Created
August 4, 2025 10:08
-
-
Save stephenc/dbe68f6bebe0f36cf00c67dbdac71adf to your computer and use it in GitHub Desktop.
Finger saver - Lesson 7
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| window_duration = 2.0 # seconds | |
| window_size = int(window_duration * sr) | |
| num_windows = 16 | |
| fig, axes = plt.subplots(4, 4, figsize=(16, 12)) | |
| axes = axes.flatten() | |
| for i in range(num_windows): | |
| start = i * window_size | |
| end = start + window_size | |
| segment = y[start:end] | |
| if len(segment) < window_size: | |
| # Pad if the last segment is too short | |
| segment = np.pad(segment, (0, window_size - len(segment))) | |
| Y = np.fft.rfft(segment) | |
| freqs = np.fft.rfftfreq(len(segment), d=1/sr) | |
| ax = axes[i] | |
| ax.plot(freqs, np.abs(Y), lw=0.7) | |
| ax.set_title(f"Window {i+1}: {i*2}-{(i+1)*2} s") | |
| ax.set_xlim(0, 4096) | |
| ax.set_ylim(0, None) | |
| ax.set_xticks([0, 1000, 2000, 3000, 4000]) | |
| ax.tick_params(labelsize=8) | |
| plt.tight_layout() | |
| plt.suptitle("Rolling FFT: 2-second Windows", fontsize=18, y=1.02) | |
| plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from scipy.signal import lombscargle | |
| window_duration = 2.0 # seconds | |
| window_size = int(window_duration * sr) | |
| num_windows = 16 | |
| frequencies = np.linspace(1, 4096, 2048) | |
| angular_freqs = 2 * np.pi * frequencies | |
| fig, axes = plt.subplots(4, 4, figsize=(16, 12)) | |
| axes = axes.flatten() | |
| for i in range(num_windows): | |
| start = i * window_size | |
| end = start + window_size | |
| segment = y[start:end] | |
| if len(segment) < window_size: | |
| segment = np.pad(segment, (0, window_size - len(segment))) | |
| t = np.linspace(0, window_duration, len(segment)) # Even sampling | |
| power = lombscargle(t, segment, angular_freqs, normalize="power") | |
| ax = axes[i] | |
| ax.plot(frequencies, power, lw=0.7) | |
| ax.set_title(f"Window {i+1}: {i*2}-{(i+1)*2} s") | |
| ax.set_xlim(0, 4096) | |
| ax.set_ylim(0, None) | |
| ax.set_xticks([0, 1000, 2000, 3000, 4000]) | |
| ax.tick_params(labelsize=8) | |
| plt.tight_layout() | |
| plt.suptitle("Rolling Lomb-Scargle: 2-second Windows", | |
| fontsize=18, y=1.02) | |
| plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment