Created
September 2, 2013 14:45
-
-
Save remh/6413640 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import timeit | |
| metric_series_count = 3 | |
| test_data = [2.10723804e+03,1.26780400e+04, 1.47227500e+04, 1.62780752e+04, 1.71822812e+04 , 1.64260996e+04 , 2.72706328e+04 , 1.57876689e+04, 1.47809004e+04 , 1.43575615e+04 , 1.55860273e+04 , 1.55252500e+04, 1.70042930e+04 , 1.54317500e+04 , 2.22643242e+04 , 1.54446250e+04, 1.45285752e+04 , 1.52491279e+04 , 1.42818574e+04 , 1.85883770e+04, 1.90738242e+04 , 2.76426113e+04 , 1.51628740e+04 , 1.66276758e+04, 2.91944414e+04 , 1.79294004e+04 , 1.85493008e+04 , 5.05975156e+04, 5.97016328e+04 , 1.36698350e+04 , 1.75005508e+04 , 1.48950996e+04, 2.98080750e+05 , 1.28499795e+04 , 2.33493750e+04 , 1.87940508e+04, 3.70170000e+04 , 1.99230508e+04 , 1.57387549e+04 , 1.64653398e+04, 1.52441250e+04 , 1.71265371e+04 , 1.45260479e+04 , 2.36466992e+04, 1.49441504e+04 , 1.56413750e+04 , 1.53727500e+04 , 1.65995508e+04, 2.31307363e+04 , 3.10398047e+04 , 2.02409023e+04 , 2.81140957e+04, 2.01719004e+04 , 1.79341504e+04 , 1.94490742e+04 , 1.84646230e+04, 2.68916992e+04 , 1.58801221e+04 , 1.92853906e+05 , 1.24943656e+05, 5.59167500e+04 , 4.97305508e+04 , 4.63533086e+04 , 4.88107266e+04, 4.58746836e+04 , 4.67675117e+04 , 5.54424492e+04 , 5.18530977e+04, 4.12353281e+04 , 4.48636016e+04 , 4.36200273e+04 , 4.78300508e+04, 5.98861484e+04 , 5.65999492e+04 , 5.18126992e+04 , 5.12607188e+04, 5.10735273e+04 , 4.48206250e+04 , 2.13880047e+05 , 8.43175078e+04, 7.89681016e+04 , 8.58591797e+04 , 7.91386094e+04 , 6.74334219e+04, 8.73430000e+04 , 8.30917734e+04 , 6.77104375e+04 , 8.08490469e+04, 8.75585469e+04 , 7.33623516e+04 , 8.43328594e+04 , 9.49262422e+04, 8.92074688e+04 , 7.61907734e+04 , 7.35939062e+04 , 4.94489492e+04, 5.20644414e+04 , 1.40493766e+05 , 7.47076719e+04 , 5.91278008e+04, 7.13965625e+04 , 7.43846484e+04 , 6.03837266e+04 , 7.46186250e+04, 8.40347812e+04 , 6.32518242e+04 , 6.82605156e+04 , 6.76610781e+04, 5.40575352e+04 , 6.80397734e+04 , 6.89431016e+04 , 5.52928984e+04, 6.96947109e+04 , 7.27605781e+04 , 5.70301016e+04 , 6.97338359e+04, 1.91428566e+01 , 8.03999996e+00 , 5.57499981e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00 , 2.28205132e+00, 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00 , 1.67500000e+01, 6.53658581e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00 , 2.11904740e+00 , 0.00000000e+00, 2.01250000e+01 , 9.80487919e+00 , 1.03076925e+01 , 1.97850006e+02, 1.54682938e+02 , 8.97500038e+00 , 6.75000000e+00 , 1.31707325e+01, 6.58536625e+00 , 1.12500000e+01 , 2.15499992e+01 , 6.75000000e+00, 2.95121937e+01 , 1.27959194e+01 , 1.35000000e+01 , 6.75000000e+00, 3.26341515e+01 , 3.42000008e+01 , 1.33170738e+01 , 0.00000000e+00, 0.00000000e+00 , 2.28205132e+00 , 1.30731697e+01 , 6.69999981e+00, 3.34999990e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 2.11904740e+00 , 0.00000000e+00 , 0.00000000e+00 , 0.00000000e+00, 0.00000000e+00 , 2.01000004e+01 , 3.26829290e+00 , 0.00000000e+00, 0.00000000e+00 , 0.00000000e+00] | |
| def using_magic(): | |
| return zip(*([iter(test_data)]*(len(test_data) / metric_series_count))) | |
| def using_numpy(): | |
| return np.reshape(test_data, (metric_series_count, -1)) | |
| if __name__=='__main__': | |
| print "Checking that result is the same" | |
| print using_magic() == using_numpy() | |
| print "Starting benchmark" | |
| print "Magic took: {0}s".format(timeit.timeit("using_magic()", setup="from __main__ import using_magic")) | |
| print "Numpy took: {0}s".format(timeit.timeit("using_numpy()", setup="from __main__ import using_numpy")) |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Output: