Mamba是一个智能版本的Conda,用来管理Python虚拟环境。详细介绍请参考:https://mamba.readthedocs.io/en/latest/user_guide/mamba.html
curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| import matplotlib.pyplot as plt | |
| def compute_rgn_from_gradients_and_params(gradients, parameters): | |
| """ | |
| 根据梯度值和参数值直接计算 RGN | |
| 参数: |
Mamba是一个智能版本的Conda,用来管理Python虚拟环境。详细介绍请参考:https://mamba.readthedocs.io/en/latest/user_guide/mamba.html
curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
| """ | |
| @File : fast_torchvision_dataloader.py | |
| @Author: Dong Wang | |
| @Date : 2024/06/25 | |
| @Description : a fast image dataloader for Pytorch models. It tries to use FFCV to speed up your dataloader for vision tasks. | |
| You need first install FFCV in your Python ENV and run prepare_ffcv_dataset.py to prepare datasets in FFCV. | |
| """ | |
| import os | |
| from torch.utils.data import DataLoader |
| # Go to https://docs.conda.io/en/latest/miniconda.html and choose the suitable file link | |
| wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh | |
| # install Miniconda | |
| bash Miniconda3-py37_4.12.0-Linux-x86_64.sh | |
| conda create -n env_name python=3.7 | |
| conda activate env_name | |
| conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch |
| panic(cpu 1 caller 0xfffffe0026801790): watchdog timeout: no checkins from watchdogd in 93 seconds (127 total checkins since monitoring last enabled) | |
| Debugger message: panic | |
| Memory ID: 0x6 | |
| OS release type: User | |
| OS version: 22C65 | |
| Kernel version: Darwin Kernel Version 22.2.0: Fri Nov 11 02:04:44 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8103 | |
| Fileset Kernelcache UUID: ADB288150AFF2B26A022D2179A26F30C | |
| Kernel UUID: D43063DF-7FAB-3E39-9807-2FC6A0C7F76A | |
| Boot session UUID: BD64D3CE-D999-44A9-A66B-88DAF57DAA20 | |
| iBoot version: iBoot-8419.60.44 |
| hyper_output = [] | |
| with tqdm(range(-180, 181, 10), position=0) as t: | |
| for x in t: | |
| for y in tqdm(range(-180, 181, 10), disable=True): | |
| for z in tqdm(range(-180, 181, 10), disable=True): | |
| angles = torch.tensor([x,y,z])/180*torch.pi | |
| Hyper_x = transform_angles(angles=angles).to(device=gpu_computation) | |
| hyper_output.append(model.hyper_stack(Hyper_x).cpu().detach().numpy()) |
| git clone https://github.com/nanguoyu/GenoCAE.git | |
| cd GenoCAE/ | |
| docker build -t gcae/genocae:build -f docker/build.dockerfile . | |
| docker run -it --rm -v ${PWD}:/workspace gcae/genocae:build python3 run_gcae.py --help |
| apt-get update && apt-get upgrade -y &&\ | |
| apt-get install -y wget \ | |
| build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev | |
| wget https://www.python.org/ftp/python/3.8.0/Python-3.8.0.tgz &&\ | |
| tar -xf Python-3.8.0.tgz &&\ | |
| cd Python-3.8.0 &&\ | |
| ./configure --enable-optimizations &&\ | |
| make -j8 &&\ |
yum install gcc-c++
wget https://cmake.org/files/v3.12/cmake-3.12.3.tar.gz
| sudo apt-get install qt5-default | |
| sudo apt-get install opencl-headers | |
| sudo pip install pylint | |
| # Install minimal prerequisites (Ubuntu 18.04 as reference) | |
| sudo apt update && sudo apt install -y cmake g++ wget unzip | |
| # Download and unpack sources | |
| wget -O opencv.zip https://github.com/opencv/opencv/archive/master.zip | |
| wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/master.zip | |
| unzip opencv.zip | |
| unzip opencv_contrib.zip |