Last major update: 25.08.2020
- Что такое авторизация/аутентификация
- Где хранить токены
- Как ставить куки ?
- Процесс логина
- Процесс рефреш токенов
- Кража токенов/Механизм контроля токенов
| #include <stdio.h> | |
| #include <stdlib.h> | |
| #include <stdint.h> | |
| #ifdef _MSC_VER | |
| #include <intrin.h> /* for rdtscp and clflush */ | |
| #pragma optimize("gt",on) | |
| #else | |
| #include <x86intrin.h> /* for rdtscp and clflush */ | |
| #endif |
| import { line, curve, curveCatmullRom } from "d3-shape"; | |
| import { scaleTime, scaleLinear } from "d3-scale"; | |
| import { axisBottom, axisLeft } from 'd3-axis'; | |
| import { timeParse, isoFormat } from "d3-time-format"; | |
| import { select } from "d3-selection"; | |
| import { extent, max, min } from "d3-array"; | |
| export default { | |
| line: line, | |
| scaleTime: scaleTime, |
| license: gpl-3.0 | |
| redirect: https://observablehq.com/@d3/d3-density-contours |
It is loaded by default by /Library/LaunchAgents/com.adobe.AdobeCreativeCloud.plist.
If you run
launchctl unload -w /Library/LaunchAgents/com.adobe.AdobeCreativeCloud.plist
| var net = require('net'); | |
| // creates the server | |
| var server = net.createServer(); | |
| //emitted when server closes ...not emitted until all connections closes. | |
| server.on('close',function(){ | |
| console.log('Server closed !'); | |
| }); |
| '''This script goes along the blog post | |
| "Building powerful image classification models using very little data" | |
| from blog.keras.io. | |
| It uses data that can be downloaded at: | |
| https://www.kaggle.com/c/dogs-vs-cats/data | |
| In our setup, we: | |
| - created a data/ folder | |
| - created train/ and validation/ subfolders inside data/ | |
| - created cats/ and dogs/ subfolders inside train/ and validation/ | |
| - put the cat pictures index 0-999 in data/train/cats |
| # Backup | |
| docker exec CONTAINER /usr/bin/mysqldump -u root --password=root DATABASE > backup.sql | |
| # Restore | |
| cat backup.sql | docker exec -i CONTAINER /usr/bin/mysql -u root --password=root DATABASE | |
| # Implementation of a simple MLP network with one hidden layer. Tested on the iris data set. | |
| # Requires: numpy, sklearn>=0.18.1, tensorflow>=1.0 | |
| # NOTE: In order to make the code simple, we rewrite x * W_1 + b_1 = x' * W_1' | |
| # where x' = [x | 1] and W_1' is the matrix W_1 appended with a new row with elements b_1's. | |
| # Similarly, for h * W_2 + b_2 | |
| import tensorflow as tf | |
| import numpy as np | |
| from sklearn import datasets | |
| from sklearn.model_selection import train_test_split |