Skip to content

Instantly share code, notes, and snippets.

@winger
Created December 3, 2025 07:25
Show Gist options
  • Select an option

  • Save winger/4ba79f25160e0beaede881f667c420af to your computer and use it in GitHub Desktop.

Select an option

Save winger/4ba79f25160e0beaede881f667c420af to your computer and use it in GitHub Desktop.

A Gaussian Lower Bound for a Binomial Right Tail

We show that for all integers $k \ge 1$ and all $p \in (0, \tfrac{1}{2})$, if

$$n := 2k,\qquad \sigma^2 := p(1-p),\qquad z := \frac{(1/2 - p)\sqrt{2k}}{\sigma},$$

then

$$1 - \Phi(z) + \frac{1}{2} \binom{2k}{k},\sigma^{2k} ;\le; \mathbb{P}\bigl(\mathrm{Bin}(2k,p)\ge k\bigr),$$

where $\Phi$ is the standard normal CDF.

Equivalently: the Gaussian right tail $1-\Phi(z)$ plus the midpoint–correction term $\tfrac{1}{2} \binom{2k}{k}\sigma^{2k}$ is a lower bound for the binomial right tail.


0. Notation

Throughout, fix $k\in\mathbb{N}$ and set

$$n := 2k,\qquad s := p(1-p),\qquad \sigma := \sqrt{s},\qquad z := \frac{(1/2 - p)\sqrt{2k}}{\sigma}.$$

Let $\Phi$ and $\phi$ denote the standard normal CDF and PDF, respectively.

Define

$$A := \frac{1}{2} \binom{2k}{k}k, \qquad B := \frac{\sqrt{k}}{4\sqrt{\pi}}.$$

We introduce

$$I(p) := \binom{n}{k},k \int_0^p t^{k-1}(1-t)^{n-k},dt,$$

$$G(p) := 1 - \Phi\bigl(z(p)\bigr) + \frac{1}{2} \binom{n}{k},\sigma(p)^n = 1 - \Phi\bigl(z(p)\bigr) + \frac{1}{2} \binom{n}{k},s(p)^k.$$

Finally, define the "gap" function

$$\mathrm{gap}(p) := I(p) - G(p).$$

Our goal is to show $\mathrm{gap}(p) \ge 0$ for all $p\in(0,1/2)$.


1. Integral representation of the binomial tail

Let

$$T(p) := \mathbb{P}\bigl(\mathrm{Bin}(n,p)\ge k\bigr) = \sum_{i=k}^n \binom{n}{i} p^i(1-p)^{n-i}.$$

1.1. $I(p)$ is a regularized incomplete beta

Recall the Beta function

$$B(a,b) = \int_0^1 t^{a-1}(1-t)^{b-1},dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

and its incomplete version

$$B(p; a,b) = \int_0^p t^{a-1}(1-t)^{b-1},dt.$$

The regularized incomplete Beta is

$$I_p(a,b) = \frac{B(p; a,b)}{B(a,b)}.$$

A standard identity for the binomial CDF (see e.g. "binomial CDF and incomplete beta") is

$$\mathbb{P}\bigl(\mathrm{Bin}(n,p)\ge k\bigr) = I_p\bigl(k,n-k+1\bigr).$$

On the other hand,

$$B\bigl(k,n-k+1\bigr) = \frac{\Gamma(k)\Gamma(n-k+1)}{\Gamma(n+1)} = \frac{(k-1)!(n-k)!}{n!},$$

so

$$\frac{1}{B(k,n-k+1)} = \frac{n!}{(k-1)!(n-k)!} = \binom{n}{k}k.$$

Thus

$$I_p(k,n-k+1) = \binom{n}{k}k \int_0^p t^{k-1}(1-t)^{n-k},dt = I(p).$$

So

$$I(p) = \mathbb{P}\bigl(\mathrm{Bin}(n,p)\ge k\bigr) = T(p).$$

1.2. Derivative form (telescoping)

For completeness, differentiate $I$ and $T$:

  • By the Fundamental Theorem of Calculus,

    $$I'(p) = \binom{n}{k}k,p^{k-1}(1-p)^{n-k}.$$

  • Differentiate the finite sum defining $T(p)$ termwise:

    $$\frac{d}{dp}\bigl[\binom{n}{i}p^i(1-p)^{n-i}\bigr] = \binom{n}{i}\Bigl[i p^{i-1}(1-p)^{n-i} - (n-i)p^i(1-p)^{n-i-1}\Bigr].$$

Using

$$\binom{n}{i}i = n\binom{n-1}{i-1},\qquad \binom{n}{i}(n-i) = n\binom{n-1}{i},$$

the sum telescopes, and one gets exactly

$$T'(p) = \binom{n}{k}k,p^{k-1}(1-p)^{n-k} = I'(p).$$

Since also $T(0)=0=I(0)$, we have

$$I(p) \equiv T(p) = \mathbb{P}(\mathrm{Bin}(n,p)\ge k).$$

This will be used at the very end.


2. Endpoints and exact cancellation at $p=\tfrac{1}{2}$

We view $\mathrm{gap}(p)$ on $(0,1/2)$, but we will extend it continuously to the closed interval $[0,1/2]$.

2.1. At $p=0$

  • $I(0) = 0$ by definition.

  • $s(0) = 0$, so $\sigma(0)^n = 0$.

  • As $p\to 0^+$, $\sigma\to 0$ and $1/2 - p \to 1/2$, so

    $$z(p) = \frac{(1/2-p)\sqrt{2k}}{\sigma} \to +\infty,$$

    hence $1-\Phi\bigl(z(p)\bigr) \to 0$.

Thus

$$\lim_{p\to0^+} G(p) = 0,$$

and we define $G(0):=0$, so that

$$\mathrm{gap}(0) = I(0) - G(0) = 0.$$

2.2. At $p = \tfrac{1}{2}$

Here

$$s = p(1-p) = \frac{1}{4},\quad \sigma^n = (1/4)^k,\quad z = 0,\quad 1-\Phi(z) = \frac{1}{2}.$$

For $X\sim \mathrm{Bin}(2k,1/2)$, symmetry gives

$$\mathbb{P}(X \ge k) = \frac{1}{2} + \frac{1}{2}\mathbb{P}(X = k) = \frac{1}{2} + \frac{1}{2} \binom{2k}{k} 2^{-2k}.$$

But $2^{-2k} = (1/4)^k = \sigma^n$, so

$$I\bigl(\tfrac{1}{2}\bigr) = \mathbb{P}(\mathrm{Bin}(2k,1/2)\ge k) = \frac{1}{2} + \frac{1}{2}\binom{2k}{k}\sigma^n.$$

By definition,

$$G\bigl(\tfrac{1}{2}\bigr) = 1-\Phi(0) + \frac{1}{2}\binom{2k}{k}\sigma^n = \frac{1}{2} + \frac{1}{2}\binom{2k}{k}\sigma^n.$$

Hence

$$\mathrm{gap}\bigl(\tfrac{1}{2}\bigr) = I\bigl(\tfrac{1}{2}\bigr)-G\bigl(\tfrac{1}{2}\bigr) = 0.$$

So we have

$$\mathrm{gap}(0) = \mathrm{gap}\bigl(\tfrac{1}{2}\bigr) = 0.$$


3. Derivative of the gap and reduction to a scalar inequality

We compute $\mathrm{gap}'(p)$ on $(0,1/2)$.

3.1. Derivatives of $I$ and the midpoint term

As above,

$$I'(p) = \binom{n}{k}k,p^{k-1}(1-p)^{n-k}.$$

With $n=2k$, we have

$$I'(p) = \binom{2k}{k}k,p^{k-1}(1-p)^k.$$

Writing $s=p(1-p)$, note that

$$p^{k-1}(1-p)^k = [p(1-p)]^{k-1}(1-p) = s^{k-1}(1-p),$$

so

$$I'(p) = \binom{2k}{k}k,s^{k-1}(1-p).$$

The midpoint term is

$$M(p) := \frac{1}{2}\binom{n}{k}s^k = \frac{1}{2}\binom{2k}{k}s^k,$$

so

$$M'(p) = \frac{1}{2}\binom{2k}{k}k,s^{k-1}s' = \frac{1}{2}\binom{2k}{k}k,s^{k-1}(1-2p),$$

since $s'(p) = 1-2p$.

3.2. Derivative of the Gaussian tail term

Recall

$$z(p) = \frac{(1/2-p)\sqrt{2k}}{\sigma(p)},\qquad \sigma^2(p) = s(p).$$

Differentiating,

$$z'(p) = -\frac{\sqrt{2k}}{4,s(p)^{3/2}}.$$

(You can obtain this by a short, direct computation, using $(p-\tfrac{1}{2})^2 + s = \tfrac{1}{4}$.)

Since $\Phi'(z) = \phi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$, we get

$$\frac{d}{dp}\bigl[1-\Phi(z(p))\bigr] = -\phi(z(p)),z'(p) = \frac{\sqrt{2k}}{4\sqrt{2\pi}},s^{-3/2} e^{-z^2/2} = \frac{\sqrt{k}}{4\sqrt{\pi}},s^{-3/2} e^{-z^2/2}.$$

Thus

$$\frac{d}{dp}\bigl[1-\Phi(z(p))\bigr] = B,s^{-3/2}e^{-z^2/2}.$$

3.3. Putting it together

Recall $G(p) = 1-\Phi(z(p)) + M(p)$. Therefore

$$G'(p) = B,s^{-3/2}e^{-z^2/2} + \frac{1}{2}\binom{2k}{k}k,s^{k-1}(1-2p).$$

Hence

$$\mathrm{gap}'(p) = I'(p) - G'(p) = I'(p) - M'(p) - \frac{d}{dp}[1-\Phi(z(p))].$$

From the formulas above,

$$I'(p) - M'(p) = \binom{2k}{k}k,s^{k-1}(1-p) - \frac{1}{2}\binom{2k}{k}k,s^{k-1}(1-2p).$$

Factor out $\binom{2k}{k}k,s^{k-1}$:

$$I'(p) - M'(p) = \binom{2k}{k}k,s^{k-1}\left[ (1-p) - \frac{1}{2}(1-2p)\right].$$

The bracket simplifies to

$$(1-p) - \tfrac{1}{2}(1-2p) = 1-p - \tfrac{1}{2} + p = \tfrac{1}{2}.$$

So

$$I'(p) - M'(p) = \frac{1}{2}\binom{2k}{k}k,s^{k-1} = A,s^{k-1}.$$

Therefore

$$\boxed{\mathrm{gap}'(p) = A,s^{k-1} - B,s^{-3/2}e^{-z(p)^2/2}}.$$

In particular, all quantities involved are positive on $(0,1/2)$.

3.4. Logarithmic reduction

We now rewrite the sign of $\mathrm{gap}'$ in more convenient form.

Multiplying by the positive factor $s^{3/2}$,

$$\mathrm{gap}'(p) \ge 0 \iff A s^{k+1/2} \ge B e^{-z^2/2}.$$

Taking logs (monotone operation),

$$\mathrm{gap}'(p) \ge 0 \iff \log A + (k+\tfrac{1}{2})\log s + \frac{z^2}{2} \ge \log B.$$

Define

$$\psi(p) := \frac{z(p)^2}{2} + \left(k+\tfrac{1}{2}\right)\log s(p),\qquad C := \log\frac{B}{A}.$$

Then

$$\mathrm{gap}'(p)\ge 0 \iff \psi(p) \ge C,\qquad \mathrm{gap}'(p)\le 0 \iff \psi(p) \le C.$$

So the sign of $\mathrm{gap}'$ is completely controlled by $\psi(p)$ relative to the constant level $C$.


4. Unimodality of $\psi$ and existence of a unique crossing

We compute $\psi'(p)$. A straightforward (but routine) differentiation gives

$$\psi'(p) = \frac{1-2p}{p(1-p)} \left[k + \tfrac{1}{2} - \frac{k}{4p(1-p)}\right].$$

4.1. Shape of $\psi$

Consider the two factors:

  1. On $(0,1/2)$, the prefactor

    $$\frac{1-2p}{p(1-p)} > 0.$$

  2. The bracket

    $$f(p) := k + \tfrac{1}{2} - \frac{k}{4p(1-p)}$$

    is strictly increasing in $p$ on $(0,1/2)$, because $p\mapsto 1/(p(1-p))$ is strictly decreasing there.

    Evaluate $f$ at two points:

    • At $p = \tfrac{1}{8}$, $4p(1-p) = \tfrac{7}{16}$, so

      $$f(1/8) = k + \tfrac{1}{2} - \frac{16k}{7} = \frac{7 - 18k}{14} < 0$$

      for all integers $k\ge 1$.

    • At $p = \tfrac{1}{2}$, $4p(1-p)=1$, so

      $$f(1/2) = k + \tfrac{1}{2} - k = \tfrac{1}{2} > 0.$$

    Since $f$ is strictly increasing, there is a unique $p_0\in(1/8,1/2)$ with $f(p_0)=0$.

Because the prefactor is positive, we conclude:

  • $\psi'(p) < 0$ for $p\in(0,p_0)$ (so $\psi$ is strictly decreasing there),
  • $\psi'(p) > 0$ for $p\in(p_0,1/2)$ (so $\psi$ is strictly increasing there).

Thus $\psi$ has a unique global minimum at $p_0$ and is "unimodal" (decrease–then–increase).

4.2. End behavior and comparison with $C$

As $p \to 0^+$:

  • $s(p) = p(1-p) \sim p$, so $\log s(p) \sim \log p$.

  • $(1/2-p)\to 1/2$, and $s(p)\to 0$, so

    $$z(p)^2 = \frac{(1/2-p)^2,2k}{s(p)} \sim \frac{k/2}{p},$$

    hence

    $$\frac{z(p)^2}{2} \sim \frac{k}{4p} \to +\infty.$$

The $1/p$ divergence dominates the logarithmic term, so

$$\psi(p) \to +\infty \quad \text{as } p\to 0^+.$$

At $p = 1/2$, we have $z=0$ and $s=\tfrac{1}{4}$, so

$$\psi\bigl(1/2\bigr) = 0 + \left(k+\tfrac{1}{2}\right)\log\frac{1}{4} = -\left(k+\tfrac{1}{2}\right)\log 4.$$

Now compute $C$. Recall

$$A = \frac{1}{2}\binom{2k}{k}k,\qquad B = \frac{\sqrt{k}}{4\sqrt{\pi}},$$

so

$$\frac{B}{A} = \frac{\sqrt{k}}{4\sqrt{\pi}} \cdot \frac{2}{\binom{2k}{k}k} = \frac{1}{2\sqrt{\pi},\binom{2k}{k},\sqrt{k}}.$$

Using the classical upper bound

$$\binom{2k}{k} \le \frac{4^k}{\sqrt{\pi k}}$$

(Wallis' inequality), we obtain

$$\frac{B}{A} \ge \frac{1}{2\sqrt{\pi} \cdot \frac{4^k}{\sqrt{\pi k}} \cdot \sqrt{k}} = \frac{1}{2\cdot 4^k}.$$

Taking logs,

$$C = \log\frac{B}{A} \ge \log\frac{1}{2\cdot 4^k} = -\log(2) - k\log(4) = -\left(k+\tfrac{1}{2}\right)\log 4 = \psi\bigl(1/2\bigr).$$

So we have

$$\psi(p)\to+\infty \text{ as } p\to0^+,\qquad \psi\bigl(1/2\bigr) \le C,$$

and $\psi$ is strictly decreasing then strictly increasing.

4.3. Unique crossing with level $C$

Consider $f(p) := \psi(p) - C$, which is continuous and unimodal (decrease then increase).

  • $\lim_{p\to 0^+} f(p) = +\infty > 0$.
  • $f(1/2) = \psi(1/2) - C \le 0$.

By continuity, there exists at least one $c\in(0,1/2)$ with $f(c)=0$, i.e. $\psi(c)=C$.

Because $\psi$ is strictly decreasing on $(0,p_0)$ and strictly increasing on $(p_0,1/2)$, it can cross a horizontal level at most twice; but the inequality $\psi(1/2)\le C$ together with the fact that $\psi$ is increasing on $[p_0,1/2]$ forces $\psi(p)\le C$ on $[p_0,1/2]$. Hence there is exactly one crossing $c\in(0,p_0]$, and we have the sign pattern

$$\psi(p)\ge C \text{ on } (0,c],\qquad \psi(p)\le C \text{ on } [c,1/2).$$

By the equivalence from §3.4, this translates to

$$\mathrm{gap}'(p)\ge 0 \text{ on } (0,c],\qquad \mathrm{gap}'(p)\le 0 \text{ on } [c,1/2).$$


5. Sign pattern of $\mathrm{gap}'$ and conclusion

We have:

  • $\mathrm{gap}(0) = \mathrm{gap}(1/2) = 0$,
  • $\mathrm{gap}'(p)\ge 0$ on $(0,c]$,
  • $\mathrm{gap}'(p)\le 0$ on $[c,1/2)$.

Thus:

  • On $[0,c]$, $\mathrm{gap}$ is nondecreasing and starts at $0$, so

    $$\mathrm{gap}(p) \ge \mathrm{gap}(0) = 0,\quad p\in[0,c].$$

  • On $[c,1/2]$, $\mathrm{gap}$ is nonincreasing and ends at $0$, so

    $$\mathrm{gap}(p) \ge \mathrm{gap}(1/2) = 0,\quad p\in[c,1/2].$$

Therefore

$$\mathrm{gap}(p) \ge 0 \quad \text{for all } p\in[0,1/2].$$

Recalling that $I(p) = \mathbb{P}(\mathrm{Bin}(2k,p)\ge k)$ and

$$G(p) = 1 - \Phi(z(p)) + \frac{1}{2} \binom{2k}{k},\sigma(p)^{2k},$$

this gives

$$1 - \Phi\bigl(z(p)\bigr) + \frac{1}{2} \binom{2k}{k},\sigma(p)^{2k} ;\le; \mathbb{P}\bigl(\mathrm{Bin}(2k,p)\ge k\bigr)$$

for all $p\in(0,1/2)$.

This proves the desired inequality.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment