-
-
Save shuxiao9058/f97c6cde05b4a24068698645c9d93835 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "MobileNet-YOLO" | |
| layer { | |
| name: "data" | |
| type: "AnnotatedData" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| transform_param { | |
| scale: 0.007843 | |
| mirror: true | |
| mean_value: 127.5 | |
| mean_value: 127.5 | |
| mean_value: 127.5 | |
| force_color: true | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 608 | |
| width: 608 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 416 | |
| width: 416 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 320 | |
| width: 320 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 352 | |
| width: 352 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 384 | |
| width: 384 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 448 | |
| width: 448 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 480 | |
| width: 480 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 512 | |
| width: 512 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 544 | |
| width: 544 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| resize_param { | |
| prob: 0.1 | |
| resize_mode: WARP | |
| height: 576 | |
| width: 576 | |
| interp_mode: LINEAR | |
| interp_mode: AREA | |
| interp_mode: LANCZOS4 | |
| } | |
| emit_constraint { | |
| emit_type: CENTER | |
| } | |
| distort_param { | |
| brightness_prob: 0.5 | |
| brightness_delta: 32.0 | |
| contrast_prob: 0.5 | |
| contrast_lower: 0.5 | |
| contrast_upper: 1.5 | |
| hue_prob: 0.5 | |
| hue_delta: 18.0 | |
| saturation_prob: 0.5 | |
| saturation_lower: 0.5 | |
| saturation_upper: 1.5 | |
| random_order_prob: 0.0 | |
| } | |
| expand_param { | |
| prob: 0.5 | |
| max_expand_ratio: 1.3 | |
| } | |
| } | |
| data_param { | |
| source: "examples/coco/coco_train_lmdb" | |
| batch_size: 7 | |
| backend: LMDB | |
| } | |
| annotated_data_param { | |
| yolo_data_type : 1 | |
| yolo_data_jitter : 0.3 | |
| label_map_file: "data/coco/labelmap_coco.prototxt" | |
| } | |
| } | |
| layer { | |
| name: "conv0" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv0" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0/bn" | |
| type: "BatchNorm" | |
| bottom: "conv0" | |
| top: "conv0" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv0/scale" | |
| type: "Scale" | |
| bottom: "conv0" | |
| top: "conv0" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0/relu" | |
| type: "ReLU" | |
| bottom: "conv0" | |
| top: "conv0" | |
| } | |
| layer { | |
| name: "conv1/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv0" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 32 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/scale" | |
| type: "Scale" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv1/dw" | |
| top: "conv1/dw" | |
| } | |
| layer { | |
| name: "conv1" | |
| type: "Convolution" | |
| bottom: "conv1/dw" | |
| top: "conv1" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/bn" | |
| type: "BatchNorm" | |
| bottom: "conv1" | |
| top: "conv1" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv1/scale" | |
| type: "Scale" | |
| bottom: "conv1" | |
| top: "conv1" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv1/relu" | |
| type: "ReLU" | |
| bottom: "conv1" | |
| top: "conv1" | |
| } | |
| layer { | |
| name: "conv2/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv1" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 64 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/scale" | |
| type: "Scale" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv2/dw" | |
| top: "conv2/dw" | |
| } | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "conv2/dw" | |
| top: "conv2" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/bn" | |
| type: "BatchNorm" | |
| bottom: "conv2" | |
| top: "conv2" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv2/scale" | |
| type: "Scale" | |
| bottom: "conv2" | |
| top: "conv2" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv2/relu" | |
| type: "ReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| layer { | |
| name: "conv3/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv2" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 128 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/scale" | |
| type: "Scale" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv3/dw" | |
| top: "conv3/dw" | |
| } | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "conv3/dw" | |
| top: "conv3" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/bn" | |
| type: "BatchNorm" | |
| bottom: "conv3" | |
| top: "conv3" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv3/scale" | |
| type: "Scale" | |
| bottom: "conv3" | |
| top: "conv3" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv3/relu" | |
| type: "ReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| layer { | |
| name: "conv4/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv3" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 128 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/scale" | |
| type: "Scale" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv4/dw" | |
| top: "conv4/dw" | |
| } | |
| layer { | |
| name: "conv4" | |
| type: "Convolution" | |
| bottom: "conv4/dw" | |
| top: "conv4" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/bn" | |
| type: "BatchNorm" | |
| bottom: "conv4" | |
| top: "conv4" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv4/scale" | |
| type: "Scale" | |
| bottom: "conv4" | |
| top: "conv4" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv4/relu" | |
| type: "ReLU" | |
| bottom: "conv4" | |
| top: "conv4" | |
| } | |
| layer { | |
| name: "conv5/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv4" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 256 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/scale" | |
| type: "Scale" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv5/dw" | |
| top: "conv5/dw" | |
| } | |
| layer { | |
| name: "conv5" | |
| type: "Convolution" | |
| bottom: "conv5/dw" | |
| top: "conv5" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/bn" | |
| type: "BatchNorm" | |
| bottom: "conv5" | |
| top: "conv5" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv5/scale" | |
| type: "Scale" | |
| bottom: "conv5" | |
| top: "conv5" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv5/relu" | |
| type: "ReLU" | |
| bottom: "conv5" | |
| top: "conv5" | |
| } | |
| layer { | |
| name: "conv6/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv5" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 256 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/scale" | |
| type: "Scale" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv6/dw" | |
| top: "conv6/dw" | |
| } | |
| layer { | |
| name: "conv6" | |
| type: "Convolution" | |
| bottom: "conv6/dw" | |
| top: "conv6" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/bn" | |
| type: "BatchNorm" | |
| bottom: "conv6" | |
| top: "conv6" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv6/scale" | |
| type: "Scale" | |
| bottom: "conv6" | |
| top: "conv6" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv6/relu" | |
| type: "ReLU" | |
| bottom: "conv6" | |
| top: "conv6" | |
| } | |
| layer { | |
| name: "conv7/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv6" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/scale" | |
| type: "Scale" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv7/dw" | |
| top: "conv7/dw" | |
| } | |
| layer { | |
| name: "conv7" | |
| type: "Convolution" | |
| bottom: "conv7/dw" | |
| top: "conv7" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/bn" | |
| type: "BatchNorm" | |
| bottom: "conv7" | |
| top: "conv7" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv7/scale" | |
| type: "Scale" | |
| bottom: "conv7" | |
| top: "conv7" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv7/relu" | |
| type: "ReLU" | |
| bottom: "conv7" | |
| top: "conv7" | |
| } | |
| layer { | |
| name: "conv8/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv7" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/scale" | |
| type: "Scale" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv8/dw" | |
| top: "conv8/dw" | |
| } | |
| layer { | |
| name: "conv8" | |
| type: "Convolution" | |
| bottom: "conv8/dw" | |
| top: "conv8" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/bn" | |
| type: "BatchNorm" | |
| bottom: "conv8" | |
| top: "conv8" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv8/scale" | |
| type: "Scale" | |
| bottom: "conv8" | |
| top: "conv8" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv8/relu" | |
| type: "ReLU" | |
| bottom: "conv8" | |
| top: "conv8" | |
| } | |
| layer { | |
| name: "conv9/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv8" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/scale" | |
| type: "Scale" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv9/dw" | |
| top: "conv9/dw" | |
| } | |
| layer { | |
| name: "conv9" | |
| type: "Convolution" | |
| bottom: "conv9/dw" | |
| top: "conv9" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/bn" | |
| type: "BatchNorm" | |
| bottom: "conv9" | |
| top: "conv9" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv9/scale" | |
| type: "Scale" | |
| bottom: "conv9" | |
| top: "conv9" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv9/relu" | |
| type: "ReLU" | |
| bottom: "conv9" | |
| top: "conv9" | |
| } | |
| layer { | |
| name: "conv10/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv9" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/scale" | |
| type: "Scale" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv10/dw" | |
| top: "conv10/dw" | |
| } | |
| layer { | |
| name: "conv10" | |
| type: "Convolution" | |
| bottom: "conv10/dw" | |
| top: "conv10" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/bn" | |
| type: "BatchNorm" | |
| bottom: "conv10" | |
| top: "conv10" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv10/scale" | |
| type: "Scale" | |
| bottom: "conv10" | |
| top: "conv10" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv10/relu" | |
| type: "ReLU" | |
| bottom: "conv10" | |
| top: "conv10" | |
| } | |
| layer { | |
| name: "conv11/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv10" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/scale" | |
| type: "Scale" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv11/dw" | |
| top: "conv11/dw" | |
| } | |
| layer { | |
| name: "conv11" | |
| type: "Convolution" | |
| bottom: "conv11/dw" | |
| top: "conv11" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/bn" | |
| type: "BatchNorm" | |
| bottom: "conv11" | |
| top: "conv11" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv11/scale" | |
| type: "Scale" | |
| bottom: "conv11" | |
| top: "conv11" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv11/relu" | |
| type: "ReLU" | |
| bottom: "conv11" | |
| top: "conv11" | |
| } | |
| layer { | |
| name: "conv12/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv11" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| stride: 2 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/scale" | |
| type: "Scale" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv12/dw" | |
| top: "conv12/dw" | |
| } | |
| layer { | |
| name: "conv12" | |
| type: "Convolution" | |
| bottom: "conv12/dw" | |
| top: "conv12" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/bn" | |
| type: "BatchNorm" | |
| bottom: "conv12" | |
| top: "conv12" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv12/scale" | |
| type: "Scale" | |
| bottom: "conv12" | |
| top: "conv12" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv12/relu" | |
| type: "ReLU" | |
| bottom: "conv12" | |
| top: "conv12" | |
| } | |
| layer { | |
| name: "conv13/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv12" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1024 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/scale" | |
| type: "Scale" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv13/dw" | |
| top: "conv13/dw" | |
| } | |
| layer { | |
| name: "conv13" | |
| type: "Convolution" | |
| bottom: "conv13/dw" | |
| top: "conv13" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/bn" | |
| type: "BatchNorm" | |
| bottom: "conv13" | |
| top: "conv13" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv13/scale" | |
| type: "Scale" | |
| bottom: "conv13" | |
| top: "conv13" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2.0 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv13/relu" | |
| type: "ReLU" | |
| bottom: "conv13" | |
| top: "conv13" | |
| } | |
| layer { | |
| name: "conv15/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv13" | |
| top: "conv15/dw" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1024 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv15/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv15/dw" | |
| top: "conv15/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv15/dw/scale" | |
| type: "Scale" | |
| bottom: "conv15/dw" | |
| top: "conv15/dw" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv15/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv15/dw" | |
| top: "conv15/dw" | |
| } | |
| layer { | |
| name: "conv15" | |
| type: "Convolution" | |
| bottom: "conv15/dw" | |
| top: "conv15" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv15/bn" | |
| type: "BatchNorm" | |
| bottom: "conv15" | |
| top: "conv15" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv15/scale" | |
| type: "Scale" | |
| bottom: "conv15" | |
| top: "conv15" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv15/relu" | |
| type: "ReLU" | |
| bottom: "conv15" | |
| top: "conv15" | |
| } | |
| layer { | |
| name: "conv17_plus" | |
| type: "Convolution" | |
| bottom: "conv15" | |
| top: "conv17_plus" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| group: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17_plus/bn" | |
| type: "BatchNorm" | |
| bottom: "conv17_plus" | |
| top: "conv17_plus" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv17_plus/scale" | |
| type: "Scale" | |
| bottom: "conv17_plus" | |
| top: "conv17_plus" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17_plus/relu" | |
| type: "ReLU" | |
| bottom: "conv17_plus" | |
| top: "conv17_plus" | |
| } | |
| layer { | |
| name: "upsample_new" | |
| type: "Upsample" | |
| bottom: "conv17_plus" | |
| top: "upsample_new" | |
| upsample_param { | |
| scale: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv17/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv11" | |
| top: "conv17/dw" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv17/dw" | |
| top: "conv17/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv17/dw/scale" | |
| type: "Scale" | |
| bottom: "conv17/dw" | |
| top: "conv17/dw" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv17/dw" | |
| top: "conv17/dw" | |
| } | |
| layer { | |
| name: "conv17" | |
| type: "Convolution" | |
| bottom: "conv17/dw" | |
| top: "conv17" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/bn" | |
| type: "BatchNorm" | |
| bottom: "conv17" | |
| top: "conv17" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv17/scale" | |
| type: "Scale" | |
| bottom: "conv17" | |
| top: "conv17" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv17/relu" | |
| type: "ReLU" | |
| bottom: "conv17" | |
| top: "conv17" | |
| } | |
| layer { | |
| name: "conv17/cat" | |
| type: "Concat" | |
| bottom: "upsample_new" | |
| bottom: "conv17" | |
| top: "conv17/cat" | |
| } | |
| layer { | |
| name: "conv18_plus" | |
| type: "Convolution" | |
| bottom: "conv17/cat" | |
| top: "conv18_plus" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18_plus/bn" | |
| type: "BatchNorm" | |
| bottom: "conv18_plus" | |
| top: "conv18_plus" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv18_plus/scale" | |
| type: "Scale" | |
| bottom: "conv18_plus" | |
| top: "conv18_plus" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18_plus/relu" | |
| type: "ReLU" | |
| bottom: "conv18_plus" | |
| top: "conv18_plus" | |
| } | |
| layer { | |
| name: "conv18/dw" | |
| type: "DepthwiseConvolution" | |
| bottom: "conv18_plus" | |
| top: "conv18/dw" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| bias_term: false | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 512 | |
| engine: CAFFE | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18/dw/bn" | |
| type: "BatchNorm" | |
| bottom: "conv18/dw" | |
| top: "conv18/dw" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv18/dw/scale" | |
| type: "Scale" | |
| bottom: "conv18/dw" | |
| top: "conv18/dw" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18/dw/relu" | |
| type: "ReLU" | |
| bottom: "conv18/dw" | |
| top: "conv18/dw" | |
| } | |
| layer { | |
| name: "conv18_new" | |
| type: "Convolution" | |
| bottom: "conv18/dw" | |
| top: "conv18_new" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| convolution_param { | |
| num_output: 1024 | |
| bias_term: false | |
| kernel_size: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18_new/bn" | |
| type: "BatchNorm" | |
| bottom: "conv18_new" | |
| top: "conv18_new" | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| } | |
| layer { | |
| name: "conv18_new/scale" | |
| type: "Scale" | |
| bottom: "conv18_new" | |
| top: "conv18_new" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 0.0 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0.0 | |
| } | |
| scale_param { | |
| filler { | |
| value: 1 | |
| } | |
| bias_term: true | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv18_new/relu" | |
| type: "ReLU" | |
| bottom: "conv18_new" | |
| top: "conv18_new" | |
| } | |
| layer { | |
| name: "conv22" | |
| type: "Convolution" | |
| bottom: "conv15" | |
| top: "conv22" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 255 | |
| kernel_size: 1 | |
| pad: 0 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv23_new" | |
| type: "Convolution" | |
| bottom: "conv18_new" | |
| top: "conv23_new" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 255 | |
| kernel_size: 1 | |
| pad: 0 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Yolov3Loss1" | |
| type: "Yolov3" | |
| bottom: "conv22" | |
| bottom: "label" | |
| top: "det_loss1" | |
| loss_weight: 1 | |
| yolov3_param { | |
| side: 13 | |
| num_class: 80 | |
| num: 3 | |
| object_scale: 5.0 | |
| noobject_scale: 1.0 | |
| class_scale: 1.0 | |
| coord_scale: 1.0 | |
| thresh: 0.7 | |
| anchors_scale : 32 | |
| #use_hard_sigmoid: True | |
| #10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
| biases: 10 | |
| biases: 14 | |
| biases: 23 | |
| biases: 27 | |
| biases: 37 | |
| biases: 58 | |
| biases: 81 | |
| biases: 82 | |
| biases: 135 | |
| biases: 169 | |
| biases: 344 | |
| biases: 319 | |
| mask:3 | |
| mask:4 | |
| mask:5 | |
| } | |
| } | |
| layer { | |
| name: "Yolov3Loss2" | |
| type: "Yolov3" | |
| bottom: "conv23_new" | |
| bottom: "label" | |
| top: "det_loss2" | |
| loss_weight: 1 | |
| yolov3_param { | |
| side: 26 | |
| num_class: 80 | |
| num: 3 | |
| object_scale: 5.0 | |
| noobject_scale: 1.0 | |
| class_scale: 1.0 | |
| coord_scale: 1.0 | |
| thresh: 0.6 | |
| anchors_scale : 16 | |
| #use_hard_sigmoid: True | |
| #10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 | |
| biases: 10 | |
| biases: 14 | |
| biases: 23 | |
| biases: 27 | |
| biases: 37 | |
| biases: 58 | |
| biases: 81 | |
| biases: 82 | |
| biases: 135 | |
| biases: 169 | |
| biases: 344 | |
| biases: 319 | |
| mask:0 | |
| mask:1 | |
| mask:2 | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment