Created
March 17, 2022 13:39
-
-
Save oluwandabira/1bc21185af22cdd44b4d63e0a59a8917 to your computer and use it in GitHub Desktop.
Detetectron2 DeepLabV3 output
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Command Line Args: Namespace(config_file='configs/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml', dist_url='tcp://127.0.0.1:51208', eval_only=False, machine_rank=0, num_gpus=1, num_machines=1, opts=[], resume=False) | |
| [32m[03/17 15:22:22 detectron2]: [0mRank of current process: 0. World size: 1 | |
| [32m[03/17 15:22:23 detectron2]: [0mEnvironment info: | |
| ---------------------- ----------------------------------------------------------------------------------------------------- | |
| sys.platform linux | |
| Python 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0] | |
| numpy 1.22.3 | |
| detectron2 0.6 @/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2 | |
| Compiler GCC 9.4 | |
| CUDA compiler not available | |
| DETECTRON2_ENV_MODULE <not set> | |
| PyTorch 1.11.0+cu102 @/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch | |
| PyTorch debug build False | |
| GPU available Yes | |
| GPU 0 NVIDIA GeForce RTX 2080 Ti (arch=7.5) | |
| Driver version 465.19.01 | |
| CUDA_HOME /usr/local/cuda | |
| Pillow 9.0.1 | |
| torchvision 0.12.0+cu102 @/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torchvision | |
| torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5 | |
| fvcore 0.1.5.post20220305 | |
| iopath 0.1.9 | |
| cv2 Not found | |
| ---------------------- ----------------------------------------------------------------------------------------------------- | |
| PyTorch built with: | |
| - GCC 7.3 | |
| - C++ Version: 201402 | |
| - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications | |
| - Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e) | |
| - OpenMP 201511 (a.k.a. OpenMP 4.5) | |
| - LAPACK is enabled (usually provided by MKL) | |
| - NNPACK is enabled | |
| - CPU capability usage: AVX2 | |
| - CUDA Runtime 10.2 | |
| - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70 | |
| - CuDNN 7.6.5 | |
| - Magma 2.5.2 | |
| - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.2, CUDNN_VERSION=7.6.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, | |
| [32m[03/17 15:22:23 detectron2]: [0mCommand line arguments: Namespace(config_file='configs/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml', dist_url='tcp://127.0.0.1:51208', eval_only=False, machine_rank=0, num_gpus=1, num_machines=1, opts=[], resume=False) | |
| [32m[03/17 15:22:23 detectron2]: [0mContents of args.config_file=configs/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml: | |
| _BASE_: Base-DeepLabV3-OS16-Semantic.yaml | |
| MODEL: | |
| WEIGHTS: "detectron2://DeepLab/R-103.pkl" | |
| PIXEL_MEAN: [123.675, 116.280, 103.530] | |
| PIXEL_STD: [58.395, 57.120, 57.375] | |
| BACKBONE: | |
| NAME: "build_resnet_deeplab_backbone" | |
| RESNETS: | |
| DEPTH: 101 | |
| NORM: "SyncBN" | |
| RES5_MULTI_GRID: [1, 2, 4] | |
| STEM_TYPE: "deeplab" | |
| STEM_OUT_CHANNELS: 128 | |
| STRIDE_IN_1X1: False | |
| SEM_SEG_HEAD: | |
| NAME: "DeepLabV3Head" | |
| NORM: "SyncBN" | |
| INPUT: | |
| FORMAT: "RGB" | |
| [32m[03/17 15:22:23 detectron2]: [0mRunning with full config: | |
| CUDNN_BENCHMARK: false | |
| DATALOADER: | |
| ASPECT_RATIO_GROUPING: true | |
| FILTER_EMPTY_ANNOTATIONS: true | |
| NUM_WORKERS: 10 | |
| REPEAT_THRESHOLD: 0.0 | |
| SAMPLER_TRAIN: TrainingSampler | |
| DATASETS: | |
| PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000 | |
| PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000 | |
| PROPOSAL_FILES_TEST: [] | |
| PROPOSAL_FILES_TRAIN: [] | |
| TEST: | |
| - cityscapes_fine_sem_seg_val | |
| TRAIN: | |
| - cityscapes_fine_sem_seg_train | |
| GLOBAL: | |
| HACK: 1.0 | |
| INPUT: | |
| CROP: | |
| ENABLED: true | |
| SINGLE_CATEGORY_MAX_AREA: 1.0 | |
| SIZE: | |
| - 512 | |
| - 1024 | |
| TYPE: absolute | |
| FORMAT: RGB | |
| MASK_FORMAT: polygon | |
| MAX_SIZE_TEST: 2048 | |
| MAX_SIZE_TRAIN: 4096 | |
| MIN_SIZE_TEST: 1024 | |
| MIN_SIZE_TRAIN: | |
| - 512 | |
| - 768 | |
| - 1024 | |
| - 1280 | |
| - 1536 | |
| - 1792 | |
| - 2048 | |
| MIN_SIZE_TRAIN_SAMPLING: choice | |
| RANDOM_FLIP: horizontal | |
| MODEL: | |
| ANCHOR_GENERATOR: | |
| ANGLES: | |
| - - -90 | |
| - 0 | |
| - 90 | |
| ASPECT_RATIOS: | |
| - - 0.5 | |
| - 1.0 | |
| - 2.0 | |
| NAME: DefaultAnchorGenerator | |
| OFFSET: 0.0 | |
| SIZES: | |
| - - 32 | |
| - 64 | |
| - 128 | |
| - 256 | |
| - 512 | |
| BACKBONE: | |
| FREEZE_AT: 0 | |
| NAME: build_resnet_deeplab_backbone | |
| DEVICE: cuda | |
| FPN: | |
| FUSE_TYPE: sum | |
| IN_FEATURES: [] | |
| NORM: '' | |
| OUT_CHANNELS: 256 | |
| KEYPOINT_ON: false | |
| LOAD_PROPOSALS: false | |
| MASK_ON: false | |
| META_ARCHITECTURE: SemanticSegmentor | |
| PANOPTIC_FPN: | |
| COMBINE: | |
| ENABLED: true | |
| INSTANCES_CONFIDENCE_THRESH: 0.5 | |
| OVERLAP_THRESH: 0.5 | |
| STUFF_AREA_LIMIT: 4096 | |
| INSTANCE_LOSS_WEIGHT: 1.0 | |
| PIXEL_MEAN: | |
| - 123.675 | |
| - 116.28 | |
| - 103.53 | |
| PIXEL_STD: | |
| - 58.395 | |
| - 57.12 | |
| - 57.375 | |
| PROPOSAL_GENERATOR: | |
| MIN_SIZE: 0 | |
| NAME: RPN | |
| RESNETS: | |
| DEFORM_MODULATED: false | |
| DEFORM_NUM_GROUPS: 1 | |
| DEFORM_ON_PER_STAGE: | |
| - false | |
| - false | |
| - false | |
| - false | |
| DEPTH: 101 | |
| NORM: SyncBN | |
| NUM_GROUPS: 1 | |
| OUT_FEATURES: | |
| - res5 | |
| RES2_OUT_CHANNELS: 256 | |
| RES4_DILATION: 1 | |
| RES5_DILATION: 2 | |
| RES5_MULTI_GRID: | |
| - 1 | |
| - 2 | |
| - 4 | |
| STEM_OUT_CHANNELS: 128 | |
| STEM_TYPE: deeplab | |
| STRIDE_IN_1X1: false | |
| WIDTH_PER_GROUP: 64 | |
| RETINANET: | |
| BBOX_REG_LOSS_TYPE: smooth_l1 | |
| BBOX_REG_WEIGHTS: &id002 | |
| - 1.0 | |
| - 1.0 | |
| - 1.0 | |
| - 1.0 | |
| FOCAL_LOSS_ALPHA: 0.25 | |
| FOCAL_LOSS_GAMMA: 2.0 | |
| IN_FEATURES: | |
| - p3 | |
| - p4 | |
| - p5 | |
| - p6 | |
| - p7 | |
| IOU_LABELS: | |
| - 0 | |
| - -1 | |
| - 1 | |
| IOU_THRESHOLDS: | |
| - 0.4 | |
| - 0.5 | |
| NMS_THRESH_TEST: 0.5 | |
| NORM: '' | |
| NUM_CLASSES: 80 | |
| NUM_CONVS: 4 | |
| PRIOR_PROB: 0.01 | |
| SCORE_THRESH_TEST: 0.05 | |
| SMOOTH_L1_LOSS_BETA: 0.1 | |
| TOPK_CANDIDATES_TEST: 1000 | |
| ROI_BOX_CASCADE_HEAD: | |
| BBOX_REG_WEIGHTS: | |
| - &id001 | |
| - 10.0 | |
| - 10.0 | |
| - 5.0 | |
| - 5.0 | |
| - - 20.0 | |
| - 20.0 | |
| - 10.0 | |
| - 10.0 | |
| - - 30.0 | |
| - 30.0 | |
| - 15.0 | |
| - 15.0 | |
| IOUS: | |
| - 0.5 | |
| - 0.6 | |
| - 0.7 | |
| ROI_BOX_HEAD: | |
| BBOX_REG_LOSS_TYPE: smooth_l1 | |
| BBOX_REG_LOSS_WEIGHT: 1.0 | |
| BBOX_REG_WEIGHTS: *id001 | |
| CLS_AGNOSTIC_BBOX_REG: false | |
| CONV_DIM: 256 | |
| FC_DIM: 1024 | |
| NAME: FastRCNNConvFCHead | |
| NORM: '' | |
| NUM_CONV: 0 | |
| NUM_FC: 2 | |
| POOLER_RESOLUTION: 7 | |
| POOLER_SAMPLING_RATIO: 0 | |
| POOLER_TYPE: ROIAlignV2 | |
| SMOOTH_L1_BETA: 0.0 | |
| TRAIN_ON_PRED_BOXES: false | |
| ROI_HEADS: | |
| BATCH_SIZE_PER_IMAGE: 512 | |
| IN_FEATURES: | |
| - res5 | |
| IOU_LABELS: | |
| - 0 | |
| - 1 | |
| IOU_THRESHOLDS: | |
| - 0.5 | |
| NAME: StandardROIHeads | |
| NMS_THRESH_TEST: 0.5 | |
| NUM_CLASSES: 80 | |
| POSITIVE_FRACTION: 0.25 | |
| PROPOSAL_APPEND_GT: true | |
| SCORE_THRESH_TEST: 0.05 | |
| ROI_KEYPOINT_HEAD: | |
| CONV_DIMS: | |
| - 512 | |
| - 512 | |
| - 512 | |
| - 512 | |
| - 512 | |
| - 512 | |
| - 512 | |
| - 512 | |
| LOSS_WEIGHT: 1.0 | |
| MIN_KEYPOINTS_PER_IMAGE: 1 | |
| NAME: KRCNNConvDeconvUpsampleHead | |
| NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true | |
| NUM_KEYPOINTS: 17 | |
| POOLER_RESOLUTION: 14 | |
| POOLER_SAMPLING_RATIO: 0 | |
| POOLER_TYPE: ROIAlignV2 | |
| ROI_MASK_HEAD: | |
| CLS_AGNOSTIC_MASK: false | |
| CONV_DIM: 256 | |
| NAME: MaskRCNNConvUpsampleHead | |
| NORM: '' | |
| NUM_CONV: 4 | |
| POOLER_RESOLUTION: 14 | |
| POOLER_SAMPLING_RATIO: 0 | |
| POOLER_TYPE: ROIAlignV2 | |
| RPN: | |
| BATCH_SIZE_PER_IMAGE: 256 | |
| BBOX_REG_LOSS_TYPE: smooth_l1 | |
| BBOX_REG_LOSS_WEIGHT: 1.0 | |
| BBOX_REG_WEIGHTS: *id002 | |
| BOUNDARY_THRESH: -1 | |
| CONV_DIMS: | |
| - -1 | |
| HEAD_NAME: StandardRPNHead | |
| IN_FEATURES: | |
| - res5 | |
| IOU_LABELS: | |
| - 0 | |
| - -1 | |
| - 1 | |
| IOU_THRESHOLDS: | |
| - 0.3 | |
| - 0.7 | |
| LOSS_WEIGHT: 1.0 | |
| NMS_THRESH: 0.7 | |
| POSITIVE_FRACTION: 0.5 | |
| POST_NMS_TOPK_TEST: 1000 | |
| POST_NMS_TOPK_TRAIN: 2000 | |
| PRE_NMS_TOPK_TEST: 6000 | |
| PRE_NMS_TOPK_TRAIN: 12000 | |
| SMOOTH_L1_BETA: 0.0 | |
| SEM_SEG_HEAD: | |
| ASPP_CHANNELS: 256 | |
| ASPP_DILATIONS: | |
| - 6 | |
| - 12 | |
| - 18 | |
| ASPP_DROPOUT: 0.1 | |
| COMMON_STRIDE: 16 | |
| CONVS_DIM: 256 | |
| IGNORE_VALUE: 255 | |
| IN_FEATURES: | |
| - res5 | |
| LOSS_TYPE: hard_pixel_mining | |
| LOSS_WEIGHT: 1.0 | |
| NAME: DeepLabV3Head | |
| NORM: SyncBN | |
| NUM_CLASSES: 19 | |
| PROJECT_CHANNELS: | |
| - 48 | |
| PROJECT_FEATURES: | |
| - res2 | |
| USE_DEPTHWISE_SEPARABLE_CONV: false | |
| WEIGHTS: detectron2://DeepLab/R-103.pkl | |
| OUTPUT_DIR: ./output | |
| SEED: -1 | |
| SOLVER: | |
| AMP: | |
| ENABLED: false | |
| BASE_LR: 0.01 | |
| BASE_LR_END: 0.0 | |
| BIAS_LR_FACTOR: 1.0 | |
| CHECKPOINT_PERIOD: 5000 | |
| CLIP_GRADIENTS: | |
| CLIP_TYPE: value | |
| CLIP_VALUE: 1.0 | |
| ENABLED: false | |
| NORM_TYPE: 2.0 | |
| GAMMA: 0.1 | |
| IMS_PER_BATCH: 16 | |
| LR_SCHEDULER_NAME: WarmupPolyLR | |
| MAX_ITER: 90000 | |
| MOMENTUM: 0.9 | |
| NESTEROV: false | |
| POLY_LR_CONSTANT_ENDING: 0.0 | |
| POLY_LR_POWER: 0.9 | |
| REFERENCE_WORLD_SIZE: 0 | |
| STEPS: | |
| - 60000 | |
| - 80000 | |
| WARMUP_FACTOR: 0.001 | |
| WARMUP_ITERS: 1000 | |
| WARMUP_METHOD: linear | |
| WEIGHT_DECAY: 0.0001 | |
| WEIGHT_DECAY_BIAS: null | |
| WEIGHT_DECAY_NORM: 0.0 | |
| TEST: | |
| AUG: | |
| ENABLED: false | |
| FLIP: true | |
| MAX_SIZE: 4000 | |
| MIN_SIZES: | |
| - 400 | |
| - 500 | |
| - 600 | |
| - 700 | |
| - 800 | |
| - 900 | |
| - 1000 | |
| - 1100 | |
| - 1200 | |
| DETECTIONS_PER_IMAGE: 100 | |
| EVAL_PERIOD: 0 | |
| EXPECTED_RESULTS: [] | |
| KEYPOINT_OKS_SIGMAS: [] | |
| PRECISE_BN: | |
| ENABLED: false | |
| NUM_ITER: 200 | |
| VERSION: 2 | |
| VIS_PERIOD: 0 | |
| [32m[03/17 15:22:23 detectron2]: [0mFull config saved to ./output/config.yaml | |
| [32m[03/17 15:22:23 d2.utils.env]: [0mUsing a generated random seed 26157796 | |
| [32m[03/17 15:22:25 d2.engine.defaults]: [0mModel: | |
| SemanticSegmentor( | |
| (backbone): ResNet( | |
| (stem): DeepLabStem( | |
| (conv1): Conv2d( | |
| 3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (res2): Sequential( | |
| (0): BottleneckBlock( | |
| (shortcut): Conv2d( | |
| 128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv1): Conv2d( | |
| 128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (2): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| ) | |
| (res3): Sequential( | |
| (0): BottleneckBlock( | |
| (shortcut): Conv2d( | |
| 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv1): Conv2d( | |
| 256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (2): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (3): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| ) | |
| (res4): Sequential( | |
| (0): BottleneckBlock( | |
| (shortcut): Conv2d( | |
| 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv1): Conv2d( | |
| 512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (2): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (3): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (4): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (5): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (6): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (7): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (8): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (9): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (10): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (11): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (12): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (13): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (14): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (15): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (16): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (17): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (18): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (19): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (20): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (21): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (22): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| ) | |
| (res5): Sequential( | |
| (0): BottleneckBlock( | |
| (shortcut): Conv2d( | |
| 1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv1): Conv2d( | |
| 1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (1): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (2): BottleneckBlock( | |
| (conv1): Conv2d( | |
| 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv2): Conv2d( | |
| 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(8, 8), dilation=(8, 8), bias=False | |
| (norm): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (conv3): Conv2d( | |
| 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| ) | |
| ) | |
| (sem_seg_head): DeepLabV3Head( | |
| (aspp): ASPP( | |
| (convs): ModuleList( | |
| (0): Conv2d( | |
| 2048, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (1): Conv2d( | |
| 2048, 256, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (2): Conv2d( | |
| 2048, 256, kernel_size=(3, 3), stride=(1, 1), padding=(12, 12), dilation=(12, 12), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (3): Conv2d( | |
| 2048, 256, kernel_size=(3, 3), stride=(1, 1), padding=(18, 18), dilation=(18, 18), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| (4): Sequential( | |
| (0): AvgPool2d(kernel_size=(32, 64), stride=1, padding=0) | |
| (1): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1)) | |
| ) | |
| ) | |
| (project): Conv2d( | |
| 1280, 256, kernel_size=(1, 1), stride=(1, 1), bias=False | |
| (norm): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) | |
| ) | |
| ) | |
| (predictor): Conv2d(256, 19, kernel_size=(1, 1), stride=(1, 1)) | |
| (loss): DeepLabCE( | |
| (criterion): CrossEntropyLoss() | |
| ) | |
| ) | |
| ) | |
| [32m[03/17 15:22:25 d2.data.dataset_mapper]: [0m[DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(512, 768, 1024, 1280, 1536, 1792, 2048), max_size=4096, sample_style='choice'), RandomCrop_CategoryAreaConstraint(crop_type='absolute', crop_size=[512, 1024], single_category_max_area=1.0, ignored_category=255), RandomFlip()] | |
| [32m[03/17 15:22:25 d2.data.datasets.cityscapes]: [0m18 cities found in '/illukas/home/olalaw/data/cityscapes/leftImg8bit/train/'. | |
| [32m[03/17 15:22:29 d2.data.build]: [0mUsing training sampler TrainingSampler | |
| [32m[03/17 15:22:29 d2.data.common]: [0mSerializing 2975 elements to byte tensors and concatenating them all ... | |
| [32m[03/17 15:22:29 d2.data.common]: [0mSerialized dataset takes 0.80 MiB | |
| [32m[03/17 15:22:29 fvcore.common.checkpoint]: [0m[Checkpointer] Loading from detectron2://DeepLab/R-103.pkl ... | |
| [32m[03/17 15:22:29 fvcore.common.checkpoint]: [0mReading a file from 'torchvision' | |
| [32m[03/17 15:22:29 d2.checkpoint.c2_model_loading]: [0mFollowing weights matched with submodule backbone: | |
| | Names in Model | Names in Checkpoint | Shapes | | |
| |:------------------|:-----------------------------------------------------------------------------------------------------------|:---------------------------------------------------| | |
| | res2.0.conv1.* | res2.0.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,128,1,1) | | |
| | res2.0.conv2.* | res2.0.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,64,3,3) | | |
| | res2.0.conv3.* | res2.0.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,64,1,1) | | |
| | res2.0.shortcut.* | res2.0.shortcut.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,128,1,1) | | |
| | res2.1.conv1.* | res2.1.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,256,1,1) | | |
| | res2.1.conv2.* | res2.1.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,64,3,3) | | |
| | res2.1.conv3.* | res2.1.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,64,1,1) | | |
| | res2.2.conv1.* | res2.2.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,256,1,1) | | |
| | res2.2.conv2.* | res2.2.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,64,3,3) | | |
| | res2.2.conv3.* | res2.2.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,64,1,1) | | |
| | res3.0.conv1.* | res3.0.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,256,1,1) | | |
| | res3.0.conv2.* | res3.0.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,128,3,3) | | |
| | res3.0.conv3.* | res3.0.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,128,1,1) | | |
| | res3.0.shortcut.* | res3.0.shortcut.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,256,1,1) | | |
| | res3.1.conv1.* | res3.1.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,512,1,1) | | |
| | res3.1.conv2.* | res3.1.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,128,3,3) | | |
| | res3.1.conv3.* | res3.1.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,128,1,1) | | |
| | res3.2.conv1.* | res3.2.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,512,1,1) | | |
| | res3.2.conv2.* | res3.2.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,128,3,3) | | |
| | res3.2.conv3.* | res3.2.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,128,1,1) | | |
| | res3.3.conv1.* | res3.3.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,512,1,1) | | |
| | res3.3.conv2.* | res3.3.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,128,3,3) | | |
| | res3.3.conv3.* | res3.3.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,128,1,1) | | |
| | res4.0.conv1.* | res4.0.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,512,1,1) | | |
| | res4.0.conv2.* | res4.0.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.0.conv3.* | res4.0.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.0.shortcut.* | res4.0.shortcut.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,512,1,1) | | |
| | res4.1.conv1.* | res4.1.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.1.conv2.* | res4.1.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.1.conv3.* | res4.1.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.10.conv1.* | res4.10.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.10.conv2.* | res4.10.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.10.conv3.* | res4.10.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.11.conv1.* | res4.11.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.11.conv2.* | res4.11.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.11.conv3.* | res4.11.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.12.conv1.* | res4.12.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.12.conv2.* | res4.12.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.12.conv3.* | res4.12.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.13.conv1.* | res4.13.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.13.conv2.* | res4.13.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.13.conv3.* | res4.13.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.14.conv1.* | res4.14.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.14.conv2.* | res4.14.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.14.conv3.* | res4.14.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.15.conv1.* | res4.15.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.15.conv2.* | res4.15.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.15.conv3.* | res4.15.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.16.conv1.* | res4.16.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.16.conv2.* | res4.16.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.16.conv3.* | res4.16.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.17.conv1.* | res4.17.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.17.conv2.* | res4.17.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.17.conv3.* | res4.17.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.18.conv1.* | res4.18.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.18.conv2.* | res4.18.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.18.conv3.* | res4.18.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.19.conv1.* | res4.19.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.19.conv2.* | res4.19.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.19.conv3.* | res4.19.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.2.conv1.* | res4.2.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.2.conv2.* | res4.2.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.2.conv3.* | res4.2.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.20.conv1.* | res4.20.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.20.conv2.* | res4.20.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.20.conv3.* | res4.20.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.21.conv1.* | res4.21.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.21.conv2.* | res4.21.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.21.conv3.* | res4.21.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.22.conv1.* | res4.22.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.22.conv2.* | res4.22.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.22.conv3.* | res4.22.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.3.conv1.* | res4.3.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.3.conv2.* | res4.3.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.3.conv3.* | res4.3.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.4.conv1.* | res4.4.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.4.conv2.* | res4.4.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.4.conv3.* | res4.4.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.5.conv1.* | res4.5.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.5.conv2.* | res4.5.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.5.conv3.* | res4.5.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.6.conv1.* | res4.6.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.6.conv2.* | res4.6.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.6.conv3.* | res4.6.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.7.conv1.* | res4.7.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.7.conv2.* | res4.7.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.7.conv3.* | res4.7.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.8.conv1.* | res4.8.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.8.conv2.* | res4.8.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.8.conv3.* | res4.8.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res4.9.conv1.* | res4.9.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,1024,1,1) | | |
| | res4.9.conv2.* | res4.9.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (256,) () (256,) (256,) (256,) (256,256,3,3) | | |
| | res4.9.conv3.* | res4.9.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (1024,) () (1024,) (1024,) (1024,) (1024,256,1,1) | | |
| | res5.0.conv1.* | res5.0.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,1024,1,1) | | |
| | res5.0.conv2.* | res5.0.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,512,3,3) | | |
| | res5.0.conv3.* | res5.0.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (2048,) () (2048,) (2048,) (2048,) (2048,512,1,1) | | |
| | res5.0.shortcut.* | res5.0.shortcut.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (2048,) () (2048,) (2048,) (2048,) (2048,1024,1,1) | | |
| | res5.1.conv1.* | res5.1.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,2048,1,1) | | |
| | res5.1.conv2.* | res5.1.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,512,3,3) | | |
| | res5.1.conv3.* | res5.1.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (2048,) () (2048,) (2048,) (2048,) (2048,512,1,1) | | |
| | res5.2.conv1.* | res5.2.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,2048,1,1) | | |
| | res5.2.conv2.* | res5.2.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (512,) () (512,) (512,) (512,) (512,512,3,3) | | |
| | res5.2.conv3.* | res5.2.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (2048,) () (2048,) (2048,) (2048,) (2048,512,1,1) | | |
| | stem.conv1.* | stem.conv1.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,3,3,3) | | |
| | stem.conv2.* | stem.conv2.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (64,) () (64,) (64,) (64,) (64,64,3,3) | | |
| | stem.conv3.* | stem.conv3.{norm.bias,norm.num_batches_tracked,norm.running_mean,norm.running_var,norm.weight,weight} | (128,) () (128,) (128,) (128,) (128,64,3,3) | | |
| [5m[31mWARNING[0m [32m[03/17 15:22:29 fvcore.common.checkpoint]: [0mSome model parameters or buffers are not found in the checkpoint: | |
| [34msem_seg_head.aspp.convs.0.norm.{bias, running_mean, running_var, weight}[0m | |
| [34msem_seg_head.aspp.convs.0.weight[0m | |
| [34msem_seg_head.aspp.convs.1.norm.{bias, running_mean, running_var, weight}[0m | |
| [34msem_seg_head.aspp.convs.1.weight[0m | |
| [34msem_seg_head.aspp.convs.2.norm.{bias, running_mean, running_var, weight}[0m | |
| [34msem_seg_head.aspp.convs.2.weight[0m | |
| [34msem_seg_head.aspp.convs.3.norm.{bias, running_mean, running_var, weight}[0m | |
| [34msem_seg_head.aspp.convs.3.weight[0m | |
| [34msem_seg_head.aspp.convs.4.1.{bias, weight}[0m | |
| [34msem_seg_head.aspp.project.norm.{bias, running_mean, running_var, weight}[0m | |
| [34msem_seg_head.aspp.project.weight[0m | |
| [34msem_seg_head.predictor.{bias, weight}[0m | |
| [5m[31mWARNING[0m [32m[03/17 15:22:29 fvcore.common.checkpoint]: [0mThe checkpoint state_dict contains keys that are not used by the model: | |
| [35mstem.fc.{bias, weight}[0m | |
| [32m[03/17 15:22:29 d2.engine.train_loop]: [0mStarting training from iteration 0 | |
| [4m[5m[31mERROR[0m [32m[03/17 15:22:30 d2.engine.train_loop]: [0mException during training: | |
| Traceback (most recent call last): | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/train_loop.py", line 149, in train | |
| self.run_step() | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/defaults.py", line 494, in run_step | |
| self._trainer.run_step() | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/train_loop.py", line 273, in run_step | |
| loss_dict = self.model(data) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/modeling/meta_arch/semantic_seg.py", line 104, in forward | |
| features = self.backbone(images.tensor) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/modeling/backbone/resnet.py", line 445, in forward | |
| x = self.stem(x) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/projects/DeepLab/deeplab/resnet.py", line 60, in forward | |
| x = self.conv1(x) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/layers/wrappers.py", line 110, in forward | |
| x = self.norm(x) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 731, in forward | |
| world_size = torch.distributed.get_world_size(process_group) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 867, in get_world_size | |
| return _get_group_size(group) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 325, in _get_group_size | |
| default_pg = _get_default_group() | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 429, in _get_default_group | |
| raise RuntimeError( | |
| RuntimeError: Default process group has not been initialized, please make sure to call init_process_group. | |
| [32m[03/17 15:22:30 d2.engine.hooks]: [0mTotal training time: 0:00:00 (0:00:00 on hooks) | |
| [32m[03/17 15:22:30 d2.utils.events]: [0m iter: 0 lr: N/A max_mem: 833M | |
| Traceback (most recent call last): | |
| File "train_net.py", line 129, in <module> | |
| launch( | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/launch.py", line 82, in launch | |
| main_func(*args) | |
| File "train_net.py", line 123, in main | |
| return trainer.train() | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/defaults.py", line 484, in train | |
| super().train(self.start_iter, self.max_iter) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/train_loop.py", line 149, in train | |
| self.run_step() | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/defaults.py", line 494, in run_step | |
| self._trainer.run_step() | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/engine/train_loop.py", line 273, in run_step | |
| loss_dict = self.model(data) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/modeling/meta_arch/semantic_seg.py", line 104, in forward | |
| features = self.backbone(images.tensor) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/modeling/backbone/resnet.py", line 445, in forward | |
| x = self.stem(x) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/projects/DeepLab/deeplab/resnet.py", line 60, in forward | |
| x = self.conv1(x) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/detectron2/detectron2/layers/wrappers.py", line 110, in forward | |
| x = self.norm(x) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl | |
| return forward_call(*input, **kwargs) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/nn/modules/batchnorm.py", line 731, in forward | |
| world_size = torch.distributed.get_world_size(process_group) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 867, in get_world_size | |
| return _get_group_size(group) | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 325, in _get_group_size | |
| default_pg = _get_default_group() | |
| File "/illukas/home/olalaw/repos/suim-detectron/.venv/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 429, in _get_default_group | |
| raise RuntimeError( | |
| RuntimeError: Default process group has not been initialized, please make sure to call init_process_group. | |
| Command exited with non-zero status 1 | |
| Command being timed: "python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_R_103_os16_mg124_poly_90k_bs16.yaml" | |
| User time (seconds): 16.14 | |
| System time (seconds): 5.06 | |
| Percent of CPU this job got: 214% | |
| Elapsed (wall clock) time (h:mm:ss or m:ss): 0:09.86 | |
| Average shared text size (kbytes): 0 | |
| Average unshared data size (kbytes): 0 | |
| Average stack size (kbytes): 0 | |
| Average total size (kbytes): 0 | |
| Maximum resident set size (kbytes): 3032480 | |
| Average resident set size (kbytes): 0 | |
| Major (requiring I/O) page faults: 0 | |
| Minor (reclaiming a frame) page faults: 1110179 | |
| Voluntary context switches: 13077 | |
| Involuntary context switches: 2773 | |
| Swaps: 0 | |
| File system inputs: 141008 | |
| File system outputs: 296 | |
| Socket messages sent: 0 | |
| Socket messages received: 0 | |
| Signals delivered: 0 | |
| Page size (bytes): 4096 | |
| Exit status: 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment