Author: Sean Gillies Version: 1.0
This document describes a GeoJSON-like protocol for geo-spatial (GIS) vector data.
| --- conda_api.py.orig 2018-05-11 12:10:17.419642200 -0400 | |
| +++ conda_api.py 2018-05-11 12:14:31.058928700 -0400 | |
| @@ -406,12 +406,12 @@ | |
| """ | |
| if abspath: | |
| if sys.platform == 'win32': | |
| - python = join(self.ROOT_PREFIX, 'python.exe') | |
| - conda = join(self.ROOT_PREFIX, 'Scripts', 'conda-script.py') | |
| + python = join(self.CONDA_PREFIX, 'python.exe') | |
| + conda = join(self.ROOT_PREFIX, 'Scripts', 'conda.exe') |
| x = [5, 10, 15, 20, 30, 40, 50, 60, 100, 140] | |
| def range_finder(seq): | |
| it = iter(seq) | |
| prev = next(it) | |
| prev_diff = seq[1] - seq[0] | |
| r = 0 | |
| for (i, item) in enumerate(it): | |
| diff = item - prev | |
| if diff != prev_diff: |
| colorama 0.3.7 py35_0 defaults | |
| cycler 0.10.0 py35_0 defaults | |
| future 0.15.2 py35_0 defaults | |
| matplotlib 1.5.3 np111py35_0e [arcgispro] esri | |
| mpmath 0.19 py35_1 defaults | |
| netcdf4 1.2.4 py35_0e [arcgispro] esri | |
| nose 1.3.7 py35_1 defaults | |
| numexpr 2.6.1 np111py35_0e [arcgispro] esri | |
| numpy 1.11.2 py35_0e [arcgispro] esri | |
| pandas 0.19.0 np111py35_0 defaults |
| @setlocal enabledelayedexpansion | |
| @echo off | |
| @CALL :normalizepath scripts_path "%~dp0" | |
| @set env_text="%scripts_path%proenv.txt" | |
| :: read the activte environment name | |
| @set /p CONDA_NEW_ENV=<%env_text% | |
| @set CONDA_SKIPCHECK=1 | |
| @set "CONDA_PREFIX=%CONDA_NEW_ENV%" |
| from __future__ import print_function | |
| from __future__ import division | |
| from __future__ import unicode_literals | |
| import ctypes.wintypes | |
| import os | |
| # cyptes constants | |
| CSIDL_PERSONAL = 0x05 | |
| CSIDL_APPDATA = 0x1A |
| # Second example from RasterToNumPyArray (arcpy) | |
| # http://resources.arcgis.com/en/help/main/10.2/index.html#//03q300000029000000 | |
| """ | |
| A Python NumPy array is designed to deal with large arrays. There are many exist | |
| ing Python functions that have been created to process NumPy arrays, the most no | |
| ted being contained in the SciPy scientific computing package for Python. You ma | |
| y want to convert an ArcGIS raster to a NumPy array to | |
| 1. Implement one of the many existing Python functions that can be applied to a | |
| NumPy array (for example, run filters on the data, perform multidimensional |
| # step 0 -- install miniconda into ~/miniconda | |
| cd ~/miniconda/bin | |
| # running this will drop you into the 'root' conda environment, | |
| # the one that has the conda executable | |
| source ./activate root | |
| # to test, get the version of conda back | |
| conda --version | |
| # Now, you can run the conda command, and create a new environment. | |
| # Here's an example installing a geo stack. Note I reference the | |
| # conda-forge channel '-c conda-forge' because geopandas isn't in |
| #!/usr/bin/env bash | |
| # source map: http://www.arcgis.com/home/item.html?id=0dd32a9c77b8400ebf60261571b9134b | |
| echo "You must abide by the terms of use of this data:" | |
| echo " https://ref.data.gov.sg/common/terms.aspx" | |
| echo "Agree to terms? (y|n)" | |
| read input | |
| if [ ${input} == 'y' ]; then |