] | |
| ) { | |
| thinkingBudget = max_tokens; | |
| } else if (max_tokens < thinkingBudgets[0]) { | |
| thinkingBudget = thinkingBudgets[0]; | |
| } else if (max_tokens > thinkingBudgets[1]) { | |
| thinkingBudget = thinkingBudgets[1]; | |
| } | |
| generationConfig.thinkingConfig.thinkingBudget = thinkingBudget; | |
| } | |
| } | |
| } | |
| const systemMessages = request.messages | |
| .filter((msg) => msg.role === "system") | |
| .map((msg) => | |
| typeof msg.content === "string" | |
| ? [{ text: msg.content }] | |
| : msg.content.map((part) => ({ text: part.text })) | |
| ); | |
| const body = { | |
| contents, | |
| tools: tools.length ? tools : undefined, | |
| generationConfig, | |
| system_instruction: { | |
| parts: systemMessages, | |
| }, | |
| }; | |
| if (request.tool_choice) { | |
| const toolConfig = { | |
| functionCallingConfig: {}, | |
| }; | |
| if (request.tool_choice === "auto") { | |
| toolConfig.functionCallingConfig.mode = "auto"; | |
| } else if (request.tool_choice === "none") { | |
| toolConfig.functionCallingConfig.mode = "none"; | |
| } else if (request.tool_choice === "required") { | |
| toolConfig.functionCallingConfig.mode = "any"; | |
| } else if (request.tool_choice?.function?.name) { | |
| toolConfig.functionCallingConfig.mode = "any"; | |
| toolConfig.functionCallingConfig.allowedFunctionNames = [ | |
| request.tool_choice?.function?.name, | |
| ]; | |
| } | |
| body.toolConfig = toolConfig; | |
| } | |
| return { | |
| body: { | |
| request: body, | |
| model: request.model, | |
| project: this.options?.project, | |
| }, | |
| config: { | |
| url: new URL( | |
| `https://cloudcode-pa.googleapis.com/v1internal:${ | |
| request.stream ? "streamGenerateContent?alt=sse" : "generateContent" | |
| }` | |
| ), | |
| headers: { | |
| Authorization: `Bearer ${this.oauth_creds.access_token}`, | |
| "user-agent": `GeminiCLI/v22.12.0 (darwin; arm64)`, | |
| }, | |
| }, | |
| }; | |
| } | |
| async transformResponseOut(response) { | |
| if (response.headers.get("Content-Type")?.includes("application/json")) { | |
| let jsonResponse = await response.json(); | |
| jsonResponse = jsonResponse.response; | |
| // Extract thinking content from parts with thought: true | |
| let thinkingContent = ""; | |
| let thinkingSignature = ""; | |
| console.log(JSON.stringify(jsonResponse.candidates, null, 2)); | |
| const parts = jsonResponse.candidates[0]?.content?.parts || []; | |
| const nonThinkingParts = []; | |
| for (const part of parts) { | |
| if (part.text && part.thought === true) { | |
| thinkingContent += part.text; | |
| } else { | |
| nonThinkingParts.push(part); | |
| } | |
| } | |
| // Get thoughtSignature from functionCall args or usageMetadata | |
| thinkingSignature = parts.find( | |
| (part) => part.thoughtSignature | |
| )?.thoughtSignature; | |
| const tool_calls = | |
| nonThinkingParts | |
| ?.filter((part) => part.functionCall) | |
| ?.map((part) => ({ | |
| id: | |
| part.functionCall?.id || | |
| `tool_${Math.random().toString(36).substring(2, 15)}`, | |
| type: "function", | |
| function: { | |
| name: part.functionCall?.name, | |
| arguments: JSON.stringify(part.functionCall?.args || {}), | |
| }, | |
| })) || []; | |
| const textContent = | |
| nonThinkingParts | |
| ?.filter((part) => part.text) | |
| ?.map((part) => part.text) | |
| ?.join("\n") || ""; | |
| const res = { | |
| id: jsonResponse.responseId, | |
| choices: [ | |
| { | |
| finish_reason: | |
| jsonResponse.candidates[0].finishReason?.toLowerCase() || null, | |
| index: 0, | |
| message: { | |
| content: textContent, | |
| role: "assistant", | |
| tool_calls: tool_calls.length > 0 ? tool_calls : undefined, | |
| // Add thinking as separate field if available | |
| ...(thinkingSignature && { | |
| thinking: { | |
| content: thinkingContent || "(no content)", | |
| signature: thinkingSignature, | |
| }, | |
| }), | |
| }, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| model: jsonResponse.modelVersion, | |
| object: "chat.completion", | |
| usage: { | |
| completion_tokens: jsonResponse.usageMetadata.candidatesTokenCount, | |
| prompt_tokens: jsonResponse.usageMetadata.promptTokenCount, | |
| cached_content_token_count: | |
| jsonResponse.usageMetadata.cachedContentTokenCount || null, | |
| total_tokens: jsonResponse.usageMetadata.totalTokenCount, | |
| thoughts_token_count: jsonResponse.usageMetadata?.thoughtsTokenCount, | |
| }, | |
| }; | |
| return new Response(JSON.stringify(res), { | |
| status: response.status, | |
| statusText: response.statusText, | |
| headers: response.headers, | |
| }); | |
| } else if (response.headers.get("Content-Type")?.includes("stream")) { | |
| if (!response.body) { | |
| return response; | |
| } | |
| const decoder = new TextDecoder(); | |
| const encoder = new TextEncoder(); | |
| let signatureSent = false; | |
| let contentSent = false; | |
| let hasThinkingContent = false; | |
| let pendingContent = ""; | |
| let contentIndex = 0; | |
| let toolCallIndex = -1; | |
| const stream = new ReadableStream({ | |
| async start(controller) { | |
| const processLine = async (line, controller) => { | |
| if (line.startsWith("data: ")) { | |
| const chunkStr = line.slice(6).trim(); | |
| if (chunkStr) { | |
| this.logger?.debug({ chunkStr }, `${providerName} chunk:`); | |
| try { | |
| let chunk = JSON.parse(chunkStr); | |
| chunk = chunk.response; | |
| // Check if chunk has valid structure | |
| if (!chunk.candidates || !chunk.candidates[0]) { | |
| this.logger?.debug({ chunkStr }, `Invalid chunk structure`); | |
| return; | |
| } | |
| const candidate = chunk.candidates[0]; | |
| const parts = candidate.content?.parts || []; | |
| parts | |
| .filter((part) => part.text && part.thought === true) | |
| .forEach((part) => { | |
| if (!hasThinkingContent) { | |
| hasThinkingContent = true; | |
| } | |
| const thinkingChunk = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| content: null, | |
| thinking: { | |
| content: part.text, | |
| }, | |
| }, | |
| finish_reason: null, | |
| index: contentIndex, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| }; | |
| controller.enqueue( | |
| encoder.encode( | |
| `data: ${JSON.stringify(thinkingChunk)}\n\n` | |
| ) | |
| ); | |
| }); | |
| let signature = parts.find( | |
| (part) => part.thoughtSignature | |
| )?.thoughtSignature; | |
| if (signature && !signatureSent) { | |
| if (!hasThinkingContent) { | |
| const thinkingChunk = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| content: null, | |
| thinking: { | |
| content: "(no content)", | |
| }, | |
| }, | |
| finish_reason: null, | |
| index: contentIndex, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| }; | |
| controller.enqueue( | |
| encoder.encode( | |
| `data: ${JSON.stringify(thinkingChunk)}\n\n` | |
| ) | |
| ); | |
| } | |
| const signatureChunk = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| content: null, | |
| thinking: { | |
| signature, | |
| }, | |
| }, | |
| finish_reason: null, | |
| index: contentIndex, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| }; | |
| controller.enqueue( | |
| encoder.encode( | |
| `data: ${JSON.stringify(signatureChunk)}\n\n` | |
| ) | |
| ); | |
| signatureSent = true; | |
| contentIndex++; | |
| if (pendingContent) { | |
| const res = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| content: pendingContent, | |
| }, | |
| finish_reason: null, | |
| index: contentIndex, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| }; | |
| controller.enqueue( | |
| encoder.encode(`data: ${JSON.stringify(res)}\n\n`) | |
| ); | |
| pendingContent = ""; | |
| if (!contentSent) { | |
| contentSent = true; | |
| } | |
| } | |
| } | |
| const tool_calls = parts | |
| .filter((part) => part.functionCall) | |
| .map((part) => ({ | |
| id: | |
| part.functionCall?.id || | |
| `ccr_tool_${Math.random() | |
| .toString(36) | |
| .substring(2, 15)}`, | |
| type: "function", | |
| function: { | |
| name: part.functionCall?.name, | |
| arguments: JSON.stringify( | |
| part.functionCall?.args || {} | |
| ), | |
| }, | |
| })); | |
| const textContent = parts | |
| .filter((part) => part.text && part.thought !== true) | |
| .map((part) => part.text) | |
| .join("\n"); | |
| if (!textContent && signatureSent && !contentSent) { | |
| const emptyContentChunk = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| content: "(no content)", | |
| }, | |
| index: contentIndex, | |
| finish_reason: null, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| }; | |
| controller.enqueue( | |
| encoder.encode( | |
| `data: ${JSON.stringify(emptyContentChunk)}\n\n` | |
| ) | |
| ); | |
| if (!contentSent) { | |
| contentSent = true; | |
| } | |
| } | |
| if (textContent && !signatureSent) { | |
| pendingContent += textContent; | |
| return; | |
| } | |
| if (textContent) { | |
| if (!pendingContent) contentIndex++; | |
| const res = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| content: textContent, | |
| }, | |
| finish_reason: | |
| candidate.finishReason?.toLowerCase() || null, | |
| index: contentIndex, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| usage: { | |
| completion_tokens: | |
| chunk.usageMetadata?.candidatesTokenCount || 0, | |
| prompt_tokens: | |
| chunk.usageMetadata?.promptTokenCount || 0, | |
| cached_content_token_count: | |
| chunk.usageMetadata?.cachedContentTokenCount || null, | |
| total_tokens: chunk.usageMetadata?.totalTokenCount || 0, | |
| thoughts_token_count: | |
| chunk.usageMetadata?.thoughtsTokenCount, | |
| }, | |
| }; | |
| if (candidate?.groundingMetadata?.groundingChunks?.length) { | |
| res.choices[0].delta.annotations = | |
| candidate.groundingMetadata.groundingChunks.map( | |
| (groundingChunk, index) => { | |
| const support = | |
| candidate?.groundingMetadata?.groundingSupports?.filter( | |
| (item) => | |
| item.groundingChunkIndices?.includes(index) | |
| ); | |
| return { | |
| type: "url_citation", | |
| url_citation: { | |
| url: groundingChunk?.web?.uri || "", | |
| title: groundingChunk?.web?.title || "", | |
| content: support?.[0]?.segment?.text || "", | |
| start_index: | |
| support?.[0]?.segment?.startIndex || 0, | |
| end_index: support?.[0]?.segment?.endIndex || 0, | |
| }, | |
| }; | |
| } | |
| ); | |
| } | |
| controller.enqueue( | |
| encoder.encode(`data: ${JSON.stringify(res)}\n\n`) | |
| ); | |
| if (!contentSent && textContent) { | |
| contentSent = true; | |
| } | |
| } | |
| if (tool_calls.length > 0) { | |
| tool_calls.forEach((tool) => { | |
| contentIndex++; | |
| toolCallIndex++; | |
| const res = { | |
| choices: [ | |
| { | |
| delta: { | |
| role: "assistant", | |
| tool_calls: [ | |
| { | |
| ...tool, | |
| index: toolCallIndex, | |
| }, | |
| ], | |
| }, | |
| finish_reason: | |
| candidate.finishReason?.toLowerCase() || null, | |
| index: contentIndex, | |
| logprobs: null, | |
| }, | |
| ], | |
| created: parseInt(new Date().getTime() / 1000 + "", 10), | |
| id: chunk.responseId || "", | |
| model: chunk.modelVersion || "", | |
| object: "chat.completion.chunk", | |
| system_fingerprint: "fp_a49d71b8a1", | |
| }; | |
| if ( | |
| candidate?.groundingMetadata?.groundingChunks?.length | |
| ) { | |
| res.choices[0].delta.annotations = | |
| candidate.groundingMetadata.groundingChunks.map( | |
| (groundingChunk, index) => { | |
| const support = | |
| candidate?.groundingMetadata?.groundingSupports?.filter( | |
| (item) => | |
| item.groundingChunkIndices?.includes(index) | |
| ); | |
| return { | |
| type: "url_citation", | |
| url_citation: { | |
| url: groundingChunk?.web?.uri || "", | |
| title: groundingChunk?.web?.title || "", | |
| content: support?.[0]?.segment?.text || "", | |
| start_index: | |
| support?.[0]?.segment?.startIndex || 0, | |
| end_index: | |
| support?.[0]?.segment?.endIndex || 0, | |
| }, | |
| }; | |
| } | |
| ); | |
| } | |
| controller.enqueue( | |
| encoder.encode(`data: ${JSON.stringify(res)}\n\n`) | |
| ); | |
| }); | |
| if (!contentSent && textContent) { | |
| contentSent = true; | |
| } | |
| } | |
| } catch (error) { | |
| this.logger?.error( | |
| `Error parsing ${providerName} stream chunk`, | |
| chunkStr, | |
| error.message | |
| ); | |
| } | |
| } | |
| } | |
| }; | |
| const reader = response.body.getReader(); | |
| let buffer = ""; | |
| try { | |
| while (true) { | |
| const { done, value } = await reader.read(); | |
| if (done) { | |
| if (buffer) { | |
| await processLine(buffer, controller); | |
| } | |
| break; | |
| } | |
| buffer += decoder.decode(value, { stream: true }); | |
| const lines = buffer.split("\n"); | |
| buffer = lines.pop() || ""; | |
| for (const line of lines) { | |
| await processLine(line, controller); | |
| } | |
| } | |
| } catch (error) { | |
| controller.error(error); | |
| } finally { | |
| controller.close(); | |
| } | |
| }, | |
| }); | |
| return new Response(stream, { | |
| status: response.status, | |
| statusText: response.statusText, | |
| headers: response.headers, | |
| }); | |
| } | |
| return response; | |
| } | |
| refreshToken(refresh_token) { | |
| return fetch("https://oauth2.googleapis.com/token", { | |
| method: "POST", | |
| headers: { | |
| "Content-Type": "application/json", | |
| }, | |
| body: JSON.stringify({ | |
| client_id: | |
| "681255809395-oo8ft2oprdrnp9e3aqf6av3hmdib135j.apps.googleusercontent.com", | |
| client_secret: "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", | |
| refresh_token: refresh_token, | |
| grant_type: "refresh_token", | |
| }), | |
| }) | |
| .then((response) => response.json()) | |
| .then(async (data) => { | |
| data.expiry_date = | |
| new Date().getTime() + data.expires_in * 1000 - 1000 * 60; | |
| data.refresh_token = refresh_token; | |
| delete data.expires_in; | |
| this.oauth_creds = data; | |
| await fs.writeFile(OAUTH_FILE, JSON.stringify(data, null, 2)); | |
| }); | |
| } | |
| } | |
| module.exports = GeminiCLITransformer; |
transformer 使用 gemini 和 gemini-cli有什么区别呀? 有点没理解?
配置gemini-cli 他对应的 "api_base_url": "https://cloudcode-pa.googleapis.com/v1internal", 是固定的吗?
this thing contains a hard-coded client_id and client_secret which is a significant security risk...
@anthrotype The client_id and client_secret fields are also hardcoded in gemini-cli itself. That's why I think it's normal, or even good. Otherwise, it would be more difficult to use their API.
packages/core/src/code_assist/oauth2.ts:30-39
Oh, didn't know that, thanks for clarifying
Hey there, can GeminiCLITransformer handle multi-account rotation? Is there a way to use the quota of multiple accounts simultaneously? How is the quota limit implemented for Gemini CLI? I tried multi-account rotation, but the actual available quota was only that of a single account. However, those accounts in Gemini CLI can still access Gemini-2.5-Pro, which is a bit confusing.
使用免费账户尝试,transformers的project必须填写,否则会报错。
{
"path": "$HOME/.claude-code-router/plugins/gemini-cli.js",
"options": {
"project": "your_project_id**"
}
},
此外,Providers中,api_base_url填两个都可以:
https://cloudcode-pa.googleapis.com/v1internal
或者
https://generativelanguage.googleapis.com/v1beta/models/
{
"LOG": true,
"LOG_LEVEL": "info",
"HOST": "127.0.0.1",
"PORT": 4356,
"APIKEY": "",
"API_TIMEOUT_MS": "600000",
"PROXY_URL": "",
"transformers": [
{
"path": "$HOME/.claude-code-router/plugins/gemini-cli.js",
"options": {
"project": "key"
}
},
],
"Providers": [
{
"name": "gemini",
"api_base_url": "https://cloudcode-pa.googleapis.com/v1internal",
"api_key": "oauth-managed",
"models": [
"gemini-2.5-flash",
"gemini-2.5-pro"
],
"transformer": {
"use": [
"gemini-cli"
]
}
},
],
"Router": {
"default": "gemini,gemini-2.5-pro"
},
"stream": false
}
{ "LOG": true, "LOG_LEVEL": "info", "HOST": "127.0.0.1", "PORT": 4356, "APIKEY": "", "API_TIMEOUT_MS": "600000", "PROXY_URL": "", "transformers": [ { "path": "$HOME/.claude-code-router/plugins/gemini-cli.js", "options": { "project": "key" } }, ], "Providers": [ { "name": "gemini", "api_base_url": "https://cloudcode-pa.googleapis.com/v1internal", "api_key": "oauth-managed", "models": [ "gemini-2.5-flash", "gemini-2.5-pro" ], "transformer": { "use": [ "gemini-cli" ] } }, ],
"Router": { "default": "gemini,gemini-2.5-pro" }, "stream": false }
插件的路径似乎不能写$HOME,不会自动展开,要写完整的路径。
接口 rate limit 怎么处理啊


This is my config.json but please check the warning i notice during using this tool, when i'm looking for solution i see open issue about this warning, and after i examine the code found this solution and wait for the dev to check this issue and fix it:
{ "LOG": true, "LOG_LEVEL": "info", "CLAUDE_PATH": "$HOME/.local/bin/claude", "HOST": "127.0.0.1", "PORT": 3456, "APIKEY": "", "API_TIMEOUT_MS": "600000", "PROXY_URL": "", "transformers": [ { "path": "$HOME/.claude-code-router/plugins/gemini-cli.js", "options": { "project": "your_project_id" } }, { "path": "$HOME/.claude-code-router/plugins/qwen-cli.js" } ], "Providers": [ { "name": "gemini_cli_oauth", "api_base_url": "https://cloudcode-pa.googleapis.com/v1internal", "api_key": "oauth-managed", "models": [ "gemini-2.5-flash", "gemini-2.5-pro" ], "transformer": { "use": [ "gemini-cli" ] } }, { "name": "qwen_cli", "api_base_url": "https://portal.qwen.ai/v1/chat/completions", "api_key": "oauth-managed", "models": [ "qwen3-coder-plus" ], "transformer": { "use": ["qwen-cli","enhancetool"] } }, { "name": "gemini", "api_base_url": "https://generativelanguage.googleapis.com/v1beta/models/", "api_key": "your_api_key", "models": [ "gemini-2.5-flash", "gemini-2.5-pro" ], "transformer": { "use": [ "gemini" ] } }, { "name": "gemini_1", "api_base_url": "https://generativelanguage.googleapis.com/v1beta/models/", "api_key": "your_api_key", "models": [ "gemini-2.5-flash", "gemini-2.5-pro" ], "transformer": { "use": [ "gemini" ] } } ], // WARNING: if you have statusline configured and have issue with bashtool remove it beacuse its the root cause of '[BashTool] Pre-flight check is taking longer than expected ....' this bug i notice in the codebase as it's use sync code to update the git every bash tool run and if you have large repo will cause huge delay in the bash command runing "Router": { "default": "qwen_cli,qwen3-coder-plus", // change the model to what ever you want "background": "qwen_cli,qwen3-coder-plus", // change the model to what ever you want "think": "qwen_cli,qwen3-coder-plus", // change the model to what ever you want "longContext": "qwen_cli,qwen3-coder-plus", // change the model to what ever you want "longContextThreshold": 200000, "webSearch": "gemini_1,gemini-2.5-flash" // change the model to what ever you want }, "stream": false }