Skip to content

Instantly share code, notes, and snippets.

@waqaskhan409
Created April 6, 2019 12:49
Show Gist options
  • Select an option

  • Save waqaskhan409/db0bf8d2a967017d16d9ed90790d30e0 to your computer and use it in GitHub Desktop.

Select an option

Save waqaskhan409/db0bf8d2a967017d16d9ed90790d30e0 to your computer and use it in GitHub Desktop.
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, Flatten,Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
model = Sequential()
model.add(Conv2D(filters=96, input_shape=(224,224,3), kernel_size=(11,11),strides=(4,4), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add(BatchNormalization())
model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add(BatchNormalization())
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(4096, input_shape=(224*224*3,)))
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(BatchNormalization())
model.add(Dense(4096))
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(BatchNormalization())
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.4))
model.add(BatchNormalization())
model.add(Dense(17))
model.add(Activation(tf.nn.softmax))
model.summary()
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
trainSet = train_datagen.flow_from_directory('/Users/macbook/Documents/ImportantStuff/lol/Train/',
target_size=(224, 224),
batch_size=32,
class_mode='binary')
testSet = test_datagen.flow_from_directory('/Users/macbook/Documents/ImportantStuff/lol/test/',
target_size=(224, 224),
batch_size=32,
class_mode='binary')
model.fit_generator(trainSet,
steps_per_epoch=1705,
epochs=7,
validation_data=testSet,
validation_steps=359)
# In[3]:
model.save('ALexNet.h5')
model.save_weights('AlexNetWithWeights.h5')
# In[5]:
keras.callbacks.History()
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment