Skip to content

Instantly share code, notes, and snippets.

@ssstrike
Created April 10, 2018 05:07
Show Gist options
  • Select an option

  • Save ssstrike/3221426a40d50820f1d3bb354e7bea41 to your computer and use it in GitHub Desktop.

Select an option

Save ssstrike/3221426a40d50820f1d3bb354e7bea41 to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 07 21:10:33 2018
@author: Fuzzy
"""
import pandas as pd
#import numpy as np
#creates dataframe and removes rows Unnamed 615-638 (they are empty)
df = pd.read_csv('tfExp.csv')
count = 615
while count <639:
del df['Unnamed: ' + str(count)]
count += 1
#creates the id2Index dict.
id2Index = {}
indexList = list(df.index.get_values())
idList = list(df['Unnamed: 0'])
count = 0
while count < 767:
id2Index[idList[count]] = indexList[count]
count += 1
#manual inputs
key = 347853
key2 = 9421
#Broken, creates list of headers
#is_key = df['Unnamed: 0'] == key
#mylist = list(df.loc[is_key])
#uses id2Index to isolate key's row into a list
rowKey = list(df.loc[id2Index[key]])
rowKey.remove(rowKey[0])#removes the first element
rowKey2 = list(df.loc[id2Index[key2]])
rowKey2.remove(rowKey2[0])
#for testing person r function
from scipy import stats
p = stats.pearsonr(rowKey,rowKey2)
passes = False
if abs(p[0]) > 0.8 and abs(p[1]) < 0.05:
passes = True
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment