祭っぽいので私も書いてみることにした!お手軽に gist で。
コンテキスト:https://togetter.com/li/1331865
と書き出したはいいが、私が受けたときは本も情報もあまりなく、かつ競プロ的なものの存在も知らなかったので、とりあえず家にあったアルゴリズムの本を2回くらい読み直した。そして受かった。最初っから情報があまりない方のパターンで申し訳ない 😄
| function migrateObject(obj) { | |
| const clipPath = obj?.clipPath; | |
| if (clipPath && clipPath.type === 'group' && clipPath.eraser === true) { | |
| clipPath.type = 'eraser'; | |
| delete clipPath.eraser; | |
| const rect = clipPath.objects.shift(); | |
| obj.clipPath = rect.clipPath; | |
| obj.eraser = clipPath; | |
| } |
祭っぽいので私も書いてみることにした!お手軽に gist で。
コンテキスト:https://togetter.com/li/1331865
と書き出したはいいが、私が受けたときは本も情報もあまりなく、かつ競プロ的なものの存在も知らなかったので、とりあえず家にあったアルゴリズムの本を2回くらい読み直した。そして受かった。最初っから情報があまりない方のパターンで申し訳ない 😄
| { | |
| "name": "tf-js", | |
| "version": "1.0.0", | |
| "main": "script.js", | |
| "license": "MIT", | |
| "dependencies": { | |
| "@tensorflow-models/mobilenet": "^0.2.2", | |
| "@tensorflow/tfjs": "^0.12.3", | |
| "@tensorflow/tfjs-node": "^0.1.9", | |
| "jpeg-js": "^0.3.4" |
| import types | |
| import tensorflow as tf | |
| import numpy as np | |
| # Expressions are represented as lists of lists, | |
| # in lisp style -- the symbol name is the head (first element) | |
| # of the list, and the arguments follow. | |
| # add an expression to an expression list, recursively if necessary. | |
| def add_expr_to_list(exprlist, expr): |
| """ Trains an agent with (stochastic) Policy Gradients on Pong. Uses OpenAI Gym. """ | |
| import numpy as np | |
| import cPickle as pickle | |
| import gym | |
| # hyperparameters | |
| H = 200 # number of hidden layer neurons | |
| batch_size = 10 # every how many episodes to do a param update? | |
| learning_rate = 1e-4 | |
| gamma = 0.99 # discount factor for reward |
| """Perlin noise implementation.""" | |
| # Licensed under ISC | |
| from itertools import product | |
| import math | |
| import random | |
| def smoothstep(t): | |
| """Smooth curve with a zero derivative at 0 and 1, making it useful for | |
| interpolating. |
| 更新: | 2024-05-20 |
|---|---|
| 作者: | @voluntas |
| バージョン: | 2024.1 |
| URL: | https://voluntas.github.io/ |
Please consider using http://lygia.xyz instead of copy/pasting this functions. It expand suport for voronoi, voronoise, fbm, noise, worley, noise, derivatives and much more, through simple file dependencies. Take a look to https://github.com/patriciogonzalezvivo/lygia/tree/main/generative
float rand(float n){return fract(sin(n) * 43758.5453123);}
float noise(float p){
float fl = floor(p);
float fc = fract(p);