Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save szekelyszabi/ce244b801e3668758a0e189cddc30491 to your computer and use it in GitHub Desktop.

Select an option

Save szekelyszabi/ce244b801e3668758a0e189cddc30491 to your computer and use it in GitHub Desktop.
Schema-generation-blueprint
# Schema Generation Playbook
## Overview
This playbook provides a systematic approach to generating comprehensive, production-ready schemas for any domain. It combines domain expertise, automated research, and validation to ensure high-quality results.
## Core Principles
### 1. Domain-First Approach
- **Always start with domain analysis** - Understand the specific requirements and patterns
- **Research before generating** - Use MCP tools to gather relevant information
- **Apply domain expertise** - Use established patterns and best practices
- **Consider the full lifecycle** - From development to production to scaling
### 2. Production-Ready Focus
- **Security by default** - Include proper authentication, authorization, and data protection
- **Performance considerations** - Design for expected load and growth
- **Cost optimization** - Balance features with operational costs
- **Monitoring and observability** - Include logging, metrics, and alerting
### 3. Implementation-Focused
- **Actionable schemas** - Provide clear next steps and implementation guidance
- **Technology-specific** - Use appropriate tools and frameworks
- **Best practices** - Follow established patterns and conventions
- **Error handling** - Include comprehensive error scenarios
## Schema Generation Process
### Phase 1: Domain Analysis
**Goal**: Understand what the user wants to build and identify the optimal approach.
**Steps**:
1. **Parse user intent** - Extract key requirements and constraints
2. **Classify domain type** - Identify primary category (API, database, AI service, etc.)
3. **Identify stakeholders** - Consider users, developers, and business requirements
4. **Define success criteria** - What makes this schema successful?
**Key Questions**:
- What type of application is this?
- Who are the end users?
- What are the performance requirements?
- What's the expected scale?
- What's the budget/cost sensitivity?
- What are the security requirements?
### Phase 2: Research & Discovery
**Goal**: Gather comprehensive information about the domain and requirements.
**Research Activities**:
- **API Documentation**: Use `WebFetch` to get official API docs
- **Framework Patterns**: Use `mcp__context7__*` to find established patterns
- **Service Information**: Use `mcp__supabase__*` for database patterns
- **Community Solutions**: Use `WebSearch` for latest approaches and solutions
- **Cost Analysis**: Research pricing models and optimization strategies
**Research Template**:
```markdown
## Research Summary
- **Domain**: [API Integration/Database Design/AI Service/etc.]
- **Key Technologies**: [List relevant technologies]
- **Patterns Found**: [Established patterns and best practices]
- **Cost Considerations**: [Pricing models and optimization opportunities]
- **Security Requirements**: [Authentication, authorization, data protection]
- **Performance Considerations**: [Latency, throughput, scalability]
```
### Phase 3: Schema Architecture
**Goal**: Design the high-level architecture and data flow.
**Architecture Components**:
1. **Data Models** - Core entities and relationships
2. **API Design** - Endpoints, methods, and request/response formats
3. **Business Logic** - Workflows, validation, and processing rules
4. **Integration Points** - External services and dependencies
5. **Storage Strategy** - Database design and data persistence
6. **Security Framework** - Authentication, authorization, and data protection
**Architecture Template**:
```json
{
"architecture": {
"components": [
{
"name": "component_name",
"type": "api|database|service|integration",
"purpose": "description",
"dependencies": ["list", "of", "dependencies"]
}
],
"data_flow": [
{
"from": "source",
"to": "destination",
"data": "data_type",
"method": "synchronous|asynchronous"
}
],
"integration_points": [
{
"service": "external_service",
"purpose": "integration_purpose",
"authentication": "auth_method",
"rate_limits": "rate_limit_info"
}
]
}
}
```
### Phase 4: Schema Generation
**Goal**: Create comprehensive, production-ready schema with all necessary components.
**Schema Components**:
1. **Core Schema** - Primary data structures and relationships
2. **API Specification** - OpenAPI/Swagger documentation
3. **Database Schema** - Tables, indexes, and relationships
4. **Configuration** - Environment variables and settings
5. **Security Policies** - Authentication, authorization, and validation rules
6. **Error Handling** - Error codes, messages, and recovery strategies
7. **Monitoring** - Logging, metrics, and alerting configuration
**Quality Criteria**:
- **Completeness** - All necessary components included
- **Consistency** - Naming conventions and patterns followed
- **Scalability** - Designed for growth and performance
- **Security** - Proper authentication and data protection
- **Maintainability** - Clear structure and documentation
### Phase 5: Validation & Refinement
**Goal**: Ensure the schema meets all requirements and follows best practices.
**Validation Checklist**:
- [ ] **Security Review** - Authentication, authorization, input validation
- [ ] **Performance Review** - Indexes, caching, query optimization
- [ ] **Cost Review** - Resource usage, pricing implications
- [ ] **Scalability Review** - Growth patterns, bottlenecks
- [ ] **Maintainability Review** - Code organization, documentation
- [ ] **Integration Review** - External dependencies, API contracts
**Refinement Process**:
1. **Identify gaps** - Missing components or considerations
2. **Optimize performance** - Improve efficiency and speed
3. **Enhance security** - Strengthen authentication and data protection
4. **Reduce costs** - Optimize resource usage and pricing
5. **Improve usability** - Simplify integration and usage
### Phase 6: Documentation & Implementation Guide
**Goal**: Provide clear next steps and implementation guidance.
**Documentation Requirements**:
1. **Schema Overview** - Purpose, architecture, and key components
2. **Implementation Guide** - Step-by-step setup and configuration
3. **API Documentation** - Endpoints, parameters, and examples
4. **Security Setup** - Authentication, authorization, and best practices
5. **Deployment Guide** - Environment setup and deployment strategies
6. **Monitoring Setup** - Logging, metrics, and alerting configuration
7. **Cost Optimization** - Strategies to minimize operational costs
## Domain-Specific Considerations
### API Integration Schemas
- **Authentication patterns** - OAuth, API keys, JWT tokens
- **Rate limiting** - Request throttling and backoff strategies
- **Error handling** - Retry logic and failure scenarios
- **Caching** - Response caching and invalidation strategies
- **Webhooks** - Event-driven updates and notifications
### AI/ML Service Schemas
- **Model selection** - Choosing appropriate models for the task
- **Input validation** - Ensuring safe and valid inputs
- **Job queuing** - Managing async processing and results
- **Cost optimization** - Minimizing API calls and processing costs
- **Result caching** - Storing and reusing previous results
### Database Design Schemas
- **Data modeling** - Entities, relationships, and constraints
- **Indexing strategy** - Performance optimization and query patterns
- **Migration patterns** - Schema evolution and data migration
- **Backup and recovery** - Data protection and disaster recovery
- **Performance tuning** - Query optimization and scaling strategies
### User-Facing Application Schemas
- **User management** - Authentication, profiles, and permissions
- **UI/UX patterns** - Interface design and user experience
- **State management** - Application state and data synchronization
- **Offline support** - Caching and offline functionality
- **Progressive enhancement** - Feature rollout and A/B testing
## Tools and Resources
### MCP Tools for Research
- `mcp__supabase__list_tables` - Database schema examples
- `mcp__supabase__generate_typescript_types` - Type generation patterns
- `mcp__context7__resolve-library-id` - Find relevant libraries
- `mcp__context7__get-library-docs` - Get framework documentation
### Web Research Tools
- `WebFetch` - Get official API documentation
- `WebSearch` - Find community solutions and patterns
### Common Research Queries
- "[Technology] best practices"
- "[Service] authentication patterns"
- "[Framework] production setup"
- "[Domain] security considerations"
- "[Service] cost optimization"
- "[Technology] monitoring and observability"
## Example Research Workflow
### For "External API Integration Project":
1. **Domain Analysis** - API integration + data processing
2. **Research Phase**:
- `WebFetch` - Get API documentation and patterns
- `mcp__context7__resolve-library-id` - Find relevant libraries
- `mcp__supabase__list_tables` - Database integration patterns
3. **Schema Generation** - Job queue + webhook handlers + storage
4. **Validation** - Security, performance, cost optimization
5. **Documentation** - Implementation guide and best practices
## Success Metrics
### Technical Quality
- **Schema completeness** - All necessary components included
- **Security score** - Proper authentication and data protection
- **Performance optimization** - Efficient queries and caching
- **Cost efficiency** - Optimized resource usage
### Business Value
- **Implementation clarity** - Clear next steps and guidance
- **Time to market** - Reduced development time
- **Operational efficiency** - Monitoring and maintenance considerations
- **Scalability planning** - Growth and expansion strategies
## Continuous Improvement
### Feedback Loop
- **User feedback** - Gather feedback on generated schemas
- **Implementation results** - Track success of schema implementations
- **Performance metrics** - Monitor schema performance in production
- **Cost analysis** - Evaluate cost efficiency of generated schemas
### Pattern Library
- **Successful patterns** - Document and reuse successful approaches
- **Common pitfalls** - Identify and avoid common mistakes
- **Domain expertise** - Build domain-specific knowledge base
- **Tool effectiveness** - Evaluate and improve tool usage patterns
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment