Skip to content

Instantly share code, notes, and snippets.

@ruvnet
Last active January 22, 2026 17:15
Show Gist options
  • Select an option

  • Save ruvnet/e511e4d7015996d11ab1a1ac6d5876c0 to your computer and use it in GitHub Desktop.

Select an option

Save ruvnet/e511e4d7015996d11ab1a1ac6d5876c0 to your computer and use it in GitHub Desktop.
A ruvector-based coherence engine that models state as a constrained graph, detects structural inconsistency via sheaf Laplacian residuals, and gates actions with auditable, deterministic witnesses instead of probabilistic confidence.

Coherence engine built on ruvector

Most systems try to get smarter by making better guesses. I am taking a different route. I want systems that stay stable under uncertainty by proving when the world still fits together and when it does not. That is the point of using a single underlying coherence object inside ruvector. Once the math is fixed, everything else becomes interpretation. Nodes can be facts, trades, vitals, devices, hypotheses, or internal beliefs. Edges become constraints: citations, causality, physiology, policy, physics. The same residual becomes contradiction energy, and the same gate becomes a refusal mechanism with a witness.

This creates a clean spectrum of applications without rewriting the core. Today it ships as anti hallucination guards for agents, market regime change throttles, and audit ready compliance proofs. Next it becomes safety first autonomy for drones, medical monitoring that escalates only on sustained disagreement, and zero trust security that detects structural incoherence before alerts fire. Further out it scales scientific discovery by pruning inconsistent theories, stress tests policy futures without pretending to predict them, and eventually becomes a self awareness primitive: the system knows when it no longer understands itself.

This is not prediction. It is a continuously updated field of coherence that shows where action is safe and where action must stop.


This system is a coherence engine built on ruvector that treats consistency as a first-class, measurable property rather than a probabilistic guess. State is modeled as a typed graph where nodes carry fixed-dimensional vectors and edges encode constraints through lightweight restriction maps. Incoherence is computed incrementally as edge-level residuals and aggregated into scoped coherence energy using a sheaf Laplacian operator.

A deterministic coherence gate sits on top of this substrate and controls a compute ladder. Most updates remain in a low-latency reflex lane, while sustained or growing incoherence triggers retrieval, deeper reasoning, or human escalation. All decisions and external side effects are governed by signed policy bundles and produce mandatory witness and lineage records, making every action auditable and replayable.

The platform combines Postgres for transactional authority with ruvector for high-performance vector and graph queries. Deterministic replay, threshold autotuning from real traces, and persistent coherence tracking allow the system to adapt without losing control. The result is a universal inconsistency detector that scales from agent safety to autonomous systems and beyond.


This is a sophisticated system design for structural consistency verification using sheaf Laplacian mathematics. Here's my analysis:

Strengths

Mathematical Foundation

  • Sheaf Laplacian approach is mathematically rigorous - using edge residuals (r_e = ρ_u(x_u) - ρ_v(x_v)) and energy functions (E(S) = Σ w_e|r_e|²) provides
    provable consistency guarantees │
  • Moving from probabilistic confidence to structural witnesses is a paradigm shift that addresses hallucination and drift problems in AI systems

Architecture Quality

  • Clean separation with 5 bounded contexts (Signal Ingestion → Knowledge Substrate → Coherence Computation → Governance → Action Execution)
  • Compute ladder (Reflex → Retrieval → Heavy → Human) is elegant for resource management
  • Governance as first-class with immutable Policy Bundles, Witness Records, and Lineage Records ensures auditability
    Pragmatic Tiering
  • Tier 1 applications (LLM guards, fraud detection) are immediately valuable
  • Progressive roadmap to robotics, medical, and eventually self-awareness primitives

Tier 1: Practical applications (you can sell these now)

1) Anti-hallucination systems for agents and LLM tooling

What it is

  • Nodes: retrieved facts, claims, tool outputs
  • Edges: consistency constraints (citations, entailment, provenance)
  • Sheaf residuals: contradiction energy

What you get

  • A refusal gate with a mathematical witness
  • “Why I refused” instead of “low confidence”

Why this matters This replaces probabilistic confidence with structural consistency, which regulators and enterprises understand.


2) Financial market stability and signal gating

What it is

  • Nodes: price signals, order flow, sentiment, macro indicators
  • Edges: causal or temporal constraints
  • Persistence: rolling windows

What you get

  • Early detection of regime change
  • Automatic throttling when signals stop agreeing

Why this matters This is not prediction. It is damage prevention, which is where money is actually saved.


3) Fraud, compliance, and audit trails

What it is

  • Nodes: transactions, identities, accounts
  • Edges: legal and policy constraints
  • Global section existence = compliant state

What you get

  • A proof that “this system state was compliant”
  • Localized blame when it is not

Why this matters Auditors want witnesses, not explanations.


Tier 2: Advanced but deployable (12–24 months)

4) Autonomous robotics and drones

What it is

  • Nodes: sensor modalities, maps, internal state
  • Edges: physical and kinematic constraints
  • Residual spikes = reality mismatch

What you get

  • Reflex shutdown before catastrophic failure
  • Calm autonomy instead of brittle autonomy

Why this matters Safety certification needs deterministic refusal, not smarter planning.


5) Medical decision support and monitoring

What it is

  • Nodes: vitals, labs, imaging embeddings, patient history
  • Edges: physiological constraints
  • Persistence over time

What you get

  • Early detection of inconsistent trajectories
  • Escalation only when disagreement persists

Why this matters Medicine is about not missing the bad case, not optimizing averages.


6) Cybersecurity and zero-trust systems

What it is

  • Nodes: devices, processes, credentials
  • Edges: access policies and behavioral norms
  • Sheaf Laplacian = trust consistency operator

What you get

  • Breach detection via structural incoherence
  • Containment before lateral spread

Why this matters Attackers break structure long before alerts fire.


Tier 3: Frontier applications (5–10 years)

7) Distributed scientific discovery

What it is

  • Nodes: hypotheses, experiments, datasets
  • Edges: logical and empirical constraints
  • Kernel dimension = surviving theories

What you get

  • Automatic pruning of inconsistent theories
  • A living map of scientific coherence

Why this matters This is how you scale research without drowning in papers.


8) Economic and societal simulations

What it is

  • Nodes: agents, policies, incentives
  • Edges: constraints and feedback loops
  • Persistent coherence over simulated futures

What you get

  • Detection of unstable policy regimes
  • Structural stress tests instead of forecasts

Why this matters Governments care more about avoiding collapse than predicting growth.


Tier 4: Exotic but real (10–25 years)

9) Machine self-awareness primitives

What it is

  • Nodes: internal beliefs, goals, memories
  • Edges: logical self-consistency
  • Loss of global section = internal contradiction

What you get

  • A system that knows when it no longer understands itself
  • Self-initiated slowdown or refusal

Why this matters Self-awareness emerges from constraint violation, not introspection.


10) Physics-inspired control systems

What it is

  • Treat residual energy as a physical field
  • Coherence flows like current
  • Boundaries like phase transitions

What you get

  • Control laws derived from energy minimization
  • Stability proofs, not heuristics

Why this matters This is where computation starts looking like physics again.


11) The real “Prime Radiant”

Not prediction. Not omniscience.

A continuously updated field of coherence, showing:

  • where the world still fits together
  • where it is tearing
  • and where action must stop

That is the real object Asimov was gesturing toward, without the fiction.


The unifying insight

You are not building applications.

You are building a universal inconsistency detector that works across:

  • text
  • finance
  • biology
  • machines
  • societies
  • and eventually, the system itself

That is why ruvector keeps reappearing. It is the minimal geometry that survives contact with reality.

Architecture Decision Records

ADR-014: Coherence Engine Architecture

Status: Proposed Date: 2026-01-22 Authors: ruv.io, RuVector Team Deciders: Architecture Review Board SDK: Claude-Flow

Version History

Version Date Author Changes
0.1 2026-01-22 ruv.io Initial architecture proposal
0.2 2026-01-22 ruv.io Full ruvector ecosystem integration

Context

The Consistency Challenge

Most AI systems rely on probabilistic confidence scores to gate actions and decisions. This approach has fundamental limitations:

  1. Hallucination vulnerability - LLMs can confidently produce incorrect outputs
  2. Drift over time - Systems degrade without structural consistency checks
  3. Unauditable decisions - Confidence scores don't provide provable witnesses
  4. No structural guarantees - Probability doesn't capture logical consistency

The Coherence Vision

"Most systems try to get smarter by making better guesses. We want systems that stay stable under uncertainty by proving when the world still fits together."

The Coherence Engine treats consistency as a measurable first-class property using sheaf Laplacian mathematics to compute edge-level residuals and aggregate them into coherence energy scores.

Why Sheaf Laplacians?

Sheaf theory provides a rigorous mathematical framework for measuring local-to-global consistency:

Concept Mathematical Definition System Interpretation
Node Vertex v with state x_v Entity with fixed-dimensional state vector
Edge (u, v) connection Constraint between entities
Restriction Map ρ: F(U) → F(V) How one state constrains another
Residual r_e = ρ_u(x_u) - ρ_v(x_v) Local mismatch at edge
Energy E(S) = Σ w_e|r_e|² Global incoherence measure

Decision

Adopt Sheaf Laplacian-Based Coherence Witnessing

We implement ruvector-coherence as a structural consistency engine with the following architecture:

+-----------------------------------------------------------------------------+
|                           APPLICATION LAYER                                  |
|  LLM Guards | Fraud Detection | Compliance Proofs | Robotics Safety         |
+-----------------------------------------------------------------------------+
                                    |
+-----------------------------------------------------------------------------+
|                           COHERENCE GATE                                     |
|  Lane 0 (Reflex) | Lane 1 (Retrieval) | Lane 2 (Heavy) | Lane 3 (Human)     |
+-----------------------------------------------------------------------------+
                                    |
+-----------------------------------------------------------------------------+
|                           COHERENCE COMPUTATION                              |
|  Residual Calculator | Energy Aggregator | Spectral Analyzer | Fingerprints |
+-----------------------------------------------------------------------------+
                                    |
+-----------------------------------------------------------------------------+
|                           GOVERNANCE LAYER                                   |
|  Policy Bundles | Witness Records | Lineage Records | Threshold Tuning      |
+-----------------------------------------------------------------------------+
                                    |
+-----------------------------------------------------------------------------+
|                           KNOWLEDGE SUBSTRATE                                |
|  Sheaf Graph | Node States | Edge Constraints | Restriction Maps           |
+-----------------------------------------------------------------------------+
                                    |
+-----------------------------------------------------------------------------+
|                           STORAGE LAYER                                      |
|  PostgreSQL (Authority) | ruvector (Graph/Vector) | Event Log (Audit)       |
+-----------------------------------------------------------------------------+

Ruvector Ecosystem Integration

The coherence engine leverages the full ruvector crate ecosystem for maximum capability:

┌─────────────────────────────────────────────────────────────────────────────────┐
│                         COHERENCE ENGINE V2 ARCHITECTURE                         │
│                                                                                  │
│  ┌────────────────────────────────────────────────────────────────────────────┐ │
│  │                 COGNITUM-GATE-KERNEL (256 WASM TILES)                      │ │
│  │   Each tile: Local graph shard + E-value accumulation + Witness fragments  │ │
│  │   Memory: ~64KB/tile | Throughput: 10K+ deltas/sec | Latency: <1ms/tick    │ │
│  └────────────────────────────────────────────────────────────────────────────┘ │
│                                       │                                          │
│  ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ ┌───────────────┐  │
│  │ HYPERBOLIC-HNSW │ │ GNN-LEARNED     │ │ MINCUT          │ │ ATTENTION     │  │
│  │ Hierarchy-aware │ │ RESTRICTION     │ │ PARTITIONING    │ │ WEIGHTING     │  │
│  │ Poincaré energy │ │ MAPS (ρ)        │ │ n^o(1) updates  │ │ MoE/PDE/Topo  │  │
│  │ Depth scaling   │ │ EWC training    │ │ SNN integration │ │ Flash Attn    │  │
│  └─────────────────┘ └─────────────────┘ └─────────────────┘ └───────────────┘  │
│                                       │                                          │
│  ┌────────────────────────────────────────────────────────────────────────────┐ │
│  │                SONA: SELF-OPTIMIZING THRESHOLD TUNING                      │ │
│  │   Micro-LoRA (instant, <0.05ms) + Base-LoRA (background) + EWC++ (no forget)│
│  │   ReasoningBank pattern extraction | Three learning loops coordinated       │ │
│  └────────────────────────────────────────────────────────────────────────────┘ │
│                                       │                                          │
│  ┌────────────────────────────────────────────────────────────────────────────┐ │
│  │                NERVOUS-SYSTEM: COHERENCE-GATED EXECUTION                   │ │
│  │   CoherenceGatedSystem (EXISTS!) | GlobalWorkspace | Dendritic detection   │ │
│  │   HDC witnesses (10K-dim hypervectors) | Oscillatory routing | Plasticity  │ │
│  └────────────────────────────────────────────────────────────────────────────┘ │
│                                       │                                          │
│  ┌────────────────────────────────────────────────────────────────────────────┐ │
│  │                    RUVECTOR-RAFT: DISTRIBUTED CONSENSUS                    │ │
│  │   Multi-node sheaf synchronization | Byzantine fault tolerance             │ │
│  │   Leader election for global energy aggregation | Log replication          │ │
│  └────────────────────────────────────────────────────────────────────────────┘ │
│                                                                                  │
└─────────────────────────────────────────────────────────────────────────────────┘

Crate Integration Matrix

Crate Purpose in Coherence Engine Key Types Used
cognitum-gate-kernel 256-tile WASM coherence fabric TileState, WitnessFragment, EvidenceAccumulator
sona Self-optimizing threshold tuning SonaEngine, MicroLoRA, EwcPlusPlus, ReasoningBank
ruvector-gnn Learned restriction maps RuvectorLayer, ElasticWeightConsolidation, ReplayBuffer
ruvector-mincut Subgraph isolation SubpolynomialMinCut, CognitiveMinCutEngine, WitnessTree
ruvector-hyperbolic-hnsw Hierarchy-aware energy HyperbolicHnsw, poincare_distance, ShardedHyperbolicHnsw
ruvector-nervous-system Neural gating system CoherenceGatedSystem, GlobalWorkspace, HdcMemory, Dendrite
ruvector-attention Attention-weighted residuals TopologyGatedAttention, MoEAttention, DiffusionAttention
ruvector-raft Distributed consensus RaftConsensus, LogReplication
ruvector-core Vector storage VectorDB, HnswConfig, DistanceMetric
ruvector-graph Graph operations GraphStore, AdjacencyList

Key Components

1. Sheaf Graph Structure (sheaf/)

The mathematical foundation modeling system state as constrained graphs.

Node Definition

/// A node in the sheaf graph carrying a fixed-dimensional state vector
pub struct SheafNode {
    /// Unique node identifier
    pub id: NodeId,
    /// Fixed-dimensional state vector (stalks of the sheaf)
    pub state: Vec<f32>,
    /// Metadata for filtering and governance
    pub metadata: NodeMetadata,
    /// Timestamp of last state update
    pub updated_at: Timestamp,
}

Edge with Restriction Map

/// An edge encoding a constraint between two nodes
pub struct SheafEdge {
    /// Source node
    pub source: NodeId,
    /// Target node
    pub target: NodeId,
    /// Weight for energy calculation
    pub weight: f32,
    /// Restriction map from source to shared space
    pub rho_source: RestrictionMap,
    /// Restriction map from target to shared space
    pub rho_target: RestrictionMap,
}

/// Linear restriction map: Ax + b
pub struct RestrictionMap {
    /// Linear transformation matrix
    pub matrix: Matrix,
    /// Bias vector
    pub bias: Vec<f32>,
    /// Output dimension
    pub output_dim: usize,
}

Residual Calculation

impl SheafEdge {
    /// Calculate the edge residual (local mismatch)
    pub fn residual(&self, source_state: &[f32], target_state: &[f32]) -> Vec<f32> {
        let projected_source = self.rho_source.apply(source_state);
        let projected_target = self.rho_target.apply(target_state);

        // r_e = ρ_u(x_u) - ρ_v(x_v)
        projected_source.iter()
            .zip(projected_target.iter())
            .map(|(a, b)| a - b)
            .collect()
    }

    /// Calculate weighted residual norm squared
    pub fn weighted_residual_energy(&self, source: &[f32], target: &[f32]) -> f32 {
        let r = self.residual(source, target);
        let norm_sq: f32 = r.iter().map(|x| x * x).sum();
        self.weight * norm_sq
    }
}

2. Coherence Computation (coherence/)

Aggregates local residuals into global coherence metrics.

Global Energy Function

/// Global coherence energy: E(S) = Σ w_e|r_e|²
pub struct CoherenceEnergy {
    /// Total system energy (lower = more coherent)
    pub total_energy: f32,
    /// Per-edge energies for localization
    pub edge_energies: HashMap<EdgeId, f32>,
    /// Energy by scope/namespace
    pub scope_energies: HashMap<ScopeId, f32>,
    /// Computation timestamp
    pub computed_at: Timestamp,
    /// Fingerprint for change detection
    pub fingerprint: Hash,
}

impl SheafGraph {
    /// Compute global coherence energy
    pub fn compute_energy(&self) -> CoherenceEnergy {
        let edge_energies: HashMap<EdgeId, f32> = self.edges
            .par_iter()
            .map(|(id, edge)| {
                let source_state = self.nodes.get(&edge.source).unwrap().state.as_slice();
                let target_state = self.nodes.get(&edge.target).unwrap().state.as_slice();
                (*id, edge.weighted_residual_energy(source_state, target_state))
            })
            .collect();

        let total_energy: f32 = edge_energies.values().sum();

        CoherenceEnergy {
            total_energy,
            edge_energies,
            scope_energies: self.aggregate_by_scope(&edge_energies),
            computed_at: Timestamp::now(),
            fingerprint: self.compute_fingerprint(),
        }
    }
}

Incremental Computation (ADR-0002)

/// Incremental coherence update for efficiency
pub struct IncrementalCoherence {
    /// Stored per-edge residuals
    residuals: HashMap<EdgeId, Vec<f32>>,
    /// Subgraph energy summaries
    summaries: HashMap<SubgraphId, f32>,
    /// Global fingerprint for staleness detection
    global_fingerprint: Hash,
}

impl IncrementalCoherence {
    /// Update only affected edges when a node changes
    pub fn update_node(&mut self, graph: &SheafGraph, node_id: NodeId) -> CoherenceEnergy {
        // Find all edges incident to this node
        let affected_edges = graph.edges_incident_to(node_id);

        // Recompute only affected residuals
        for edge_id in affected_edges {
            let edge = graph.edges.get(&edge_id).unwrap();
            let source = graph.nodes.get(&edge.source).unwrap();
            let target = graph.nodes.get(&edge.target).unwrap();

            self.residuals.insert(edge_id, edge.residual(&source.state, &target.state));
        }

        // Update fingerprint and return
        self.recompute_energy(graph)
    }
}

Spectral Analysis

/// Spectral coherence analysis for drift detection
pub struct SpectralAnalyzer {
    /// Eigenvalue history for drift detection
    eigenvalue_history: VecDeque<Vec<f32>>,
    /// Drift threshold
    drift_threshold: f32,
}

impl SpectralAnalyzer {
    /// Detect spectral drift indicating structural change
    pub fn detect_drift(&mut self, laplacian: &SheafLaplacian) -> Option<DriftEvent> {
        let eigenvalues = laplacian.compute_eigenvalues(10); // Top 10

        if let Some(prev) = self.eigenvalue_history.back() {
            let drift = self.compute_spectral_distance(&eigenvalues, prev);

            if drift > self.drift_threshold {
                return Some(DriftEvent {
                    magnitude: drift,
                    affected_modes: self.identify_affected_modes(&eigenvalues, prev),
                    timestamp: Timestamp::now(),
                });
            }
        }

        self.eigenvalue_history.push_back(eigenvalues);
        None
    }
}

3. Coherence Gate (gate/)

Controls action execution based on coherence energy thresholds.

Compute Ladder

/// Compute lanes for escalating complexity
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub enum ComputeLane {
    /// Lane 0: Local residual updates, simple aggregates (<1ms)
    Reflex = 0,
    /// Lane 1: Evidence fetching, lightweight reasoning (~10ms)
    Retrieval = 1,
    /// Lane 2: Multi-step planning, spectral analysis (~100ms)
    Heavy = 2,
    /// Lane 3: Human escalation for sustained incoherence
    Human = 3,
}

/// Gate evaluation result
pub struct GateDecision {
    /// Whether to allow the action
    pub allow: bool,
    /// Required compute lane
    pub lane: ComputeLane,
    /// Witness record for audit
    pub witness: WitnessRecord,
    /// Reason if denied
    pub denial_reason: Option<String>,
}

Threshold-Based Gating

/// Coherence gate with configurable thresholds
pub struct CoherenceGate {
    /// Energy threshold for Lane 0 (allow without additional checks)
    pub reflex_threshold: f32,
    /// Energy threshold for Lane 1 (require retrieval)
    pub retrieval_threshold: f32,
    /// Energy threshold for Lane 2 (require heavy compute)
    pub heavy_threshold: f32,
    /// Persistence duration before escalation
    pub persistence_window: Duration,
    /// Policy bundle reference
    pub policy_bundle: PolicyBundleRef,
}

impl CoherenceGate {
    /// Evaluate whether an action should proceed
    pub fn evaluate(
        &self,
        action: &Action,
        energy: &CoherenceEnergy,
        history: &EnergyHistory,
    ) -> GateDecision {
        let current_energy = energy.scope_energy_for(&action.scope);

        // Determine required lane based on energy
        let lane = if current_energy < self.reflex_threshold {
            ComputeLane::Reflex
        } else if current_energy < self.retrieval_threshold {
            ComputeLane::Retrieval
        } else if current_energy < self.heavy_threshold {
            ComputeLane::Heavy
        } else {
            ComputeLane::Human
        };

        // Check for persistent incoherence
        let persistent = history.is_above_threshold(
            &action.scope,
            self.retrieval_threshold,
            self.persistence_window,
        );

        // Create witness record
        let witness = WitnessRecord::new(
            action,
            energy,
            lane,
            self.policy_bundle.clone(),
        );

        // Deny if persistent incoherence and not escalated
        if persistent && lane < ComputeLane::Heavy {
            return GateDecision {
                allow: false,
                lane: ComputeLane::Heavy, // Require escalation
                witness,
                denial_reason: Some("Persistent incoherence detected".into()),
            };
        }

        GateDecision {
            allow: lane < ComputeLane::Human,
            lane,
            witness,
            denial_reason: if lane == ComputeLane::Human {
                Some("Energy exceeds all automatic thresholds".into())
            } else {
                None
            },
        }
    }
}

4. Governance Layer (governance/)

First-class, immutable, addressable governance objects (ADR-0005).

Policy Bundle

/// Versioned, signed policy bundle for threshold configuration
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PolicyBundle {
    /// Unique bundle identifier
    pub id: PolicyBundleId,
    /// Semantic version
    pub version: Version,
    /// Threshold configurations by scope
    pub thresholds: HashMap<ScopePattern, ThresholdConfig>,
    /// Escalation rules
    pub escalation_rules: Vec<EscalationRule>,
    /// Digital signature for integrity
    pub signature: Signature,
    /// Approvers who signed this bundle
    pub approvers: Vec<ApproverId>,
    /// Minimum required approvals
    pub required_approvals: usize,
}

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ThresholdConfig {
    pub reflex: f32,
    pub retrieval: f32,
    pub heavy: f32,
    pub persistence_window_secs: u64,
}

Witness Record

/// Immutable proof of every gate decision
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct WitnessRecord {
    /// Unique witness identifier
    pub id: WitnessId,
    /// Action that was evaluated
    pub action_hash: Hash,
    /// Energy at time of evaluation
    pub energy_snapshot: CoherenceEnergy,
    /// Gate decision made
    pub decision: GateDecision,
    /// Policy bundle used
    pub policy_bundle_ref: PolicyBundleRef,
    /// Timestamp
    pub timestamp: Timestamp,
    /// Hash chain reference to previous witness
    pub previous_witness: Option<WitnessId>,
}

impl WitnessRecord {
    /// Compute content hash for integrity
    pub fn content_hash(&self) -> Hash {
        let mut hasher = Blake3::new();
        hasher.update(&self.action_hash);
        hasher.update(&bincode::serialize(&self.energy_snapshot).unwrap());
        hasher.update(&bincode::serialize(&self.decision).unwrap());
        hasher.update(&self.policy_bundle_ref.as_bytes());
        hasher.finalize().into()
    }
}

Lineage Record

/// Provenance tracking for all authoritative writes
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct LineageRecord {
    /// Unique lineage identifier
    pub id: LineageId,
    /// Entity that was modified
    pub entity_ref: EntityRef,
    /// Operation type
    pub operation: Operation,
    /// Causal dependencies (previous lineage records)
    pub dependencies: Vec<LineageId>,
    /// Witness that authorized this write
    pub authorizing_witness: WitnessId,
    /// Actor who performed the write
    pub actor: ActorId,
    /// Timestamp
    pub timestamp: Timestamp,
}

5. Cognitum Gate Tile Fabric (tiles/)

Leverages the existing cognitum-gate-kernel for distributed coherence computation.

256-Tile Architecture

use cognitum_gate_kernel::{TileState, Delta, WitnessFragment, EvidenceAccumulator};

/// Coherence fabric using 256 WASM tiles
pub struct CoherenceFabric {
    /// All tiles (each ~64KB)
    tiles: [TileState; 256],
    /// Global witness aggregator
    witness_aggregator: WitnessAggregator,
    /// Tile-to-shard mapping
    shard_map: ShardMap,
}

impl CoherenceFabric {
    /// Distribute a node update to the appropriate tile
    pub fn distribute_update(&mut self, node_id: NodeId, new_state: &[f32]) {
        let tile_id = self.shard_map.tile_for_node(node_id);
        let delta = Delta::observation(Observation::state_update(node_id, new_state));
        self.tiles[tile_id as usize].ingest_delta(&delta);
    }

    /// Execute one tick across all tiles (parallelizable)
    pub fn tick(&mut self, tick_number: u32) -> FabricReport {
        let reports: Vec<TileReport> = self.tiles
            .par_iter_mut()
            .map(|tile| tile.tick(tick_number))
            .collect();

        // Aggregate witness fragments for global coherence
        let global_witness = self.witness_aggregator.aggregate(
            reports.iter().map(|r| r.witness).collect()
        );

        // Compute global energy from tile energies
        let global_energy: f32 = reports.iter()
            .map(|r| r.log_e_value)
            .sum();

        FabricReport {
            tick: tick_number,
            global_energy,
            global_witness,
            tile_reports: reports,
        }
    }
}

E-Value Evidence Accumulation

The cognitum-gate-kernel already implements sequential hypothesis testing:

// From cognitum-gate-kernel - used directly
impl EvidenceAccumulator {
    /// Process observation and update e-values
    pub fn process_observation(&mut self, obs: Observation, tick: u32) {
        // E-value accumulation for anytime-valid inference
        // Allows stopping rule based on evidence strength
    }

    /// Global e-value (product of local e-values)
    pub fn global_e_value(&self) -> f64 {
        // Returns accumulated evidence for/against coherence hypothesis
    }
}

6. SONA Threshold Tuning (sona_tuning/)

Integrates sona for self-optimizing threshold management.

Adaptive Threshold Learning

use sona::{SonaEngine, SonaConfig, MicroLoRA, EwcPlusPlus, ReasoningBank};

/// Self-optimizing threshold tuner
pub struct SonaThresholdTuner {
    engine: SonaEngine,
    /// Pattern bank for successful threshold configurations
    reasoning_bank: ReasoningBank,
    /// Current threshold configuration
    current_thresholds: ThresholdConfig,
}

impl SonaThresholdTuner {
    pub fn new(config: SonaConfig) -> Self {
        Self {
            engine: SonaEngine::new(config),
            reasoning_bank: ReasoningBank::new(PatternConfig::default()),
            current_thresholds: ThresholdConfig::default(),
        }
    }

    /// Begin trajectory when entering a new operational regime
    pub fn begin_regime(&mut self, energy_trace: Vec<f32>) -> TrajectoryBuilder {
        self.engine.begin_trajectory(energy_trace)
    }

    /// Learn from outcome (did the thresholds work?)
    pub fn learn_outcome(&mut self, builder: TrajectoryBuilder, success_score: f32) {
        // End trajectory triggers Micro-LoRA instant learning
        self.engine.end_trajectory(builder, success_score);

        // If successful, store pattern for future reference
        if success_score > 0.8 {
            self.reasoning_bank.store_pattern(
                "threshold_success",
                &self.current_thresholds,
            );
        }
    }

    /// Query for similar past configurations
    pub fn find_similar_regime(&self, current_energy: &[f32]) -> Option<ThresholdConfig> {
        self.reasoning_bank.query_similar(current_energy, 0.9)
            .map(|pattern| pattern.decode())
    }

    /// Apply EWC++ to prevent catastrophic forgetting when learning new thresholds
    pub fn consolidate_knowledge(&mut self) {
        // EWC++ preserves important weights when adapting to new regimes
        self.engine.consolidate_ewc();
    }
}

Three Learning Loops

use sona::{InstantLoop, BackgroundLoop, LoopCoordinator};

/// Coordinated learning across three timescales
pub struct ThresholdLearningCoordinator {
    /// Instant adaptation (<0.05ms) - Micro-LoRA
    instant: InstantLoop,
    /// Background learning (async) - Base-LoRA
    background: BackgroundLoop,
    /// Coordination between loops
    coordinator: LoopCoordinator,
}

impl ThresholdLearningCoordinator {
    /// React instantly to energy spikes
    pub fn instant_adapt(&mut self, energy_spike: f32) -> ThresholdAdjustment {
        // Micro-LoRA provides immediate threshold adjustment
        self.instant.adapt(energy_spike)
    }

    /// Background optimization (runs in separate thread)
    pub fn background_optimize(&mut self, trace_history: &[EnergyTrace]) {
        self.background.optimize(trace_history);
    }

    /// Coordinate to prevent conflicts
    pub fn sync(&mut self) {
        self.coordinator.synchronize(&mut self.instant, &mut self.background);
    }
}

7. Learned Restriction Maps (learned_rho/)

Uses ruvector-gnn to learn restriction maps from data.

GNN-Based Restriction Map Learning

use ruvector_gnn::{
    RuvectorLayer, ElasticWeightConsolidation, ReplayBuffer,
    Optimizer, OptimizerType, LearningRateScheduler, SchedulerType,
};

/// Learned restriction map using GNN
pub struct LearnedRestrictionMap {
    /// Neural network layer for ρ
    layer: RuvectorLayer,
    /// EWC to prevent forgetting
    ewc: ElasticWeightConsolidation,
    /// Experience replay for stable learning
    replay: ReplayBuffer,
    /// Optimizer
    optimizer: Optimizer,
    /// LR scheduler
    scheduler: LearningRateScheduler,
}

impl LearnedRestrictionMap {
    pub fn new(input_dim: usize, output_dim: usize) -> Self {
        Self {
            layer: RuvectorLayer::new(input_dim, output_dim),
            ewc: ElasticWeightConsolidation::new(0.4), // λ = 0.4
            replay: ReplayBuffer::new(10000),
            optimizer: Optimizer::new(OptimizerType::Adam {
                learning_rate: 0.001,
                beta1: 0.9,
                beta2: 0.999,
                epsilon: 1e-8,
            }),
            scheduler: LearningRateScheduler::new(
                SchedulerType::CosineAnnealing { t_max: 100, eta_min: 1e-6 },
                0.001,
            ),
        }
    }

    /// Apply learned restriction map
    pub fn apply(&self, input: &[f32]) -> Vec<f32> {
        self.layer.forward(input)
    }

    /// Train on known-coherent examples
    pub fn train(&mut self, source: &[f32], target: &[f32], expected_residual: &[f32]) {
        // Store experience
        self.replay.add(source.to_vec(), target.to_vec(), expected_residual.to_vec());

        // Sample batch from replay buffer
        let batch = self.replay.sample(32);

        // Compute loss (minimize residual difference)
        let predicted = self.layer.forward_batch(&batch.sources);
        let loss = self.compute_residual_loss(&predicted, &batch.expected);

        // Backward with EWC regularization
        let ewc_loss = self.ewc.compute_ewc_loss(&self.layer);
        let total_loss = loss + ewc_loss;

        // Update
        self.optimizer.step(&mut self.layer, total_loss);
        self.scheduler.step();
    }

    /// Consolidate after training epoch (compute Fisher information)
    pub fn consolidate(&mut self) {
        self.ewc.consolidate(&self.layer);
    }
}

8. Hyperbolic Coherence (hyperbolic/)

Hierarchy-aware energy using ruvector-hyperbolic-hnsw.

Poincaré Ball Energy Weighting

use ruvector_hyperbolic_hnsw::{
    HyperbolicHnsw, HyperbolicHnswConfig, poincare_distance,
    project_to_ball, log_map, ShardedHyperbolicHnsw,
};

/// Hyperbolic coherence with depth-aware energy
pub struct HyperbolicCoherence {
    /// Hyperbolic index for hierarchy-aware search
    index: ShardedHyperbolicHnsw,
    /// Curvature (typically -1.0)
    curvature: f32,
}

impl HyperbolicCoherence {
    /// Compute hierarchy-weighted energy
    ///
    /// Deeper nodes (further from origin in Poincaré ball) have
    /// lower "expected" energy, so violations are weighted higher.
    pub fn weighted_energy(&self, edge: &SheafEdge, residual: &[f32]) -> f32 {
        let source_depth = self.compute_depth(&edge.source);
        let target_depth = self.compute_depth(&edge.target);
        let avg_depth = (source_depth + target_depth) / 2.0;

        // Deeper nodes: higher weight for violations (they should be more coherent)
        let depth_weight = 1.0 + avg_depth.ln().max(0.0);

        let residual_norm_sq: f32 = residual.iter().map(|x| x * x).sum();
        edge.weight * residual_norm_sq * depth_weight
    }

    /// Compute depth as distance from origin in Poincaré ball
    fn compute_depth(&self, node_id: &NodeId) -> f32 {
        let state = self.index.get_vector(node_id);
        let origin = vec![0.0; state.len()];
        poincare_distance(&state, &origin, self.curvature)
    }

    /// Project state to Poincaré ball for hierarchy-aware storage
    pub fn project_state(&self, state: &[f32]) -> Vec<f32> {
        project_to_ball(state, self.curvature)
    }
}

9. MinCut Subgraph Isolation (mincut/)

Uses ruvector-mincut for efficient incoherent region isolation.

Subpolynomial Dynamic MinCut

use ruvector_mincut::{
    SubpolynomialMinCut, SubpolyConfig, MinCutResult,
    CognitiveMinCutEngine, EngineConfig, WitnessTree,
};

/// Isolate incoherent subgraphs using n^o(1) mincut
pub struct IncoherenceIsolator {
    /// Subpolynomial mincut algorithm
    mincut: SubpolynomialMinCut,
    /// Cognitive engine for SNN-based optimization
    cognitive: CognitiveMinCutEngine,
}

impl IncoherenceIsolator {
    pub fn new() -> Self {
        let config = SubpolyConfig::default();
        let engine_config = EngineConfig::default();

        Self {
            mincut: SubpolynomialMinCut::new(config),
            cognitive: CognitiveMinCutEngine::new(DynamicGraph::new(), engine_config),
        }
    }

    /// Find minimum cut to isolate high-energy region
    pub fn isolate_incoherent_region(
        &mut self,
        graph: &SheafGraph,
        energy: &CoherenceEnergy,
        threshold: f32,
    ) -> IsolationResult {
        // Build weighted graph where edge weights = residual energy
        for (edge_id, edge_energy) in &energy.edge_energies {
            if *edge_energy > threshold {
                let edge = &graph.edges[edge_id];
                self.mincut.insert_edge(
                    edge.source.as_u64(),
                    edge.target.as_u64(),
                    *edge_energy as f64,
                ).ok();
            }
        }

        // Compute minimum cut (n^o(1) amortized time!)
        let result = self.mincut.min_cut();

        IsolationResult {
            cut_value: result.value,
            partition: result.partition,
            cut_edges: result.cut_edges,
        }
    }

    /// Use SNN for continuous monitoring and optimization
    pub fn cognitive_monitor(&mut self, ticks: u32) -> Vec<Spike> {
        self.cognitive.run(ticks)
    }
}

10. Neural Coherence Gate (neural_gate/)

Integrates ruvector-nervous-system for biologically-inspired gating.

CoherenceGatedSystem Integration

use ruvector_nervous_system::{
    CoherenceGatedSystem, GlobalWorkspace, HysteresisTracker,
    OscillatoryRouter, Dendrite, DendriticTree, HdcMemory, Hypervector,
};

/// Neural coherence gate using existing CoherenceGatedSystem
pub struct NeuralCoherenceGate {
    /// The existing coherence-gated system from ruvector-nervous-system
    system: CoherenceGatedSystem,
    /// Global workspace for conscious access
    workspace: GlobalWorkspace,
    /// Hysteresis to prevent oscillation
    hysteresis: HysteresisTracker,
    /// HDC memory for witness encoding
    hdc_memory: HdcMemory,
    /// Dendritic coincidence detection for threshold firing
    dendrites: DendriticTree,
}

impl NeuralCoherenceGate {
    /// Evaluate using biologically-inspired gating
    pub fn evaluate(&mut self, energy: f32, context: &Context) -> NeuralDecision {
        // Dendritic coincidence detection
        // Fires only if multiple "synapses" (evidence sources) are active within window
        for evidence in context.evidence_sources() {
            self.dendrites.receive_spike(evidence.id, context.timestamp);
        }

        let plateau_triggered = self.dendrites.update(context.timestamp, 1.0);

        // Hysteresis prevents rapid oscillation
        let stable_decision = self.hysteresis.filter(energy, plateau_triggered);

        // Global workspace broadcast if significant
        if stable_decision.is_significant() {
            self.workspace.broadcast(stable_decision.clone());
        }

        stable_decision
    }

    /// Encode witness as hypervector (compact, similarity-preserving)
    pub fn encode_witness(&mut self, witness: &WitnessRecord) -> Hypervector {
        // HDC encoding: bind energy + decision + policy
        let energy_hv = Hypervector::from_scalar(witness.energy_snapshot.total_energy);
        let decision_hv = Hypervector::from_enum(&witness.decision);
        let policy_hv = Hypervector::from_bytes(&witness.policy_bundle_ref.as_bytes());

        // Bind all components
        let bound = energy_hv.bind(&decision_hv).bind(&policy_hv);

        // Store in memory for similarity search
        self.hdc_memory.store(&witness.id.to_string(), bound.clone());

        bound
    }

    /// Find similar past witnesses
    pub fn find_similar_witnesses(&self, query: &Hypervector, threshold: f32) -> Vec<String> {
        self.hdc_memory.retrieve(query, threshold)
            .into_iter()
            .map(|(id, _)| id)
            .collect()
    }
}

11. Attention-Weighted Residuals (attention/)

Uses ruvector-attention for intelligent residual weighting.

Topology-Gated Attention

use ruvector_attention::{
    TopologyGatedAttention, TopologyGatedConfig, AttentionMode,
    MoEAttention, MoEConfig, DiffusionAttention, DiffusionConfig,
    FlashAttention,
};

/// Attention-weighted coherence computation
pub struct AttentionCoherence {
    /// Topology-gated attention (already has coherence metrics!)
    topo_attention: TopologyGatedAttention,
    /// Mixture of Experts for specialized weighting
    moe: MoEAttention,
    /// PDE-based diffusion attention for smooth propagation
    diffusion: DiffusionAttention,
}

impl AttentionCoherence {
    /// Compute attention-weighted residuals
    pub fn weighted_residuals(
        &self,
        graph: &SheafGraph,
        residuals: &HashMap<EdgeId, Vec<f32>>,
    ) -> HashMap<EdgeId, f32> {
        // Use topology-gated attention to weight by structural importance
        let node_states: Vec<&[f32]> = graph.nodes.values()
            .map(|n| n.state.as_slice())
            .collect();

        // Compute attention scores
        let attention_scores = self.topo_attention.compute_scores(&node_states);

        // Weight residuals by attention
        residuals.iter()
            .map(|(edge_id, r)| {
                let edge = &graph.edges[edge_id];
                let source_attention = attention_scores.get(&edge.source).unwrap_or(&1.0);
                let target_attention = attention_scores.get(&edge.target).unwrap_or(&1.0);

                let attention_weight = (source_attention + target_attention) / 2.0;
                let residual_norm: f32 = r.iter().map(|x| x * x).sum();

                (*edge_id, residual_norm * attention_weight)
            })
            .collect()
    }

    /// Use MoE for specialized residual processing
    pub fn moe_route_residual(&self, residual: &[f32], context: &[f32]) -> Vec<f32> {
        // Route to specialized expert based on residual characteristics
        self.moe.forward(residual, context)
    }

    /// Diffusion-based energy propagation
    pub fn diffuse_energy(&self, energy: &CoherenceEnergy, steps: usize) -> CoherenceEnergy {
        // PDE-based smoothing of energy across graph
        self.diffusion.propagate(energy, steps)
    }
}

12. Distributed Coherence (distributed/)

Uses ruvector-raft for multi-node sheaf synchronization.

Raft-Based Consensus

use ruvector_raft::{RaftNode, RaftConfig, LogEntry, ConsensusState};

/// Distributed coherence across multiple nodes
pub struct DistributedCoherence {
    /// Raft consensus node
    raft: RaftNode,
    /// Local sheaf graph
    local_graph: SheafGraph,
    /// Pending updates to replicate
    pending: Vec<GraphUpdate>,
}

impl DistributedCoherence {
    /// Propose a graph update to the cluster
    pub async fn propose_update(&mut self, update: GraphUpdate) -> Result<(), ConsensusError> {
        let entry = LogEntry::new(bincode::serialize(&update)?);
        self.raft.propose(entry).await?;
        Ok(())
    }

    /// Apply committed updates from Raft log
    pub fn apply_committed(&mut self) {
        while let Some(entry) = self.raft.next_committed() {
            let update: GraphUpdate = bincode::deserialize(&entry.data).unwrap();
            self.local_graph.apply_update(update);
        }
    }

    /// Get global coherence (leader aggregates from all nodes)
    pub async fn global_coherence(&self) -> Result<CoherenceEnergy, ConsensusError> {
        if self.raft.is_leader() {
            // Aggregate from all followers
            let energies = self.raft.collect_from_followers(|node| {
                node.local_coherence()
            }).await?;

            Ok(self.aggregate_energies(energies))
        } else {
            // Forward to leader
            self.raft.forward_to_leader(Request::GlobalCoherence).await
        }
    }
}

13. Storage Layer (storage/)

Hybrid storage with PostgreSQL for authority and ruvector for graph operations.

PostgreSQL Schema (Authority)

-- Policy bundles (immutable)
CREATE TABLE policy_bundles (
    id UUID PRIMARY KEY,
    version VARCHAR(32) NOT NULL,
    thresholds JSONB NOT NULL,
    escalation_rules JSONB NOT NULL,
    signature BYTEA NOT NULL,
    approvers UUID[] NOT NULL,
    required_approvals INT NOT NULL,
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW()
);

-- Witness records (append-only)
CREATE TABLE witness_records (
    id UUID PRIMARY KEY,
    action_hash BYTEA NOT NULL,
    energy_snapshot JSONB NOT NULL,
    decision JSONB NOT NULL,
    policy_bundle_id UUID REFERENCES policy_bundles(id),
    timestamp TIMESTAMPTZ NOT NULL,
    previous_witness UUID REFERENCES witness_records(id),
    content_hash BYTEA NOT NULL
);

-- Lineage records (append-only)
CREATE TABLE lineage_records (
    id UUID PRIMARY KEY,
    entity_ref JSONB NOT NULL,
    operation VARCHAR(32) NOT NULL,
    dependencies UUID[] NOT NULL,
    authorizing_witness UUID REFERENCES witness_records(id),
    actor UUID NOT NULL,
    timestamp TIMESTAMPTZ NOT NULL
);

-- Event log (deterministic replay)
CREATE TABLE event_log (
    sequence_id BIGSERIAL PRIMARY KEY,
    event_type VARCHAR(64) NOT NULL,
    payload JSONB NOT NULL,
    timestamp TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    signature BYTEA NOT NULL
);

Ruvector Integration

/// Graph substrate using ruvector for vector/graph operations
pub struct RuvectorSubstrate {
    /// Node state vectors (HNSW indexed)
    node_store: VectorDB,
    /// Edge data with restriction maps
    edge_store: GraphStore,
    /// Cached residuals for incremental computation
    residual_cache: ResidualCache,
}

impl RuvectorSubstrate {
    /// Find nodes similar to a query state
    pub async fn find_similar_nodes(
        &self,
        query_state: &[f32],
        k: usize,
    ) -> Vec<(NodeId, f32)> {
        self.node_store.search(query_state, k).await
    }

    /// Get subgraph for localized coherence computation
    pub async fn get_subgraph(&self, center: NodeId, hops: usize) -> SheafSubgraph {
        let node_ids = self.edge_store.bfs(center, hops).await;
        let nodes = self.node_store.get_batch(&node_ids).await;
        let edges = self.edge_store.edges_within(&node_ids).await;

        SheafSubgraph { nodes, edges }
    }
}

Application Tiers

Tier 1: Deployable Now

Application Description Coherence Use
LLM Anti-Hallucination Guard against confident incorrect outputs Energy spike → retrieval escalation
Financial Regime Detection Detect market regime changes Spectral drift → throttle trading
Fraud/Compliance Proofs Auditable decision trails Witness records for every gate

Tier 2: 12-24 Months

Application Description Coherence Use
Autonomous Robotics Refuse action on structural mismatch Energy threshold → motion stop
Medical Monitoring Detect persistent diagnostic disagreement Spectral analysis → alert
Zero-Trust Security Structural coherence for access Graph consistency → authorization

Tier 3: 5-10 Years

Application Description Coherence Use
Scientific Theory Pruning Distributed hypothesis consistency Global energy minimization
Economic Stress Testing Policy impact simulation Counterfactual coherence
Machine Self-Awareness System self-model consistency Reflexive coherence

Architectural Decision Records (Internal)

ADR Decision
ADR-CE-001 Sheaf Laplacian defines coherence witness, not probabilistic confidence
ADR-CE-002 Incremental computation with stored residuals, subgraph summaries, global fingerprints
ADR-CE-003 PostgreSQL + ruvector as unified substrate
ADR-CE-004 Signed event log with deterministic replay
ADR-CE-005 Governance objects are first-class, immutable, addressable
ADR-CE-006 Coherence gate controls explicit compute ladder (Reflex → Retrieval → Heavy → Human)
ADR-CE-007 Thresholds auto-tuned from production traces with governance approval
ADR-CE-008 Multi-tenant isolation at data, policy, and execution boundaries

Consequences

Benefits

  1. Provable Consistency - Mathematical witnesses replace probabilistic guesses
  2. Auditable Decisions - Every gate decision has immutable witness record
  3. Localized Debugging - Edge residuals pinpoint inconsistency sources
  4. Incremental Efficiency - Only recompute affected subgraphs
  5. Graceful Degradation - Compute ladder handles varying complexity
  6. Governance by Design - Policy bundles require multi-party approval

Risks and Mitigations

Risk Probability Impact Mitigation
Restriction map design complexity High Medium Provide learned initialization from data
Cold start (no history) Medium Low Bootstrap from domain priors
Computational overhead Medium Medium SIMD-optimized residual calculation, incremental updates
Threshold tuning difficulty Medium Medium Auto-tune from production traces with governance
Graph size scaling Low High Subgraph partitioning, distributed computation

Performance Targets

Metric Target Enabled By
Single residual calculation < 1us SIMD intrinsics
Full graph energy (10K nodes) < 10ms Parallel computation
Incremental update (1 node) < 100us Tile-local updates
Gate evaluation < 500us Neural gate
Witness persistence < 5ms PostgreSQL
Tile tick (256 tiles parallel) < 1ms cognitum-gate-kernel
SONA instant adaptation < 0.05ms Micro-LoRA
MinCut update (amortized) n^o(1) Subpolynomial algorithm
HDC witness encoding < 10us Hypervector ops
Hyperbolic distance < 500ns Poincaré SIMD
Attention-weighted energy < 5ms Flash attention
Distributed consensus < 50ms Raft protocol

Implementation Phases

Phase 1: Foundation (Weeks 1-4)

  • Core sheaf graph data structures
  • Residual calculation with SIMD optimization
  • Basic energy aggregation
  • In-memory storage backend

Phase 2: Governance (Weeks 5-8)

  • Policy bundle schema and validation
  • Witness record creation and persistence
  • Lineage tracking for writes
  • PostgreSQL storage integration

Phase 3: Gate (Weeks 9-12)

  • Compute ladder implementation
  • Threshold-based gating logic
  • Persistence detection
  • Escalation pathways

Phase 4: Advanced (Weeks 13-16)

  • Incremental coherence computation
  • Spectral analysis for drift detection
  • Auto-tuning from traces
  • Multi-tenant isolation

Feature Flags

Feature Default Description
default Yes Core coherence with tiles, SONA, nervous-system
full No All integrations enabled
tiles Yes cognitum-gate-kernel 256-tile fabric
sona Yes Self-optimizing threshold tuning
learned-rho Yes GNN-learned restriction maps
hyperbolic Yes Hierarchy-aware Poincaré energy
mincut Yes Subpolynomial graph partitioning
neural-gate Yes Nervous-system CoherenceGatedSystem
attention No Attention-weighted residuals (MoE, PDE)
distributed No Raft-based multi-node coherence
postgres No PostgreSQL governance storage
simd Yes SIMD-optimized residual calculation
spectral No Eigenvalue-based drift detection
wasm No WASM bindings for browser/edge

Dependencies

Core Ruvector Crate Dependencies

Crate Version Purpose
cognitum-gate-kernel workspace 256-tile WASM coherence fabric
sona workspace Self-optimizing thresholds with EWC++
ruvector-gnn workspace Learned restriction maps, replay buffers
ruvector-mincut workspace Subpolynomial n^o(1) graph partitioning
ruvector-hyperbolic-hnsw workspace Hierarchy-aware Poincaré energy
ruvector-nervous-system workspace CoherenceGatedSystem, HDC witnesses
ruvector-attention workspace Topology-gated attention, MoE
ruvector-raft workspace Distributed consensus
ruvector-core workspace Vector storage and HNSW search
ruvector-graph workspace Graph data structures

External Dependencies

Dependency Purpose
ndarray Matrix operations for restriction maps
rayon Parallel residual computation
blake3 Content hashing for witnesses
bincode Binary serialization
tokio Async runtime for distributed coherence

Optional Dependencies

Dependency Feature Purpose
sqlx postgres PostgreSQL async client
nalgebra spectral Eigenvalue computation
serde_json - JSON serialization for governance
wasm-bindgen wasm WASM bindings for browser deployment

References

  1. Hansen, J., & Ghrist, R. (2019). "Toward a spectral theory of cellular sheaves." Journal of Applied and Computational Topology.

  2. Curry, J. (2014). "Sheaves, Cosheaves and Applications." arXiv:1303.3255.

  3. Robinson, M. (2014). "Topological Signal Processing." Springer.

  4. RuVector Team. "ruvector-core Architecture." ADR-001.

  5. Original Gist: "Coherence Engine Vision." https://gist.github.com/ruvnet/e511e4d7015996d11ab1a1ac6d5876c0


Related Decisions

  • ADR-001: Ruvector Core Architecture
  • ADR-003: SIMD Optimization Strategy
  • ADR-006: Memory Management
  • ADR-007: Security Review & Technical Debt
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment