git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
| #!/bin/bash | |
| sudo apt-get install -y \ | |
| apt-transport-https \ | |
| ca-certificates \ | |
| curl \ | |
| software-properties-common | |
| curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - | |
| sudo apt-key fingerprint 0EBFCD88 | |
| sudo add-apt-repository \ | |
| "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ |
| def seed_everything(seed: int): | |
| import random, os | |
| import numpy as np | |
| import torch | |
| random.seed(seed) | |
| os.environ['PYTHONHASHSEED'] = str(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) |
git clone [email protected]:YOUR-USERNAME/YOUR-FORKED-REPO.git
cd into/cloned/fork-repo
git remote add upstream git://github.com/ORIGINAL-DEV-USERNAME/REPO-YOU-FORKED-FROM.git
git fetch upstream
##VGG16 model for Keras
This is the Keras model of the 16-layer network used by the VGG team in the ILSVRC-2014 competition.
It has been obtained by directly converting the Caffe model provived by the authors.
Details about the network architecture can be found in the following arXiv paper:
Very Deep Convolutional Networks for Large-Scale Image Recognition
K. Simonyan, A. Zisserman
| import numpy as np | |
| from keras.models import Sequential | |
| from keras.layers.core import Activation, Dense | |
| from keras.optimizers import SGD | |
| X = np.array([[0,0],[0,1],[1,0],[1,1]], "float32") | |
| y = np.array([[0],[1],[1],[0]], "float32") | |
| model = Sequential() | |
| model.add(Dense(2, input_dim=2, activation='sigmoid')) |