Created
February 18, 2018 06:02
-
-
Save owstron/e8bde8a79bee2bfe1deff7cab06081d3 to your computer and use it in GitHub Desktop.
Analysis of Lalonde data set using 3 different models. CS112 Lalonde 3 Ways assignment
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library('Matching') | |
| library(boot) | |
| library(arm) | |
| library(randomForest) | |
| data(lalonde) | |
| attach(lalonde) | |
| # Normalizing the real earnings by dividing by 1000 dollars. | |
| lalonde$re75 = lalonde$re75 / 1000 | |
| lalonde$re78 = lalonde$re78 / 1000 | |
| lalonde$re74 = lalonde$re74 / 1000 | |
| lalonde.nodegr = subset(lalonde, lalonde$nodegr == 1) | |
| lalonde.degr = subset(lalonde, lalonde$nodegr == 0) | |
| # Quuestion 1 | |
| # Finding the best model using cross validation error estimate | |
| set.seed(23) | |
| cv.errors = rep(0,4) | |
| lm1 = glm(re78 ~ age + black + educ + hisp + u75 + married + treat + re75 + u74 +re74, data = lalonde.nodegr) | |
| summary(lm1) | |
| cv.errors[1] = cv.glm(lalonde.nodegr, lm1, K = 10)$delta[1] | |
| lm2 = glm(re78 ~ age + black + educ + u75 + treat + re75 + u74 +re74, data = lalonde.nodegr) | |
| summary(lm2) | |
| cv.errors[2] = cv.glm(lalonde.nodegr, lm2, K = 10)$delta[1] | |
| lm3 = glm(re78 ~ age + black + educ + u75 + treat+ u74, data = lalonde.nodegr) | |
| summary(lm3) | |
| cv.errors[3] = cv.glm(lalonde.nodegr, lm3, K = 10)$delta[1] | |
| lm4 = glm(re78 ~ age + black + u75 + treat, data = lalonde.nodegr) | |
| summary(lm4) | |
| cv.errors[4] = cv.glm(lalonde.nodegr, lm4, K = 10)$delta[1] | |
| names(cv.errors) = c("lm1", "lm2", "lm3", "lm4") | |
| cv.errors #Prints all the cross validation errors for the estimates. | |
| # Lalonde No Degree | |
| lm_nodegr = glm(re78 ~ age + black + u75 + treat , data = lalonde.nodegr) | |
| summary(lm_nodegr) | |
| set.seed(23) | |
| lm_nodegr.cv.error = cv.glm(lalonde.nodegr, lm_nodegr, K = 10)$delta[1] | |
| cat("Cross Validation Error Estimate::", lm_nodegr.cv.error) | |
| lm_nodegr.sim <- sim(lm_nodegr) | |
| coef(lm_nodegr.sim) | |
| predictors_name = c("age", "black", "u75", "treat") | |
| # in coef(lm_nodegr.sim) Columns are : Intercept, Age, Black, U75 and Treat | |
| predictors_ci_lb = c(quantile(coef(lm_nodegr.sim)[,2], c(0.025,0.975))[1], | |
| quantile(coef(lm_nodegr.sim)[,3], c(0.025,0.975))[1], | |
| quantile(coef(lm_nodegr.sim)[,4], c(0.025,0.975))[1], | |
| quantile(coef(lm_nodegr.sim)[,5], c(0.025,0.975))[1]) | |
| predictors_ci_ub = c(quantile(coef(lm_nodegr.sim)[,2], c(0.025,0.975))[2], | |
| quantile(coef(lm_nodegr.sim)[,3], c(0.025,0.975))[2], | |
| quantile(coef(lm_nodegr.sim)[,4], c(0.025,0.975))[2], | |
| quantile(coef(lm_nodegr.sim)[,5], c(0.025,0.975))[2]) | |
| lm_nodegr.confint = data.frame(predictors_name, predictors_ci_lb, predictors_ci_ub) | |
| names(lm_nodegr.confint) = c("predictors", "lower bound", "upper bound") | |
| lm_nodegr.confint #Confidence interval of all the predictor variable | |
| # For degree holders | |
| lm_degr = glm(re78 ~ age + black + u75 + treat, data = lalonde.degr) | |
| summary(lm_degr) | |
| lm_degr.sim <- sim(lm_degr) | |
| coef(lm_degr.sim) | |
| set.seed(25) | |
| lm_degr.cv.error = cv.glm(lalonde.degr, lm_degr, K = 10)$delta[1] | |
| cat("Cross Validation Error Estimate::", lm_degr.cv.error) | |
| predictors_name = c("age", "black", "u75", "treat") | |
| predictors_ci_lb = c(quantile(coef(lm_degr.sim)[,2], c(0.025,0.975))[1], | |
| quantile(coef(lm_degr.sim)[,3], c(0.025,0.975))[1], | |
| quantile(coef(lm_degr.sim)[,4], c(0.025,0.975))[1], | |
| quantile(coef(lm_degr.sim)[,5], c(0.025,0.975))[1]) | |
| predictors_ci_ub = c(quantile(coef(lm_degr.sim)[,2], c(0.025,0.975))[2], | |
| quantile(coef(lm_degr.sim)[,3], c(0.025,0.975))[2], | |
| quantile(coef(lm_degr.sim)[,4], c(0.025,0.975))[2], | |
| quantile(coef(lm_degr.sim)[,5], c(0.025,0.975))[2]) | |
| lm_degr.confint = data.frame(predictors_name, predictors_ci_lb, predictors_ci_ub) | |
| names(lm_degr.confint) = c("predictors", "lower bound", "upper bound") | |
| lm_nodegr.confint | |
| # Question 2 | |
| lm_effect = glm(re78 ~ treat + nodegr + I(treat * nodegr), data = lalonde) | |
| summary(lm_effect) | |
| lm_effect.sim = sim(lm_effect) | |
| coef(lm_effect.sim) | |
| plot (0, 0, ylim = c(-2, 5), xlim = c(0, 1), | |
| xlab="Degree status (nodegree)", ylab="Treatment Effect", | |
| main="Treatment effect with interacting term") | |
| abline (h = 0, lwd=.5, lty=2) # draws a horizontal line | |
| # So, treatment_effect = coef(interaction.term)*nodegr + coef(treatment) can be rewritten as: | |
| for (i in 1:nrow(coef(lm_effect.sim))) { | |
| abline (a = coef(lm_effect.sim)[i, 2], b = coef(lm_effect.sim)[i, 4], | |
| lwd = .5, col = "gray") | |
| } | |
| # Calculating estimate and confidence interval of treatement effect | |
| coef_interaction = coef(lm_effect.sim)[, 4] | |
| coef_treat = coef(lm_effect.sim)[, 2] | |
| te_degr = coef_interaction * 0 + coef_treat | |
| te_nodegr = coef_interaction * 1 + coef_treat | |
| cat("Average treatment effect for degree holders: ", mean(te_degr)) | |
| cat("95% CI of treatment effect for degree holders: ", quantile(te_degr, c(0.025, 0.975))) | |
| cat("Average treatment effect for no degree holders: ", mean(te_nodegr)) | |
| cat("95% CI of treatment effect for no degree holders: ", quantile(te_nodegr, c(0.025, 0.975))) | |
| # Random Forest used to find the best variables for predicting u78 | |
| u78 <- ifelse(lalonde$re78 > 0, 0, 1) | |
| lalonde_df_rf = data.frame(lalonde, u78) # new data set with y78 | |
| names(lalonde_df_rf) | |
| set.seed(1) | |
| train = sample(1:nrow(lalonde_df_rf), nrow(lalonde_df_rf)/2) | |
| rf.lalonde = randomForest(u78 ~ . - re78 - nodegr, data = lalonde_df_rf, mtry = 4, importance = TRUE) | |
| yhat.rf = predict(rf.lalonde, newdata = lalonde_df_rf[-train, ]) | |
| cat("RMSE::", sqrt(mean((yhat.rf - lalonde_df_rf[-train, ]$re78)^2))) | |
| importance(rf.lalonde) | |
| varImpPlot(rf.lalonde) | |
| # Question 3 | |
| # For Degree holders | |
| u78 <- ifelse(lalonde.degr$re78 > 0, 0, 1) | |
| lalonde.degr <- data.frame(lalonde.degr, u78) | |
| lm_degr.u78 = glm(u78 ~ treat + re75 + u75 + black, data = lalonde.degr, family = "binomial") | |
| summary(lm_degr.u78) #Check the p-values to find if they have significant effect | |
| cat("Confidence interval for Degree Holders ") | |
| confint(lm_degr.u78) | |
| # Boot strapping to find confidence interval | |
| logit.bootstrap <- function(data, indices) { | |
| d <- data[indices, ] | |
| fit <- glm(u78 ~ treat + re75 + u75 + black, data = d) | |
| return(coef(fit)) | |
| } | |
| set.seed(12345) # seed | |
| lm_degr.u78.boot <- boot(data = lalonde.degr, statistic=logit.bootstrap, R=10000) # 10'000 samples | |
| lm_degr.u78.boot | |
| #get 95% confidence interval of all the variables | |
| boot.ci(lm_degr.u78.boot, type="bca", index=1) # intercept | |
| boot.ci(lm_degr.u78.boot, type="bca", index=2) # treat | |
| boot.ci(lm_degr.u78.boot, type="bca", index=3) # re75 | |
| boot.ci(lm_degr.u78.boot, type="bca", index=4) # u75 | |
| boot.ci(lm_degr.u78.boot, type="bca", index=5) # black | |
| # For No Degree Holders | |
| u78 <- ifelse(lalonde.nodegr$re78 > 0, 0, 1) | |
| lalonde.nodegr <- data.frame(lalonde.nodegr, u78) | |
| lm_nodegr.u78 = glm(u78 ~ treat + re75 + u75 + black, data = lalonde.nodegr, family = "binomial") | |
| summary(lm_nodegr.u78) #Check the p-values to find if they have significant effect | |
| logit.bootstrap <- function(data, indices) { | |
| d <- data[indices, ] | |
| fit <- glm(u78 ~ treat + re75 + u75 + black, data = d) | |
| return(coef(fit)) | |
| } | |
| lm_nodegr.u78.boot <- boot(data = lalonde.nodegr, statistic=logit.bootstrap, R=10000) # 10'000 samples | |
| lm_nodegr.u78.boot | |
| boot.ci(lm_nodegr.u78.boot, type="bca", index=1) #intercept | |
| boot.ci(lm_nodegr.u78.boot, type="bca", index=2) # treat | |
| boot.ci(lm_nodegr.u78.boot, type="bca", index=3) # re75 | |
| boot.ci(lm_nodegr.u78.boot, type="bca", index=4) # u75 | |
| boot.ci(lm_nodegr.u78.boot, type="bca", index=5) # black |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment