Created
May 30, 2019 04:14
-
-
Save riverajefer/bef718ca0f23c2ab6eb0e3853eed1393 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // import * as tf from '@tensorflow/tfjs'; | |
| // Solve for XOR | |
| const LEARNING_RATE = 0.1; | |
| const EPOCHS = 500; | |
| // Define the training data | |
| const xs = [ | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ], | |
| [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0 | |
| ] | |
| ]; | |
| const ys = [1, 1, 1, 1, 0, 0, 0, 0, 0]; | |
| // Instantiate the training tensors | |
| let xTrain = tf.tensor2d(xs, [9, 51]); | |
| let yTrain = tf.oneHot(tf.tensor1d(ys).toInt(), 2); | |
| // Define the model. | |
| const model = tf.sequential(); | |
| // Set up the network layers | |
| model.add(tf.layers.dense({ | |
| units: 25, | |
| activation: 'sigmoid', | |
| inputShape: [51] | |
| })); | |
| model.add(tf.layers.dense({ | |
| units: 2, | |
| activation: 'softmax', | |
| outputShape: [2] | |
| })); | |
| // Define the optimizer | |
| const optimizer = tf.train.adam(LEARNING_RATE); | |
| // Init the model | |
| model.compile({ | |
| optimizer: optimizer, | |
| loss: 'categoricalCrossentropy', | |
| metrics: ['accuracy'], | |
| }); | |
| console.log('Entrenando... '); | |
| // Train the model | |
| const history = model.fit(xTrain, yTrain, { | |
| epochs: EPOCHS, | |
| validationData: [xTrain, yTrain], | |
| }).then(() => { | |
| console.log('Fin entrenamiento ! '); | |
| const vectorPrueba1 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| const vectorPruebaZero = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| const vectorPruebaZero2 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| const vectorPrueba1_2 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 0, | |
| 0 | |
| ]; | |
| const vectorPruebaZero3 = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| const algo = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 1, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| const unoraro = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| const zeroRaro = [ | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 0, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 1, | |
| 0, | |
| 0, | |
| 0 | |
| ]; | |
| // Try the model on a value | |
| const input = tf.tensor2d(zeroRaro, [1, 51]); | |
| const predictOut = model.predict(input); | |
| const logits = Array.from(predictOut.dataSync()); | |
| console.log('prediction: ', logits, 'SALIDA : ' + predictOut.argMax(-1).dataSync()[0]); | |
| }); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment