Feb 22nd, 2022
- Operating system: Ubuntu 20.04 x84_64 (64-bit)
- Architecture: amd64
- GPU: NVIDIA GeForce RTX 3090
- Python 3.8
| ARG UBUNTU_RELEASE=20.04 | |
| ARG CUDA_VERSION=11.4.2 | |
| ARG GSTREAMER_VERSION=1.22 | |
| # | |
| # Stage 1 | |
| # | |
| FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_RELEASE} AS gstreamer-builder | |
| ARG GSTREAMER_VERSION |
| { | |
| "rules": [ | |
| { | |
| "rulePriority": 10, | |
| "description": "For `latest` tag, keep last 5 images", | |
| "selection": { | |
| "tagStatus": "tagged", | |
| "tagPrefixList": ["latest"], | |
| "countType": "imageCountMoreThan", | |
| "countNumber": 5 |
| template<class Vector3> | |
| std::pair<Vector3, Vector3> best_plane_from_points(const std::vector<Vector3> & c) | |
| { | |
| // copy coordinates to matrix in Eigen format | |
| size_t num_atoms = c.size(); | |
| Eigen::Matrix< Vector3::Scalar, Eigen::Dynamic, Eigen::Dynamic > coord(3, num_atoms); | |
| for (size_t i = 0; i < num_atoms; ++i) coord.col(i) = c[i]; | |
| // calculate centroid | |
| Vector3 centroid(coord.row(0).mean(), coord.row(1).mean(), coord.row(2).mean()); |
| import numpy as np | |
| import scipy.optimize | |
| from mpl_toolkits.mplot3d import Axes3D | |
| import matplotlib.pyplot as plt | |
| fig = plt.figure() | |
| ax = fig.gca(projection='3d') | |
| def fitPlaneLTSQ(XYZ): |